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The recursive formulas of modified Bessel functions give the relativistic expressions for energy
and momentum. Modified Bessel functions are solutions to a continuous time, one-dimensional
discrete jump process. The jump process is analyzed from two inertial frames with a relative
constant velocity; the average distance of a particle along the chain corresponds to the distance
between two observers in the two inertial frames. The recursion relations of modified Bessel
functions are compared to thee ¢alculus’ which uses the radial Doppler effect to derive relativistic
kinematics. The Doppler effect predicts that the frequency is a decreasing function of the velocity,
and the Planck frequency, which increases with velocity, does not transform like the frequency
of a clock. The Lorentz transformation can be interpreted as energy and momentum conservation
relations through the addition formula for hyperbolic cosine and sine, respectively. The addition
formula for the hyperbolic tangent gives the well-known relativistic formula for the addition
of velocities. In the non-relativistic and ultra-relativistic limits the distributions of the particle’s
position are Gaussian and Poisson, respectively.

Keywords. Special Relativity; Recursion Relations of Modified Bessel Functions; Lattice Jumps;
Size and Mass of an Electron; Doppler Effect.

1. Introduction tic causality are well-known [6]. It is the purpose of
this article to point out, however, that the recursive
At the beginning of the last century there was corformulas of modified Bessel functions give the cor-
siderable interest in the origin of the mass of an eletect special relativistic expressions for the energy and
tron [1]. Experiments that measured the charge tge momentum. Modified Bessel functions occur in a
mass ratio definitely showed that the mass increas@tle variety of problems in probability theory when
sharply with the speed of an electron [2]. It was evelfie times at which the jumps of a random walk occur
suggested that the entire mass of an electron is elé@€ randomized [7]. In other words, modified Bessel
tromagnetic in origin [3]. An electron in motion pro- functions make their appearance when the times of the
duces a magnetic field about its line of flight. Thestepsinadiscrete time random walk are randomly dis-
magnetic field has an energy associated with it. Effibuted according to a Poisson process. In this way,
ergy is required to set the electron in motion so th& one-dimensional probabilistic model of special rel-
mass can be associated with an electron becausedBl¥ity presents itself in terms of random jumps along
the fields that it creates. This mass is entirely ele@ linear lattice. The jumping electron accelerates and
tromagnetic. Experiments were performed to sele@e-accelerates emitting radiation which is analyzed in
the correct model of an electron; the contenders wed@ inertial frame moving relative to the lattice. The
the Lorentz model, which was indistinguishable in it@verage displacement of the particle along the lattice,
predictions from Einstein’s special theory of relativin & given time interval, coincides with the distance
ity, and the Abraham model [4], whose aim was t®€tween two observers in two inertial frames moving
provide for an electrodynamic foundation for all ofrelative to one another.
mechanics. A discrete jump process permits the electric charge

These classical models of an electron have all bift have a finite extension in space. Consider an elec-
been abandoned [5] because they appear to introddt@ as a rigid object of finite dimension [6]. When
more problems than they solve. The contradictior pulse of radiation strikes one side of the surface
of an electron with a finite extension and relativisOf the electron it is instantaneously set into motion.
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This implies that the impulse had to be transmitted ink and the coordinates (357), in the framek, is given
stantaneously across the diameter of the electron, andhe most general form by the formulas:

this contradicts the relativistic law of causality. How- .

ever, by considering events separated by a distance of 7 = 7" cosh¥ + wt sinhf (1)
the order of the particle’s Compton wavelength, the

smallest time that a signal can be transmitted between
neighboring points on the lattice is the time it takes here the ‘analed d d onl th lati
light to cross the particle’s Compton wavelength. iy/nere the angiev can depend only on the relative
other words, by dispensing with all knowledge of th elocny_ofthetwo f“’%‘“?es- In pNart|cuIar,~|f_we con_3|der
process between the lattice points, perhaps dueinp mation of the origin of th@i frame R 0), W'th .

