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Abstract 
A proposed theory explains the origin of Inertia without violating Einstein’s two 
postulates that form the basis for Special Relativity. The new model agrees with 
observational aspects of Special Relativity and is compatible with General Relativity. The 
relativistic momentum becomes a property of curved spacetime during acceleration, and 
Newton’s second law of motion is derived from a line-element in General Relativity. The 
new model unambiguously resolves the Twin Paradox, since aging always progresses at 
the same pace, and it admits an absolute temporal reference. 
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1. Introduction  
 
This article follows up on a previous article proposing that the phenomenon of Inertia 
may be explained as being caused by curved spacetime during acceleration [Masreliez, 
2007a]. In this previous paper an attempt was made to formally preserve Special 
Relativity (SR) and the Lorentz Transformation (LT).   
The present paper takes a different approach by investigating consequences of changing 
spacetime metrics during acceleration. These changing metrics are given by a dynamic 
metrical factor that depends on relative velocity. Since this metrical factor is a function 
of position during acceleration it models a dynamically curved spacetime field and 
explains Inertia as being a gravitational-type phenomenon generated by this field.  
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The present paper demonstrates that several results familiar from SR may be deduced 
directly from a certain line-element of General Relativity (GR) that models Inertia.  
The new interpretation is observationally indistinguishable from Special Relativity (SR) 
in most situations. However, the Twin Paradox is unambiguously resolved and a temporal 
reference is shown to exist. It also provides additional insight into the role of the Lorentz 
Transformation (LT). Several of the results from SR may by the new theory be viewed as 
being curved spacetime phenomena. 
As examples of previous work on the origin of Inertia we mention research at the 
Calphysics Institute proposing that Inertia is caused by interaction with the Zero Point 
Field [Puthoff, 2002], [Rueda and Haisch, 2005]. A different approach to the origin of 
Inertia has been advanced by James Woodward 
(http://physics.fullerton.edu/~jimw/general/inertia/index.htm) based on the Sciama’s 
proposal that Inertia is caused by acceleration in relation to a cosmological gravitational 
background field [Sciama, 1953].  
The author is not aware of any previous work along the lines proposed in this article. 
 
 

2. Background  
 
A recent paper by the author [Masreliez, 2007a] proposes that acceleration locally curves 
spacetime as experienced by an accelerating particle. It suggests that Inertia may be 
explained as a gravitational-type phenomenon if the metrical coefficients of a line-element 
were to change with position during acceleration. A certain dynamical, metrical factor that 
multiplies all four metrical coefficients in the Minkowskian line-element has the interesting 
property that it changes with location during acceleration in such a way that all accelerating 
motion will take place on geodesics of General Relativity (GR). This would explain Inertia.  
In this scenario the velocity depends on spatial position; the metrics change with location. In 
other words, an accelerating particle experiences changing spacetime metrics that depend on 
its location. This could be interpreted as a gravitational-type field, the ‘inertial field’ acting on 
an accelerating particle, which generates the inertial force. This previous paper also explores 
the connection between the metrical factor and SR, showing that there might be a close 
relationship, which suggests a modified version of SR. This modified version formally retains 
all features of SR including the Lorentz transformation, and like in SR any inertial frame may 
be considered to be an inertial reference frame. However, in order to model Inertia by this 
approach GR is generalized to allow for Dynamic Incremental Scale Transition (DIST) 
whereby the scale-factor may change incrementally in order to preserve the Minkowskian 
line-element. This generalization is proposed and justified in [Masreliez, 2007b].  
The present paper takes a different point of view by investigating the consequences of 
changing spacetime metrics during acceleration. 
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3. Modeling Inertia - the Inertial Line-Element 
 
Consider the Minkowskian line-element, but with an added dynamic metrical factor, 
which we assume depends on the velocity relative to an inertial frame that is stationary to 
the observer. This frame will be denoted the Stationary Inertial Frame (SIF).  

( ) ( )2 22 2 2 21 /ds v c cdt dx dy dz⎡ ⎤ ⎡ ⎤= − − − −⎣ ⎦ ⎣ ⎦
  (3.1) 

This will be called the ‘Inertial Line-element’ (ILE). It will be assumed that the 
coordinates (t, x, y, z) refer to the SIF.  Primed coordinates (t’, x’, y’, z’) will refer to a 
Moving Inertial Frame denoted MIF. This line-element holds even for a varying velocity. 
In [Masreliez, 2007a] it is shown that with the ILE the geodesic equation is an identity; 
all trajectories are geodesics of GR.  
This implies that an accelerating particle, which is subjected to an inertial force, would be 
in a situation similar to that of a particle suspended in a gravitational field, which is 
supported against the gravitational force. 

