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The recursive formulas of modified Bessel functions give the relativistic expressions for energy
and momentum. Modified Bessel functions are solutions to a continuous time, one-dimensional
discrete jump process. The jump process is analyzed from two inertial frames with a relative
constant velocity; the average distance of a particle along the chain corresponds to the distance
between two observers in the two inertial frames. The recursion relations of modified Bessel
functions are compared to the ‘k calculus’ which uses the radial Doppler effect to derive relativistic
kinematics. The Doppler effect predicts that the frequency is a decreasing function of the velocity,
and the Planck frequency, which increases with velocity, does not transform like the frequency
of a clock. The Lorentz transformation can be interpreted as energy and momentum conservation
relations through the addition formula for hyperbolic cosine and sine, respectively. The addition
formula for the hyperbolic tangent gives the well-known relativistic formula for the addition
of velocities. In the non-relativistic and ultra-relativistic limits the distributions of the particle’s
position are Gaussian and Poisson, respectively.
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1. Introduction

At the beginning of the last century there was con-
siderable interest in the origin of the mass of an elec-
tron [1]. Experiments that measured the charge to
mass ratio definitely showed that the mass increased
sharply with the speed of an electron [2]. It was even
suggested that the entire mass of an electron is elec-
tromagnetic in origin [3]. An electron in motion pro-
duces a magnetic field about its line of flight. The
magnetic field has an energy associated with it. En-
ergy is required to set the electron in motion so that
mass can be associated with an electron because of
the fields that it creates. This mass is entirely elec-
tromagnetic. Experiments were performed to select
the correct model of an electron; the contenders were
the Lorentz model, which was indistinguishable in its
predictions from Einstein’s special theory of relativ-
ity, and the Abraham model [4], whose aim was to
provide for an electrodynamic foundation for all of
mechanics.

These classical models of an electron have all but
been abandoned [5] because they appear to introduce
more problems than they solve. The contradictions
of an electron with a finite extension and relativis-
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tic causality are well-known [6]. It is the purpose of
this article to point out, however, that the recursive
formulas of modified Bessel functions give the cor-
rect special relativistic expressions for the energy and
the momentum. Modified Bessel functions occur in a
wide variety of problems in probability theory when
the times at which the jumps of a random walk occur
are randomized [7]. In other words, modified Bessel
functions make their appearance when the times of the
steps in a discrete time random walk are randomly dis-
tributed according to a Poisson process. In this way,
a one-dimensional probabilistic model of special rel-
ativity presents itself in terms of random jumps along
a linear lattice. The jumping electron accelerates and
de-accelerates emitting radiation which is analyzed in
an inertial frame moving relative to the lattice. The
average displacement of the particle along the lattice,
in a given time interval, coincides with the distance
between two observers in two inertial frames moving
relative to one another.

A discrete jump process permits the electric charge
to have a finite extension in space. Consider an elec-
tron as a rigid object of finite dimension [6]. When
a pulse of radiation strikes one side of the surface
of the electron it is instantaneously set into motion.
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This implies that the impulse had to be transmitted in-
stantaneously across the diameter of the electron, and
this contradicts the relativistic law of causality. How-
ever, by considering events separated by a distance of
the order of the particle’s Compton wavelength, the
smallest time that a signal can be transmitted between
neighboring points on the lattice is the time it takes
light to cross the particle’s Compton wavelength. In
other words, by dispensing with all knowledge of the
process between the lattice points, perhaps due in part
to the limitations of our measuring apparatus, we ad-
mit that there can be only a finite rate of change.
Consequently, there is nothing to prohibit an elec-
tron having a finite extension in space since signals
transmitted over such distances would not be open to
observation.

But, cannot the Compton wavelength be reduced
still further to the classical electron radius? Once a
universal length,r0 say, is specified, it can then be
combined with the other two fundamental constants,
h̄ andc, to produce a quantity which has dimensions
of mass,h̄=r0c. If the valuee2=mc2 is assigned to
r0, a further constant must be introduced, namely the
electric charge,e. The fact that the introduction of the
classical electron radius requires an additional con-
stant, led Heisenberg [8] to conclude that the specifi-
cation of the charge is extraneous to the specification
of a universal length, or elementary mass. Only after
the nature of the universal length has been clarified
can the question of electronic charge be addressed.
Moreover, since the Compton wavelength is ¯hc=e2

times greater than the classical electron radius, ample
room is left for an electron of finite extension.