to the limitations of our measuring apparatus, we adespectto thé frame, we obtain the relative velocity:

mit that there can be only a finite rate of change. _ - -

Consequently, there is nothing to prohibit an elec- f=r/wt=g/ct=tanhd, )

transmitted over such distances would not be open & the & frame.

observation. The particle’s positiom along the chain coincides
But, cannot the Compton wavelength be reducaith the distance of two observers in framesnd

still further to the classical electron radius? Once & The advantage of introducing the frarhés that
universal lengthyo say, is specified, it can then bejt will allow us to determine the relationship between
combined with the other two fundamental constantgyg events that occur i at one pointy~= 0, in

h ande, to produce a quantity which has dimensiongpace, and registered by one clock using the proper
of mass,i/roc. If the valuee®/mc” is assigned 10 time interval,?, and the time interval between the
classical electron radius requires an additional copyyticle starts at the origin and getstat timef, then
stant, led Heisenberg [8] to conclude that the specitiyong the, jumps that were madé(n + r) had to
cation of the charge is extraneous to the specificati¢pye peen positive, ari@n —r) negative. In order that
the nature of the universal length has been clarifieghjs is the number of reversals that has occurred.
can the question of electronic charge be addresseslyen equal probabilities for a jump to the left and

Moreover, since the Compton wavelengthiis/e®  the right, the probability to be at position> 0 just
times greater than the classical electron radius, ampiger thenth jump is [7]

room is left for an electron of finite extension.

andwt = wicosh¥ + 7 sinhé,

. n 27711 - r + 2] 27711

2. Bessel Functions and Random Walks Ln+7) r+ :
Consider an infinite chain of regularly space
massesng. A particle will be able to jump from one
mass point to another, and when it does it emits
signal of frequencyw. This frequency should char-

‘ii.‘aiven the probability that = r + 2j jumps _have
gccurred up until time is Poisson, €t)"e~ =" /nl,
e probability to be at > 0 at timet is [7]

acterize the particle in its rest frame. The only non- 0o (1 w2 .

vanishing energy is the rest energyc?, and when it efwt"-z % (T * 23) (3)

is divided by Planck’s constant, we obtain the fre- o (2 \r+j

quencyw = moc?/h. From these three constants 5 . .

we can form a length, namely the Compton length =e “'I.(wt) = P,(1).

A = h/mge, and it determines the spacing between

the mass points. Averaging is required since we do not know how many

Consider a framé which moves at a velocity  jumps it will take to reach. Itis this randomization of
with respect to the framé of the linear lattice. The the time steps, which is accomplished by the Poisson
relation between the coordinates€t) in the frame process, that converts a discrete into a continuous
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time random walk, and has brought in the modifiedoefficients of:" gives (6). A second recursive for-

Bessel function of order, I,(wt). The symmetry mulacan be obtained by differentiating the generating

of modified Bessel function/_.(wwt) = I,(wt), for function (5) with respect ta. Equating coefficients

integer values of-, and the sund_" _ I.(wt) = of z"~1equal to zero results in [10]

¢@! guarantee that the probability densiBy(?) is N1 7 ~ ~

normalized, | | rl(wt) = 3wt (I,_1(wt) — La(wt)) . (7)
We will now prove that (3) is the solution 10 & \yyiting the dummy variable in the expression for

one-dimensional random walk. For simplicity we asg,q generating function as= ¢’, (5) becomes
sume that a step to the left or the right occurs with ’

equal probabilityt @ d7 in time di. The continuity, or . e oo
master, equation GO, 1) = Y I (wl) = e )

T=—00

o)

- 7\ =1 N 7 1}
4P () = 3w (Pralt) = 2P:(0) + Pra()) . (4) Multiplying both sides of (6) by’" and summing

has the usual initial condition that the walker starts Zver allr resultin
_the origin,P,(0) = éo,,.. Atthe iniNtiaI i_nst_ant, the read- 0;InG = wi (69 n 6_9) = wcoshh=w, (9)
ings of the two clocks of: andk coincide since the _ _ o
two observers are at the same point. Afterwards, thénich defines the frequency. Multiplying the sec-
framek will move away from the source of radiationond recursion relation (7) by’ and summing give
located in the framé at a constant velocity. T LY R N

