Special linear systems on curves lying on a K3 surface

Miles Reid

Introduction

In this article C will aways denote a nonsingular curve of genus g lying on a K3 surface X. By a g_{r}^{1} I understand a linear system of degree r and dimension 1 which is without fixed points and complete. The g_{r}^{1} is said to be separable if the associated map to \mathbb{P}^{1} is, and this is obviously equivalent to the g_{r}^{1} containing a divisor $P_{1}+\cdots+P_{r}$ made up of distinct points P_{i}.

My aim is to prove the following result.
Theorem 1 Suppose that $|d|$ is a separable g_{r}^{1} on C, and that

$$
g>\frac{1}{4} r^{2}+r+2
$$

then $|d|$ is cut out on C by an elliptic pencil $|E|$ on X.
Since a K3 surface has only a discrete (at most countable) collection of elliptic pencils, Theorem 1 has the following consequence.

Corollary 2 Let C be a curve of genus ≥ 11, having a 2-to-1 map $C \rightarrow E$ to an elliptic curve E; then C does not lie as a nonsingular curve on any K3 surface.

The existence of curves not lying on any K3 surface follows from an easy dimension count, and was known to Severi; this is possibly the first explicit example.

The proof of Theorem 1 uses the techniques of Saint-Donat's thesis [1]; it should be noted that the cases $r=2$ and $r=3$ of the theorem are contained implicitly in [1].

A counter-example shows that the function $f(r)=\frac{1}{4} r^{2}+r+2$ occurring in Theorem 1 cannot be improved if one wants the linear system $|d|$ on C
to be cut out by an elliptic pencil on X; however, I have partial results saying that if g is fairly large ($\geq 2 r$ at least), then one should expect that our linear system g_{r}^{1} is contained in a linear system g_{r+t}^{1+s} with $t \leq 2 s$, and s small. Thus for example, if

$$
g>\frac{1}{8} r^{2}+r+3
$$

then our $g_{r}^{1}|d|$ is either cut out by an elliptic pencil $|E|$ of X, or belongs to a g_{r+t}^{2} with $t=1$ or 2 , and this g_{r+t}^{2} is cut out by an irreducible linear system $|B|$ of $X\left(\right.$ with $\left.B^{2}=2\right)$.

Note finally that the method also gives the following result for a nonsingular curve lying on any regular surface.

Theorem 1' Let C be a nonsingular curve lying on a surface X, with $H^{1}\left(X, \mathcal{O}_{X}\right)=0$; suppose that
(i) $h^{0}\left(X, \mathcal{O}_{X}(C)\right) \geq 3$;
(ii) the genus of C satisfies

$$
g>\frac{1}{2} r^{2}+r+2-\frac{1}{2}\left(C K+K^{2}\right)
$$

Then $|d|$ is cut out on C by a pencil $|E|$ of curves on X.
Unfortunately, for (i) we need to know that C^{2} is greater than $C K$, whereas for the case of a K3 surface this was obvious.

The proof of Theorem 1

The curve C lying on the K3 surface X belongs to a linear system $|C|$ without fixed points, which defines a morphism

$$
\phi_{C}: X \rightarrow \mathbb{P}^{g} ;
$$

the restriction of ϕ_{C} to C is just the canonical map of C, and if C is nonhyperelliptic, then ϕ_{C} is birational onto a surface \bar{X}, and C can be considered as the nonsingular hyperplane section $\mathbb{P}^{g-1} \cap \bar{X}$ of \bar{X}.

To say that r points P_{1}, \ldots, P_{r} of C form a g_{r}^{1} without fixed points is precisely to assert that the images of P_{1}, \ldots, P_{r} under the canonical map of C are linearly dependent, whereas any $r-1$ of them are not. Since the canonical map of C is just ϕ_{C}, this is equivalent to

$$
\left.\begin{array}{r}
\operatorname{dim} \text { coker }\left[H^{0}\left(X, \mathcal{O}_{X}(C)\right) \rightarrow \bigoplus_{j} k_{P_{j}}\right]=1 \\
H^{0}\left(X, \mathcal{O}_{X}(C)\right) \rightarrow \bigoplus_{j \neq i} k_{P_{j}} \quad \text { is onto. } \tag{i}
\end{array}\right\}
$$

and
(i)

Then
and

$$
\left.\begin{array}{r}
h^{1}\left(X, \mathcal{O}_{X}(C) \cdot I_{P_{1}} \cdots I_{P_{r}}\right)=1, \tag{ii}\\
H^{1}\left(X, \mathcal{O}_{X}(C) \cdot I_{P_{1}} \cdots \widehat{I_{P_{i}}} \cdots I_{P_{r}}\right)=0,
\end{array}\right\}
$$

