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Abstract

Special radical classes of near-rings are denned and investigated. It is shown that our approach,
which differs from previous ones, does cater for all the well-known radicals of near-rings. More-
over, most of the desirable properties from their ring theory counterpart are retained. The
relationship between the special radical of a near-ring and the corresponding matrix near-ring is
given.

1991 Mathematics subject classification (Amer. Math. Soc): 16 Y 30, 16 N 80.

Special radicals in the variety of rings is a specialization of the supernilpotent
radicals of rings. The need for supernilpotent radicals arose to discard some
pathological radicals. Supernilpotent radicals are hereditary and contain all
the nilpotent rings. These two properties (or sometimes just the second) are
the denning conditions for a supernilpotent radical in the variety of near-
rings. Unfortunately this approach lacks several desirable conclusions, for
example, supernilpotent radicals need not have hereditary semisimple classes
in the variety of near-rings (cf. [4]). At first it appeared that this is the
price to pay for considering supernilpotent radicals in this more general va-
riety. However, recent results seem to indicate that the starting point may
not be the correct one. In [17], overnilpotent radical classes of near-rings
were denned which also generalize the supernilpotent radicals of rings. The
starting point here is via weakly special classes which are classes of quasi
semi-equiprime near-rings (denned below). This approach has several ad-
vantages; the overnilpotent radicals are always ideal-hereditary. A host of
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[2] Special radicals and matrix near-rings 357

natural examples were given in [17]. In fact, all the known ideal-hereditary
radicals are overnilpotent radicals. Whether this is true in general is not yet
known.

It is our purpose here to define and investigate special radicals for near-
rings as a specialization of overnilpotent radicals. Following the initial defini-
tions and examples, we give in Section 2 a characterization of special radicals
via near-ring groups and in the last section we investigate the relationship be-
tween the radical of a near-ring and the corresponding matrix near-ring (as
defined by Meldrum and van der Walt [9]).

A note of caution: two different meanings have already been assigned to
special radicals for near-rings, namely the upper radical determined by a
hereditary class which is closed under essential extensions and which con-
sists of prime near-rings [1] or equiprime near-rings [3] respectively. Our
definition of a special radical will imply the former and is implied by the
latter. The drawbacks of the first definition are the same as those of the su-
pernilpotent radicals of near-rings and the main drawback of the second is
that it does not cater for the important J2 radical and most probably also
not for the Brown-McCoy radical (we do not know if every simple near-ring
with identity is equiprime).

All near-rings are o-symmetric right near-rings. Most of the present results
can be extended to the variety of all, not necessarily o-symmetric near-rings
along the lines of [17, Section 4]. Pilz [12] can be consulted for undefined
near-ring concepts, and [17] or Szasz [13], with their references, for radical
theoretic concepts.

1. Special radicals

1.1 DEFINITION. A near-ring N is reliable if whenever 8: I —> N is a
surjective homomorphism and / < A , then x-y e ker8 (x, y e I) implies
ax - ay e ker 8 for all a € A.

If N is reliable, then the /-group 7/ker0 = N can be turned into an
A-group via the natural action: an — a(in + kerd) — ain + ker 8 . Ideals are
denoted by I < N; essential ideals by I <oN ( / i s essential if / n / ^ 0
for all 0 ^ J <N). From [17] we recall that a near-rings N is called quasi
semi-equiprime if (0: N)N = 0 an<* N *s reliable. These near-rings N are
exactly those with the property that whenever J <I<A and I/J = N, then
J <A . A class of near-rings JK is called a weakly special class if it satisfies

(Wl) NeJ? implies N is quasi semi-equiprime;
(W2) J? is hereditary (i.e. I<N €Jf implies / e
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(W3) J[ is closed under essential extensions (that is, if / <o N and / e
J?, then NeJ?).

It is easy to see that J[ is weakly special if and only if Jf is a hereditary
class of quasi semi-equiprime near-rings such that if / < N with / e J£ and
(0: 7)^ = 0, then / € Jf. A radical class 32 is an overnilpotent radical class
if 31 is hereditary and 331, the semisimple class of 31, is a hereditary
class of qausi semi-equiprime near-rings. The relationship between weakly
special classes and overnilpotent radical classes is given by the following: a
radical class 31 is an overnilpotent radical class if and only if 31 is the
upper radical class determined by a weakly special J[, that is,

31 — %J? :— {N\N has no non-zero homomorphic image in J[}.

