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Special rolling techniques for improvement of mechanical properties of 

ultrafine-grained metal sheets: a review** 

By Hailiang YU*, Cheng LU, A. Kiet TIEU, Huijun LI*, Ajit GODBOLE, and Shihong ZHANG 

Abstract: Interest in ultrafine-grained materials has grown rapidly in past twenty years. This 

review focuses on the application of special rolling techniques for improvement of the mechanical 

properties of ultrafine-grained (UFG) metal sheets. These techniques include asymmetric rolling, 

cryorolling, asymmetric cryorolling, cross-accumulative roll bonding and skin-pass rolling. The 

techniques also include a combination of processes such as equal channel angular press and 

subsequent rolling, combined high pressure torsion and subsequent rolling, as well as combined 

accumulative roll bonding and subsequent asymmetric rolling. We also discuss the main 

mechanisms leading to improvement in the ductility of UFG materials related to the special rolling 

techniques.  

Keywords: asymmetric rolling; cryorolling; skin-pass rolling; accumulative roll bonding; severe 

plastic deformation 

1. Introduction 

In recent decades, researchers have paid considerable attention to developing bulk 

ultrafine-grained (UFG) or nano-grained (NG) metals, due to their many desirable 

properties. [1-4] A number of articles have reviewed the application of severe plastic 

deformation (SPD) techniques to UFG/NG metals. [5-13] In these reviews, researchers 

have mainly focused on only a limited number of SPD techniques: the equal channel 

angular press (ECAP), [7, 9] high pressure torsion (HPT), [8] and accumulative roll 
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bonding (ARB). [13] However, to date, there is not a review focusing on the application 

of other advanced rolling techniques leading to improvement in the mechanical 

performance of the products, even though the vast majority of all metal products in 

use are manufactured using metal rolling techniques. [14]  

Rolling techniques have a long history dating back more than 100 years. Generally, 

the researchers have focused on product profile, [15-19] product defects, [20-26] product 

microstructure, [27-30] wear and lubrication of roll mill, [31-34] etc. With the rapid 

development of UFG/NG metals, severe plastic deformation techniques have become 

increasingly important in rolling. Apart from the accumulative roll bonding technique, 

[35-38] some other rolling methods were also considered as SPD techniques. Because 

there have already been some reviews of the progress in the ARB technique, [13] in this 

paper we have focused on the progress of other rolling techniques such as asymmetric 

rolling (AR), cryorolling (CR), asymmetric cryorolling (ACR), improved ARB 

technique, and the combination of other SPD and rolling techniques in recent years.  

2. Fabrication Methods 

2.1. Asymmetric Rolling (AR) 

In ECAP and HPT, grain refinement is brought about mainly by the shear strain in 

the workpiece during the deformation. On the other hand, in AR, the workpiece is 

subjected to severe shear strain combined with a normal strain. Fig. 1 illustrates AR 

technique. The strain in the workpiece can be predicted by Eq. (1): [39]  
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Here t0 and t1 are the thickness of the sheet before and after AR, and is the apparent 

shear angle at a given position of the element w.r.t. the perpendicular to the surface of 

the sheet before rolling. Compared to symmetric rolling (SR), AR can develop greater 

plastic deformation since it develops an additional shear strain for a given reduction in 



thickness. The shear deformation is more severe in the lower layers, where the work 

roll speed, roll diameter, or friction coefficient is greater than those in the upper layers. 
[40] In addition, due to the shear deformation, AR is better suited to producing thin 

foils [41, 42] and improving the formability of foils. A Cu foil with an extreme 

elongation of up to 43684% by AR was reported recently. [42] In AR-processed 

products, plastic strain ratio values and consequently formability can be improved by 

some shear texture components. For face centered cubic materials, the AR technique 

avoids the uniqueness issue related to the choice of the set of active slip systems by 

applying a Schmid Law. [43] The strain histories and distributions in the sheets and the 

texture evolution during AR were measured and calculated by Kim and Lee [44] in 

order to understand the evolution of normal direction (ND)//<111> in Al sheets. They 

found that the ideal shear deformation texture can be obtained by reversing the AR 

direction intermittently. 

 

 

Fig. 1. Illustration of asymmetric rolling. (a) different work roll diameters; (b) 

different work roll speeds.  

 

Under the right conditions, AR can impose intense shear deformation across the 

sheet thickness, leading to not only the occurrence of shear texture, but also the grain 

refinement. AR is thus considered as an SPD technique. Compared to SR, AR results 

in additional shear strain and thus grain refinement through the transformation of 

sub-boundaries into high-angle boundaries. Both SR and AR techniques were 



employed to Al 6016 alloy by Sidor et al. [45] They found that in AR-processed sheets, 

the shear deformation texture was not retained in recrystallization processing. Instead, 

a weak non-conventional texture was found to develop with a Goss component rotated 

through 90°, in addition to displaced shear texture components. A non-conventional 

asymmetric r-value profile was determined by the monoclinic sample symmetry. The 

improvement of normal anisotropy in AR-processed sheets (𝑟̅>0.9) results in a greater 

limiting drawing ratio of ~2.17, which is beneficial to the sheet formability. The 

mechanical properties and microstructure of both AR- and SR-processed Al were 

studied by Cui [39] and Jiang et al [46] respectively. The yield strength was substantially 

increased by an AR process as shown in Fig. 2. [46] Nearly equiaxed UFGs with mean 

size <1 m were achieved through AR when the rolling reduction ratio reached 90%. 