I_{P} denoting the ideal defining P in X.
Now let $f: \widetilde{X} \rightarrow X$ be the blowing up of P_{1}, \ldots, P_{r} in X, and let l_{i} be the exceptional curve of f above P_{i}. Since X is a K3 surface, $K_{\tilde{X}}=\sum l_{i}$, and (ii) is equivalent to
and

$$
\left.\begin{array}{r}
h^{1}\left(\widetilde{X}, \mathcal{O}_{\tilde{X}}\left(f^{*} C-K_{\tilde{X}}\right)\right)=1, \tag{iii}\\
H^{1}\left(\widetilde{X}, \mathcal{O}_{\tilde{X}}\left(f^{*} C-K_{\tilde{X}}+l_{i}\right)\right)=0 ;
\end{array}\right\}
$$

then by Serre duality (iii) is equivalent to

> and

$$
\left.\begin{array}{rl}
h^{1}\left(\widetilde{X}, \mathcal{O}_{\tilde{X}}\left(-f^{*} C+2 K_{\tilde{X}}\right)\right)=1, \tag{iv}\\
H^{1}\left(\widetilde{X}, \mathcal{O}_{\tilde{X}}\left(-f^{*} C+2 K_{\tilde{X}}-l_{i}\right)\right)=0 .
\end{array}\right\}
$$

Suppose now that $\left|f^{*} C-2 \sum l_{j}\right|$ contains a positive divisor D. Then by the cohomology sequence associated to

$$
0 \rightarrow \mathcal{O}_{\tilde{X}}(-D) \rightarrow \mathcal{O}_{\tilde{X}} \rightarrow \mathcal{O}_{D} \rightarrow 0
$$

(iv) is equivalent to

$$
\text { and } \left.\begin{array}{rl}
h^{0}\left(\mathcal{O}_{D}\right) & =2, \tag{v}\\
h^{0}\left(\mathcal{O}_{D+l_{i}}\right) & =1,
\end{array}\right\}
$$

I now want to make a technical digression to improve slightly C.P. Ramanujan's result on numerically connected divisors. First some definitions:

Definition 1 Let D_{1} and D_{2} be positive divisors on a surface F; D_{2} is said to be effectively disconnected from D_{1} if the line bundle $\mathcal{O}_{D_{1}}\left(-D_{2}\right)$ is generated outside a subset of codimension 1 by its global sections.
(Note that the definition is unsymmetric.)
Definition $2 D_{1}$ and D_{2} are said to be effectively disjoint if both

$$
\mathcal{O}_{D_{1}}\left(-D_{2}\right) \cong \mathcal{O}_{D_{1}} \quad \text { and } \quad \mathcal{O}_{D_{2}}\left(-D_{1}\right) \cong \mathcal{O}_{D_{2}}
$$

Note that if D_{2} is effectively disconnected from D_{1}, then we have the numerical assertion

$$
D_{2} \cdot \theta \leq 0 \quad \text { for every component } \theta \text { of } D_{1}
$$

similarly if D_{1} and D_{2} are effectively disjoint, we have

$$
D_{1} \cdot \theta_{2}=D_{2} \cdot \theta_{1}=0 \quad \text { for every component } \theta_{i} \text { of } D_{i}
$$

Example Let $|E|$ be a pencil of curves on a surface X, and suppose that $|E|$ is without fixed points. Let E_{0} be a reducible fibre, and A a component of E_{0}; then E_{0} is effectively disconnected from A, since $\mathcal{O}_{A}\left(-E_{0}\right)=\mathcal{O}_{A}(-E)=$ \mathcal{O}_{A}. However, it is not true that A is effectively disconnected from E_{0}, and even the numerical assertion usually fails - for if A is not some submultiple of E_{0}, it will meet some other component B of E_{0}, and then $A \cdot B>0$. In this case $H^{0}\left(\mathcal{O}_{E_{0}+A}\right)$ is the ring $k[\varepsilon]$ with $\varepsilon^{2}=0$.

Lemma 1 Let D be a divisor on a (complete) surface X; then
(i) if $\operatorname{Supp} D$ is connected, then $H^{0}\left(\mathcal{O}_{D}\right)$ is an Artinian local ring;
(ii) if $h^{0}\left(\mathcal{O}_{D}\right)>1$ then there is a decomposition $D=D_{1}+D_{2}$ for which either
(a) $\operatorname{Supp} D_{1}$ and $\operatorname{Supp} D_{2}$ are disjoint,
or
(b) D_{2} is effectively disconnected from D_{1}, and $D_{1}<D_{2}$.