The solution to (4) is most conveniently obtained /@t =a/ct =3 (¢’ —e™) =sinhd.  (10)

by employing the method of generating functions [9hjs coincides with the first moment of the distribu-

The generating function tion
g(Z7 'i’) — Z ZrPr('_E) 69 InG = wt sinhf = r, (ll)
e which determines the average distance that the par-

satisfies the boundary conditio¥z,0) = 1 and ticle is from_the origin. If (11) is evaluated &t=_0
G(1,1) = 1. Multiplying the master equation (4) by (= = 1), as is usually done whehhas no physical
and summing result in a first order differential equaneaning, the particle will, on the average, show no

tion whose solution is: tendency to wander from the origin at the proper time
. . . t. This implies that can be a function only of the
G(z, 1) =exp{—wi+ 1wt ( +271)}. relative velocity of the two inertial frames.

) ) ) o Equation (11) sheds new light on the meaning of
This expression for the generating function is compahe Lorentz transformation as specifying the mean

rable with that of a modified Bessel function, position of a particle executing a random walk. It
0o coincides with first equation in (1) when the mation
e3@i(=+=7") = 3 L (), (5) is considered in thé: frame of the origin of thek

frame ¢ = 0). However, (9) does not coincide with

_ the second equation in (1) under the same condition.
which is sometimes used as the definition/ofot). Converting frequencies into periods of the motion,
Consequently (3) is the solution to the master equa-= 27/t andw = 2 /1, results inf = ¢ cosh¥, and

r=—oc

tion (4). _ _ ~nott =tcoshd ati = 0, as given by (1). It will turn
Introducing (3) into the master equation (4) givesut that (9) is the correct relativistic expression for the
the well-known recursion relation [10] energy, but it does not transform like the frequency of

- ~ ~ a clock.
dil,(wl) = 3w (I,—1(wt) + La(wt))  (6)
. ] ] . 3. Recursion Relationsand the Doppler Effect
for modified Bessel functions. The recursion relation
is easily verified from the generating function (5). An elegant method of deriving relativistic kine-
Differentiating (5) with respect t§ and equating the matics is the so-called k& calculus’, which is
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based entirely on the radial Doppler effect in onesther than wher®'’s clock is located, this time inter-
dimension [11]. The: calculus is completely equiv- val cannot be measured by, but rather must be ascribed
alent to the Lorentz transformation, and enjoys th, O’'s clock. The signal was sent out in tinfféand
added advantage of dispensing with the necessity @ceived back in timé?7" so that the moment it was
having to introduce different sets of coordinate axeseflected is their average:

It consists of sending, reflecting and receiving light

signals between two observers in two inertial frames. = 3(k? + 1)T. (13)

An observer moving at a constant velocity relative to ) _ )

a source registers a frequency different from the fr&ince both the distance (12) and time separation (13)
guency emitted by the source. The source of radiatiéfer to a single frame, their ratio determines the rel-
is the radiating electron when it accelerates in maRtive velocity,cg, where

ing a jump from one lattice site to another. One of the )

observers(), is placed at the source, in the framg — k-1
and the other observe®), is moving relative to the k2+1’
radiating source at a constant velocityn framek.
This is entirely equivalent to an electron moving wit
an average velocity-v in frame k with respect to a

stationary framﬁ. If radiation is emitted periodically
with periodT’, O in k will receive these signals in a p=, 18 (15)
different time interval, as measured by his own clock. 1-p

If T is the period in which the signals are emitted,

thenkT will be the period in which they are received.This is as far as the calculus goes in determining the
These periods are measured by clocks atrest in franfesm of & [11]. However, it is already apparent that
k andk, respectively. Without knowing the specifican exponential factor is involved since a change in the
form of k, we know that it can only depend upon thesign of the relative velocity transfornisinto 1/k.
relatively velocity between the two frames. This is In order to find the functional form of, we con-

a consequence of the Doppler effect: the change sider three inertial frames, & and k. The factor
frequency depends only on the relative motion. (O, O) will depend only on the relative velocity be-