The microstructure was homogeneous and high-angle boundaries were predominant. 

On the other hand, in SR-processed sheet, the coarse fibrous structure was 

predominant.  

 

 

Fig. 2. Engineering stress vs engineering strain curves of Al by (a) symmetric rolling 

and (b) asymmetric rolling. [46]  

 

Compared to an Al alloy sheet, the Mg sheet is difficult to process using SR 

because it has less deformation system. In this respect, the AR technique has more 

advantages. The persistence characteristics of ideal orientations in AR-processed 

commercially pure (CP) Mg samples are: [47] (i) their location on boundaries of 



positive/negative divergence zones and (ii) their velocity field does not display a 

mirror symmetry that provides the feasibility of employing different ‘routes’ to 

dominate the ultimate texture. The AR technique induces a shear component that 

shifts the texture fiber by ~5-10 compared to SR. [48] If a small shear component is 

induced during AR, it enhances the ductility. A smaller grain size and greater 

dislocation density accompanied by high fraction of low-angle grain boundary 

improves the strength. Compared to SR, the AR technique effectively weakens the 

orientation of the basal plane in the rolling plane and enhances the press formability. 

Watanabe et al [49, 50] studied the mechanical properties of AR-processed and 

SR-processed AZ31 sheet at different rolling temperatures. They found that the 

strength was not affected by rolling temperature. However, the elongation to failure 

enhanced from 13.6% to 18.5% when the rolling temperature was reduced from 573 

K to 473 K. Ma et al [51] also studied AZ31 sheets processed using AR. They found 

that a large shear stress can be introduced throughout the thickness of sheet. This 

could promote dynamic recrystallization during AR, resulting in a homogeneous 

microstructure with much finer grains and weakened basal texture. AR-processed 

sheets exhibit superior mechanical properties: a higher yield strength ~180 MPa, and 

ultimate tensile strength ~270 MPa. This compares favorably with yield strength of 

~155 MPa and an ultimate tensile strength of ~230 MPa in SR-processed sheets. 

Simultaneously, the elongation to failure of AR-processed sheets is 19% is higher than 

that of the sheet by SR (15%), as shown in Fig. 3.  

 



 

Fig. 3. Engineering stress vs engineering strain curves of AZ31 sheets fabricated by 

asymmetric rolling and symmetric rolling with a 25% reduction. [51]  

 

The AR technique has also been applied to steel, Ti and silver alloys. The best 

combination of strength and yield ratio for low-carbon steel can be achieved through a 

low-level AR deformation and a high cooling rate, which causes a part of the austenite 

to transform into martensite with fine ferrite grains (~2 m). [52] The AR technique can 

result in a gradient of ultrafine (ferrite +martensite) duplex structure in low carbon 

steel, [53] in which two specific fiber textures <100>//RD and <111>//ND are 

developed through the thickness when a shear strain is imposed. However, the thermal 

stability of AR-processed steel sheet may be lower than that of SR-processed steel, 

due to a higher level of stored energy in the as-deformed microstructure. [54] NG CP-Ti 

with mean grain size of 80 nm was fabricated by a combination of AR and SR by Li et 

al. [55] Annealing of NG Ti at 473 K for 20 min results in an obvious improvement in 

the strength, microhardness, and ductility as compared to the as-processed state. 

Angella et al [56] compared the microstructure evolution and mechanical properties of 

silver produced by ECAP and by AR (roll speed ratio 1.4). In ECAP-processed silver 

the strength increased at former passes and then displayed a plateau for the whole 

range of applied strain. In AR-processed samples, the strength nearly constantly 



increased even at larger strains. The TEM-observed microstructure confirms that 

while the ECAP-processed sliver shows equiaxed UFG grains with sharp boundaries 

and grain interiors with fairly low dislocation density, the AR-processed samples 

displayed a magnificent presence of dislocations both at the grain boundaries and 

inside the grains, as shown in Fig. 4.  