2. Bessel Functions and Random Walks

Consider an infinite chain of regularly spaced
massesm0. A particle will be able to jump from one
mass point to another, and when it does it emits a
signal of frequency$. This frequency should char-
acterize the particle in its rest frame. The only non-
vanishing energy is the rest energy,m0c

2, and when it
is divided by Planck’s constant, we obtain the fre-
quency$ = m0c

2=h̄. From these three constants
we can form a length, namely the Compton length
� = h̄=m0c, and it determines the spacing between
the mass points.

Consider a framẽk which moves at a velocityv
with respect to the framek of the linear lattice. The
relation between the coordinates (r;$t) in the frame

k and the coordinates (˜r;$t̃), in the framẽk, is given
in the most general form by the formulas:

r = r̃ cosh� +$t̃ sinh� (1)

and$t = $t̃ cosh� + r̃ sinh�;

where the ‘angle’� can depend only on the relative
velocity of the two frames. In particular, if we consider
the motion of the origin of thẽk frame (r̃ = 0), with
respect to thek frame, we obtain the relative velocity:

� = r=$t = q=ct = tanh�; (2)

where� = v=c, andq = r� is distance from the origin
of thek frame.

The particle’s positionr along the chain coincides
with the distance of two observers in framesk and
k̃. The advantage of introducing the framek̃ is that
it will allow us to determine the relationship between
two events that occur iñk at one point, ˜r = 0, in
space, and registered by one clock using the proper
time interval, t̃, and the time interval between the
same events,t, as registered by two clocks ink, in
which the two events occur at different points. If the
particle starts at the origin and gets tor, at timet̃, then
among then jumps that were made,1

2(n + r) had to
have been positive, and12(n�r) negative. In order that
these values be integers,n � r = 2j must be even.
This is the number of reversals that has occurred.
Given equal probabilities for a jump to the left and
the right, the probability to be at positionr � 0 just
after thenth jump is [7] 

n
1
2(n + r)

!
2�n =

 
r + 2j
r + j

!
2�n:

Given the probability thatn = r + 2j jumps have
occurred up until timẽt is Poisson, ($t̃)ne�$t̃=n!,
the probability to be atr � 0 at timet̃ is [7]

e�$t̃
1X
j=0

�
1
2$t̃

�r+2j

(r + 2j)!

 
r + 2j
r + j

!
(3)

= e�$t̃Ir($t̃) = Pr(t̃):

Averaging is required since we do not know how many
jumps it will take to reachr. It is this randomization of
the time steps, which is accomplished by the Poisson
process, that converts a discrete into a continuous
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time random walk, and has brought in the modified
Bessel function of orderr, Ir($t̃). The symmetry
of modified Bessel function,I�r($t̃) = Ir($t̃), for
integer values ofr, and the sum

P
1

r=�1 Ir($t̃) =
e$t̃ guarantee that the probability densityPr(t̃) is
normalized.

We will now prove that (3) is the solution to a
one-dimensional random walk. For simplicity we as-
sume that a step to the left or the right occurs with
equal probability1

2$dt̃ in timedt̃. The continuity, or
master, equation

dt̃Pr(t̃) = 1
2$
�
Pr+1(t̃)� 2Pr(t̃) + Pr+1(t̃)

�
; (4)

has the usual initial condition that the walker starts at
the origin,Pr(0) = �0;r. At the initial instant, the read-
ings of the two clocks ofk andk̃ coincide since the
two observers are at the same point. Afterwards, the
framek̃ will move away from the source of radiation
located in the framek at a constant velocity.

The solution to (4) is most conveniently obtained
by employing the method of generating functions [9].
The generating function

G(z; t̃) =
1X

r=�1

zrPr(t̃)

satisfies the boundary conditionsG(z;0) = 1 and
G(1; t̃) = 1. Multiplying the master equation (4) byzr

and summing result in a first order differential equa-
tion whose solution is:

G(z; t̃) = exp
��$t̃ + 1

2$t̃
�
z + z�1�	 :

This expression for the generating function is compa-
rable with that of a modified Bessel function,

e
1
2$t̃(z+z�1) =

1X
r=�1

zrIr($t̃); (5)

which is sometimes used as the definition ofIr($t̃).
Consequently (3) is the solution to the master equa-
tion (4).