If O sends out signals in intervalsandO receives tween the framek andk, while £(O, O) will depend
them in intervals:T", then, by the equivalence of all only on the relative velocity between frameandk.
inertial frames O will receive signals sent out by  If alight signal is sent fron® to O and immediately
in intervalskT whenO sends them out in intervals ©n toO, it will require the same time as a light signal
T. This has the important consequence that sign&i§nt fromO directly to O due to the constant speed
sent out byO in intervalsT, received byO in inter-  Of light. The equivalence of their time intervals
vals kT and reflected by him in intervalg will be - . o~ oA
received back ab in intervalsk(kT). This is to say k(O,0)T = k(0,0) (O, 0)T
that the time interval on the return journey will again

be increased by an amountHence ifO sends out a implies thatk s exponentialk = ¢”, whered can de-
signal at timeT” to O, which is immediately reflected pend only on the relatlve ve!qcny_ ofthe two frames. In
back toO he will re,ceive it in time 2 — 1)T. The other words, the time magnification factbrpf the ra-

time that it takes a signal to propagate between thegEI DOpE.If? rbeftf\(;ct IS the_ er):g or_lentllatltpf m‘?t‘g' naéy
two observers i§(k2 — 1)T. And because the veloc- P"2s€ Shitt between neighboring fattice sites. *-onse-

ity of light is the same in both directions, the distancdUently: the relative velocity (14) between framies
between the two observers is andk is (2). Upon solving (2) fo# gives

= (k2 — 1)cT. 12 S
0= 32 - e @ e (16)

We must now determine the time at which the ob-
serverO reflected the signal, as measured by the olwhich is (15). Furthermore, (12) is now seen to co-
serverO’s clock. Since the event occurs at a positioincide exactly with the average distance the particle

(14)

H)f observerO with respect toO. Rearranging (14)
yields
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moves along the chain, (11), remembering thatr A The ratio of the distance (12), measured jio the
and? = kT is the proper time. In other words, we carproper time oft is

determine the average distance covered by the particle

along the chain by an observer moving in an inertial ¢/t = csinhd, (29)
frame with respect to a stationary source.

It is well-known that the addition formula for the which is precisely the recursion relation (10). This
hyperbolic tangent accounts for the relativistic addielation could also be obtained from (17) apet vt
tion law for velocities. Ifv"is the relative velocity (¢ = 0), where the relative velocity is given by (2).
between frameg andk, and:7is the relative velocity Why then does (17) give the incorrect energy relation

between frame& andF, then the relativistic law of When Planck’s energy-frequency relation is used? In-
addition of velocities is;3 where stead of the coordinate ‘two-vectoyj,(ict), consider

momentum twg-vector,p(“zE/c). Since thek frame
tanhd + tanhd B+j is at rest, onlyE doe_zs not vanish. According to the
= ~ = —. Lorentz transformation, we have momentum and en-
l1+tant tanhd  1+35  ergy in thek frame given byp = (£/c)sinhd and
E = FE cosh¥, respectively. With the proper frequency
&iven byw = E/h, we find

8= tanh(@ + 9) =

Although theapriori probabilities for a jump to the
left and to the right are equal, the exponential fact
on the left-hand side of (16) is related to the proba-
bility of an electron taking a jump to the right, while W= —,
e~% is related to the probability that an electron will V1-p2
take a jump to the left. The jump consists in accel- o
erating the electron, either to the right or to the lef@ndp = moc/y/1 — 32. Combining the two rela-
An accelerating electron radiates energy, and it is ti©ns, we obtainu = (c¢/F)x, wherec/j will later
frequency of this radiation that gets Doppler shifted?® identified as the phase velocitf.[ (21) below].