 

 

Fig. 4. TEM images of silver samples for (a) ECAP with equivalent strain of 4.22 and 

(b) asymmetric rolling with equivalent strain of 6.12. [56]  

 

2.2. Cryorolling (CR) 

Deformation at cryogenic temperatures has emerged as a potential method to 

fabricate UFG/NG materials with a high dislocation density for enhanced mechanical 

properties. CR is a rolling technique which liquid nitrogen or other coolant is used to 

cool down the samples, as shown in Fig. 5. The dynamic recovery is suppressed at 

low temperature, thereby improving the grain-refinement. The CR technique paves 

the way for industrial application of the advanced production line of cold surface 

hardening. [57] Mechanically induced microstructure transformation hardens the 

machine tools and thus carries the potential of economic savings and high flexibility 

of production. The effectiveness of the CR on strengthening is remarkably influenced 

by stacking fault energy (SFE). Subramanya Sarma et al [58] believed that low SFE 

metals deformed by twinning and high SFE metals deformed by dislocation slip 



during CR. Intermediate SFE metals deformed by twinning during CR but dislocation 

slip during room temperature rolling, which makes CR the most effective over room 

temperature rolling in improving the strength.  

 

Fig. 5. Cryorolling.  

 

Al alloys show high ductility at cryogenic temperatures. There are many 

applications of CR for fabrication of UFG/NG Al alloys. [59-70] Optimal CR reduction 

and subsequent annealing conditions result in ultrafine grains in CP Al with both high 

strength and high ductility. [59] Cryorolled Al sheets can reach a tensile strength that is 

30% higher compared to Al sheets SR-processed at room temperature. [60] Under 

optimal processing conditions, suppression of dynamic recovery during cryogenic 

deformation results in high defect density, which in turn results in increased 

nucleation sites during annealing, and leads to finer grains. [61] The effect of annealing 

on the evolution of microstructure and mechanical properties of Al 5083 alloy by CR 

was investigated by Lee et al. [62] Optimisation of CR and subsequent annealing 

processes resulted in a mixture of equiaxed grains of <200 nm and elongated 

subgrains, exhibiting a good combination of high strength and uniform elongation, as 

shown in Fig. 6. The cryorolled samples show an increase of at least 10% in both 

tensile strength and yield strength of the Al 5083 alloy, compared to those of the 

room-temperature rolled alloy. Similar results were also obtained by Singh et al. [63] 



The influence of CR and SR at room temperature on the mechanical properties and 

microstructure of Al 6063 was investigated by Panigrahi et al. [64-67] An enhanced 

strength (257 MPa) of cryorolled Al 6063 alloy was observed as compared to 

SR-processed samples (232 MPa). As compared to their coarse-grained counterparts, 

the high strength UFG metals and alloys often show a decreased tensile ductility. 

Panigrahi et al [64-67] also found that dislocation accumulation and nanosized 

precipitates are responsible for enhancing the strength, while a high density of 

nanosized precipitates and a low dislocation density improve the ductility of the 

cryorolled Al 6063 alloy subjected to an optimised treatment of short-duration 

annealing and ageing. The increase in strength and ductility can be attributed to 

formation of fine precipitates and dynamic recovery effect respectively. The CR 

technique could also significantly improve the yield stress, ultimate tensile stress, 

impact energy and fracture toughness of Al 7075. [68, 69] A superior combination of 

mechanical properties (Yield stress 611 MPa and total elongation 15%) of Al 7075 

can be achieved for specimens which are cryorolled to a true strain of 0.5 followed by 

natural aging for 1000 h. [70]  

 

 

Fig. 6. TEM images of Al 5083 alloy cryorolled with 85% reduction and annealed at 

(a) 423 K and (b) 473 K for 1 h. [62]  

The UFG/NG alloys fabricated by CR have potential applications in biotechnology. 

Trivedi et al [71] studied the potential for orthopedic application of bulk UFG Zr by CR 

followed by annealing at 673 K and 723 K for 30 min. An estimation of surface 

wettability of the alloy was obtained through measurement of the contact angle. The 



bioactivity of the alloy was studied by incubating stem cells derived from bone 

marrow. It was found that cryorolled Zr displayed exceptional in-vitro 

biocompatibility combined with satisfying bioactivity. In addition, short annealing of 

the samples was found to result in the formation of multimodal microstructure leading 

to the best combination of tensile strength and ductility. The UFG/NG grains result in 

an increase in strength while the coarse grain facilitated good ductility. Shi et al [72] 

found that cryorolled Zr showed an extraordinary toughening with increasing strain, 

as shown in Fig. 7. The increase in the dislocation density results in the enhanced 

strength, and the motion of pre-existing high-density dislocations at high stress to 

from nanoscale subgrains and grains contributes to the improved ductility.  

 

 

Fig. 7. Engineering stress vs engineering strain curves of (a) cryorolled and (b) room 

temperature rolled Zr. [72]  

 

CR also finds applications in the fabrication of UFG/NG Ti alloys. During CR, 

intensive twinning in Ti accelerates the kinetics of microstructure refinement, and a 

grain/subgrains size of approximately 80 nm can be obtained when the rolling 

reduction ratio reaches 93%. [73] CP Ti with a multimodal grain structure can be 

fabricated by CR followed by low-temperature annealing. [74] This multimodal grain 

structure Ti showed high yield strength, high uniform elongation and high elongation 

to failure. The enhancement of strength was resulted from ultrafine equiaxed grains 

while the increased ductility was derived from a large part of high-angle grain 



boundaries and multimodal grain structure. [74] Zherebtsov et al [75] compared the 

microstructure evolution of CP Ti during CR and SR. At cryogenic temperatures, 

twinning was more extensive in terms of the duration of the twinning stage and the 

fraction of twinned grains. A microstructure with a grain/subgrain size of ~80 nm at 

cryogenic temperature or ~200 nm at room temperature was formed during rolling for 

rolling to a true strain of 2.66. Fig. 8 shows the mechanical properties of samples, in 

which the ultimate tensile strengths of 1100 MPa or 900 MPa are for the CR- and 

SR-processed samples respectively.  