Introducing (3) into the master equation (4) gives
the well-known recursion relation [10]

dt̃Ir($t̃) = 1
2$
�
Ir�1($t̃) + Ir+1($t̃)

�
(6)

for modified Bessel functions. The recursion relation
is easily verified from the generating function (5).
Differentiating (5) with respect tõt, and equating the

coefficients ofzr gives (6). A second recursive for-
mula can be obtained by differentiating the generating
function (5) with respect toz. Equating coefficients
of zr�1 equal to zero results in [10]

rIr($t̃) = 1
2$t̃

�
Ir�1($t̃)� Ir+1($t̃)

�
: (7)

Writing the dummy variable in the expression for
the generating function asz = e�, (5) becomes

G(�; t̃) =
1X

r=�1

e�rIr($t̃) = e$t̃ cosh�: (8)

Multiplying both sides of (6) bye�r and summing
over allr result in

∂t̃ lnG = $ 1
2

�
e� + e��

�
= $ cosh� = !; (9)

which defines the frequency!. Multiplying the sec-
ond recursion relation (7) bye�r and summing give

r=$t̃ = q=ct̃ = 1
2

�
e� � e��

�
= sinh�: (10)

This coincides with the first moment of the distribu-
tion

∂� lnG = $t̃ sinh� = r; (11)

which determines the average distance that the par-
ticle is from the origin. If (11) is evaluated at� = 0
(z = 1), as is usually done when� has no physical
meaning, the particle will, on the average, show no
tendency to wander from the origin at the proper time
t̃. This implies that� can be a function only of the
relative velocity of the two inertial frames.

Equation (11) sheds new light on the meaning of
the Lorentz transformation as specifying the mean
position of a particle executing a random walk. It
coincides with first equation in (1) when the motion
is considered in thek frame of the origin of thẽk
frame (r̃ = 0). However, (9) does not coincide with
the second equation in (1) under the same condition.
Converting frequencies into periods of the motion,
! = 2�=t and$ = 2�=t̃, results int̃ = t cosh�, and
not t = t̃ cosh� at r̃ = 0, as given by (1). It will turn
out that (9) is the correct relativistic expression for the
energy, but it does not transform like the frequency of
a clock.

3. Recursion Relations and the Doppler Effect

An elegant method of deriving relativistic kine-
matics is the so-called ‘k calculus’, which is
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based entirely on the radial Doppler effect in one-
dimension [11]. Thek calculus is completely equiv-
alent to the Lorentz transformation, and enjoys the
added advantage of dispensing with the necessity of
having to introduce different sets of coordinate axes.
It consists of sending, reflecting and receiving light
signals between two observers in two inertial frames.
An observer moving at a constant velocity relative to
a source registers a frequency different from the fre-
quency emitted by the source. The source of radiation
is the radiating electron when it accelerates in mak-
ing a jump from one lattice site to another. One of the
observers,O, is placed at the source, in the framek,
and the other observer,̃O, is moving relative to the
radiating source at a constant velocityv in framek̃.
This is entirely equivalent to an electron moving with
an average velocity�v in framek with respect to a
stationary framẽk. If radiation is emitted periodically
with periodT , Õ in k̃ will receive these signals in a
different time interval, as measured by his own clock.
If T is the period in which the signals are emitted,
thenkT will be the period in which they are received.
These periods are measured by clocks at rest in frames
k and k̃, respectively. Without knowing the specific
form of k, we know that it can only depend upon the
relatively velocity between the two frames. This is
a consequence of the Doppler effect: the change in
frequency depends only on the relative motion.