 
 
Furthermore, if the velocity is constant, the two postulates upon which Einstein based his 
SR theory [Einstein, 1905] will still hold true since: 
1. Line-elements with different constant metrical factors are physically equivalent 

because Einstein’s GR equations are identical.  
2. The speed of light is the same in all these scaled Minkowskian frames. 
The fundamental feature of the cosmos, that line-elements differing by a constant factor 
are physically equivalent, will be denoted ‘scale-equivalence’; the line-elements are said 
to be ‘scale-equivalent’. 
This suggests that the ILE with constant velocities might model inertial frames at 
different relative velocities.  
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The ‘inertial metrical factor’ defined by (1-(v/c)2) is related to the factor γ familiar from 
SR:  

( )2

1

1 /v c
γ =

−
  (3.2) 

This connection to SR is explored in [Masreliez, 2007a]. Here we will take a different 
approach based on the ILE (3.1).  
 
 
4. New findings - observations based on the inertial line-element 
 
Let us assume that spacetime is curved relative to an accelerating particle as given by the 
ILE. Let us further assume that after an accelerating boost when the velocity again is 
constant the line-element of the MIF is Minkowskian and that the two inertial frames 
with relative velocity v are related by: 

( ) ( )( ) ( )( )2 2 22 2 2 2 2 2 2' ' ' ' ' 1 /ds cdt dx dy dz v c cdt dx dy dz= − − − = − − − −  (4.1) 

The primed coordinates refer to the MIF and the unprimed to the SIF. 
This allows the following observations: 
 
First observation: 
The relationship between temporal increments at fixed locations in each frame with 
dx=dx=dz=0 and dx’=dy’=dz’=0 is given by: 

( )2' 1 /dt v c dt= −  (4.2a) 
Thus, the time-dilation of SR here appears as gravitational-type phenomenon caused by 
different temporal metrics. We are already familiar with this relation in circular motion 
where the centrifugal acceleration by GR produces a gravitational time-dilation that 
matches (4.2a). 
On the other hand letting dt=dt’=0 there is length contraction: 

( )2

2 2 2

' 1 /dl v c dl

dl dx dy dz

= −

= + +
 (4.2b) 

Distance increments are shorter by the factor 1/γ in the moving frame regardless of 
direction. This differs from SR where length contraction only occurs in the direction of 
motion. 
  
Second observation: 
Letting dx=dy=dz=0 the corresponding velocity in the moving frame is v’=–v and we 
find from (4.1): 

( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )2 2 2 2 2 22 2 2 2' ' ' ' ' 1 '/ ' 1 / 1 ( / )cdt dx dy dz cdt v c cdt v c cdt v c− − − = − = − = −
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This implies: 

'dt dt=  (4.3) 
This means that an observer in the MIF, who is moving in the MIF while remaining fixed 
in the SIF, finds that her clock runs at the same pace as the stationary clock. In other 
words, by observing a stationary clock in the SIF all moving observers agree that this 
clock agrees with the corresponding clock in their own moving frame (with their own 
coordinates) and therefore they agree on elapsed time intervals. This resolves the Twin 
Paradox in an unambiguous manner; aging always progresses at the same pace regardless 
of motion. This also means that all observers agree on a cosmological time, which might 
revive Newton’s concept of an absolute cosmological reference frame. 
 
Third observation:  
If the observer moves in the SIF so that the velocity matches that of the MIF we have 
from (4.1) with dx’=dy’=dz’=0: 

( ) ( )( ) ( )( ) ( )( ) ( )
22 2 2 2 22 2 2' 1 / 1 /cdt v c cdt dx dy dz v c cdt= − − − − = −  

( )2' (1 / )dt v c dt= −  (4.4) 
This implies that a clock in the SIF moving with a velocity v that matches that of the MIF 
does not agree with the clock in the moving frame. In this respect the perspective from 
the two frames is asymmetrical; it depends on the motion with respect to the stationary 
frame. 
 
Fourth observation: 
Relation (4.1) may also be written: 

( )( ) ( )
( )( )2 22 2 2 2 2 2

2
1 ' ' ' '

1 /
cdt dx dy dz cdt dx dy dz

v c
− − − = − − −

−
 (4.5) 

For an observer fixed in the SIF with dx=dy=dz=0 we have: 

( )
( )

( )( )2 2 2 2 2
2

1 ' ' ' '
1 /

cdt cdt dx dy dz
v c

= − − −
−

 (4.6) 

A particle that is fixed in the SIF moves with velocity –v in the MIF: 

( )
( )

2
22

2
' 1 /

1 /
dtdt v c
v c

⎡ ⎤= −⎣ ⎦−
  (4.7) 

We already saw that this implies that dt=dt’, and therefore we find after dividing both 
sides by dt2 (=dt’2) an identity that gives two different perspectives on the particle given 
by observers in the two frames: 

( )
( )2

2
11 1 /

1 /
v c

v c
⎡ ⎤= −⎣ ⎦−

  (4.8) 

Multiplying both sides by (m0c2)2 yields: 
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( )

2 4
2 4 2 20
0 21 /

m cm c p c
v c

= −
−

 (4.9) 

This expresses conservation of relativistic momentum. The left hand is the relativistic 
momentum of a stationary particle; the right hand is the same momentum seen from a 
moving frame. Thus the ILE implies conservation of relativistic momentum. The spatial 
momentum p is given by: 

( )
0

21 /

m vp
v c

=
−

 (4.10) 

Rearranging (4.9) we get the relativistic energy: 

( )

2 4
2 2 4 2 20

021 /
m cE m c p c

v c
= = +

−
 (4.11) 

We find that the relativistic expressions for momentum and energy are direct 
consequences of the inertial line-element.  
 
