Special linear systems on curves lying on a K3 surface

Miles Reid

Introduction

In this article C will aways denote a nonsingular curve of genus g lying on a K3 surface X. By a g_r^1 I understand a linear system of degree r and dimension 1 which is without fixed points and complete. The g_r^1 is said to be *separable* if the associated map to \mathbb{P}^1 is, and this is obviously equivalent to the g_r^1 containing a divisor $P_1 + \cdots + P_r$ made up of distinct points P_i .

My aim is to prove the following result.

Theorem 1 Suppose that |d| is a separable g_r^1 on C, and that

$$g > \frac{1}{4}r^2 + r + 2;$$

then |d| is cut out on C by an elliptic pencil |E| on X.

Since a K3 surface has only a discrete (at most countable) collection of elliptic pencils, Theorem 1 has the following consequence.

Corollary 2 Let C be a curve of genus ≥ 11 , having a 2-to-1 map $C \rightarrow E$ to an elliptic curve E; then C does not lie as a nonsingular curve on any K3 surface.

The existence of curves not lying on any K3 surface follows from an easy dimension count, and was known to Severi; this is possibly the first explicit example.

The proof of Theorem 1 uses the techniques of Saint-Donat's thesis [1]; it should be noted that the cases r = 2 and r = 3 of the theorem are contained implicitly in [1].

A counter-example shows that the function $f(r) = \frac{1}{4}r^2 + r + 2$ occurring in Theorem 1 cannot be improved if one wants the linear system |d| on C to be cut out by an elliptic pencil on X; however, I have partial results saying that if g is fairly large ($\geq 2r$ at least), then one should expect that our linear system g_r^1 is contained in a linear system g_{r+t}^{1+s} with $t \leq 2s$, and s small. Thus for example, if

$$g > \frac{1}{8}r^2 + r + 3;$$

then our $g_r^1 |d|$ is *either* cut out by an elliptic pencil |E| of X, or belongs to a g_{r+t}^2 with t = 1 or 2, and this g_{r+t}^2 is cut out by an irreducible linear system |B| of X (with $B^2 = 2$).

Note finally that the method also gives the following result for a nonsingular curve lying on any regular surface.

Theorem 1' Let C be a nonsingular curve lying on a surface X, with $H^1(X, \mathcal{O}_X) = 0$; suppose that

- (i) $h^0(X, \mathcal{O}_X(C)) \ge 3;$
- (ii) the genus of C satisfies

$$g > \frac{1}{2}r^2 + r + 2 - \frac{1}{2}(CK + K^2).$$

Then |d| is cut out on C by a pencil |E| of curves on X.

Unfortunately, for (i) we need to know that C^2 is greater than CK, whereas for the case of a K3 surface this was obvious.

The proof of Theorem 1

The curve C lying on the K3 surface X belongs to a linear system |C| without fixed points, which defines a morphism

$$\phi_C \colon X \to \mathbb{P}^g;$$

the restriction of ϕ_C to C is just the canonical map of C, and if C is nonhyperelliptic, then ϕ_C is birational onto a surface \overline{X} , and C can be considered as the nonsingular hyperplane section $\mathbb{P}^{g-1} \cap \overline{X}$ of \overline{X} .

To say that r points P_1, \ldots, P_r of C form a g_r^1 without fixed points is precisely to assert that the images of P_1, \ldots, P_r under the canonical map of C are linearly dependent, whereas any r-1 of them are not. Since the canonical map of C is just ϕ_C , this is equivalent to

$$\dim \operatorname{coker} \left[H^0(X, \mathcal{O}_X(C)) \to \bigoplus_j k_{P_j} \right] = 1,$$

$$H^0(X, \mathcal{O}_X(C)) \to \bigoplus_{j \neq i} k_{P_j} \quad \text{is onto.}$$
 (i)

Then

and

and

 I_P denoting the ideal defining P in X.

Now let $f: \tilde{X} \to X$ be the blowing up of P_1, \ldots, P_r in X, and let l_i be the exceptional curve of f above P_i . Since X is a K3 surface, $K_{\tilde{X}} = \sum l_i$, and (ii) is equivalent to

then by Serre duality (iii) is equivalent to

and

and

$$\begin{aligned} & h^{1}(\widetilde{X}, \mathcal{O}_{\widetilde{X}}(-f^{*}C+2K_{\widetilde{X}})) = 1, \\ & H^{1}(\widetilde{X}, \mathcal{O}_{\widetilde{X}}(-f^{*}C+2K_{\widetilde{X}}-l_{i})) = 0. \end{aligned} \right\}$$
 (iv)

Suppose now that $|f^*C - 2\sum l_j|$ contains a positive divisor D. Then by the cohomology sequence associated to

$$0 \to \mathcal{O}_{\widetilde{X}}(-D) \to \mathcal{O}_{\widetilde{X}} \to \mathcal{O}_D \to 0,$$

(iv) is equivalent to

and
$$\begin{array}{c} h^0(\mathcal{O}_D) = 2, \\ h^0(\mathcal{O}_{D+l_i}) = 1, \end{array} \right\}$$
 (v)

I now want to make a technical digression to improve slightly C.P. Ramanujan's result on numerically connected divisors. First some definitions: **Definition 1** Let D_1 and D_2 be positive divisors on a surface F; D_2 is said to be *effectively disconnected* from D_1 if the line bundle $\mathcal{O}_{D_1}(-D_2)$ is generated outside a subset of codimension 1 by its global sections.