 

 

Fig. 8. True stress vs true strain curves for the CP Ti by (a) room temperature rolling 

and (b) cryorolling. [75]  

 

The CR technique also has been employed to fabricate UFG/NG Cu sheets, [76] steel 

sheets, [77, 78] etc. A high-resolution electron back scattering patterns technique was 

applied to the quantify grain-structure development and texture evolution during/after 

CR of pure Cu by Konkova et al. [76] The texture contained a pronounced {1 1 0}<1 1 

2> brass component, which was explained in terms of the suppression of cross-slip at 

cryogenic temperature. Roy et al [77] reported a synthesis of nanostructured austenitic 

AISI 304L stainless steel through CR and reversion annealing in the temperature 

range of 973 K and 1073 K. Severe CR promotes twinning in -austenite, which 

transforms into а’-martensite with lath thickness of 50-100 nm. The evolution of 

highly processable bulk nano-austenitic stainless steel with bimodal grain size 



distribution can achieve high strength (~1295 MPa), high ductility (~0.47), and true 

necking strain (~0.59).  

2.3. Asymmetric Cryorolling (ACR) 

UFG/NG materials often exhibit low tensile ductility at room temperature, which 

limits their utility. [79, 80] Compared with other SPD techniques, the AR and CR 

techniques can improve both the ductility and strength of UFG/NG materials. 

Recently, Yu et al [81-84] combined the features of AR and CR to fabricate UFG/NG 

metals. A schematic illustration of ACR is shown in Fig. 9.  

 

Fig. 9. Asymmetric cryorolling.  

 

The ACR technique has been used successfully to produce UFG Al 1050, [81] 6061 
[82-83] and 5052 [84] alloys. Following ACR, the grain size in Al 1050 sheet with the roll 

speed ratio (RRS) 1.4 is seen to be much finer than that with the RRS 1.1. After ACR, 

the grain size is 360 nm when the RRS is 1.1, which is reduced to 211 nm when the RRS 

is 1.4. Fig. 10 shows the grain size of CP Al for a variety of SPD techniques. Clearly 

ACR is more capable of refining grain size compared to ARB, AR and twist extrusion.  

 



 

Fig. 10. Grain size of CP Al under different SPD techniques.  

 

An optimised ACR process can result in excellent mechanical properties of UFG 

materials. Fig. 11 shows the engineering stress vs engineering strain curves of Al 

1050 after ACR for different RRSs for the same rolling reduction ratio. Both the 

strength and ductility of Al 1050 sheets increase with increase in roll speed ratio. The 

tensile strength of Al sheets with the RRS 1.4 is 22.3% greater than that for RRS 1.1, 

which is 196 MPa.  

 



 

Fig. 11. Engineering stress vs engineering strain curves of Al 1050 after asymmetric 

cryorolling. 

 

2.4. Improved Accumulative Roll Bonding 

Cross accumulative roll bonding (CARB) is a rolling technique similar to ARB. 

The main difference between CARB and ARB is that the CARB process changes the 

rolling direction by 90° for each ARB cycle. Fig. 12 shows an illustration of CARB 

process used for fabrication of an Al/B4C composite sheet. [90] The roll-bonded strip 

was cut into two strips. After degreasing and brushing, they were stacked over each 

other and rotated 90 around the ND axis. The rotated strip was again roll-bonded 

with 50% reduction.  

 



 

Fig. 12. Illustration of the fabrication of Al/B4C composite sheet by CARB. [90]  

 

Compared with the ARB-processed samples, the CARB-processed samples show 

enhanced mechanical properties. The CARB process was expected to increase the 

ductility of severely deformed alloys. [91] In addition, the CARB process can also 

reduce the plastic anisotropy of the sheets. [92] Ruppert et al [93] compared mechanical 

properties of ARB-processed and CARB-processed sheets. They found that the 

strength of CARB-processed Al 6014 samples exceeds the strength of the 

ARB-processed samples. The first rotation of the sheet was found to be responsible 

for the additional strength in CARB compared to ARB, due to activation of previously 

latent slip systems. Alizadeh and Paydar [90, 94, 95] found that good bonding was 

facilitated between Al layers in the presence of the ceramic particles. They [90, 95] 

found that the dispersion of the B4C particles in the composite produced by CARB 

was more homogeneous than that produced by ARB. Fig. 13 [95] shows the curves of 

engineering stress vs engineering strain of Al/Al2O3 samples after ARB and CARB 

respectively. The tensile strength and ductility of the CARB-processed composite 

sheets was higher than that of the ARB-processed composite sheets. In addition, the 

higher ductility of the CARB-processed samples was confirmed by the SEM 

observations of fracture surface.  

