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SPECIAL SYMPLECTIC CONNECTIONS

Michel Cahen & Lorenz J. Schwachhöfer

Abstract

By a special symplectic connection we mean a torsion free con-
nection which is either the Levi-Civita connection of a Bochner-
Kähler metric of arbitrary signature, a Bochner-bi-Lagrangian
connection, a connection of Ricci type or a connection with special
symplectic holonomy. A manifold or orbifold with such a connec-
tion is called special symplectic.

We show that the symplectic reduction of (an open cell of) a
parabolic contact manifold by a symmetry vector field is special
symplectic in a canonical way. Moreover, we show that any special
symplectic manifold or orbifold is locally equivalent to one of these
symplectic reductions.

As a consequence, we are able to prove a number of global prop-
erties, including a classification in the compact simply connected
case.

1. Introduction

Among the basic objects of interest in differential geometry are con-
nections on a differentiable manifold M which are compatible with a
given geometric structure, and the relation between the local invariants
of such connections and the geometric and topological features of M .
For example, in Riemannian geometry, the Levi-Civita connection of
the metric is uniquely determined, hence every feature of the connec-
tion reflects a property of the metric structure.

In contrast, for a symplectic manifold (M,ω), there are many sym-
plectic connections, where we call a connection on M symplectic if it is
torsion free and ω is parallel. Indeed, the space of symplectic connec-
tions on M is an affine space whose linear part is given by the sections
in S3(TM). Thus, in order to investigate ’meaningful’ symplectic con-
nections, we have to impose further conditions.
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In this article, we shall introduce the notion of a special symplectic
connection which is defined as a symplectic connection on a manifold of
dimension at least 4 which belongs to one of the following classes.

1) Bochner-Kähler and Bochner-bi-Lagrangian connections

If the symplectic form is the Kähler form of a (pseudo-)Kähler
metric, then its curvature decomposes into the Ricci curvature
and the Bochner curvature [Bo]. If the latter vanishes, then (the
Levi-Civita connection of) this metric is called Bochner-Kähler.

Similarly, if the manifold is equipped with a bi-Lagrangian struc-
ture, i.e. two complementary Lagrangian distributions, then the
curvature of a symplectic connection for which both distributions
are parallel decomposes into the Ricci curvature and the Bochner
curvature. Such a connection is called Bochner-bi-Lagrangian if
its Bochner curvature vanishes.

For results on Bochner-Kähler and Bochner-bi-Lagrangian con-
nections, see [Br2] and [K] and the references cited therein.

2) Connections of Ricci type

Under the action of the symplectic group, the curvature of a
symplectic connection decomposes into two irreducible summands,
namely the Ricci curvature and a Ricci flat component. If the
latter component vanishes, then the connection is said to be of
Ricci type.

Connections of Ricci type are critical points of a certain func-
tional on the moduli space of symplectic connections [BC1]. Fur-
thermore, the canonical almost complex structure on the twistor
space induced by a symplectic connection is integrable iff the con-
nection is of Ricci type [BR], [V]. For further properties see also
[CGR], [CGHR], [BC2], [CGS].

3) Connections with special symplectic holonomy

A symplectic connection is said to have special symplectic holo-
nomy if its holonomy is contained in a proper absolutely irreducible
subgroup of the symplectic group.

The special symplectic holonomies have been classified in [MS]
and further investigated in [Br1], [CMS], [S1], [S2], [S3].

We can consider all of these conditions also in the complex case, i.e.
for complex manifolds of complex dimension at least 4 with a holomor-
phic symplectic form and a holomorphic connection.

At first, it may seem unmotivated to collect all these structures in
one definition, but we shall provide ample justification for doing so.
Indeed, our main results show that there is a beautiful link between
special symplectic connections and parabolic contact geometry.

For this, consider a (real or complex) simple Lie group G with Lie
algebra g. We say that g is 2-gradable, if g contains the root space of
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a long root. In this case, the projectivization of the adjoint orbit of a
maximal root vector C ⊂ Po(g) carries a canonical G-invariant contact
structure. Here, Po(V ) denotes the set of oriented lines through 0 of a
vector space V , so that Po(V ) is a sphere if V is real and a complex
projective space if V is complex. Each a ∈ g induces an action field a∗

on C with flow Ta := exp(Fa) ⊂ G, where F = R or C, which hence
preserves the contact structure on C. Let Ca ⊂ C be the open subset on
which a∗ is positively transversal to the contact distribution. We can
cover Ca by open sets U such that the local quotient MU := Tloca \U , i.e.
the quotient of U by a sufficiently small neighborhood of the identity in
Ta, is a manifold. Then MU inherits a canonical symplectic structure.
Our first main result is the following

Theorem A. Let g be a simple 2-gradable Lie algebra with dim g ≥ 14,
and let C ⊂ Po(g) be the projectivization of the adjoint orbit of a maximal
root vector. Let a ∈ g be such that Ca ⊂ C is nonempty, and let Ta =
exp(Fa) ⊂ G. If for an open subset U ⊂ Ca the local quotient MU =
Tloc
a \U is a manifold, then MU carries a special symplectic connection.