(Note that the definition is unsymmetric.)

Definition 2 D_1 and D_2 are said to be *effectively disjoint* if both

 $\mathcal{O}_{D_1}(-D_2) \cong \mathcal{O}_{D_1}$ and $\mathcal{O}_{D_2}(-D_1) \cong \mathcal{O}_{D_2}$.

Note that if D_2 is effectively disconnected from D_1 , then we have the numerical assertion

 $D_2 \cdot \theta \leq 0$ for every component θ of D_1 ;

similarly if D_1 and D_2 are effectively disjoint, we have

 $D_1 \cdot \theta_2 = D_2 \cdot \theta_1 = 0$ for every component θ_i of D_i .

Example Let |E| be a pencil of curves on a surface X, and suppose that |E| is without fixed points. Let E_0 be a reducible fibre, and A a component of E_0 ; then E_0 is effectively disconnected from A, since $\mathcal{O}_A(-E_0) = \mathcal{O}_A(-E) = \mathcal{O}_A$. However, it is not true that A is effectively disconnected from E_0 , and even the numerical assertion usually fails – for if A is not some submultiple of E_0 , it will meet some other component B of E_0 , and then $A \cdot B > 0$. In this case $H^0(\mathcal{O}_{E_0+A})$ is the ring $k[\varepsilon]$ with $\varepsilon^2 = 0$.

Lemma 1 Let D be a divisor on a (complete) surface X; then

- (i) if Supp D is connected, then $H^0(\mathcal{O}_D)$ is an Artinian local ring;
- (ii) if $h^0(\mathcal{O}_D) > 1$ then there is a decomposition $D = D_1 + D_2$ for which
 - (a) $\operatorname{Supp} D_1$ and $\operatorname{Supp} D_2$ are disjoint,

either

(b) D_2 is effectively disconnected from D_1 , and $D_1 < D_2$.

Proof If $H^0(\mathcal{O}_D)$ is not local, then there exists a nontrivial decomposition

$$1 = e + f$$

of $1 \in H^0(\mathcal{O}_D)$ as the sum of two orthogonal idempotents; now the image of eand f under the map $H^0(\mathcal{O}_D) \to H^0(\mathcal{O}_{D_{\text{red}}})$ defines a similar decomposition $1 = \overline{e} + \overline{f}$

of $1 \in H^0(\mathcal{O}_{D_{\text{red}}})$; this is a nontrivial decomposition, since if $\overline{e} = 0$ then e would be a nilpotent section of \mathcal{O}_D . But now $\overline{e} = 0$ and $\overline{f} = 0$ define two disjoint open and closed subsets of Supp D.

Similarly, if $H^0(\mathcal{O}_D)$ is local, and $h^0(\mathcal{O}_D) > 1$, then $H^0(\mathcal{O}_D)$ contains an element $e \neq 0$ with $e^2 = 0$. Let $Z_2 \subset D$ be the subscheme defined by the \mathcal{O}_D -ideal $e\mathcal{O}_D$, and $D_2 \subset Z_2$ the greatest divisor contained in Z_2 . (Thus D_2 and Z_2 only differ at the "embedded points" of Z_2 , at which Z_2 fails to be Cohen–Macaulay.) D_2 is nonzero, since Z_2 is defined by a nilpotent ideal, and so contains at least D_{red} . The inclusion $D_2 \subset D$ gives rise to a decomposition

$$D = D_1 + D_2$$

and hence to an exact sequence

$$0 \to \mathcal{O}_{D_1}(-D_2) \to \mathcal{O}_D \to \mathcal{O}_{D_2} \to 0,$$

identifying $\mathcal{O}_{D_1}(-D_2)$ as the ideal of \mathcal{O}_D defining D_2 . This is generated outside a finite set by the section e by construction.

To get $D_1 < D_2$, note that D_2 is defined outside a finite set by e, and $e^2 = 0$; hence, for some dense open set U of Supp D we have $D_{|U} < 2D_{2|U}$, and hence $D < 2D_2$, and $D_1 < D_2$.

To return to the proof of Theorem 1, let |d| be a separable g_r^1 on C, C lying on the K3 surface X. Note that as soon as $g \ge 3r$ there will exist a divisor $D \in |f^*C - 2\sum l_i|$; Lemma 1 transforms (v) into

There is a decomposition $D = D_1 + D_2$ such that either Supp D_1 and Supp D_2 are disjoint, or $D_1 < D_2$ and D_2 is effectively disconnected from D_1 . Furthermore, there is no such decomposition for $D + l_i$. (vi)

In either case we can write

$$D_1 = f^* E_1 - \sum (1 + \varepsilon_i) l_i$$
$$D_2 = f^* E_2 - \sum (1 - \varepsilon_i) l_i$$

with E_1 and E_2 divisors on X such that $E_1 + E_2 \sim C$, and ε_i are integers.