 



 

Fig. 13. Engineering stress vs engineering strain curves of (a) ARB-processed and (b) 

CARB-processed Al/Al2O3 samples. [95]  

 

If the rolling reduction ratio is set to 50%, the bonding strength is lower for most of 

metals when rolled at room temperature, as shown in Fig. 14. [96] Thus, it is necessary 

to heat most metals before rolling to improve the bonding quality during ARB. 

However, if the rolling reduction is larger than 75%, a high bonding quality can be 

achieved. Yu et al [97] developed a ‘four-layer accumulative roll bonding’ (FL-ARB) 

technique to improve the bonding quality of layers. During FL-ARB, a sheet is cut 

into four pieces of equal size. The interfaces between the any two adjacent sheets are 

degreased and brushed to improve the bond strength. And then the four pieces are 

neatly stacked before rolling. Compared to ARB, the main merits of the FL-ARB 

technique are: (i) an enhancement of the interface bonding with a higher rolling 

reduction ratio in each pass, and (ii) potential application at ambient temperature. The 

FL-ARB technique has also been used to fabricate NG IF steel with grain sizes of 

smaller than 100 nm. [98] With increase in the number of FL-ARB cycles, the 

dislocation density increased from 2.02 × 1015 m−2 for the original sample to 

9.47 × 1015 m−2 after the fourth cycle. The yield strength of the IF steel after the fourth 

cycle was 10.8 times (909 MPa) higher than that of the original sample (84 MPa).  

 



 

Fig. 14. Bond strength vs reduction ratio during cold roll bonding.  

 

2.5. Skin-Pass Rolling 

‘Gradient structure’ exists in nature such as bamboos and teeth, which is a typical 

structure that has evolved over several million years to allow biological systems 

strong and tough enough to exist in nature. Producing a nanograined layer at the 

material surface can result in a considerable enhancement in its mechanical properties 

and thereby its performance. Recently, gradient microstructures, in which the 

UFG/NG grains gradually change into coarse grains from sample surface to sample 

core, are revealed to possess improved ductility and strength. [99-103] For nanogradient 

Cu, both hardening and softening occur concurrently in the gradient microstructure, 

and the dominant deformation mechanism changes gradually from dislocation slip to 

grain boundary migration as the grains become smaller. [99, 100] The strain hardening 

caused by a change in stress states and a macroscopic strain gradient was also 

considered as a mechanism to improve the ductility and strength of IF steel. [101]  

Skin-pass rolling (SPR) [104-108] is usually the final stage for fabricating cold-rolled 

sheets. This process has a significant effect on mechanical properties including Lüder 

band prevention, [109] strip flatness, surface topography, etc. The reduction ratio is very 



small (<1%) during SPR which is different from those in conventional sheet rolling. 

In practice, SPR is carried out by applying a skin-pass lubricant with very low 

lubricating ability or in a dry friction condition for preventing adhesion between the 

sheet and roll and erode on the material surface after rolling, to cleanse the roll 

surface. Recently, a 4-high multifunction rolling mill was used to fabricate 

nanogradient Al sheets. [110] The thickness of the Al 1060 sheets before rolling was 1.5 

mm, which was reduced to 1.1 mm by SR and SPR (40 passes) respectively. Fig. 15a 

shows an illustration of the SPR technique, and Fig. 15b shows an illustration of 

gradient sheets. [110]  

 

 

Fig. 15. (a) Illustration of skin-pass rolling technique, (b) illustration of gradient 

sheets.  

 

Fig. 16 [110] shows the mechanical properties of the sheets during a tensile test. The 

yield stress of SPR-processed sheets is slightly lower than that of sheets subjected to 

cold rolling. However, as shown in Fig. 16(c), the uniform strain of cold rolled sheets 

is 0.05, which increases to 0.12 for the sheets processed by SPR. It is obvious that 

SPR-processed have more desirable qualities such as enhanced ductility without 

sacrificing the yield strength compared to cold rolling.  



 

 

Fig. 16. Mechanical properties of Al 1060 sheets during tensile testing. (a) curves of 

engineering stress vs engineering strain, (b) yield stress for cold rolling and SPR, (c) 

uniform strain for cold rolling and SPR.  

 

2.6. Rolling Combined with Other SPD Techniques 

1) ECAP & Rolling 

ECAP has been widely used to fabricate UFG/NG bulk metals. [7, 9] Combining the 

features of ECAP and rolling, the mechanical properties of UFG/NG metals can be 

further optimised. Fig. 17 [111] shows the samples subjected to ECAP followed by 

rolling.  