From Holcombe [6] and Groenewald [5] we need the following definitions.
For i e {0, 1, 2} , a near-ring N is called i-prime if AB = 0 for A,

B C.N implies A — 0 or B = 0 where, for
i = 0, A and B are ideals of N (this is just the usual definition of

primeness for near-rings),
i = l , A and B are left ideals of N,
i = 2, A and B are iV-subgroups of N.
A near-ring N is called 3-prime if aNb = 0 (a, b e N) implies a a = 0

or b = 0.
It is clear that /-prime implies ( / - l)-prime for i = 1, 2, 3 and, as is well

known, for rings they all coincide. Our interest here will focus on 2-prime
and 3-prime. It can easily be verified that if N is a near-rings with a left
identity, then N is 2-prime if and only if it is 3-prime.

1.2 DEFINITION. A class of near-rings J? is called a special class if it
satisfies the following conditions:

(51) every N e J[ is 2-prime and reliable;
(52) J[ is hereditary;
(53) J[ is closed under essential extensions.

1.3 PROPOSITION. The following are equivalent for a class of near-rings
J?:

(1) ^ is a special class;
(2) J[ is a hereditary class of 2-prime near-rings which is closed under

essential extensions and satisfies condition

(F) if J<I<N and I/JeJt. then J<N ;

(3) J# is a hereditary class of 2-prime reliable near-rings such that if I<N
and I £J?, then N/(0:1)N&JT;

(4) J? is a hereditary class of 2-prime reliable near-rings such that if I<N
and I G Jt with (0:1)N = 0, then N <EJ?.
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PROOF. The equivalence of (1) and (2) can be found in [17]; the implica-
tions (3) ->• (4) -> (1) are straightforward. We show that (1) =» (3). Let
I<N with / € J! and (0: 7)^ = 0. Then / is an essential ideal in N and
N eJ? follows from (1).

Any class of prime rings satisfies condition (F) in the variety of rings:
hence the special class defined above coincides with the usual definition of a
special class in this variety. A near-ring N is equiprime [4] if anx = any
for all n e N where 0 / a e Ar, x, y £ N, implies x — y. Such near-rings
are 3-prime as well as quasi semi-equiprime. Consequently any hereditary
class of equiprime near-rings which is closed under essential extensions in a
special class. Several such examples can be found in [17], and amongst these
are the 3-primitive near-rings. Further examples are the class of 2-primitive
near-rings and the class of simple near-rings with identity.

As can be expected, there is a close relationship between weakly special
classes and special classes: the latter always implies the former since 1-prime
and reliable implies qausi semi-equiprime. From [17, Theorem 2.10] we
know that the subdirect closure of a weakly special class is again a weakly
special class; hence we have

1.4 PROPOSITION. Let J? be a special class. Then the subdirect closure
J? := {N\N is a subdirect sum of near-rings from ^} of JH is a weakly
special class.

1.5 DEFINITION. A radical class £% is called a special radical class if M
is the upper radical determined by a special class.

As usual, for a radical class 32 and a near-ring N, 32 (N) denotes the
radical of N with respect to 32, that is, 32{N) = £ ( / < N\I € 32). Since
any special radical class is an overnilpotent radical, we have from [ 17]

1.6 THEOREM. Let 31 be a special radical class, say 32 = %Ctf where
Jt is a special class. Then 31 is ideal-hereditary, that is, 32(1) =3?(N)nl
for all I<N, S&Z = J? and 31 (N) = f]{I < N\N/I e Jf} for all near-rings
N.

In the variety of rings there are non-special supernilpotent radical classes;
the same holds for our generalizations, that is, there are non-special overnilpo-
tent radicals in the variety of near-rings. This is not an immediate conse-
quence of the ring case, since a class of rings which is closed under essential
extensions in the variety of rings need not have this property in the bigger
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variety of all near-rings. However, an example of a non-special supernilpo-
tent radical in the variety of rings given by Van Leeuwen and Jenkins [16]
can be adapted for our case, as follows.