Fifth observation: 
Next, consider the relativistic energy given by (4.11): 

2
0 0

2 21 ( / ) 1 ( / )
m c EE

v c v c
= =

− −
 (4.12) 

Since this relation holds true even for a dynamic velocity that depends on position it 
implies the existence of Inertia. Differentiating with respect to position: 

( ) ( )
0

0
3/2 3/22 21 ( / ) 1 ( / )

dvm v m adE dl
dl v c v c

= =
− −

 (4.13) 

This implies that a corresponding force exists given by F=dE/dl, which is the inertial 
force. We then have the relativistic version of Newton’s second law: 

( )
0

3/221 ( / )

m aF
v c

=
−

 (4.14) 

The same conclusion follows from the relation F=dp/dt using (4.10). 
Note that in SR the expression for relativistic energy (4.12) cannot be derived solely from 
the Minkowskian line-element or from the Lorentz transformation without additional 
assumptions, for example conservation of momentum. In classical physics Newton’s 
second law is no more than an assumption, but here we find that the conservation of 
relativistic momentum, the inertial force, and Newton’s second law all follow from a 
line-element that models Inertia.  
We have found a dynamic spacetime geometry that implies two fundamental laws of 
nature. This supports the proposition that the ILE models motion in general, whether 
accelerating or not. 
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Sixth observation:  
Consider the Doppler shift. The frequency of light from an approaching source will, by 
classical physics, increase: 

0 (1 / )MIFf f v c= +   (4.15) 
However, this equation, which expresses the frequency of a moving source in the MIF, 
may be adjusted to the SIF by applying the temporal scale correction (4.2a), which relates 
time intervals in the MIF to those in the SIF. Since a time interval in the moving frame 
will appear shorter than in the SIF, the resulting frequency shift increases by the factor γ: 

0 02 2

(1 / ) 1 /
1 /1 ( / ) 1 ( / )

MIF
SIF

f v c v cf f f
v cv c v c

+ +
= = =

−− −
 (4.16) 

Equation (4.16) is the relativistic Doppler shift. Another way to obtain this result is to 
note that the energy of a photon is E0=hf0, where h is Planck’s constant. According to 
(4.12) we then have: 

02

1 /
1 /1 ( / )

MIF
SIF

f v cf f
v cv c

+
= =

−−
 (4.17) 

Note that all these observations may be made without considering any coordinate 
transformation between the two frames like the Lorentz transformation. The observations 
listed above mostly agree with SR but with two important differences, namely that the 
Twin Paradox disappears and that a temporal simultaneity exists.  
 
 
5. A few comments on Special Relativity and the Lorentz Transformation 
 
These observations are based on the proposition that motion curves spacetime as modeled 
by the inertial line-element. The question arises how this relates to SR.  
In his paper on SR [Einstein, 1905] Einstein based this theory on two postulates: 
1. The laws of physics hold true in all inertial frames. 
2. The speed of light is constant, isotropic and the same in all inertial frames. 
Since the inertial line-element (4.1) relates scale-equivalent spacetimes these two 
postulates still hold true.  
It is commonly believed that the two postulates above imply the Lorentz transformation, 
i.e. that they necessarily lead to SR. However, as we shall see this is not true.  
Einstein made an additional assumption, which could be taken as a third postulate. He 
assumed that all inertial frames are equivalent in all respects. By this postulate inertial 
frames ought to have identical spacetime geometries and metrics, and Einstein therefore 
assumed that inertial frames are related by the LT, which replicates the Minkowskian 
line-element. Therefore, by SR and the LT all inertial frames are Minkowskian. 
However, it will be shown that this is not a necessary requirement for achieving 
equivalence and symmetry between inertial frames. There is another transformation 
similar to the LT, but which, unlike the LT, is consistent with the inertial line-element.  
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6. The Voigt Transform 
 
In 1887 Woldemar Voigt published a paper proposing a coordinate transformation 
between two frames with one of them moving relative to the other along the x-axis:  

( )2

2

2

' /
'

' 1 ( / ) /

' 1 ( / ) /

t t v c x
x x vt

y y v c y

z z v c z

γ

γ

= −

= −

= − =

= − =

 (6.1)   

In [Masreliez, 2007a] I independently re-derived this transformation, being unaware of 
the Voigt Transformation (VT), calling it the Scaled Lorentz Transformation (SLT). As 
in the LT the velocity v is assumed to be constant. It becomes identical to the Lorentz 
transformation if the factor γ is applied to all four relations:  

( )
( )

2' ( / )

'
'
'

t t v c x

x x vt
y y
z z

γ

γ

= −

= −

=
=

 (6.2) 

Since these linear relations also hold for increments in the coordinates, the line-element 
corresponding to the VT is consistent with the ILE. 