 

Fig. 17. Illustration of ECAP processes followed by cold rolling. (a) ECAP-processed 

sample with the three orthogonal directions, (b) ECAP-processed sample during cold 

rolling. [111]  



There are many studies on (ECAP+rolling) on the CP Cu. The rolling operation is 

found to transform the reasonably equiaxed structure after ECAP into a lamellar 

structure with a finer boundary spacing. Stepanov et al [112] found that the 180 nm 

boundary spacing after 10 ECAP passes decreased to 110 nm after rolling of CP Cu, 

as shown in Fig. 18. The yield strength was improved by ~100 MPa after rolling 

caused by finer boundary spacing as stated by the Hall-Petch relationship. The 

mechanical properties of CP Cu sheets can also be optimised by ECAP, intermediate 

annealing and cold rolling. [113] ECAP enhanced the dislocation density by spreading 

the recrystallization nuclei during annealing. Ranjbar Bahadori et al [114, 115] studied 

the relationship between microstructure and mechanical properties of CP Cu 

processed by ECAP and subsequent cold rolling. They found that adding CR to ECAP 

could improve both the strength and ductility significantly. Cold rolling on 

ECAP-processed specimen changed the microstructure from equiaxed grains with 

rather thick boundaries to an elongated structure with lamellar boundaries. In addition, 

it not only decreased the mean grain size but also lessened the grain size diversity 

between the upper and lower surfaces, leading to a more homogeneous structure. The 

enhancement in strength is attributed to grain refinement and internal stress 

augmentation, while the increase in ductility of workpiece is due to an increase in the 

microstrain.  

 

 

Fig. 18. TEM images of Cu after (a) 10 ECAP pass, (b) 10 ECAP pass + rolling. [112]  



A combination of ECAP and rolling can improve the mechanical properties of Al 

alloys. A commercial Al-Mg alloy was subjected to four passes of ECAP followed by 

rolling with a 70% thickness reduction by Park et al. [116, 117] The influence of 

post-ECAP rolling on the deformation behavior of the samples at 723 K were studied. 

The high strain rate superplastic elongation was remarkably enhanced during 

Post-ECAP rolling, as shown in Fig. 19. The main findings were: (1) post-ECAP 

rolling leaded to an ultrafine elongated substructure delineated by lamellar boundaries, 

and (2) the dislocation viscous glide played key role in the deformation of the ECAP 

alloy while the grain boundary sliding governed the deformation of the (ECAP+cold 

rolled) sample, resulting in a comparatively uniform deformation throughout the 

sample.  

 

Fig. 19. Shape of (a) the ECAP-processed samples and (b) the ECAP +CR (70%) 

samples after tensile test at 723 K. [116]  

 

Post-ECAP rolling of Mg alloys can enhance their hydrogen storage capacity [118] 

and mechanical properties. [119, 120] The cold rolling may reduce the extent of 

unfavorable texture (1 0 1) and produce a favorable texture (0 0 2). This may result in 

the fastest H-absorption kinetics and capacity compared to samples subjected to 

ECAP only, as shown in Fig. 20. [118] Post-ECAP rolling led to an average grain size 

~8-10 m with basal texture fiber parallel to ND from ECAP-processed sample of 

~12-18 m. [120] The microstructural features of ECAP-processed and room 

temperature-rolled pure Mg indicate that the dynamic recrystallization mechanism is 



made up of continuous dynamic recovery and recrystallization in regions where the 

prismatic/pyramidal slip activities are predominant and discontinuous dynamic 

recrystallization in other regions where the basal slip activity is higher. Yuan et al [119] 

used ECAP and subsequent cold rolling to fabricate a ZK60 Mg alloy sheet with a 

superior combination of ultrahigh strength and good ductility. The post-ECAP rolling 

almost doubled the yield strength of ECAP alone.  

 

 

Fig. 20. First hydrogen absorption kinetics at 623 K and under hydrogen pressure of 

15 bars. [118]  

A combination of ECAP and rolling techniques can significantly improve the 

mechanical properties of Ti-stabilized IF steel [111] and Ti alloys. [121, 122] Ti-stabilized 

IF steel samples were subjected to eight passes of ECAP followed by cold rolling with 

up to 95% thickness reduction by Hazra et al. [111] The post-ECAP microstructure 

contains equiaxed subgrains/grains and elongated subgrains and grains aligned along 

the direction of imposed negative simple shear. As the rolling reduction increases, the 

boundaries change progressively into aligned to the rolling direction with a 

microshear banded lamellar substructure evolving after 95% cold rolling. Cold rolling 

results in a strength gain (0. 2=from 607 MPa to 1097 MPa and UTS = from 689 MPa 



to 1280 MPa) and a reduction in total elongation from 7% to 3%. Hajizadeh and 

Eghbali [122] investigated the microstructure and mechanical properties of CP Ti after 

processing by warm ECAP and CR with a thickness reduction 35%. The curve of 

engineering strain vs engineering stress of samples under various conditions are 

shown in Fig. 21. After 10 passes of ECAP, an UFG structure with average grain size 

of 213 nm was achieved with mainly equiaxed grains. Subsequent cryorolling led to 

further refinement and decreased the grain size to 114 nm with lamellar structure and 

higher dislocation density.  