Proof If $H^{0}\left(\mathcal{O}_{D}\right)$ is not local, then there exists a nontrivial decomposition

$$
1=e+f
$$

of $1 \in H^{0}\left(\mathcal{O}_{D}\right)$ as the sum of two orthogonal idempotents; now the image of e and f under the map $H^{0}\left(\mathcal{O}_{D}\right) \rightarrow H^{0}\left(\mathcal{O}_{D_{\text {red }}}\right)$ defines a similar decomposition

$$
1=\bar{e}+\bar{f}
$$

of $1 \in H^{0}\left(\mathcal{O}_{D_{\text {red }}}\right)$; this is a nontrivial decomposition, since if $\bar{e}=0$ then e would be a nilpotent section of \mathcal{O}_{D}. But now $\bar{e}=0$ and $\bar{f}=0$ define two disjoint open and closed subsets of Supp D.

Similarly, if $H^{0}\left(\mathcal{O}_{D}\right)$ is local, and $h^{0}\left(\mathcal{O}_{D}\right)>1$, then $H^{0}\left(\mathcal{O}_{D}\right)$ contains an element $e \neq 0$ with $e^{2}=0$. Let $Z_{2} \subset D$ be the subscheme defined by the \mathcal{O}_{D}-ideal $e \mathcal{O}_{D}$, and $D_{2} \subset Z_{2}$ the greatest divisor contained in Z_{2}. (Thus D_{2} and Z_{2} only differ at the "embedded points" of Z_{2}, at which Z_{2} fails to be Cohen-Macaulay.) D_{2} is nonzero, since Z_{2} is defined by a nilpotent ideal, and so contains at least $D_{\text {red }}$. The inclusion $D_{2} \subset D$ gives rise to a decomposition

$$
D=D_{1}+D_{2}
$$

and hence to an exact sequence

$$
0 \rightarrow \mathcal{O}_{D_{1}}\left(-D_{2}\right) \rightarrow \mathcal{O}_{D} \rightarrow \mathcal{O}_{D_{2}} \rightarrow 0
$$

identifying $\mathcal{O}_{D_{1}}\left(-D_{2}\right)$ as the ideal of \mathcal{O}_{D} defining D_{2}. This is generated outside a finite set by the section e by construction.

To get $D_{1}<D_{2}$, note that D_{2} is defined outside a finite set by e, and $e^{2}=0$; hence, for some dense open set U of Supp D we have $D_{\mid U}<2 D_{2 \mid U}$, and hence $D<2 D_{2}$, and $D_{1}<D_{2}$.

To return to the proof of Theorem 1, let $|d|$ be a separable g_{r}^{1} on C, C lying on the K3 surface X. Note that as soon as $g \geq 3 r$ there will exist a divisor $D \in\left|f^{*} C-2 \sum l_{i}\right|$; Lemma 1 transforms (v) into

There is a decomposition $D=D_{1}+D_{2}$ such that either Supp D_{1} and Supp D_{2} are disjoint, or $D_{1}<D_{2}$ and D_{2} is effectively disconnected from D_{1}. Furthermore, there is no such decomposition for $D+l_{i}$.
In either case we can write

$$
\begin{aligned}
& D_{1}=f^{*} E_{1}-\sum\left(1+\varepsilon_{i}\right) l_{i} \\
& D_{2}=f^{*} E_{2}-\sum\left(1-\varepsilon_{i}\right) l_{i}
\end{aligned}
$$

with E_{1} and E_{2} divisors on X such that $E_{1}+E_{2} \sim C$, and ε_{i} are integers.

Lemma 2 (a) If $\operatorname{Supp} D_{1}$ and $\operatorname{Supp} D_{2}$ are disjoint, then for all $i, \varepsilon_{i}=0$ and E_{1} and E_{2} meet transversally at P_{i}.
(b) if $D_{1}<D_{2}$, then $E_{1}<E_{2}$ and $\varepsilon_{i} \geq 0$.

Proof In either case $D_{2} \cdot\left(\right.$ any component of $\left.D_{1}\right) \leq 0$; thus if $\varepsilon_{i}<0$, $D_{2} \cdot l_{i}>0$, so that l_{i} cannot be a component of D_{1}. Thus $\varepsilon_{i}=-1$, and E_{1} does not pass through P_{i}; this contradicts the final clause of (vi) - trivially in case (a), since we can just add l_{i} to D_{2}; in case (b), the argument is as follows: if E_{1} does not pass through P_{i}, then $\mathcal{O}_{D_{1}}\left(-l_{i}\right)=\mathcal{O}_{D_{1}}$, so that $\mathcal{O}_{D_{1}}\left(-D_{2}-l_{i}\right)=\mathcal{O}_{D_{1}}\left(-D_{2}\right)$ is generated outside a finite set by its global sections.