If O sends out signals in intervalsT andÕ receives
them in intervalskT , then, by the equivalence of all
inertial frames,O will receive signals sent out bỹO
in intervalskT whenÕ sends them out in intervals
T . This has the important consequence that signals
sent out byO in intervalsT , received byÕ in inter-
vals kT and reflected by him in intervalsT will be
received back atO in intervalsk(kT ). This is to say
that the time interval on the return journey will again
be increased by an amountk. Hence ifO sends out a
signal at timeT to Õ, which is immediately reflected
back toO he will receive it in time (k2 � 1)T . The
time that it takes a signal to propagate between these
two observers is12(k2� 1)T . And because the veloc-
ity of light is the same in both directions, the distance
between the two observers is

q = 1
2(k2 � 1)cT: (12)

We must now determine the time at which the ob-
serverÕ reflected the signal, as measured by the ob-
serverO’s clock. Since the event occurs at a position

other than whereO’s clock is located, this time inter-
val cannot be measured by, but rather must be ascribed
to,O’s clock. The signal was sent out in timeT and
received back in timek2T so that the moment it was
reflected is their average:

t = 1
2(k2 + 1)T: (13)

Since both the distance (12) and time separation (13)
refer to a single frame, their ratio determines the rel-
ative velocity,c�, where

� =
k2 � 1
k2 + 1

; (14)

of observerÕ with respect toO. Rearranging (14)
yields

k =

s
1 +�
1� �

: (15)

This is as far as thek calculus goes in determining the
form of k [11]. However, it is already apparent that
an exponential factor is involved since a change in the
sign of the relative velocity transformsk into 1=k.

In order to find the functional form ofk, we con-
sider three inertial framesk, k̃ and k̂. The factor
k(O; Õ) will depend only on the relative velocity be-
tween the framesk andk̃, whilek(O; Ô) will depend
only on the relative velocity between framesk andk̂.
If a light signal is sent fromO to Õ and immediately
on toÔ, it will require the same time as a light signal
sent fromO directly to Ô due to the constant speed
of light. The equivalence of their time intervals

k(O; Ô)T = k(O; Õ) k(Õ; Ô)T

implies thatk is exponential:k = e�, where� can de-
pend only on the relative velocity of the two frames. In
other words, the time magnification factor,k, of the ra-
dial Doppler effect is the exponential of animaginary
phase shift between neighboring lattice sites. Conse-
quently, the relative velocity (14) between framesk
andk̃ is (2). Upon solving (2) for� gives

e� =

s
1 +�
1� � ; (16)

which is (15). Furthermore, (12) is now seen to co-
incide exactly with the average distance the particle
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moves along the chain, (11), remembering thatq = r�
andt̃ = kT is the proper time. In other words, we can
determine the average distance covered by the particle
along the chain by an observer moving in an inertial
frame with respect to a stationary source.

It is well-known that the addition formula for the
hyperbolic tangent accounts for the relativistic addi-
tion law for velocities. If ṽ is the relative velocity
between framesk andk̃, andv̂ is the relative velocity
between frames̃k and k̂, then the relativistic law of
addition of velocities isc� where

� = tanh
�
�̃ + �̂

�
=

tanh�̃ + tanh�̂

1 + tanh�̃ tanh�̂
=
�̃ + �̂

1 + �̃ �̂
:

Although thea priori probabilities for a jump to the
left and to the right are equal, the exponential factor
on the left-hand side of (16) is related to the proba-
bility of an electron taking a jump to the right, while
e�� is related to the probability that an electron will
take a jump to the left. The jump consists in accel-
erating the electron, either to the right or to the left.
An accelerating electron radiates energy, and it is the
frequency of this radiation that gets Doppler shifted.
If the radiation is emitted in the direction of the ob-
server then the time it will take to reach him ise��T ,
with a corresponding increase in the frequency. Anal-
ogously, if the transition is in the opposite direction,
the frequency will be shifted toward the red, requiring
a longer time to arrive,e�T .

If O sends light signals at the intervalT , we have
seen in (13) that the time it takes to reachÕ is
1
2

�
e2� + 1

�
T , as registered by two clocks ink. The

ratio of this time interval to the proper time interval,
t̃ = e�T , in the framek̃ is:

t = t̃ cosh�: (17)

Transforming from time intervals to frequencies, (17)
becomes:

! = $
p

1� �2: (18)

Consequently, (17) gives the correct transformation of
the frequency of a clock, or time dilation due to view-
ing a moving clock. Furthermore, since the relative
velocities in the two frames are equal and opposite,
q=q̃ = t=t̃, (17) is also the expression for the Fitzge-
rald–Lorentz contraction, ˜q = q

p
1� �2.