 

Fig. 21. Engineering stress vs engineering strain curves of CP-Ti obtained under 

different processing. [122]  

2) HPT & Rolling 

HPT is an SPD technique that has been widely used to produce UFG/NG metal 

disks in large quantities. Recently, some researchers [123-125] have reported a 

combination of HPT and rolling to further improve the mechanical properties of the 

products. Fig. 22 shows an illustration of HPT followed by rolling. The rolling 

enables: (1) production of longer samples, and (2) improvement in the homogeneity 

of the samples after HPT. Generally, HPT can only produce small disc-shaped 

samples, which can be enlarged many times by rolling. Also, HPT-processed samples 

are generally harder at the edge than in the core. This inhomogeneity can be reduced 



by rolling.  

 

 

Fig. 22. Illustration of fabrication of CG/NS/CG sandwich materials.  

 

 The microstructure of HPT-processed samples will evolve to a new steady state 

with a larger grain size after cold-rolling. [123] Tao et al [124] HPT-processed a Cu-7 wt% 

Al alloy with an initial grain size of ~67 m. After 6 revolutions under an imposed 

pressure of 5.0 GPa, the grain size was refined to ~63 nm. Following HPT processing, 

the disks were rolled and then annealed for periods of 90 or 120 min at selected 

temperature from 200 to 310 C. It was found that annealing at 250 C for 120 min 

produces the highest measured strength. This can be attributed to the formation of 

nanoscale annealing twins, as shown in Fig. 23. The (HPT+rolling) process was also 

used to fabricate gradient structure materials. [125] A laminate structure with a 

nanostructured Cu-10Zn layer sandwiched between two coarse-grained Cu layers was 

fabricated by HPT, rolling and annealing by Ma et al. [125] They found that mechanical 

incompatibility between the different layers during tensile deformation produced high 

strain hardening that led to a tensile ductility higher than what was predicted using the 

rule of mixtures. In their sample, the difference between the hardness at the edge and 

in the sample core was found to be 600 MPa. However, the evolution of the 

microstructure of HPT-processed samples during rolling was not analyzed in Refs. 

[124, 125] .  



 

Fig. 23. TEM image of the alloy annealed at 493 K for 90 min showing grains with 

twins. [124]  

 

3) ARB & Rolling 

ARB is an SPD technique which has been used to produce sheets of alloys and 

composites. In ARB, due to the set reduction ratio (50%), the bonding quality is not 

very good, as shown in Fig. 14. After the ARB process, subsequent rolling can 

improve the bonding quality of the interface, and also improve the mechanical 

properties of the sheets. Fig. 24 shows an illustration of a combination of ARB and 

subsequent rolling. [126]  



 

Fig. 24. Illustration of ultrathin foils by ARB & asymmetric rolling.  

 

Subsequent rolling can improve the bonding strength of ARB-processed sheets. 

Ruppert et al [127] subjected crossed ARB samples to 1 pass of cold rolling, in order to 

reduce the impact of weak bonding on the ultimate tensile strength, while still 

maintaining the high strength. Experimental results revealed improved bonding with 

no necking of the individual layers after tensile testing. Yu et al [126, 128] studied the 

bonding strength of ultrathin UFG bimetal foils produced using ARB followed by AR. 

The interface bonding strength was found to increase as the number of rolling passes 

increased. TEM inspection showed that the interface quality is best when the roll 

speed ratio is 1.2. There were no noticeable residual voids at the interface of the 

Al1050/Al6061 bimetallic foils for this roll speed ratio; however, residual voids were 

observed when the roll speed ratio was 1.0 or 1.4, as shown in Fig. 25.  



 

Fig. 25. TEM images of samples around the interface of Al1050/Al6061, (a) ARB 

processed sample, (b) ~ (d) ratios of rolls speed 1.0, 1.2, and 1.4. [126]  

 

Post-ARB rolling can improve the mechanical properties of ARB-processed sheets. 

Compared to ARB-processed sheets, subsequent cold rolling at small strain (10% and 

15%) results in softening and higher elongation. However, subsequent cold rolling at 

large strain (50%) leads to remarkable hardening. [129] Dislocations are induced in 

subsequent cold rolling processing. With increased reduction ratio during rolling, the 

interior dislocation density increases. In addition, when the strain is increased from 15% 

to 50%, the dislocation configuration is changed. At small strain, the interior 

dislocations occur mainly as loose dislocations that are assumed to be free to move for 

an induced stress. At large strain, the dislocations constitute networks and tangles. The 

difference of the dislocation structure under different strain results in the transition 

from softening to strengthening. When the reduction ratio is less than 50%, the 



strength of foils increases but the ductility reduces. [130] However, with further increase 

in the rolling reduction ratio, both the strength and the ductility of foils increase. [131] 

Most of the laminate-structured grains were further refined in the AR process. But 

some of the laminated structured grains coarsen abnormally, resulting in an 

inhomogeneous microstructure. The inhomogeneous microstructure leads to both 

higher strength and greater ductility. The evolution of grain size distribution of 

ARB-processed CP Al in during subsequent AR is shown in Fig. 26.  