Let S be a simple ring with identity which is not a field. In particular,
S is quasi semi-equiprime. Let &~ — {A\A is a subdirect sum of copies of
S and S is not and ideal of A}. The class ST is not empty; Van Leeuwen
and Jenkins exhibited a ring 5 as above and a ring A in IT which has only
one non-zero prime homomorphic image B. This B is a simple ring with
identity, it is not a field and neither is B in ^ . Let J[ — ST U {F\F is a
field}. Since the variety of rings is a subvariety of the variety of all near-rings,
J? consists of rings. We show that J! is a weakly special class in the variety
of all near-rings. Clearly all elements of J£ are quasi semi-equiprime and
the hereditariness of J? follows as in [16]. Finally we have to show that if D
is a near-ring and C < D with C e / and (0: C)D = 0, then D e ^ . But
the proof of this property for rings given by van Leeuwen and Jenkins [16]
can readily be adapted for the present near-ring case; hence J£ is a weakly
special class in the variety of near-rings and consequently £% = %W is an
ovemilpotent radical. If 31 is a special radical, then £% — %3F for some
special class 3?. Since ^ g J c / C / = S91 = 3*%J%, A has a non-
zero homomorphic image in 3?. Since ^ e J c / c / = S%% =£7%3£,
A has a non-zero homomorphic image in 3? which must be a prime ring.
But A has only one such homomorphic image, namely B and B $. J?.
Since B is simple and not in S%%, it follows that B e J r n l = 0 which
is not possible. Hence 31 is not a special radical.

As is well known, the variety of rings has a largest special class (namely
the class of all prime rings) and consequently a smallest special radical. The
status of this result for near-rings is not known.

2. Near-ring groups and special radicals

Analogous to the ovemilpotent radical case [ 18], we have a characterization
of special radicals via near-ring groups. For each near-ring N, let 3?N be a
(possibly empty) class of iV-groups. Let 3? = \JN^N •

2.1 DEFINITION. 31" is a special class of near-rings groups if it satisfies
the following conditions.

(SGI) Ge3fN, I<N with IG = 0 implies G e 3?Njl (via (n + I)g = ng).
(SG2) If / < N and g e 3TNI,, then Ge3?N (via ng = (n + I)g).
(SG3) G G JTN, / < N and IG ± 0 implies G e J r
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(SG4) G e J N implies NG^O and N/(0: G)N is a 2-prime reliable near-
ring.

(SG5) If / < N and G € ^ , then there exists an JV-group H € J?N with

Let ^ f ( ^ ) = {JV| there exists a faithful iV-group G € ^ } .
If we replace "2-prime and reliable" in condition (SG4) above with "quasi

semi-equiprime", then we obtain the definition of a weakly special class of
near-ring groups used in [18] to characterize the overnilpotent radicals of
near-rings. Since any quasi semi-equiprime near-ring is reliable, the proof of
the next result follows mutatis mutandis as the corresponding one in [ 18] for
weakly special classes and is therefore omitted.

2.2 THEOREM. Let J? be a special class of near-ring groups. Then
is a special class of near-rings and 31 = %J[{3?) is a special radical such that
3?(N) = f){(0: G)N\G e 3?N} for all near-rings N. Conversely, if 31 is a
special radical class, say 31 = ^J( where Jt is a special class, then there is
a special class of near-ring groups 3? such that J! =

3. Radicals and matrix near-rings

In this section we investigate the relationship between the radical of a near-
ring N and the radical of the matrix near-ring Nln(N) over N. First we
recall some relevant definitions and properties concerning matrix near-rings
from Meldrum and Van der Walt [9], Van der Walt [15] and Meyer [10].