I the radiation is emitted in the direction of the ob-The correct expression for the momentum is arrived
server then the time it will take to reach himeis?7,  at mdependently of the expression for_the frequency.
with a corresponding increase in the frequency. Anaficcording to special relativity, the ratio of the mo-
ogously, if the transition is in the opposite direction]"eNtUm 1 the total energh., is proportional to the
the frequency will be shifted toward the red, requiring€locity, ¢°p/hw = v. The recursion relation (9), or
a longer time to arrives’T. equivalently (20), givep = (w/@)mov, while (18)

If O sends light signals at the interva] we have 9VVes the inverse relatiop = (@/w)mov. Whereas
seen in (13) that the time it takes to reahis the Doppler effect predicts that the frequency de-

162 +1)T i lock The Creases Wi'.[h the velocity, the frequency (20) does not
2 (e )T, as registered by two clocks in The transform like the frequency of a clock (18).

ratio of this time interval to the proper time interva .
Y= 0 7 e In order to get the correct velocity dependence on
t = e’T, in the framek is: !

the frequency the Lorentz transformation has been
used in conjunction with the wave associated with
the motion [12]. In a stationary frame, the phase
f the wave iswt. Viewed from another inertial
rame with a relative velocity:, the phase becomes
wt = w{tcoshh — (¢/c)sinhd} = w(t—q/u),
with a frequency (20) and a phase speed

w

(20)

t =1 coshp. (17)

Transforming from time intervals to frequencies, (17
becomes:

w=wy1- 32

Consequently, (17) gives the correct transformation of

the frequency of a clock, or time dilation due to viewThe frequency relation (20) is thieverse of (18).
ing a moving clock. Furthermore, since the relativs de Broglie concluded, “the difference between
velocities in the two frames are equal and oppositghe relativistic variations of the frequency of a clock
q/q = t/t, (17) is also the expression for the Fitzgeand the frequency of a wave is fundamental” [12].
rald—Lorentz contractiony, £ ¢\/1 — 2. Moreover, the relative velocity of the traveling wave

u = c%/v = ccothd. (21)
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(21) is not the particle velocity; rather, it is the inversavith the convention that the frequency be kept positive

of (2). while the wave number can take on both negative, as
The fact that special relativity actually predictsvell as positive, values. The group velocity

that the frequency will béncreased by the motion,

and notdecreased by it, caught de Broglie's atten- v = dw _ 2K

tion and made it a focus of his research [12]. That de /w2 + (ck)?’

wave amplitudes should only depend upon space and

time through the combinationt ¢ ¢/u) introduces remains the same, but the product of the modified

a phase velocity: which make them unsuitable for phase velocity and the group velocity

the transmission of signals because if the particle ve-

locity is less than the speed of light, the phase speed ( © ) 5

will certainly be greater than the speed of light. de L R W PRV
Broglie assumed an equivalence between the phase @ (er)

of the ‘regulator’ clock, that is associated with thq\s that both the phase and group velocities are less
particle, and the phase of the wave phenomenon thgh, the speed of light. Such a wave can be used for
is associated with it. The phasef = wt — kg, has  gigna| transmission. Whereas the dispersion relation
frequency (20) and wave number (23) corresponds to the Klein-Gordon equation,

_FB . sinh, (22) o5 — O = wy,

/1 — 2
’ for the wave amplitude), (24) is equivalent to the
whichis identical to the second recursion relation (1Gelegrapher’s equation,
of the modified Bessel functions for a wave number
given byx = r/ct. Dividing (20) by (22) does, in fact, 0% + 2iwd) = _c205¢7
give the phase velocity (21). Since the phase velocity
is w/k, both positive and negative traveling wavesvhich has an intermediate position between the non-
can be obtained by keeping the frequency positivelativistic Schodinger equation and the relativistic
and letting the wave numberassume both positive Klein-Gordon equation. The former is obtained in the
and negative values. Squaring both (20) and (22) atithit @ > ck.
subtracting the latter from the former give Consider the Lorentz transformation law for mo-
mentum and energy:

w? — (ke)? = w2, (23)
p/moc _( coshd’" —isinh¢’ (25)
iE/moc? ) ~ \ isinhg’  coshy’