The dimension restriction on g guarantees that dimMU ≥ 4 and rules
out the Lie algebras of type A1, A2 and B2.

The type of special symplectic connection on MU is determined by
the Lie algebra g. In fact, there is a one-to-one correspondence between
the various conditions for special symplectic connections and simple 2-
gradable Lie algebras. More specifically, if the Lie algebra g is of type
An, then the connections in Theorem A are Bochner-Kähler of signature
(p, q) if g = su(p + 1, q + 1) or Bochner-bi-Lagrangian if g = sl(n,F);
if g is of type Cn, then g = sp(n,F) and these connections are of Ricci
type; if g is a 2-gradable Lie algebra of one of the remaining types,
then the holonomy of MU is contained in one of the special symplectic
holonomy groups. Also, for two elements a, a′ ∈ g for which Ca, Ca′ ⊂
C are nonempty, the corresponding connections from Theorem A are
equivalent iff a′ is G-conjugate to a positive multiple of a.

If Ta
∼= S1 then Ta\Ca is an orbifold which carries a special sym-

plectic orbifold connection by Theorem A. Hence it may be viewed as
the “standard orbifold model” for (the adjoint orbit of) a ∈ g. For ex-
ample, in the case of positive definite Bochner-Kähler metrics, we have
C ∼= S2n+1, and for connections of Ricci type, we have C ∼= RP2n+1.
Thus, in both cases the orbifolds Ta\C are weighted projective spaces
if Ta

∼= S1, hence the standard orbifold models Ta\Ca ⊂ Ta\C are open
subsets of weighted projective spaces.

Surprisingly, the connections from Theorem A exhaust all special
symplectic connections, at least locally. Namely we have the following
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Theorem B. Let (M,ω) be a (real or complex) symplectic manifold
with a special symplectic connection of class C4, and let g be the Lie
algebra associated to the special symplectic condition as above.

1) Then there is a principal T̂-bundle M̂ → M , where T̂ is a one
dimensional Lie group which is not necessarily connected, and this
bundle carries a principal connection with curvature ω.

2) Let T ⊂ T̂ be the identity component. Then there is an a ∈ g

such that T ∼= Ta ⊂ G, and a Ta-equivariant local diffeomor-
phism ı̂ : M̂ → Ca which for each sufficiently small open sub-
set V ⊂ M̂ induces a connection preserving diffeomorphism ı :
Tloc\V → Tloc

a \U = MU , where U := ı̂(V ) ⊂ Ca and MU carries
the connection from Theorem A.

The situation in Theorem B can be illustrated by the following com-
mutative diagram, where the vertical maps are quotients by the indi-
cated Lie groups, and T\M̂ →M is a regular covering.

(1) M̂

T
��

ı̂ //

T̂

}}{{
{
{
{
{
{
{
{

Ca
Ta

��

M T\M̂ ı //oo Ta\Ca

In fact, one might be tempted to summarize Theorems A and B by
saying that for each a ∈ g, the quotient Ta\Ca carries a canonical special

symplectic connection, and the map ı : T\M̂ → Ta\Ca is a connection
preserving local diffeomorphism. If Ta\Ca is a manifold or an orbifold,
then this is indeed correct. In general, however, Ta\Ca may be neither
Hausdorff nor locally Euclidean, hence one has to formulate these results
more carefully.

As consequences, we obtain the following

Corollary C. All special symplectic connections of C4-regularity are
analytic, and the local moduli space of these connections is finite di-
mensional, in the sense that the germ of the connection at one point
up to 3rd order determines the connection entirely. In fact, the generic
special symplectic connection associated to the Lie algebra g depends on
(rk(g) − 1) parameters.