( )( )2 2 2 2 2 2 2 2 2( ') ' ' ' 1 ( / ) ( )cdt dx dy dz v c cdt dx dy dz− − − = − − − −  
The inverse of the VT is: 

2 2

2

( ' ( / ) ')
( ' ')
'
'

t t v c x
x x vt
y y
z z

γ

γ
γ
γ

= +

= +
=
=

 (6.3) 

Thus, the VT is asymmetrical in that the forward transformation differs from its inverse.  
We find that the transformation that formally implements the ILE for constant velocities 
actually preceded the Lorentz transformation! Apparently Hendrik Lorentz did not know 
about this aspect of Voigt’s work; he is on record as saying that he could have taken these 
transformations into his theory of electrodynamics rather than developing his own, if only 
he had known of them [Woldermar Voigt, Wikipedia]. In the paper by Ernst and Hsu 
[Ernst and Hsu, 2001] the following letter may be found: 
 

H. A. Lorentz to W. Voigt Leiden, July 30, 1908 
 
Dear friend, 
 
I would like to thank you very much for sending me your paper on Doppler’s 
principle 
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together with your enclosed remarks. I really regret that your paper has escaped 
my notice. 
I can only explain it by the fact that many lectures kept me back from reading 
everything, while I was already glad to be able to work a little bit. 
Of course I will not miss the first opportunity to mention that the concerned 
transformation and the introduction of a local time has been your idea. 
 
Sincerely, 
 
Your H. A. Lorentz 
 

The VT differs from the LT by a constant scale-factor γ, which in the LT has the effect of 
restoring the Minkowskian line-element, thereby hiding the scale adjustment that models 
Inertia. The two transformations are physically equivalent and work equally well in 
Maxwell’s equations as well as in physics in general, since they are scale-equivalent. It is 
ironic to note that if Lorentz had adopted the VT, Einstein might perhaps have chosen the 
VT instead of the LT in his SR-paper, and the origin of Inertia might have been found a 
long time ago.  
Additional comments on the Voigt transform may be found in [Gluckman, 1968] and on 
the Internet at [Ernst, 2005]. 
 
 
7. Two different approaches to modeling ‘motion’ 
 
In classical as well as in modern physics ‘motion’ is usually modeled in terms of 
coordinate locations that change with time, and transformations like the LT or the VT 
relate these locations in different coordinate frames. These transformations relate 
positions in space and time so that positions in the SIF correspond to positions in the MIF 
in one-to-one correspondence. For example, x=t=0 implies x’=t’=0. Furthermore, it is 
implicitly assumed that these two frames have identical coordinate metrics, so that 
coordinate increments in one frame may be directly compared to those in the other frame.  
However, Inertia is in this paper modeled as a curved spacetime phenomenon using 
dynamic spacetime metrics given by the inertial line-element. With this new 
interpretation the VT and LT transformations (which only apply if the velocity is 
constant) should be viewed as continuous variable transformations in GR relating 
covariant coordinate representations. We saw that this interpretation leads to the inertial 
line element and allows time-dilation to be modeled as a curved spacetime phenomenon.  
However, had we instead interpreted the VT transformation as a generalization of the 
classical Galilean transformation, time-dilation would not be evident because the VT 
does not allow us to relate time intervals at fixed locations in the SIF to time intervals at 
fixed locations in the MIF. 
Similarly SR interprets LT as relating corresponding locations in two inertial coordinate 
systems, and as we know, this leads to several important and valid results. However, if  
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the LT is seen as a coordinate transformation in GR, both inertial frames will have 
Minkowskian line-elements and their clock rates at fixed locations will be the same, 
which means that the time-dilation disappears.  
Therefore, the geometric interpretation investigated in this paper favors the VT. 
Woldemar Voigt’s objective with his transformation was to make the wave equation 
invariant, while Lorentz desired to preserve Maxwell’s equations, and Einstein based the 
LT on his two postulates of SR (which also hold for the VT). However, from the 
geometrical point of view by which motion effects the scale of spacetime the reason for 
the success of the VT and LT could be that they both preserve the Minkowskian character 
of spacetime and, because the corresponding GR equations are identical, they preserve all 
physics as well. Therefore the non-intuitive term –xv/c2 in the temporal coordinate 
transformation might not be primarily associated with motion, but rather with coordinate 
transformations in GR expressing the relationship between line-elements of inertial 
frames, which preserve all physics.  
In this sense only Voigt’s transformation is consistent with a dynamic metric that models 
Inertia. 
 