KC=

Interpretingx as the density of waves andas the
flux of waves,

()
0,k+0,w=0 iE/moc?® |-

represents the conservation of waves [13]. Itis equigince p = mocsinhd and E = mqc? cosh¥, the

alent to the expression for the group, or particle, vé-orentz transform (25) implies = mgc sinh(6 +6)

locity (2) since and £ = moc?cosh(¢ + ¢'). The fact that the deter-
minant of the Lorentz transformation is equal to unity

_ 0.0 _ ctanhd. is the condition for energy conservationz.,
0,0
2 plz E2 p2
Rather, had we considered the dispersion equation = =1 (26)

2y 2 2y 2
for the master equation (4) we would have obtained: ("0¢?) ~ (m0c)*  (moc?) — (moc)

To demonstrate that (25) does in fact imply the con-
w=—w+ w2+ (ck)?, (24) servation of energy, we write its components out
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E _ FE p'p has a maximum a# = sinh (r/wf), which is
moc?  (moc?)?2  (moc)? none other than (10). Transforming from proper time
to the time in the frame at rest, = tcoshy —

and (g/c)sinhd, gives the stationary condition &% =
p _E p N E tanhd, which is the same condition since tarttg =
moc  moc? moc  Mmoc? moc sinh? (,6’/«/1 — [32). Introducing this stationary

Squaring both expressions and subtracting the lat@@int into (30) results in
from the former gives (26) for both the primed and
unprimed sets of terms. S(r, 1) = rsinh Yq/ct) — wiy/1+ (r/wi)2. (31)
To conclude this section, we consider the Compton
effect in the more general case where the electrdrhis is precisely the expression that appears when
is in motion prior to its collision with the photon. If (29) is evaluated by the method of steepest descent
A and )\’ are the wavelengths of the photon befor§l4]
and after collision, ang is the angle of deviation of

the photon, then energy and momentum conservation I.(ct) ~ e 50D 32)
yield the relation between the two wavelengths as: " \/ ~ '
2rnwty/1+ (r/wt)?
X' coshp — Ae~’ = 24sir? (¢/2) , (27)  The function (31) plays a role analogous to a clas-

. ._sical action for a path. The derivative of (31) with
wheref depends on the velocity of the electron pr'OFespect tg; gives

to collision. If the electron is at rest then (27) reduces
to the ordinary Compton effect. However, for large 40,5 = sinh™(q/ct) = 6. (33)
initial velocities, (27) becomes:

Ordinarily, we would identify (33) with the wave
1-p3 number, but from the condition of the extremum of
1+3° (28) (30) we are prevented from doing so. However, the

derivative of (31) with respect to time is still the neg-

where we have used (16), and the initial velocity oftive of the frequency

the electron is3. Expression (28) has the form of

the radial Doppler shift in the wavelength. The wave- 0;S = —wy/1+ (¢/ch)? = —w, (34)
length of the incoming photon has disappeared and

the wavelength\’, represents the shift in wavelengthwhich is seento be (9) when (33) is introduced. Hence,
of 44 sir? (¢/2) due to the initial velocity of the elec- the action (31) may be written as:

tron.

N = 44sir? (¢/2)

- L wt
4. Relativistic Limitsvia Integral Bessel Formula S(g,t) = %Smh ! (ﬁ) - \/ﬁ

The modified Bessel function can be represented Introducing the asymptotic form of the modified
by the complex integral [10, p. 181] Bessel function (32) into the expression for the prob-
ability density (3) gives:

oo+

N — 1 wt coshd —r6 nt
I (wt) = o /0077”_ oo do (29 P.(wt) = e =], (wi) (35)

when|arg(@?)| < im, where the equality sign holds @i/ 14 [wt)2=1)—r sinh™*(r/ i)

for » > 0. The contour is made up of three sides of a ~ > >
rectangle with vertices ab — i, — i, 7ri andoo +7i. \/27””75\/ 1+(r/mt)