Moreover, the Lie algebra s of vector fields on M whose flow preserves
the connection is isomorphic to stab(a)/(Fa), F = R or C, with a ∈ g

from Theorem B, where stab(a) = {x ∈ g | [x, a] = 0}. In particular,
dim s ≥ rk(g) − 1 with equality implying that s is abelian.
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When counting the parameters in the above corollary, we regard ho-
mothetic special symplectic connections as equal, i.e. (M,ω,∇) is con-
sidered equivalent to (M,et0ω,∇) for all t0 ∈ F.

We can generalize Theorem B and Corollary C easily to orbifolds.
Indeed, if M is an orbifold with a special symplectic connection, then we
can write M = T̂\M̂ where M̂ is a manifold and T̂ is a one dimensional

Lie group acting properly and locally freely on M̂ , and there is a local
diffeomorphism ı̂ : M̂ → Ca with the properties stated in Theorem B.

While the analyticity of the connection and the determinedness by
the 3rd order germ at a point has been known in the Bochner-Kähler and
Bochner-bi-Lagrangian case ([Br2] (The C4-regularity of the connection
is equivalent to the C5-regularity of the Bochner-Kähler metric)) and for
connections with special symplectic holonomies (e.g. [CMS], [MS]), it
was unclear what the maximal analytic continuations of these structures
look like and in which cases they are regular. This question is now
answered in principle. Furthermore, the inequality dim s ≥ rk(g)−1 was
known for the Bochner cases [Br2], whereas for the special symplectic
holonomies, it was only known that s 6= 0 [S3].

We also address the question of the existence of compact manifolds
with special symplectic connections. In the simply connected case, com-
pactness already implies that the connection is hermitian symmetric.
More specifically, we have the following

Theorem D. Let M be a compact simply connected manifold with a
special symplectic connection of class C4. Then M is equivalent to one
of the following hermitian symmetric spaces.

1) M ∼= (CPp × CPq, ((q + 1)g0,−(p+ 1)g0)), where g0 is the Fubini-
Study metric. These are Bochner-Kähler metrics of signature
(p, q). Moreover, M ∼= (CPn, g0) is also of Ricci type.

2) M ∼= SO(n+ 2)/(SO(2) · SO(n)), whose holonomy is contained in
the special symplectic holonomy group SL(2,R)·SO(n) ⊂ Aut(R2⊗
Rn).

3) M ∼= SU(2n+2)/S(U(2) ·U(2n)), whose holonomy is contained in
the special symplectic holonomy group Sp(1)·SO(n,H) ⊂ Aut(Hn).

4) M ∼= SO(10)/U(5), whose holonomy is contained in the special
symplectic holonomy group SU(1, 5) ⊂ GL(20,R).

5) M ∼= E6/(U(1) · Spin(10)), whose holonomy is contained in the
special symplectic holonomy group Spin(2, 10) ⊂ GL(32,R).

In particular, there are no compact simply connected manifolds with
any of the remaining types of special symplectic connections, i.e. M
can be neither complex with a holomorphic connection, nor Bochner-
bi-Lagrangian, nor can the holonomy of M be contained in any of the
remaining special symplectic holonomies.
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The only case for which Theorem D was previously known are the
positive definite Kähler metrics. In fact, it is shown in [Br2] that a
compact positive definite Bochner-Kähler manifold must be a quotient
of CPr × (CPs)∗, where the asterisk denotes the non-compact dual.

Following this introduction, we first develop the algebraic formulas
needed to describe the curvature conditions for special symplectic con-
nections uniformly. In section 3, we construct the special symplectic
connections on the local quotients Tloc

a \Ca and hence prove Theorem A,
and in section 4, we investigate the structure equations of special sym-
plectic connections and derive results which culminate in Theorem B. Fi-
nally, in the last section we show the existence of connection preserving
vector fields and Corollary C, and the rigidity result from Theorem D.

Acknowledgments. We are grateful to R. Bryant for helpful discus-
sions about Bochner-Kähler and Bochner-bi-Lagrangian structures, and
for valuable comments on the link to parabolic contact geometry. Also,
it is a pleasure to thank P. Bieliavski, S. Gutt and W. Ziller for many
stimulating conversations and helpful comments. We also thank the ref-
eree for many helpful remarks and comments which greatly helped to
improve the exposition of this article.

2. Algebraic preliminaries

2.1. A brief review of representation theory. In this section, we
shall give a brief outline of standard facts of representation theory of
complex semi-simple Lie algebras. For a more detailed exposition, see
e.g. [FH], [Hu] or [OV].

Let gC be a semi-simple complex Lie algebra, and let t ⊂ gC be a
Cartan subalgebra, i.e. a maximal abelian self-normalizing subalgebra.
The rank of gC is by definition rk(gC) := dim t.