In case (a) of the lemma, $\varepsilon_{i}=0$ now follows by symmetry, and the transversality of E_{1} and E_{2} at P_{i} is obvious.

The proof of Theorem 1 is now straightforward; let us first establish the following numerical version:

Lemma 3 Under the above conditions, suppose that $g>\frac{1}{4} r^{2}+r+2$; then (after interchanging E_{1} and E_{2} if necessary in case (a) of Lemma 2), we have

$$
E_{1}^{2}=0 \quad \text { and } \quad E_{1} C=r .
$$

Proof In case (b) of Lemma 2 we have $E_{1}^{2} \leq E_{2}^{2}$, since $E_{1}^{2}+E_{1} E_{2}=E_{1} C$, and $E_{2}^{2}+E_{1} E_{2}=E_{2} C$, and $E_{1}<E_{2}$; in case (a) we can assume $E_{1}^{2} \leq E_{2}^{2}$ by symmetry.

Now since $D_{1} D_{2} \leq 0$ it follows that $E_{1} E_{2} \leq r$; on the other hand,

$$
\left(E_{1}+E_{2}\right)^{2}=C^{2}>0,
$$

so that the Index Theorem may be written in the form

$$
E_{1}^{2} E_{2}^{2}-\left(E_{1} E_{2}\right)^{2}=\operatorname{det}\left|\begin{array}{cc}
E_{1}^{2} & E_{1} E_{2} \\
E_{1} E_{2} & E_{2}^{2}
\end{array}\right| \leq 0
$$

hence $E_{1}^{2} E_{2}^{2} \leq r^{2}$. If $E_{1}^{2}>0$ then $E_{1}^{2} \geq 2$, so that $E_{2}^{2} \leq \frac{1}{2} r^{2}$; then

$$
g=1+\frac{1}{2}\left(E_{1}+E_{2}\right)^{2} \leq \frac{1}{4} r^{2}+r+2
$$

thus $E_{1}^{2} \leq 0$.
But now from $D_{1} D_{2}$ we also get the assertion that $E_{1} E_{2}+\sum \varepsilon_{i}^{2} \leq r$; on the other hand, $E_{1} E_{2}+E_{1}^{2}=E_{1} C \geq r+\sum \varepsilon_{i}$ (since E_{1} has intersection
number at least $1+\varepsilon_{i}$ with C at $\left.P_{i}\right)$. Hence $E_{1}^{2} \geq \sum\left(\varepsilon_{i}^{2}+\varepsilon_{i}\right)$. We conclude that $E_{1}^{2}=0$, and that the ε_{i} are also zero. $E_{1} C=r$ then follows.

Now the mobile part of $\left|E_{1}\right|$ is an elliptic pencil, which cuts out the g_{r}^{1} $\left|P_{1}+\cdots+P_{r}\right|$ on C. Theorem 1 is proved.

Note that we get an easy counterexample to any improvement of the function $f(r)=\frac{1}{4} r^{2}+r+2$ occurring in the statement of Theorem 1 as follows: let X be a K3 surface, and $|B|$ an irreducible linear system with $B^{2}=2$; let $C \sim(m+1) B$, for some $m \geq 2$. It is clear that C can be chosen such that the double covering morphism

$$
\phi_{B}: X \rightarrow \mathbb{P}^{2}
$$

takes C birationally into a curve \bar{C} of degree $2 m+2$ having a certain number of ordinary double points P_{i}; the lines of \mathbb{P}^{2} passing through one of the P_{i} cut out a $g_{2 m}^{1}$ on C, which can only be realised on X as being cut out residually by the sublinear system $|B|_{P_{i}} \subset|B|$ consisting of the curves of $|B|$ passing through the points of X lying over P_{i}; however,

$$
g(C)=1+(m+1)^{2}=\frac{1}{4}(2 m)^{2}+2 m+2
$$

References

[1] B. Saint-Donat, Projective models of K3 surfaces, Amer. J. Math 96 (1974), 602-639

Department of Pure Mathematics and Mathematical Statistics, University of Cambridge

Version 25th April 1975
Miles Reid,
Math Inst., Univ. of Warwick, Coventry CV4 7AL, England
e-mail: miles@maths.warwick.ac.uk
web: www.maths.warwick.ac.uk/~miles