The ratio of the distance (12), measured ink, to the
proper time of̃k is

q=t̃ = c sinh�; (19)

which is precisely the recursion relation (10). This
relation could also be obtained from (17) andq = vt
(q̃ = 0), where the relative velocity is given by (2).
Why then does (17) give the incorrect energy relation
when Planck’s energy-frequency relation is used? In-
stead of the coordinate ‘two-vector’ (˜q; ict̃), consider
momentum two-vector, (˜p; iẼ=c). Since thẽk frame
is at rest, onlyẼ does not vanish. According to the
Lorentz transformation, we have momentum and en-
ergy in thek frame given byp = (Ẽ=c) sinh� and
E = Ẽ cosh�, respectively. With the proper frequency
given by$ = Ẽ=h̄, we find

! =
$p

1� �2
; (20)

andp = m0c�=
p

1� �2. Combining the two rela-
tions, we obtain! = (c=�)�, wherec=� will later
be identified as the phase velocity [cf., (21) below].
The correct expression for the momentum is arrived
at independently of the expression for the frequency.
According to special relativity, the ratio of the mo-
mentum to the total energy, ¯h!, is proportional to the
velocity, c2p=h̄! = v. The recursion relation (9), or
equivalently (20), givesp = (!=$)m0v, while (18)
gives the inverse relationp = ($=!)m0v. Whereas
the Doppler effect predicts that the frequency de-
creases with the velocity, the frequency (20) does not
transform like the frequency of a clock (18).

In order to get the correct velocity dependence on
the frequency the Lorentz transformation has been
used in conjunction with the wave associated with
the motion [12]. In a stationary frame, the phase
of the wave is$t̃. Viewed from another inertial
frame with a relative velocityu, the phase becomes
$t̃ = $ ft cosh� � (q=c) sinh�g = !

�
t� q=u

�
,

with a frequency (20) and a phase speed

u = c2=v = c coth�: (21)

The frequency relation (20) is theinverse of (18).
As de Broglie concluded, “the difference between
the relativistic variations of the frequency of a clock
and the frequency of a wave is fundamental” [12].
Moreover, the relative velocity of the traveling wave



750 B. H. Lavenda · Special Relativity via Modified Bessel Functions

(21) is not the particle velocity; rather, it is the inverse
of (2).

The fact that special relativity actually predicts
that the frequency will beincreased by the motion,
and notdecreased by it, caught de Broglie’s atten-
tion and made it a focus of his research [12]. That
wave amplitudes should only depend upon space and
time through the combination (t � q=u) introduces
a phase velocityu which make them unsuitable for
the transmission of signals because if the particle ve-
locity is less than the speed of light, the phase speed
will certainly be greater than the speed of light. de
Broglie assumed an equivalence between the phase
of the ‘regulator’ clock, that is associated with the
particle, and the phase of the wave phenomenon that
is associated with it. The phase,$t̃ = !t � �q, has
frequency (20) and wave number

� c =
$�p
1� �2

= $ sinh�; (22)

which is identical to the second recursion relation (10)
of the modified Bessel functions for a wave number
given by� = r=ct̃. Dividing (20) by (22) does, in fact,
give the phase velocity (21). Since the phase velocity
is !=�, both positive and negative traveling waves
can be obtained by keeping the frequency positive
and letting the wave number� assume both positive
and negative values. Squaring both (20) and (22) and
subtracting the latter from the former give

!2 � (�c)2 = $2: (23)

Interpreting� as the density of waves and! as the
flux of waves,

∂t� + ∂r! = 0

represents the conservation of waves [13]. It is equiv-
alent to the expression for the group, or particle, ve-
locity (2) since

v = � ∂t�
∂r�

= c tanh�:

Rather, had we considered the dispersion equation
for the master equation (4) we would have obtained:

! = �$ +
p
$2 + (c�)2; (24)

with the convention that the frequency be kept positive
while the wave number can take on both negative, as
well as positive, values. The group velocity

v =
d!
d�

=
c2�p

$2 + (c�)2
;

remains the same, but the product of the modified
phase velocity and the group velocity

u � v =

 
1� $p

$2 + (c�)2

!
c2

shows that both the phase and group velocities are less
than the speed of light. Such a wave can be used for
signal transmission. Whereas the dispersion relation
(23) corresponds to the Klein-Gordon equation,

c2∂2
q � ∂2

t = $2 ;

for the wave amplitude , (24) is equivalent to the
telegrapher’s equation,

�∂2
t + 2i$∂t = �c2∂2

q ;

which has an intermediate position between the non-
relativistic Schr̈odinger equation and the relativistic
Klein-Gordon equation. The former is obtained in the
limit $ � c�.