Lemma 2 (a) If Supp D_1 and Supp D_2 are disjoint, then for all $i, \varepsilon_i = 0$ and E_1 and E_2 meet transversally at P_i .

(b) if
$$D_1 < D_2$$
, then $E_1 < E_2$ and $\varepsilon_i \ge 0$.

Proof In either case $D_2 \cdot (\text{any component of } D_1) \leq 0$; thus if $\varepsilon_i < 0$, $D_2 \cdot l_i > 0$, so that l_i cannot be a component of D_1 . Thus $\varepsilon_i = -1$, and E_1 does not pass through P_i ; this contradicts the final clause of (vi) – trivially in case (a), since we can just add l_i to D_2 ; in case (b), the argument is as follows: if E_1 does not pass through P_i , then $\mathcal{O}_{D_1}(-l_i) = \mathcal{O}_{D_1}$, so that $\mathcal{O}_{D_1}(-D_2 - l_i) = \mathcal{O}_{D_1}(-D_2)$ is generated outside a finite set by its global sections.

In case (a) of the lemma, $\varepsilon_i = 0$ now follows by symmetry, and the transversality of E_1 and E_2 at P_i is obvious.

The proof of Theorem 1 is now straightforward; let us first establish the following numerical version:

Lemma 3 Under the above conditions, suppose that $g > \frac{1}{4}r^2 + r + 2$; then (after interchanging E_1 and E_2 if necessary in case (a) of Lemma 2), we have

$$E_1^2 = 0$$
 and $E_1C = r$.

Proof In case (b) of Lemma 2 we have $E_1^2 \leq E_2^2$, since $E_1^2 + E_1E_2 = E_1C$, and $E_2^2 + E_1E_2 = E_2C$, and $E_1 < E_2$; in case (a) we can assume $E_1^2 \leq E_2^2$ by symmetry.

Now since $D_1D_2 \leq 0$ it follows that $E_1E_2 \leq r$; on the other hand,

$$(E_1 + E_2)^2 = C^2 > 0,$$

so that the Index Theorem may be written in the form

$$E_1^2 E_2^2 - (E_1 E_2)^2 = \det \begin{vmatrix} E_1^2 & E_1 E_2 \\ E_1 E_2 & E_2^2 \end{vmatrix} \le 0;$$

hence $E_1^2 E_2^2 \leq r^2$. If $E_1^2 > 0$ then $E_1^2 \geq 2$, so that $E_2^2 \leq \frac{1}{2}r^2$; then

$$g = 1 + \frac{1}{2}(E_1 + E_2)^2 \le \frac{1}{4}r^2 + r + 2;$$

thus $E_1^2 \leq 0$.

But now from D_1D_2 we also get the assertion that $E_1E_2 + \sum \varepsilon_i^2 \leq r$; on the other hand, $E_1E_2 + E_1^2 = E_1C \geq r + \sum \varepsilon_i$ (since E_1 has intersection number at least $1 + \varepsilon_i$ with C at P_i). Hence $E_1^2 \ge \sum (\varepsilon_i^2 + \varepsilon_i)$. We conclude that $E_1^2 = 0$, and that the ε_i are also zero. $E_1C = r$ then follows.

Now the mobile part of $|E_1|$ is an elliptic pencil, which cuts out the $g_r^1 |P_1 + \cdots + P_r|$ on C. Theorem 1 is proved.

Note that we get an easy counterexample to any improvement of the function $f(r) = \frac{1}{4}r^2 + r + 2$ occurring in the statement of Theorem 1 as follows: let X be a K3 surface, and |B| an irreducible linear system with $B^2 = 2$; let $C \sim (m+1)B$, for some $m \geq 2$. It is clear that C can be chosen such that the double covering morphism

$$\phi_B \colon X \to \mathbb{P}^2$$

takes C birationally into a curve \overline{C} of degree 2m+2 having a certain number of ordinary double points P_i ; the lines of \mathbb{P}^2 passing through one of the P_i cut out a g_{2m}^1 on C, which can only be realised on X as being cut out residually by the sublinear system $|B|_{P_i} \subset |B|$ consisting of the curves of |B| passing through the points of X lying over P_i ; however,

$$g(C) = 1 + (m+1)^2 = \frac{1}{4}(2m)^2 + 2m + 2.$$

References

 B. Saint-Donat, Projective models of K3 surfaces, Amer. J. Math 96 (1974), 602–639

Department of Pure Mathematics and Mathematical Statistics, University of Cambridge

Version 25th April 1975

Miles Reid, Math Inst., Univ. of Warwick, Coventry CV4 7AL, England e-mail: miles@maths.warwick.ac.uk web: www.maths.warwick.ac.uk/~miles