If ρ : gC → End(V ) is a representation of gC on a complex vector
space V , then for any λ ∈ t∗ we define the weight space Vλ by

Vλ = {v ∈ V | ρ(h)v = λ(h)v for all h ∈ t}.
An element λ ∈ t∗ is called a weight of V if Vλ 6= 0. We let Φ ⊂ t∗ be
the set of weights of ρ, and thus have the decomposition

V =
⊕

λ∈Φ

Vλ.

In particular, if V = gC and ρ is the adjoint representation, then we get
the root decomposition

gC = t ⊕
⊕

α∈∆

gα,

i.e. t is the weight space of weight 0, and ∆ ⊂ t∗ is the set of non-zero
weights. ∆ is called the set of roots or the root system of gC. It is well



SPECIAL SYMPLECTIC CONNECTIONS 235

known that dim gα = 1 for all α ∈ ∆. For any root α ∈ ∆, there is a
unique element Hα ∈ [gα, g−α] ⊂ t such that α(Hα) = 2.

There is an ad(gC)-invariant non-degenerate symmetric bilinear form
B on gC, the so-called Killing form, which is given by B(x, y) := tr(adx◦
ady) for all x, y ∈ gC. We shall use it to identify gC and g∗

C
. The

restriction of B to t is non-degenerate as well, and B(Hα,Hα) ∈ Z+ for
all α ∈ ∆. In fact, there are at most two possible values for B(Hα,Hα)
for α ∈ ∆ which allows us to speak of long and short roots, respectively.

Given an element λ ∈ t∗ and a root α, we let

(2) 〈λ, α〉 := λ(Hα), so that 〈λ, α〉 =
2B(λ, α)

B(α,α)
.

Note that 〈 , 〉 is linear in the first entry only. We define the weight
lattice Λ ⊂ t∗ as the set of elements λ ∈ t∗ such that 〈λ, α〉 ∈ Z for all
α ∈ ∆. Then Φ ⊂ Λ for any representation ρ.

For λ ∈ Φ, the significance of 〈λ, α〉 ∈ Z is the following. If λ occurs
as the weight of an irreducible representation of gC and 〈λ, α〉 > 0
(〈λ, α〉 < 0, respectively) then λ − kα (λ + kα, respectively) is also a
weight of that representation for k = 1, . . . , | 〈λ, α〉 |.

For any root α ∈ ∆, denote by σα the orthogonal reflection of t∗ in
the hyperplane perpendicular to α. The Weyl group W of gC is the
group generated by all σα. W is always finite. If gC is simple then W
acts irreducibly on t∗ and transitively on the set of roots of equal length.
The set of weights Φ of any representation is W -invariant.

If gC is simple, then the adjoint representation ρ : gC → End(gC) is
irreducible. Also, | 〈α, β〉 | ≤ 3 for all α, β ∈ ∆, and if α is long and β
short, then either 〈α, β〉 = 〈β, α〉 = 0, or | 〈α, β〉 | > 1 and | 〈β, α〉 | = 1.
Moreover, if α is long then | 〈β, α〉 | ≤ 2, and 〈β, α〉 = ±2 iff β = ±α.

2.2. Special symplectic representations. Let gC be a complex sim-
ple Lie algebra and let GC be a connected complex Lie group with Lie
algebra gC. Choose a root decomposition of g as in the preceding sec-
tion, and fix a long root α and an element 0 6= x ∈ gα. Then the
orbit of x under the adjoint action of GC is called the root cone of gC.
Evidently, the root cone is well defined, independently of the choice of
root decomposition. Elements of the root cone are called maximal root
elements.

Definition 2.1. Let g be a simple real or complex Lie algebra. We
say that g is 2-gradable if either g is complex, or g is real and contains
a maximal root element of the simple complex Lie algebra gC := g⊗C.

We shall justify this terminology in (4) below. If g is 2-gradable and
G is a Lie group with Lie algebra g, then we write

(3) Ĉ := AdGx ⊂ g,
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where x ∈ g is a maximal root element. Given x ∈ Ĉ, there is a y ∈ Ĉ
with B(x, y) 6= 0, and we can choose a root decomposition of g such that
x ∈ gα0

and y ∈ g−α0
, where α0 is a long root. Hence Hα0

∈ F[x, y] ⊂ t,
so that g contains the Lie subalgebra slα0

:= span < gα0
, g−α0

,Hα0
>

which is isomorphic to sl(2,F), F = R or C. Then ad(Hα0
)|gβ

=
〈β, α0〉 Idgβ

, and since α0 ∈ ∆ is a long root, the eigenvalues of ad(Hα0
)

are {0,±1,±2}, so that we get the eigenspace decomposition

(4) g = g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2, and [gi, gj ] ⊂ gi+j ,

where gi =
⊕

{β∈∆|〈β,α0〉=i}
gβ for i 6= 0 and g0 = t⊕⊕

{β∈∆|〈β,α0〉=0} gβ.