  

Fig. 26. Grain size distribution after (a) the second ARB pass, (b) the third ARB pass, 

(c)the fifth ARB pass, (d) the first AR pass, (e) the second AR pass, and (f) the mean 

and the maximum grain size after different rolling passes. [130]  

 

Post-ARB rolling also affects the thermal stability of ARB-processed samples. A 



200 m thickness sheet was fabricated by 3 ARB passes plus subsequent cold rolling 

of annealed sheets of 1 mm thickness of distributed precipitates by Gatti and 

Bhattacharjee. [131] They found annealing at higher temperature leads to an abnormal 

layered microstructure with deformed layer sandwiched by recrystallized layers. 

Homola et al [132] studied the thermal stability of Al-Fe-Mn-Si foils produced using 

(ARB+cold rolling) through comparison with conventional cold rolled samples. They 

found that the cold-rolled samples show discontinuous recrystallization, whereas the 

(ARB + cold rolled) samples undergo continuous recrystallization.  

3. Summary 

Table 1 summarizes the special rolling techniques and their characteristics 

respectively. 

Table 1. Characteristics of special rolling techniques. 

Technique Feature 

Asymmetric 

rolling 

Refining grains through additional shear strain and normal strain; 

reducing rolling pressure by shear deformation. The technique can 

improve both strength and ductility of Al, Mg, Ti, Cu, etc. [39-56]  

Cryorolling 

Refining grains through suppressing dynamic recovery during 

deformation. The technique can improve the mechanical properties of 

Al, Zr, Ti, etc. [57-78]  

Asymmetric 

cryorolling 

Combining the features of AR and cryorolling. The technique can 

improve the mechanical properties of Al, etc. [79-84]  

Cross-ARB 

Making the microstructure uniform and reducing the anisotropy of 

sheets. The technique can improve the mechanical properties of 

Al-matrix composite, etc. [90-95]  

Four-layer ARB 

Improving the bonding quality of layers during room temperature 

deformation. The technique can improve the mechanical properties of 

Al, IF steel, etc. [97-98]  

Skin-pass rolling 
Changing the microstructure at surface of workpiece. Improving the 

ductility without reduction of strength. The technique can improve the 



mechanical properties of Al etc. [110]  

ECAP+rolling 

Changing equiaxed grains into laminate structure or bimodal structure. 

The technique can improve the mechanical properties of Cu, Ti, Mg etc. 

[111-122]  

HPT+rolling 
Making the microstructure of samples uniform. The technique can 

improve the mechanical properties of Cu etc. [123-125]  

ARB+rolling 
Improving the bonding strength, ductility and strength of sheets. The 

technique can improve the mechanical properties of Al etc. [126-131]  

 

The development of SPD techniques has enabled significant improvement in the 

strength of UFG/NG materials. However, most UFG/NG materials still lack the 

necessary toughness required in engineering applications although there are many the 

mechanisms for enhancing ductility of UFG/NG metals. [133] These techniques 

include: 

(i) Narrow grain size distribution. During asymmetric rolling, a shear strain is 

imposed throughout the sheet thickness, increasing the grain homogeneity across 

the thickness. During CARB, the grains become more homogeneous owing to 

reduced anisotropy.  

(ii) Deformation at cryogenic temperatures. Both cryorolling and asymmetric 

cryorolling have been shown to improve the ductility and strength of sheets.  

(iii) Gradient structure. SPR processing only results in grain refinement near the 

surface and results in gradient structure in the sheets. HPT followed by rolling can 

also result in a gradient structure in the samples.  

(iv) Bimodal structure. In samples subjected to ECAP or ARB followed by rolling, the 

grains evolve into a bimodal structure, improving both the ductility and the 

strength of the samples. In addition, annealing SPD-processed samples also results 

in a bimodal structure in some materials.  

(v) Precipitation-hardened alloys. Asymmetric cryorolling followed by an ageing 

treatment can improve the ductility and strength of the sheets.  



(vi) Nanotwinned structure. In UFG Cu samples subjected to HPT followed by rolling 

and annealing, the occurrence of nanotwins improves the mechanical properties.  

There are some other mechanisms which can improve the ductility of UFG/NG 

materials: such as transformation-induced enhancement of ductility and tailoring of 

the stacking fault energy by alloying. In the future, these mechanisms may be also 

incorporated into rolling techniques. In addition, using a combination of different 

SPD techniques with rolling, the ductility and strength of UFG/NG materials could be 

improved. The evolution in the microstructure of NG materials subjected to SPD (e. g. 

HPT) followed by rolling and annealing [134] should also be studied in the future.  
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