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Introduction

In this article C' will aways denote a nonsingular curve of genus g lying on

a K3 surface X. By a g! I understand a linear system of degree r and

dimension 1 which is without fixed points and complete. The g! is said to

be separable if the associated map to P! is, and this is obviously equivalent

to the g! containing a divisor P; + - -- + P, made up of distinct points P;.
My aim is to prove the following result.

Theorem 1 Suppose that |d| is a separable g} on C, and that
L,
g > Zr +r4+2;
then |d| is cut out on C by an elliptic pencil |E| on X.

Since a K3 surface has only a discrete (at most countable) collection of
elliptic pencils, Theorem 1 has the following consequence.

Corollary 2 Let C be a curve of genus > 11, having a 2-to-1 map C — E
to an elliptic curve E; then C does not lie as a nonsingular curve on any
K3 surface.

The existence of curves not lying on any K3 surface follows from an easy
dimension count, and was known to Severi; this is possibly the first explicit
example.

The proof of Theorem 1 uses the techniques of Saint-Donat’s thesis [1]; it
should be noted that the cases r = 2 and r = 3 of the theorem are contained
implicitly in [1].

A counter-example shows that the function f(r) = 1r%+r+2 occurring
in Theorem 1 cannot be improved if one wants the linear system |d| on C



to be cut out by an elliptic pencil on X; however, I have partial results
saying that if g is fairly large (> 2r at least), then one should expect that
our linear system g} is contained in a linear system g}if with ¢ < 2s, and s
small. Thus for example, if

g > %TQ +r43;
then our gl |d| is either cut out by an elliptic pencil |E| of X, or belongs
to a g2,, with ¢ = 1 or 2, and this g2,, is cut out by an irreducible linear
system |B| of X (with B? = 2).
Note finally that the method also gives the following result for a nonsin-
gular curve lying on any regular surface.

Theorem 1’ Let C be a nonsingular curve lying on a surface X, with
HY(X,0x) = 0; suppose that

(i) hO(X,O0x(C)) > 3;

(ii) the genus of C satisfies

1 1
g > §r2+r+2—§(CK+K2).

Then |d| is cut out on C by a pencil |E| of curves on X.

Unfortunately, for (i) we need to know that C? is greater than CK,
whereas for the case of a K3 surface this was obvious.

The proof of Theorem 1

The curve C' lying on the K3 surface X belongs to a linear system |C|
without fixed points, which defines a morphism

oo X — P9

the restriction of ¢ to C is just the canonical map of C, and if C is non-
hyperelliptic, then ¢¢ is birational onto a surface X, and C can be considered
as the nonsingular hyperplane section P9~! N X of X.

To say that r points P, ..., P. of C form a g! without fixed points is
precisely to assert that the images of Pi,..., P, under the canonical map
of C' are linearly dependent, whereas any r — 1 of them are not. Since the
canonical map of C is just ¢¢, this is equivalent to



dim coker [HO(X, Ox(0)) — @kpj} =1,
J

and (i)
HY(X,0x(C)) — @kpj is onto.
JF
Then

(X, 0x(C)-Ip, -+ Ip.) =1,
and (i)

Hl(X7OX(C)IP1I/1;IPr):07

K3

Ip denoting the ideal defining P in X.

Now let f: X — X be the blowing up of Pi,..., P, in X, and let [; be
the exceptional curve of f above P;. Since X is a K3 surface, K3 = >_1;,
and (ii) is equivalent to

WX, 05(f"C - Kg)) =1,
and (iii)
HY(X,04(f*C — K¢ +1;)) = 0;
then by Serre duality (iii) is equivalent to

WX, 05 (—f*C+2K5)) =1,
and (iv)
Hl(X, Og(—f*c + QK)N( — ll)) =0.
Suppose now that |f*C — 23 1;| contains a positive divisor D. Then by
the cohomology sequence associated to

0— O0gx(=D)— O — Op —0,
(iv) is equivalent to
hO(OD) = 27

and (v)
h(Opyy,) =1,

I now want to make a technical digression to improve slightly C.P. Ra-
manujan’s result on numerically connected divisors. First some definitions:



Definition 1 Let D; and D> be positive divisors on a surface F'; Dy is
said to be effectively disconnected from D; if the line bundle Op, (—Ds3) is
generated outside a subset of codimension 1 by its global sections.

(Note that the definition is unsymmetric.)

Definition 2 D; and D are said to be effectively disjoint if both
ODl(_DQ) = Op, and ODQ(—Dl) = Op,.

Note that if Dy is effectively disconnected from D;, then we have the
numerical assertion

Dy -0 <0 for every component 6 of Dq;
similarly if Dy and D are effectively disjoint, we have
Dy -0y =Dy-0; =0 for every component 0; of D;.

Example Let |E| be a pencil of curves on a surface X, and suppose that
|E| is without fixed points. Let Ey be a reducible fibre, and A a component of
Ey; then Ej is effectively disconnected from A, since Oy (—Ep) = Oa(—F) =
O 4. However, it is not true that A is effectively disconnected from Ej, and
even the numerical assertion usually fails — for if A is not some submultiple
of Ey, it will meet some other component B of Ey, and then A- B > 0. In
this case H%(Opg,14) is the ring k[e] with €2 = 0.