Consider the Lorentz transformation law for mo-
mentum and energy:

�
p̃=m0c
iẼ=m0c

2

�
=
�

cosh�0 �i sinh�0

i sinh�0 cosh�0

�
(25)

�
�

p=m0c
iE=m0c

2

�
:

Since p = m0c sinh� and E = m0c
2 cosh�, the

Lorentz transform (25) implies ˜p = m0c sinh
�
� + �0

�
andẼ = m0c

2 cosh
�
� + �0

�
. The fact that the deter-

minant of the Lorentz transformation is equal to unity
is the condition for energy conservation,viz.,

E0
2

(m0c2)
� p0

2

(m0c)2
=

E2

(m0c2)
� p2

(m0c)2
= 1: (26)

To demonstrate that (25) does in fact imply the con-
servation of energy, we write its components out
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Ẽ

m0c2
=

E0E

(m0c2)2
+

p0p

(m0c)2

and

p̃

m0c
=

E0

m0c2

p

m0c
+

E

m0c2

p0

m0c
:

Squaring both expressions and subtracting the latter
from the former gives (26) for both the primed and
unprimed sets of terms.

To conclude this section, we consider the Compton
effect in the more general case where the electron
is in motion prior to its collision with the photon. If
� and�0 are the wavelengths of the photon before
and after collision, and� is the angle of deviation of
the photon, then energy and momentum conservation
yield the relation between the two wavelengths as:

�0 cosh� � � e�� = 2� sin2 ��=2� ; (27)

where� depends on the velocity of the electron prior
to collision. If the electron is at rest then (27) reduces
to the ordinary Compton effect. However, for large
initial velocities, (27) becomes:

�0 = 4� sin2 ��=2�
s

1� �

1 +�
; (28)

where we have used (16), and the initial velocity of
the electron isc�. Expression (28) has the form of
the radial Doppler shift in the wavelength. The wave-
length of the incoming photon has disappeared and
the wavelength�0, represents the shift in wavelength
of 4� sin2

�
�=2

�
due to the initial velocity of the elec-

tron.

4. Relativistic Limits via Integral Bessel Formula

The modified Bessel function can be represented
by the complex integral [10, p. 181]

Ir($t̃) =
1

2�i

Z
1+�i

1��i

e$t̃ cosh��r� d� (29)

whenjarg($t̃)j � 1
2�, where the equality sign holds

for r > 0. The contour is made up of three sides of a
rectangle with vertices at1��i,��i,�i and1+�i.
We will consider real̃t. The function

S(�) = r� �$t̃ cosh� (30)

has a maximum at� = sinh�1(r=$t̃), which is
none other than (10). Transforming from proper time
to the time in the frame at rest,̃t = t cosh� �
(q=c) sinh�, gives the stationary condition as� =
tanh�, which is the same condition since tanh�1 � =

sinh�1
�
�=
p

1� �2
�

. Introducing this stationary
point into (30) results in

S(r; t̃) = r sinh�1(q=ct̃)�$t̃
q

1 + (r=$t̃)2: (31)

This is precisely the expression that appears when
(29) is evaluated by the method of steepest descent
[14]

Ir($t) � e�S(r;t̃)q
2�$t̃

p
1 + (r=$t̃)2

: (32)

The function (31) plays a role analogous to a clas-
sical action for a path. The derivative of (31) with
respect toq gives

�∂qS = sinh�1(q=ct̃) = �: (33)

Ordinarily, we would identify (33) with the wave
number, but from the condition of the extremum of
(30) we are prevented from doing so. However, the
derivative of (31) with respect to time is still the neg-
ative of the frequency

∂t̃S = �$
q

1 + (q=ct̃)2 = �!; (34)

which is seen to be (9) when (33) is introduced. Hence,
the action (31) may be written as:

S(q; t̃) =
q

�
sinh�1

 
�p

1� �2

!
� $t̃p

1� �2
:

Introducing the asymptotic form of the modified
Bessel function (32) into the expression for the prob-
ability density (3) gives:

Pr($t̃) = e�$t̃Ir($t̃) (35)