 
8. Resolving the Twin Paradox  
 
The Clock Paradox, popularized as the Twin Paradox by Paul Langevin [Langevin, 1911], 
has been discussed at length ever since the introduction of SR in 1905 and several proposals 
on how to resolve it have been put forward over the years. Nowadays many believe that the 
Twin Paradox has been resolved one way or the other, although it appears that a universally 
accepted resolution still is missing. In SR problems arise when comparing predictions made 
by observers in different inertial frames. This is particularly bothersome in the context of the 
Twin Paradox where each twin concludes that the other twin ages slower.  
There is strong experimental evidence that the pace of atomic clocks change with motion, 
and we have seen that clocks moving in relation to a stationary reference frame run at a 
slower pace as indicated by relation (4.2a). Based on this it is tempting to conclude that the 
twin who accelerates ages slower and therefore returns younger.  
However, according to relation (4.3) and the Voigt transformation, a clock in the MIF that 
moves so that it remains fixed in the SIF always agrees with a fixed clock in the SIF. Since 
this is the case both on the outward leg and on the inward leg of the travel, the twins always 
age at the same pace!  
The inertial line-element allows comparison of coordinate increments in the SIF and the MIF. 
This comparison is only made possible if the coordinates are in the same GR manifold with 
metrics related by relation (4.1). However, if another inertial frame were to be selected as 
being the SIF a different manifold in GR would be selected as reference that will not be 
related to the previous manifold by any continuous coordinate transformation. However, 
since elapsed time intervals in moving frames always agree, no matter which frame is 
considered stationary; no contradiction arises, like it does in SR. 
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In the context of SR the LT implies that all inertial frames have Minkowskian line-
elements, which could hide a metrical scale change that models Inertia. Therefore, the LT 
transformation could be seen as the result of continuous metric scale adjustment 
according to (4.1) combined with discrete scale transition. If this is the case, the 
interpretation of the LT will depend on which frame is considered a SIF. The metrical 
scale of the coordinates of the MIF obtained by the LT will be different from the metrical 
scale of the SIF coordinates. However, the LT does not recognize this hidden adjustment 
of the metrics, and might compensate for this difference by applying the factor γ. As a 
consequence, the twins disagree on their ages, although they might actually be in 
agreement taking into account their different temporal measures.  
With the geometric interpretation of motion the primed and unprimed coordinates of the 
LT cannot be directly compared. 
This resolution to the infamous Twin Paradox eliminates the rather strange proposition that a 
person may extend her life expectancy simply by traveling. Thus, the proposed model 
resolves the Twin Paradox unambiguously; aging always proceeds at the same pace 
regardless of motion and reference frame. 
It is commonly believed that the Hafele-Keating experiment [Hafele-Keating, 1972] 
confirmed time-dilation in accordance with SR by a time difference observed in aircrafts that 
circumnavigated the world in opposite directions with four atomic caesium-beam clocks 
onboard. However, this experiment has been severely challenged by A. G. Kelly [Kelly, 
1996], who had access to the raw data. He offers several points of criticism one being that if 
one of the four clocks in the experiment were to be removed from the data the three 
remaining clocks do not indicate any time dilation. Here is a quote from the Kelly paper: 

 

‘The USNO standard station had some years previously adopted a practice of 
replacing at intervals whichever clock was giving the worst performance. On a 
similar basis, the results of Clock 120 should have been disregarded. That erratic 
clock had contributed all of the alteration in time on the Eastward test and 83% 
on the Westward test, as given in the 1971 report. Discounting this one totally 
unreliable clock, the results would have been within 5ns and 28ns of zero on the 
Eastward and Westward tests respectively. This is a result that could not be 
interpreted as proving any difference whatever between the two directions of 
flight.’ 

 
Also, Louis Essen [Essen, 1988], the inventor of the atomic clock, mentioned the (in his 
opinion) inadequate accuracy of the experiment. However, neither of these two references 
criticizing the Hafele-Keating experiment may be found in peer-reviewed sources. 
Hopefully the Hafele-Keating experiment will be repeated using for example the space 
shuttle. 
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9. Symmetry between inertial frames – simultaneity 
 