Lemma 1 Let D be a divisor on a (complete) surface X ; then
(i) if Supp D is connected, then H°(Op) is an Artinian local ring;
(ii) if h°(Op) > 1 then there is a decomposition D = D1 + Do for which

either
(a) Supp D1 and Supp Ds are disjoint,
or
(b) D3 is effectively disconnected from Dy, and D1 < Ds.



Proof If HY(Op) is not local, then there exists a nontrivial decomposition
l=e+f

of 1 € H%(Op) as the sum of two orthogonal idempotents; now the image of e
and f under the map H%(Op) — H°(Op,_,) defines a similar decomposition

l=e+f

of 1 € H%(Op,.,); this is a nontrivial decomposition, since if € = 0 then e
would be a nilpotent section of Op. But now € = 0 and f = 0 define two
disjoint open and closed subsets of Supp D.

Similarly, if HY(Op) is local, and h°(Op) > 1, then H°(Op) contains
an element e # 0 with e? = 0. Let Zy C D be the subscheme defined by the
Op-ideal eOp, and Dy C Zs the greatest divisor contained in Z,. (Thus
Dy and Z5 only differ at the “embedded points” of Zs, at which Z fails
to be Cohen—Macaulay.) Ds is nonzero, since Zs is defined by a nilpotent
ideal, and so contains at least D;eq. The inclusion Do C D gives rise to a
decomposition

D = D1+ Ds

and hence to an exact sequence
0 — Op,(—D2) — Op — Op, — 0,

identifying Op, (—D3) as the ideal of Op defining Dy. This is generated
outside a finite set by the section e by construction.

To get D1 < Do, note that Do is defined outside a finite set by e, and
e? = 0; hence, for some dense open set U of Supp D we have Dy < 2Dqy,
and hence D < 2Ds, and Dy < Ds.

To return to the proof of Theorem 1, let |d| be a separable g! on C, C
lying on the K3 surface X. Note that as soon as g > 3r there will exist a
divisor D € |f*C' — 23 [;|; Lemma 1 transforms (v) into

There is a decomposition D = D1 4+ D5 such that either
Supp D1 and Supp D4 are disjoint, or D7 < Do and Dy
is effectively disconnected from D;. Furthermore, there
is no such decomposition for D + ;.

(vi)

In either case we can write
Dy =f"E =) (1+e&)
Dy=f"By =Y (1-&)l;
with Fq and FEs divisors on X such that E1 + Fo ~ C, and ¢; are integers.



Lemma 2 (a) If Supp D; and Supp Do are disjoint, then for all i, e; =0
and Ey and Ey meet transversally at P;.

(b) if D1 < Dy, then Ey < E3 and g; > 0.

Proof In either case Dj - (any component of D1) < 0; thus if ¢; < 0,
Do - 1; > 0, so that I; cannot be a component of Dy. Thus ¢; = —1, and F;
does not pass through P;; this contradicts the final clause of (vi) — trivially
in case (a), since we can just add [; to Do; in case (b), the argument is
as follows: if FE; does not pass through P;, then Op,(—l;) = Op,, so that
Op, (=D — ;) = Op,(—Dy) is generated outside a finite set by its global
sections.

In case (a) of the lemma, ¢; = 0 now follows by symmetry, and the
transversality of F; and Ey at P; is obvious.

The proof of Theorem 1 is now straightforward; let us first establish the
following numerical version:

Lemma 3 Under the above conditions, suppose that g > irQ +r 4+ 2; then
(after interchanging Ey and Es if necessary in case (a) of Lemma 2), we
have

EZ=0 and FC=r.

Proof In case (b) of Lemma 2 we have E2 < E2, since Ef+ FE1Ey = E1C,
and EZ + F1Ey = F>C, and F; < E»; in case (a) we can assume Ef < B2
by symmetry.

Now since D1 D2 < 0 it follows that £ FEo < 7; on the other hand,

(E1 + E2)2 = (? > 0,
so that the Index Theorem may be written in the form

E  E\E,

202 2 _

< 0;

— )

hence EZE$ < r?. If EZ > 0 then E? > 2, so that B < %TQ; then

1"2—|—1"—|—2;

|

1
9=1+§(E1+E2)2§

thus B2 < 0.
But now from D;Dy we also get the assertion that EjFEs + Zaf <
on the other hand, E1Ey + Ef = E1C > r+ Y ¢; (since E; has intersection



number at least 1+¢; with C at P;). Hence B2 > (2 +¢;). We conclude
that E12 = 0, and that the ¢; are also zero. E1C = r then follows.

Now the mobile part of |Eq| is an elliptic pencil, which cuts out the g}
|Py +---+ P.| on C. Theorem 1 is proved.

Note that we get an easy counterexample to any improvement of the
function f(r) = 3r? 4+ r + 2 occurring in the statement of Theorem 1 as
follows: let X be a K3 surface, and |B| an irreducible linear system with
B? =2;let C ~ (m+1)B, for some m > 2. It is clear that C can be chosen
such that the double covering morphism

bp: X — P?

takes C birationally into a curve C of degree 2m +2 having a certain number
of ordinary double points P;; the lines of P? passing through one of the P; cut
out a g%m on C', which can only be realised on X as being cut out residually
by the sublinear system |B|p, C |B| consisting of the curves of |B| passing
through the points of X lying over P;; however,

1
g(C)=1+(m+1)*= Z(2m)2 +2m + 2.
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