In particular, g±2 = g±α0
, and g0 = FHα0

⊕ h, where the Lie algebra
h is characterized by [h, slα0

] = 0. Observe that g0 and hence h are
reductive. Thus, as a Lie algebra,

gev := g−2 ⊕ g0 ⊕ g2 ∼= slα0
⊕ h and godd := g−1 ⊕ g1 ∼= F2 ⊗ V,

where h acts effectively on V ∼= g±1. Identifying h with its image under
this representation, we may regard it as a subalgebra h ⊂ End(V ), and
hence we have the decomposition

(5) g = gev ⊕ godd ∼= (sl(2,F) ⊕ h) ⊕ (F2 ⊗ V ),

where this notation indicates the representation ad : gev → End(godd).
We fix a non-zero F-bilinear area form a ∈ Λ2(F2)∗. There is a

canonical sl(2,F)-equivariant isomorphim

(6)
S2(F2) −→ sl(2,F),

(ef) · g := a(e, g)f + a(f, g)e for all e, f, g ∈ F2,

and under this isomorphism, the Lie bracket on sl(2,F) is given by

(7) [ef, gh] = a(e, g)fh + a(e, h)fg + a(f, g)eh + a(f, h)eg.

Thus, if we fix a basis e+, e− ∈ F2 with a(e+, e−) = 1, then we have the
identifications

Hα0
= −e+e−, g±2 = Fe2±, g±1 = e± ⊗ V.

Proposition 2.2. Let g be a 2-gradable simple Lie algebra, and con-
sider the decompositions (4) and (5). Then there is an h-invariant sym-
plectic form ω ∈ Λ2V ∗ and an h-equivariant product ◦ : S2(V ) → h such
that

[ , ] : Λ2(godd) −→ gev ∼= sl(2,F) ⊕ h

is given as

(8) [e⊗x, f ⊗y] = ω(x, y)ef +a(e, f)x◦y for e, f ∈ F2 and x, y ∈ V ,

using the identification S2(F2) ∼= sl(2,F) ⊂ gev from (6). Moreover, the
symmetric bilinear form ( , ) on g defined by

(9) (u, v) := − 1

2(dimV + 4)
B(u, v), for all u, v ∈ g,



SPECIAL SYMPLECTIC CONNECTIONS 237

where B is the Killing form of g, satisfies the following:

1) (gi, gj) = 0 if i+ j 6= 0,
2) (ef, gh) = a(e, g)a(f, h) + a(e, h)a(f, g) for all e, f, g, h ∈ F2,
3) B(u, v) = 2 trV (uv) + Bh(u, v) for all u, v ∈ h ⊂ g, where Bh

denotes the Killing form of h.
4) (e⊗x, f ⊗y) = a(e, f)ω(x, y), for all e, f ∈ F2 and x, y ∈ V , using

the identification godd ∼= F2 ⊗ V ,
5) For all x, y, z ∈ V and h ∈ h, we have

(10)
(h, x ◦ y) = ω(hx, y) = ω(hy, x)

(x ◦ y)z − (x ◦ z)y = 2 ω(y, z)x − ω(x, y)z + ω(x, z)y.

Proof. By (4) the bracket [ , ] : Λ2godd → gev is well-defined and
must be gev-equivariant by the Jacobi identity. We decompose Λ2godd =
Λ2(F2 ⊗ V ) = S2(F2) ⊗ Λ2V ⊕ S2(V ), so that any gev-equivariant map
Λ2godd → gev must be of the form (8) for some h-invariant ω ∈ Λ2V ∗

and ◦ : S2(V ) → h.
Since ( , ) is adg-invariant, i.e. it satisfies the identity ([u, v], w) =

(u, [v,w]) for all u, v,w ∈ g, we have for ui ∈ gi and uj ∈ gj

0 = ([Hα0
, ui], uj) + (ui, [Hα0

, uj ])