In the discussion above I have considered relative motion between a stationary frame and 
a moving frame. But, by the relativity principle of SR we should be able to pick any one 
of these two frames as being stationary. This is true; the inertial scale-factor equally well 
applies to 1-[(v-v0)/c]2 where v0 is an arbitrary constant velocity, which implies that any 
inertial frame may be considered ‘stationary’ even when moving relative to some 
arbitrary reference frame. Therefore the velocity v is the relative velocity, and in the 
particular arbitrary frame that is chosen to be the SIF we have v=0. Since the 
development presented above applies with any inertial frame acting as the SIF, it implies 
that each inertial frame ‘sees’ other moving frames from the same relative ‘perspective’ 
as given by the inertial line-element (3.1).  
According to this scenario a frame that appears to be Minkowskian in a certain inertial 
reference frame will in another inertial frame, which is moving in relation to the 
reference frame, no longer be Minkowskian but ‘scaled Minkowskian’. However, this 
perspective is reversed when exchanging the two frame designations so that the moving 
frame becomes the stationary reference.  
At first the proposition that spacetime curvature is relative might seem strange, but we 
are already familiar with this situation from GR where a local Minkowskian frame 
always exists, and where spacetime at other locations may appear curved in relation to 
this local frame. Therefore, the concept of inertial spacetime curvature is relative; each 
inertial frame is offering a similar perspective of moving frames as given by the inertial 
line-element.  
This kind of symmetry may be illustrated by a simile, letting the 4D Minkowskian 
spacetimes of inertial frames be represented by flat 2D surfaces.  Consider two different 
positions on a spherical surface, each with a local tangent plane. Although the relative 
perspectives from these two planes are the same, they are rotated relative to each other. 
This is illustrated in Figure 2 where the relative orientation is reflected by the angle Phi.  
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Note that this simile collapses the four spacetime dimension plus the scale ‘dimension’ 
into three dimensions by merging three spatial dimensions into one.  
The two planar surfaces of Figure 2 represent 4D spacetimes. Obviously it is impossible 
to transform coordinates in one of these surfaces into the other coordinates without taking 
into account the separating curvature, which corresponds to the dynamic scale. This is 
also true with Minkowskian line-elements of inertial frames, which cannot be 
geometrically related by a transformation in 4D spacetime like the Lorentz 
transformation. 
This symmetry between inertial frames might also preserve temporal symmetry since the 
projection of a temporal increment is the same on each surface. For example, let the angle 
Phi between the two tangent planes be related to the relative velocity by v/c=sin(Phi). 
Then the projection of a time interval of one plane onto the other plane is proportional to 
cos(Phi)=(1-(v/c)2)½ emulating time-dilation.  
It also implies that there is a common temporal reference, which in Figure 2 could be 
represented by the intersection line which is common to both planar surfaces. In 4D 
spacetime this line would correspond to a 3D space of simultaneity.  
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For example, if the ‘temporal’ coordinate directions were perpendicular to the 
intersection line in both planes, this line would represent simultaneity in both planes (3D 
spaces). As was demonstrated above, all observers agree on elapsed time intervals, 
regardless of which inertial frame is selected as being ‘stationary’. This is discussed 
further in Appendix I. 
The geometrical simile of Figure 2 merely illustrates the concept of relative scale- 
symmetry in three dimensions rather than in five and has no particular physical 
significance other than to illustrate a dynamic spacetime scale; for example, in Figure 2 
the projections of spatial increments are not contracted. However, the figure shows how 
transitioning from one inertial frame to another reverses the relative scaling so that the 
perspective from both frames remain the same. 
 
 

10. Summary and concluding comments 
 
This paper proposes that motion in general might involve dynamic spacetime metrics. 
With this proposition General Relativity extends its traditional role of modeling static 
Gravitation. A first step in modeling dynamic spacetime was taken in cosmology by 
Friedman [Friedman, 1922], who was followed by many others including Einstein and de 
Sitter [Einstein and de Sitter, 1932]. In these articles the cosmological expansion is 
usually modeled by dynamic spatial metrics that depend on time as in the Big Bang 
theory. More recently this approach has been generalized by considering expansion of all 
four metrics in the Scale Expanding Cosmos (SEC) theory [Masreliez, 1999, 2006, 
2007b]. In the present paper the role of General Relativity is further generalized by 
modeling Inertia via dynamic spacetime metrics.  
A previous paper [Masreliez, 2007a] proposed an alternative to Special Relativity that is 
observationally indistinguishable from Special Relativity but also models Inertia. A 
dynamical scale-factor for the Minkowskian line-element has the interesting property that 
all accelerating trajectories are geodesics of General Relativity. Inertia is thus explained 
as being a curved spacetime phenomenon similar to Gravitation. 
This previous paper discusses this possibility from the point of view of an observer in an 
accelerating system, showing how Special Relativity and the Lorentz Transformation 
could be preserved by considering changing spacetime metrics combined with dynamic 
incremental scale transition, with the implication that General Relativity must be 
generalized to allow for discrete scale adjustments, an idea further explored in 
[Masreliez, 2007b]. This previous approach models Inertia while preserving the 
Minkowskian line-element, and thus formally retains Special Relativity. 
The current paper takes a different point of view by demonstrating that several results 
familiar from Special Relativity may be derived directly from the properties of the 
inertial metrics without the use of any coordinate transformation. In fact, in the new 
theory no continuous coordinate transformation exists between Minkowskian inertial 
frames. However, if the velocities are constant, Einstein’s two Special Relativity  
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postulates will still hold true and a coordinate transformation will exist. This is the 
transformation originally proposed by Woldemar Voigt in 1887, which actually preceded 
the Lorentz transformation. Apparently Lorentz was ignorant about Voigt’s 
transformation and admitted that he might have adopted it and used it instead of his own 
had he known about it. And, in this case Einstein might have selected the Voigt 
transformation instead of the Lorentz transformation in his paper on Special Relativity in 
1905, which might have resolved the question of Inertia a long time ago. 
It is interesting and significant that the inertial line-element proposed in this article 
implies conservation of (relativistic) momentum, and that this in turn implies the 
existence of the inertial force and Newton’s second law. Thus, Newton’s second law of 
motion, which is postulated but never derived in classical physics, is implicit with a line-
element that models Inertia. In other words, a line-element for which all motion become 
General Relativity geodesics implies Newton’s second law.  This supports the proposition 
that dynamic spacetime geometry plays a decisive role in modeling motion.  
In Special Relativity there is no indication as to what might cause Inertia, because if there 
is complete equivalence between inertial frames, these frames ought to have identical 
spacetime geometries. Therefore, there seems to be no sufficient reason why motion 
between them should be resisted by a gravitational-type inertial force that depends on the 
spacetime geometry.  
The solution to the puzzle proposed here could not have been found without General 
Relativity (which had not yet been developed in 1905), and recognizing that four-
dimensional dynamical scale-equivalence is a phenomenon of major cosmological 
importance. It allows the existence of different, scaled, spacetime manifolds with 
identical General Relativity equations. These scaled manifolds are physically equivalent 
in that the laws of physics are valid but they differ conceptually since they refer to 
different spacetime manifolds; there is no continuous coordinate transformation between 
them if the scale-factor is dynamic.  
The implication is that the coordinates in the two frames related by the Lorentz 
transformation have different metrics. The transformed metrics differ by the factor γ in 
the Lorentz Transformation, which restores the Minkowskian line-element. On the other 
hand, the opposite would be the case if the roles of the frames were exchanged. Therefore 
coordinate increments in the two frames as given by the Lorentz Transformation cannot 
be directly compared because their metrics are different. This would explain the 
contradiction encountered with Special Relativity regarding the Twin Paradox. 
The new theory unambiguously resolves the Twin Paradox since travelling twins always 
age at the same pace.  
Furthermore, by symmetry inertial frames may be considered physically equivalent in the 
sense that all laws of physics hold true, but an observer in a particular frame will find that 
the spacetime geometries of other inertial frames differ in a relative sense. This 
difference, which is reciprocal, explains Inertia. Since all moving observers agree on 
elapsed time intervals an absolute temporal reference exists, reviving the pre-relativistic 
concept of an absolute cosmological time. 
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Summarizing, the paper proposes a new model that offers the following advantages over 
Special Relativity: 