We will consider real. The function

. It is well-known that in the limit- < wt, (35) tends
S(0) = rf — wt coshy (30) to the Gaussian probability density [9]
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P e /2mt 36 Relativistic trajectories look quite different from
H(t) ~ V2rwt (36) non-relativistic ones: the Brownian paths, corre-

. . . sponding to (36), get straightened out. The logarithm
for the displacement of the particle. The actiony ihe generating function of the Poisson distribution,
S(q,t) = moq?/2th = p?t/2mgh, corresponds to that InG = ='% (e? — 1), gives the average position of the
of a non-relativistic free particle. There is no Iongebarticle as
any distinction between the time intervals in the two ~ b
frames; Galilean invariance prevails. From the loga- OgInG =w'te” =7, (41)

rithm of the generating function, [ = jwt6?, the which, unlike (11), does not vanish even wher
average distance covered by the particle in ti® . The average distance covered by the particle, or,
found to bedy InG = wif. It tends to zero a8 does; equivalently, the distance that obsergehas moved
the particle, on the average, will be found at the origway fromO in the time intervak kT, isq = 1k%cT.

gin in the non-relativistic limit where the drift tendsThjs s the limiting expression for (12) fdr>> 1.

to zero. From the dimensionless action,
The frequency and angle are given by 17
~ w't
S(T,t)=—r{l+|n< >},
8,5 = — (f)z——w (37)
i 2w \t for the Poisson distribution (40), the expressions for
and frequency and angle are found to be
) s 1r _, 2 0;S =—r/t=—-w, (42)
S==2=8=0, (38) g
respectively. Solving (38), which is the first term in 0,5 =1In ( 2) =40, (43)
w

the series expansion for sitcf., (10)], for the ra- .
tio r/t and introducing it into (37) gives the firstrespectively. According to (11) and (22)/t = kc
term in the power series expansion of céshiz, so that (42) is the expression for the ultra-relativistic
w/w = 162 [cf., (9)]. The velocity dependence onenergyhw = pc. Expression (43) can thus be written
the frequencyw ~ w@3%/2, has nothing to do with asp = moce’. Introducing (42) into (43) and using
the radial Doppler effect, which for small velocitiesthe definition of the anglé, (16), result in:
would bew ~w (1 — f3).

In the opposite limitg > ¢, the asymptotic w=w 1+/87
form of the modified Bessel function (32) reduces 1-p

to I(wt) ~ (3@t)"/r!, where Stirling's approxima- \yhich is the exact relativistic equation describing the
tionr! ~ /2rre~"r" has been used. In comparisonadial Doppler effect.

with the master equation (4), where steps to the left The non-relativistic limit, therefore, corresponds
and to the right occur with equal probability, steps teo long wavelengths which are completely insensi-
the left have now a vanishing probability. The mastetive to the lattice spacing. Alternatively, in the ultra-

(44)

equation is now reduced to: relativistic limit, corresponding to extremely short
. ) . . wavelengths, the particle motion is discontinuous, and
d;P,(t) = @' {P._1(t) — P.(1)}, (39) the lattice spacing, .2, is the minimum wavelength

wherew' = 1. Steps are now taken only to the rightOf an electron. Nothing can be said about the motion

=1 X { _
with a lattice spacing twice as great, but still at ranc—nc the electron in between the lattice spacing, and

dom times. Normalization of the asymptotic modified"!S 9IS the electron ts finite extension. Animpulse
Bessel function leads to the Poisson distribution: could not be transmitted instantaneously across the

electron since we would have no information on the
(@) __i; position of the electron in lengths smaller th&anThe
0 € (40)  time required for light to cross the particle’'s Compton
lengthis 2r /. This is the smallest time interval pos-
sible; the Doppler effect (17) requires all other time
p > mqc. intervals to be greater.

Po(f) ~ >

in the ultra-relativistic limity < cf, or, equivalently,
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