= (i ui, uj) + (ui, j uj) = (i+ j)(ui, uj),

which shows 1.
To show the second equation, note that the inner product on S2(F2) ∼=

sl(2,F) given by the right hand side of this equation is adsl(2,F)-invariant
and hence must be a multiple of the restriction of the Killing form
B to sl(2,F). Thus, it suffices to verify the second equation for e =
g = e+ and f = h = e−. In this case, the right hand side equals
−1, whereas the left hand side equals (e+e−, e+e−) = (Hα0

,Hα0
). But

B(Hα0
,Hα0

) = tr(ad(Hα0
)2) and since ad(Hα0

)|gi = iIdgi , we conclude
that (e+e−, e+e−) = −1 by the choice of the scaling factor in (9). This
implies 2. Likewise, if u, v ∈ h, then ad(u)|sl(2,F) = ad(v)|sl(2,F) = 0,
from which 3. follows as well.

For 4. note that (e± ⊗ x, e± ⊗ y) ∈ (g±1, g±1) = 0 by 1., and from 2.
and the adg-invariance, we get

(e+ ⊗ x, e− ⊗ y) = −1

2

(

e+ ⊗ x, [e2−, e+ ⊗ y]
)

=
1

2

(

[e+ ⊗ x, e+ ⊗ y], e2−
)

=
1

2
ω(x, y)

(

e2+, e
2
−

)

= ω(x, y).

This also implies that ω is symplectic; indeed, if ω(x, V ) = 0 for some
x ∈ V , then by 1. and 4. it follows that (e+ ⊗ x, g) = 0 so that x = 0.
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To show the first equation in (10), we note that (h, sl(2,F)) = 0 so
that for h ∈ h and x, y ∈ V we have

(h, x ◦ y) = (h, [e+ ⊗ x, e− ⊗ y]) = ([h, e+ ⊗ x], e− ⊗ y)

= (e+ ⊗ (hx), e− ⊗ y) = ω(hx, y),

where the last identity follows from 4.
Finally, the second equation in (10) follows when applying the Jacobi

identity to the elements e+ ⊗ x, e− ⊗ y and e− ⊗ z. q.e.d.

In general, given a (real or complex) symplectic vector space (V, ω),
i.e. ω ∈ Λ2V ∗ is non-degenerate, we define the symplectic group Sp(V, ω)
and the symplectic Lie algebra sp(V, ω) by

Sp(V, ω) := {g ∈ Aut(V ) | ω(gx, gy) = ω(x, y) for all x, y ∈ V },

sp(V, ω) := {h ∈ End(V ) | ω(hx, y) + ω(x, hy) = 0 for all x, y ∈ V }.
Then Sp(V, ω) is a Lie group with Lie algebra sp(V, ω).

Definition 2.3. Let (V, ω) be a symplectic vector space over F = R

or C, and let h ⊂ sp(V, ω) be a subalgebra for which there exists an
h-equivariant map ◦ : S2(V ) → h and an adh-invariant inner product
( , ) on h for which the identities (10) hold. Then we call h a special
symplectic subalgebra. Moreover, we call the connected subgroup H ⊂
Sp(V, ω) with Lie algebra h a special symplectic subgroup.

Thus, by Proposition 2.2, each (real or complex) 2-gradable simple
Lie algebra yields a (real or complex) special symplectic subalgebra
h ⊂ End(V ). The converse is also true. Namely, we have

Proposition 2.4. Let (V, ω) be a symplectic vector space over F = R

or C, and let h ⊂ sp(V, ω) be a special symplectic subalgebra. Then there
exists a unique 2-gradable simple Lie algebra g over F, which admits the
decompositions (4) and (5), and the Lie bracket of g is given by (8).

Proof. Given the special symplectic Lie algebra h ⊂ sp(V, ω), we de-
fine the (sl(2,F)⊕ h)-equivariant map R : Λ2(F2 ⊗ V ) → sl(2,F)⊕ h by
(8) and verify that R satisfies the Jacobi identity by the property of ◦.

Thus, R defines a Lie algebra structure on g := sl(2,F)⊕ h⊕ F2 ⊗ V
which makes (g, sl(2,F) ⊕ h) into a symmetric pair. Choose a basis e±
of F2 with a(e+, e−) = 1 and let g0 := Fe+e− ⊕ h, g±1 := e± ⊗ V
and g±2 := Fe2±. Then [gi, gj ] ⊂ gi+j follows from the definition of the
bracket, so that (4) and (5) hold.

Let g′ ⊂ g be an ideal. Since e+e− is a grading element, it follows
that g′ =

⊕2
i=−2(g

′ ∩ gi). Moreover, g′ ∩ sl(2,F) ⊂ sl(2,F) is an ideal,
hence either g′ ∩ sl(2,F) = 0 or sl(2,F) ⊂ g′.