• It explains Inertia. 
• It reconciles Special Relativity with General Relativity. 
• Preservation of momentum may be derived from the inertial line-element. 
• Newton’s second law of motion also directly follows from this line-element. 
• The Twin Paradox is resolved. 
• It admits simultaneity and a temporal reference. 
• The role of the Lorentz Transformation is clarified. 

In practice the proposed model is indistinguishable from Special Relativity, except in the 
context of the Twin Paradox. Also, it allows simultaneity regardless of motion. 
The new approach proposed in this paper, according to which motion influences the 
spacetime metrics, implies that the Lorentz Transformation falls short, since it does not 
model Inertia.  
Perhaps the most important aspect of the new proposition advanced in this article is that 
motion in general not only implies that the 4D coordinates change but also a changing 4D 
scale during acceleration.  
In retrospect SR and the Lorentz transformation represent the best possible model for 
inertial motion available at the time when it was proposed by Einstein, eleven years 
before he published his paper on general relativity. 
Because the new theory may be of general interest even to the layman an attempt is made 
in Appendix II to informally outline its main features. 
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Appendix I: Simultaneity in scaled frames 
 
The following discussion provides support for the contention that clocks in inertial 
frames run at the same pace. 
Consider a light-clock in a SIF frame according to figure A below, where a light beam is 
bouncing between two mirrors spaced the distance L. The period for the light is t=2L/c. 
Another light-clock with mirrors spaced L’=sL is located in a MIF. Let’s assume that in 
this moving frame all distances and time intervals are scaled by the factor s =[1-(v/c)2]1/2 
relative to the SIF. 
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Figure B shows this moving clock as seen by a SIF observer. The clock period is still 
t=2L/c because the path length is unchanged.  
Now consider a clock in the MIF that moves at the same speed in the MIF frame but in 
opposite direction so that it is stationary in the SIF. Since this clock in the MIF is 
identical to the one in the SIF it should run, and does run, at the same pace as seen from 
either the SIF or the moving observer in the MIF, who is stationary in the SIF.  
Therefore, clocks moving in the MIF so that they are stationary in the SIF run at the 
same pace regardless of velocity. 
Now consider a clock oriented in the direction of motion as in figure C. The time interval 
in the fixed frame is of course unchanged t=2L/c. The time interval in the MIF as seen 
from the SIF and shown in figure D is t=[sL /(c+v)+ sL /(c-v)]=2L/cs. However, since the 
time for a stationary clock in the MIF runs slower we have t’=st and therefore t’=2L/c 
again showing that a moving clock runs at the same pace. The same conclusions may be 
drawn with the roles of the SIF and the MIF interchanged.  
This argument supports the proposition that all clocks in inertial frames always measure 
out the same cumulative time intervals, which resolves the Twin Paradox and makes 
possible an absolute temporal reference. 
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Appendix II: An informal presentation of the new theory of motion 
 