In the sequel, R will always be a near-ring with identity 1. Let R" be
the direct sum of n copies (« > 2) of the underlying group of R. The ele-
ments of Rn will be written in pointed brackets as (ri, r2, ... , rn) or some-
times just as r. The n x n matrix near-ring Mn(/?) over R is the subnear-
ring of M0{R") = { all functions / : R" -* Rn for which / ( 0 , 0, . . . . 0) =
(0, 0 , . . . , 0)} generated by the set of functions {f°\ 1 <i,j<n; a e R}
where ^ ( r , , r , , . . . , rn) = (tlt t2, ... , tn) with tk = 0 for k ^ i and
tt - arj. The near-ring Mn(R) is a o-symmetric near-ring with identity

/ = / / , + f\T + ••• + /„'„. If R is a ring, then Mn(R) is the ring of all nxn
matrices over R. Elements of Mn(R) are called matrices.

F o r A <R, b o t h A* = {U e Mn(R)\Ur € A" f o r all r e Rn} a n d A + =
id{f°\a € A , 1 <i, j <n} a re idea l s i n Mn(R). H e r e A" is Ax Ax- x A
(n factors) and id{...} is the ideal in Mn(R) generated by {. . .} . Note that
A+ is always contained in A* (for rings they coincide, but for near-rings the
inclusion can be strict) and both the maps A •—> A* and A \—> A+ are
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injections. If sf <M.n(R), then At — {a € R\a = ti for some i where
Ur = t for some U G J / and r e i?"}. For ideals J / <Mn(/?) and A,
B<R, the following connections hold:

(i) (J<)+ C j /C (j<)* ;

(ii) (A\ =A = (A\ ;
(iii) ((J<)+). = ( ( ^ ) V
(iv) i c B implies ^ + C 5 + and ,4* C 5*;
(v) A+ C 5* implies ACB; hence v4* C B* implies ^ C 5 ;

(vi) (A n 5)+ C A+ n 5 + ;
(vii) (^ n 5*) = 4̂* n 5* (this can be extended to arbitrary intersections).

A matrix U is a fcth column matrix if it is of the form

for some a, b, ... , c G R. We denote by Ck the set of all A;th column
matrices of Mn(i?). Every Ck is an Mn(jR)-subgroup of Mn(R).

For 3r<Mn{R), U e (^)* if and only if f}jU{fik + flk + • • • + fik) € F
for all 1 < / , j , k < n and a, b, ... , c e R. In general fT c (^)* (for
rings they coincide).

3.1 PROPOSITION. Let ^ <Mn{R) and let UeMn{R). Then the follow-
ing are equivalent:

(2) UC{ c ^" j/w/?/ies U e^;
(3) C/MJi?)//, C j ii»p/iey [ / e ^ ;
(4) UMn(R)fk\ C ̂  /or 5ome A: (1 < Jk < «) i/np/iw Uef.

PROOF. (1) =• (2). If UC{ C ^ but U <£ ̂  = ( ^ ) \ then

4 T / ^ + - /^ + --- + ̂ fc) £ ^ for some i, ; , A: e {1, 2, . . . , «} and a,

b,... ,ceR. This contradicts UC{ c y since f-jU{f?k+f%k + ... + fik) =

(2) =>• (3). This is obvious since Mn(JR)/,11 = C,.

(3) => (4). This is obvious since / / , = flkfkkfk\ for any k .
(4) => (1). Assume the validity of the implication for some A: and let

U e (PS but with U i &. Then UVfk\ i F for some V e Mn{R).
N o w vfkk = fik + f2k + --- + fZk f o r s o m e a ' * . • • • . c 6 /? (cf. [9, L e m m a

3.7]). Furthermore, f\pvfk\ = f^U^ + & + ... + &)€?• since U €
)*. Consequently U €^.
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It is clear that if f<Mn(R) and f£k e F for some k, then & = Mn(R).
Moreover, since any 2-prime near-ring with an identity is 3-prime, we have

3.2 COROLLARY. If &~ <M (R) and M (R)/&* is 2-prime, then

Of course, the converse is not true since the equality ET = (^)* holds
for any ring R. The ideals ^ <Mn(R) for which & = (^)* are called full
ideals of Mn(R).