First, suppose that g′∩sl(2,F) = 0 so that g′∩g±2 = 0. If e±⊗x ∈ g′∩
g±1, then for all y ∈ V , we have [e±⊗x, e±⊗y] = ω(x, y)e2± ∈ g′∩g±2 = 0
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so that ω(x, y) = 0 for all y ∈ V , i.e. x = 0, hence g′ ∩ g±1 = 0, whence
g′ ⊂ g0. Next, [g′, g±2] ⊂ g′ ∩ [g0, g±2] = g′ ∩ g±2 = 0, so that g′ ⊂ h.
Finally, if h ∈ g′ ⊂ h, then for all x ∈ V , [h, e± ⊗ x] = e± ⊗ (hx) ∈
g′ ∩ g±1 = 0, i.e. hx = 0 for all x ∈ V , hence h = 0, i.e. g′ = 0.

On the other hand, if sl(2,F) ⊂ g′, then e+e− ∈ g′ so that gi =
[e+e−, g

i] ⊂ g′ for all i 6= 0. Moreover, [g1, g−1] ⊂ g′, so that x ◦ y ∈ g′

for all x, y ∈ V . By the first identity of (10), we have V ◦V = h, so that
h ⊂ g′ and hence g′ = g.

We conclude that g is simple, and since ad(e+e−) is diagonalizable,
we can choose the Cartan subalgebra t such that e+e− ∈ t. Then
t = Fe+e− ⊕ (t ∩ h), and hence [t, g±2] = g±2, so that g±2 = g±α0

are
root spaces and Hα0

= −e+e−. Recall that ad(Hα0
)|gβ

= 〈β, α0〉 Idgβ

which implies that | 〈β, α0〉 | ≤ 1 for all roots β 6= ±α0, hence α0 is a
long root. q.e.d.

From this proposition, we obtain a complete classification of special
symplectic subalgebras by considering all complex simple Lie algebras
and their 2-gradable real forms [OV].

Corollary 2.5. Table 1 on page 240 yields the complete list of special
symplectic subgroups H ⊂ Sp(V, ω).

It is worth pointing out that in the case h = sp(V, ω) the map ◦ :
S2(V ) → h is an isomorphism which is given explicitly by

(11) (x ◦ y)z = ω(x, z)y + ω(y, z)x for all x, y, z ∈ V .

Namely, by Proposition 2.4 it suffices to show that this product is well
defined, h-equivariant and satisfies (10), and all of this is easily verified.

Definition 2.6. Let h ⊂ sp(V, ω) be a special symplectic Lie algebra,
and let g be the (unique) simple Lie algebra from Proposition 2.4. Then
we say that h is associated to g. Let G be a connected Lie group with Lie
algebra g. Then we say that the special symplectic group H ⊂ Sp(V, ω)
is associated to G.

Proposition 2.7. Let h ⊂ sp(V, ω) be a special symplectic Lie algebra
and H ⊂ Sp(V, ω) be the corresponding special symplectic Lie subgroup.
Then H ⊂ Sp(V, ω) is closed and reductive, and

(12) h = {h ∈ sp(V, ω) | [h, x◦y] = (hx)◦y+x◦(hy) for all x, y ∈ V }.
Moreover, let g ∼= sl(2,F)⊕ h⊕F2 ⊗V be the simple Lie algebra from

Proposition 2.4 and G the corresponding simply connected Lie group
from Definition 2.6. Then the Lie subgroup

(13) H̃ :=
{

g ∈ G | Adg|g−2⊕g2 = Idg−2⊕g2

}

⊂ G

is generated by H and the center Z(G).
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Table 1: Special symplectic subgroups

Notation: F = R or C.