Since the subject of this paper could be of general interest to experts and laymen alike 
due to the newness of the ideas and their philosophical implications, it invites a more 
general discussion. The ideas presented in this paper run counter to the standard approach 
to modeling motion and are perhaps difficult to assimilate. Therefore, I will attempt to 
present the theory in plain language. 
The most important aspect of the new idea proposed in this paper is the recognition that 
the properties of space and time experienced by a particle might change during 
acceleration as expressed by the ‘metrics’ of spacetime in general relativity. If the metrics 
of space and time change for a particle during acceleration we might wonder why. The 
reason could be that an accelerating particle compensates for a changing light-speed by 
adjusting its metrics. For example, if during acceleration photons should begin to go 
slower than light in a certain direction, a particle might compensate for this by 
‘shrinking’ the length of a meter (or foot) in the same direction so that it seems like the 
speed of light has not changed. Alternatively, it might make the duration of a second 
longer, which also would cause the measured speed of light to be the same. By adjusting 
the metrics of both space and time (spacetime) the particle may preserve a constant speed 
of light in all directions. We might say that spacetime of a particle ‘morphs’ to 
accommodate acceleration. After acceleration has ceased, when the velocity again is 
constant, a co-accelerating observer will find that the particle's spacetime appears exactly 
as it did before the acceleration boost.  
The morphing spacetime remain hidden from inertial observers, but during acceleration 
the changing spacetime metrics make their presence felt by the inertial force. Therefore, 
like the gravitational force the inertial force is caused by changing spacetime metrics.  
Each frame moving with constant velocity (inertial frame) locally looks the same (with 
Minkowskian line-elements) after the metrics have adjusted to a new velocity because 
measuring rods ands clocks have also adjusted to the new metrics, but it appears that the 
metrics of other frames moving at different velocities have changed in relation. This is a 
symmetric situation; all inertial observers will find that their local metrics differ from 
frames in relative motion, and this relative perspective is the same for all inertial 
observers. In short, there is symmetry between inertial frames, but their metrics differ in a 
relative sense. This difference explains Inertia. This relative kind of symmetry is 
illustrated in Figure 3. 
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The relative scale perspective of figure 3 is understandable; if the scale were to increase 
in one inertial frame the relative scale of other frames should decrease.  This is a natural 
consequence of spacetime curvature caused by a variable spacetime scale.  
This is to be compared to Special Relativity according to which the metrics in the moving 
frame are believed to be the same as in the local frame. When Einstein developed SR, he 
was correct in assuming that all inertial frames have identical Minkowskian line-
elements, and he might also have thought that all inertial frames must have identical 
spacetime metrics in a relative sense. But, this is not a necessary requirement for 
symmetry between inertial frames because relative geometries do not have to be the 
same; it is sufficient that all inertial frames ‘see’ other frames from the same relative 
‘perspective’. Relative geometries of moving frames, as expressed in the local frames 
coordinates, could differ from the local geometry.  
Therefore Einstein might have believed that the coordinates of inertial frames should be 
related by a continuous transformation like the LT that preserves the geometry of 
spacetime. But, in the new theory proposed here, the LT cannot be interpreted as a 
coordinate transformation in General Relativity; no continuous transformation exists 
relating the Minkowskian spacetime coordinates of inertial frames. As a consequence 
increments like a meter or a second in the two frames as given by the Lorentz 
Transformation cannot be directly compared. 
Comparing this to the new theory, we find that relative metrics of inertial frames, which 
are given by the inertial line-element, differ and that this difference explains Inertia. 
However, the changing metrics are not recognized by Special Relativity, which explains 
why the proposed explanation to Inertia has not been found earlier.  
We might also wonder why Nature should preserve the speed of light in all directions. 
One possibility could be that particles are resonating states in the metrics of spacetime 
that preserve the conditions necessary for their existence, in particular an isotropic speed 
of light, regardless of their motion. (In this context we should remember that Voigt 
derived his transformation by demanding invariance of the wave function.)  
Thus, the proposed theory of motion demystifies Special Relativity’s assumption that the 
speed of light is constant. We might say that the velocity if light only appears to remain 
constant because of the morphing metrics. The new theory explains the success of Special 
Relativity while resolving contradictions like the Twin Paradox that has been the subject 
of considerable confusion over the years. And, it allows a temporal reference in the 
universe, which is needed in modeling the cosmological expansion as well as to allow 
non-local influences in quantum theory.  
What’s new and perhaps at first difficult to accept with the new theory of motion 
proposed in this paper is that motion might not only take place in space and time but also 
in scale. The scale enters as a new ‘dimension’ that changes spacetime in a relative sense, 
keeping it Minkowskian locally (where v=0). One familiar example of this relative type 
of symmetry is the ‘perspective’ whereby distant objects seem smaller as shown in figure 
3. The perspective is the same when seen from the other direction. The same is true with 
the scale. 
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This means that if we model motion we must take into account the changing 4D scale. 
This might seem confusing since spacetime locally remains Minkowskian in all inertial 
frames, which suggests the Lorentz Transformation. But, if we ignore the scale parameter 
we will run into contradictions like the Twin Paradox. Taking into account the changing 
scale, no transformation in GR exists that properly will transform the coordinates of one 
Minkowskian inertial frame into those of another inertial Minkowskian frame.  
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