In the sequel, J? will be a class of near-rings, always assumed to be ab-
stract (that is, contains the one element near-ring and all isomorphic copies
of near-rings in J?). With J? is associated the corresponding Hoehnke
radical S? denned by S?{N = {]{A\A < N, N/A e Jt} . A Hoehnke radi-
cal need not be a Kurosh-Amitsur radical. For a detailed discussion on the
relationship between these two types of radicals, [11] can be consulted. How-
ever, we recall that if J ? is the Hoehnke radical associated with J?, then
5?{N) = 0 if and only if iV € JH where JK is the subdirect closure of J?.
For ease of reference, if A < N, and N/A e J?, A is called an J! -ideal
of iV and (N)Jt denotes the intersection of all the .^-ideals of N , that is
(N)Jt = f]{A\A<N, N/A e J?} . For any subclass 3? c J? with ~5£ = Z#,
we have (N)Jt = {N)J£ = (N)J?. For any Kurosh-Amitsur radical class
&, the Hoehnke radical -S" determined by

&(N) = f](A\A < N, N/A 6 c5ST}

coincides with &'(N) and is thus a Kurosh-Amitsur radical.

3.3 PROPOSITION. Let J? be a class of near-rings, Sf the associated
Hoehnke radical.

If for each near-ring with identity N, N e ^# implies Mn(R) e jf, then

PROOF. Let A < R with R/A e J?. From [14, Lemma 4.2] we have
Mn{R)/A* =* Mn(R/A) e Jf. From this and [12, 1.44], we get

C f\{A*\A<R,R/A€JT}

If J? is closed under subdirect sums, that is, ^ = J?, then the converse is
clearly valid. This, in addition with (N)Jt = {N)J[ for arbitrary J! yields
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3.4 COROLLARY. Let JH be a class of near-rings, S? the associated
Hoehnke radical. Then &(Mn(R)) c (•£*(/?))* for all near-rings R with
identity if and only if J? satisfies the following condition: for each near-ring
with identity N, N €J? implies Mn(R) <E^W.

The class Jf is said to have the matrix extension property if it satisfies
the condition: whenever N is a near-ring with identity, then N e J[ if and
only if Mn(N) e J! . This however, contrary to the ring case, is not enough
to ensure the equality in Proposition 3.3.

3.5 THEOREM. Let J? be a class of near-rings, 2C the associated Hoehnke
radical. If every J?-deal of Mn(R) is full and J? has the matrix extension
property, then 5f(Mn{R)) = *

PROOF. Let & be an ^T-ideal of Mn{R). Then ^<R and Mn(R/^) =*
^)* = Mn{R)l^' e J?; hence ^ is an ^-ideal of R. Thus

= (f\{A\A<R,

= f]{A*\A<R,

C

and the equality follows from Proposition 3.3.

If J? is closed under subdirect sums, then 5?(Mn(R)) = {^{R))* for all
near-rings R with identity, implies that J[ = J[ has the matrix extension
property. Hence we have

3.6 COROLLARY. Let ^ be such that every J!-ideal of Mn{R) is full
for all near-rings R with identity. Then &(Mn(R)) = {&{R))' for all R
{with identity) if and only if J? has the matrix extension property.

PROOF. It only has to be verified that if every .^-ideal of Mn(R) is full,
then every ^f-ideal of Mw(i?) is also full. But this follows from

3.7 LEMMA. Any intersection of full ideals of Mn(R) is a full ideal of
Mn(R).

PROOF. The following will suffice to verify the proof: for any set of ideals
{AJ of R, ()a(Aa)* = (f]aAar and if T < Mn(R), then a e ST if and
only if fty e 3~ (cf. [9] and [14]).
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Concerning special classes Jf, we have

3.8 THEOREM. Let ^tf be a special class of near-rings which satisfies the
matrix extension property. Let 32 be the corresponding special radial. For
any near-ring N with identity and any A < N,

(3?(A))+ C 3l(A+) C 3l(A*) = {SI(A))*.