� e$t̃(
p

1+(r=$t̃)2
�1)�r sinh�1(r=$t̃)q

2�$t̃
p

1 + (r=$t̃)2
:

It is well-known that in the limitr � $t̃, (35) tends
to the Gaussian probability density [9]
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Pr(t) � e�r
2=2$t

p
2�$t

(36)

for the displacement of the particle. The action,
S(q; t) = m0q

2=2th̄ = p2t=2m0h̄, corresponds to that
of a non-relativistic free particle. There is no longer
any distinction between the time intervals in the two
frames; Galilean invariance prevails. From the loga-
rithm of the generating function, lnG = 1

2$t�
2, the

average distance covered by the particle in timet is
found to be∂� lnG = $t�. It tends to zero as� does;
the particle, on the average, will be found at the ori-
gin in the non-relativistic limit where the drift tends
to zero.

The frequency and angle are given by

∂tS = � 1
2$

�r
t

�2
= �! (37)

and

∂rS =
1
$

r

t
= � = �; (38)

respectively. Solving (38), which is the first term in
the series expansion for sinh� [cf., (10)], for the ra-
tio r=t and introducing it into (37) gives the first
term in the power series expansion of cosh�, viz.,
!=$ = 1

2�
2 [cf., (9)]. The velocity dependence on

the frequency,! � $�2=2, has nothing to do with
the radial Doppler effect, which for small velocities
would be! �$(1� �).

In the opposite limitq � c, the asymptotic
form of the modified Bessel function (32) reduces
to Ir($t̃) � ( 1

2$t̃)
r=r!, where Stirling’s approxima-

tion r! � p
2�re�rrr has been used. In comparison

with the master equation (4), where steps to the left
and to the right occur with equal probability, steps to
the left have now a vanishing probability. The master
equation is now reduced to:

dt̃Pr(t̃) = $0 fPr�1(t̃)� Pr(t̃)g ; (39)

where$0 = 1
2$. Steps are now taken only to the right

with a lattice spacing twice as great, but still at ran-
dom times. Normalization of the asymptotic modified
Bessel function leads to the Poisson distribution:

Pr(t̃) � ($0 t̃)r

r!
e�$

0 t̃ (40)

in the ultra-relativistic limitq � ct̃, or, equivalently,
p� m0c.

Relativistic trajectories look quite different from
non-relativistic ones: the Brownian paths, corre-
sponding to (36), get straightened out. The logarithm
of the generating function of the Poisson distribution,
lnG = $0t̃

�
e� � 1

�
, gives the average position of the

particle as:

∂� lnG = $0 t̃ e� = r; (41)

which, unlike (11), does not vanish even when� =
0. The average distance covered by the particle, or,
equivalently, the distance that observerÕ has moved
away fromO in the time interval12k

2T , isq = 1
2k

2cT .
This is the limiting expression for (12) fork � 1.

From the dimensionless action,

S(r; t̃) = �r
�

1 + ln
�
$0t̃

r

��
;

for the Poisson distribution (40), the expressions for
frequency and angle are found to be

∂t̃S = �r=t̃ = �!; (42)

and

∂rS = ln
� r

$0 t̃

�
= �; (43)

respectively. According to (11) and (22),r=t̃ = �c
so that (42) is the expression for the ultra-relativistic
energyh̄! = pc. Expression (43) can thus be written
asp = m0c e

�. Introducing (42) into (43) and using
the definition of the angle�, (16), result in:

! = $0

s
1 +�
1� � ; (44)

which is the exact relativistic equation describing the
radial Doppler effect.

The non-relativistic limit, therefore, corresponds
to long wavelengths which are completely insensi-
tive to the lattice spacing. Alternatively, in the ultra-
relativistic limit, corresponding to extremely short
wavelengths, the particle motion is discontinuous, and
the lattice spacing, 2�, is the minimum wavelength
of an electron. Nothing can be said about the motion
of the electron in between the lattice spacing, and
this gives the electron its finite extension. An impulse
could not be transmitted instantaneously across the
electron since we would have no information on the
position of the electron in lengths smaller than�. The
time required for light to cross the particle’s Compton
length is 2�=$. This is the smallest time interval pos-
sible; the Doppler effect (17) requires all other time
intervals to be greater.
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