In particular (for A = N), 3?(Mn(N)) = (31 (N))* •

PROOF. From Theorem 1.6, 31 (N) - (N)Jf and 31 is ideal-hereditary.
CoroUary 3.2 and Theorem 3.5 give 3Z(Mn(N)) = (3?(N))*. For any A<N
and 3r<Mn(N), we have 31 (F) = &~(~\3l(Mn(N)) and 3l(A) = An3?(N);
hence

(3l(A)f = (An3?(N))+ cA+n (3?(N))+ cA+n (32 (N))*

= A+ + * *

= A* n

3.9 COROLLARY. Let JK and 31 be as above. Let A<N, ^<Mn{N).
Then

(1) A e 31 if and only if A* e ̂ , which holds if and only ifA+e£?,
(2) A e S& if and only if A* e <9%?, which holds if and only if A+ e

S&l,
(3) &&& if and only if &l e. 31,
(4) f zS&l if and only if ^ €

PROOF. Since 31 is ideal-hereditary, both 31 and S%% are hereditary
and we will repeatedly use the fact that if C, D<K for a near-ring K with
C CD, then D e f implies C &3? and D 6 «5S? implies C e 5^ .

(1) Let A 6 31. Then A C 31{N) and so A+ C {3Z{N))+ C (3Z{N))*
and y4* C {3?(N))*. Since ( i ? (^ ) ) ' = ^ ( M ^ / ? ) ) € ^ , we have
^ + and ̂ * both in J3? . If A* e ̂ , then ^ + G ^? since /1 + C A*.
If A+ e3Z , then ^ + c 3Z{Mn{R)) = (31 (N))*; hence A C ^?(A^) e
^ which gives y4 6 31.

(2) If ^ G J'SP, then 3?(A+) c ^ ( ^ * ) = (3l(A))* = 0, that is, ^ +

and ,4* are both in S®t. For ^* e ^S? , (^?(y4))* = 3Z(A*) = 0,
that is, 3l(A) = 0 and A e < 5 ^ . If y4+ e ^ S ? , then (3l(A))+ c
^(^4+) = 0, that is ^ ( ^ ) = 0 and A € <5S?.

(3) ^£31 implies ^ c 3l(Mn(R)) = (3l(N))\ Hence ^ C (3l(N))\
= 31 (N) and ^ e ^ . If ^ G ̂ , then ^ C «$?(iV) and thus
& Q W c (3Z(N))* e ^? ; hence ^ G ^ .
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(4) 3~ e S&l and (^ ) + C y implies (<5Q+ € .53?. Hence
c ^ ( ( ^ ) + ) = 0; that is, ^ e <93l. If ^ e ^S?, then

= 0. Thus y €

In conclusion we recall the known results on the relationship between the
radicals of near-rings and the corresponding matrix near-rings. If J#V is
the class of i/-primitive near-rings {v e {0, 1, 2, 3}), we only consider the
cases v = 0 and v = 2 since 1-primitivity, 2-primitivity and 3-primitivity
coincide on near-rings with identity. The class of 2-primitive near-rings has
the matrix extension property (Van der Walt [14]) and if R is 0-primitive,
then so is MH(R). The converse is not true and JQ(Mn(R)) can be strictly
contained in (J0(R))* (Meldrum and Meyer [8]).

Both the classes of equiprime near-rings and strongly equiprime near-rings
respectively are special (in our sense) and have the matrix extension prop-
erty (Booth and Groenewald [2]). The classes of prime (that is, 0-prime), re-
spectively semi-prime, near-rings have the matrix extension property (Meyer
[10]). Thus, if &> is the corresponding radical, then &>{Mn{R)) C (&>(R))*.
Equality need not hold in this case: in [8] Meldrum and Meyer presented an
example of a finite near-ring R for which J0(Mn(R)) C (J0(R))*. Since R
is finite, both R and Mn(R) have the DCCN and from Pilz [12, 5.61], we
have &>{Mn(R)) = J0(Mn(R)) c (J0(R))+ = (&{R))+ • In particular, does
this show that a prime ideal of Mn(R) need not be full. The class J[ of
3-prime near-rings has the matrix extension property and every ^f-ideal of
Mn(R) is full (Groenewald [5]). Hence in this case 5f(Mn(R)) = (J2?(R))*.
It is not known whether this class is a special class; in fact it is not even
known whether the corresponding radical -2" is a Kurosh-Amitsur radical.

Finally, the class of simple near-rings with identity is a special class and
has the matrix extension property (Meldrum and Van der Walt [9]).
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