Type of ∆ G H V

(i) Ak, k ≥ 2 SL(n+ 2,F), n ≥ 1 GL(n,F) W ⊕W ∗ with W ∼= Fn

(ii) SU(p+ 1, q + 1), p+ q ≥ 1 U(p, q) Cp+q

(iii) Ck, k ≥ 2 Sp(n+ 1,F) Sp(n,F) F2n

(iv) Bk, Dk+1, k ≥ 3 SO(n+ 4,C), n ≥ 3 SL(2,C) · SO(n,C) C2 ⊗ Cn

(v) SO(p+ 2, q + 2), p+ q ≥ 3 SL(2,R) · SO(p, q) R2 ⊗ Rp+q

(vi) SO(n+ 2,H), n ≥ 2 Sp(1) · SO(n,H) Hn

(vii) G2 G′

2, GC

2 SL(2,F) S3(F2)

(viii) F4 F
(1)
4 , FC

4 Sp(3,F) F14 ⊂ Λ3F6

(ix) E6 EF

6 SL(6,F) Λ3F6

(x) E
(2)
6 SU(1, 5) R20 ⊂ Λ3C6

(xi) E
(3)
6 SU(3, 3) R20 ⊂ Λ3C6

(xii) E7 EC

7 Spin(12,C) ∆C ∼= C32

(xiii) E
(5)
7 Spin(6, 6) R32 ⊂ ∆C

(xiv) E
(6)
7 Spin(6,H) R32 ⊂ ∆C

(xv) E
(7)
7 Spin(2, 10) R32 ⊂ ∆C

(xvi) E8 EC

8 EC

7 C56

(xvii) E
(8)
8 E

(5)
7 R56

(xviii) E
(9)
8 E

(7)
7 R56
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Proof. In principle, we could prove this theorem from Table 1 on
page 240, but we prefer to give more conceptual arguments.

Let us suppose that h and V are complex. Then, by Proposition 2.4,
we can find a complex simple Lie algebra g for which (4) holds. Thus,
g0 = t⊕⊕

{β∈∆|〈β,α0〉=0} gβ where ∆ is the set of roots of g. Then g0 is

evidently reductive, and since g0 ∼= C ⊕ h, it follows that h is reductive
as well, hence so is every real form of h. Thus, H is also reductive.

Let h̃ denote the right hand side of (12). Then the h-equivariance of

◦ implies that h ⊂ h̃. Also, h = V ◦ V by the first identity of (10) so

that h is an ideal of h̃. Therefore, if h̃ ∈ h̃ then we define

φ : g → g by φ(sl(2,F)) = 0, φ|h = (ad
h̃
)|h, φ|F2⊗V := IdF2 ⊗ h̃.

Since ad
h̃
(h) ⊂ h, this definition makes sense. Moreover, it is now

straightforward to verify that φ is a derivation of g, and since g is
simple, it follows that φ = adh for some h ∈ g. But φ(sl(2,F)) = 0, so

that h ∈ h, hence e ⊗ (hx) = adh(e ⊗ x) = φ(e ⊗ x) = e ⊗ (h̃x) for all

e ∈ F2 and x ∈ V , whence h̃ = h ∈ h which shows (12).
Now the subgroup {h ∈ Sp(V, ω) | Adh(x ◦ y) = (hx) ◦ (hy)} ⊂

Sp(V, ω) is closed and has h as its Lie algebra by (12), thus H is its
identity component and hence also closed.

For the last part, note that the Lie algebra of H̃ equals {x ∈ g |
[x, g±2] = 0} = h. As H is connected, this implies that H ⊂ H̃ is the
identity component, and it thus suffices to show that every component
of H̃ contains an element of Z(G).

Let g ∈ H̃. Then h is Adg-invariant, and if we let th ⊂ h be a Cartan
subalgebra of h, so that tg := th ⊕ Fe+e− ⊂ g0 is a Cartan subalgebra
of g, then Adg(th) ⊂ h is another Cartan subalgebra. Since any two
Cartan subalgebras are conjugate via an element of H, we may assume
w.l.o.g. that Adg(th) = th, and since Adg(e+e−) = e+e−, it follows
that Adg ∈ Norm(tg). Thus, Adg yields an inner automorphism of the
root system of g which stabilizes the root α0, so that the restriction
(Adg)|th is an inner automorphism of the root system of h, hence after
multiplying g by an element of Norm(th) ⊂ H, we may assume that
(Adg)|tg = Idtg , so that g ∈ T = exp(tg) = exp(Fe+e−) exp(th). Since
exp(th) ⊂ H, we may further assume that g = exp(te+e−) for some

t ∈ F, hence Adg|gi = ciIdgi with c := exp(−t). But g ∈ H̃, so that we
must have c = ±1.

If c = 1 then Adg = Id, i.e. g ∈ Z(G), so that we are done.
If c = −1 then F = C and Adg|g±1 = −Idg±1, hence we are done if

we can show that −IdV ∈ H, since then g · (−IdV ) ∈ Z(G).
If H = Sp(V, ω), then this is certainly the case, and if H ( Sp(V, ω)

is a proper subgroup, then we shall see in Lemma 2.13, 5. that there is
an h ∈ th such that λ(h) is an odd integer for all weights λ of V , hence

exp(
√
−1πh) = −IdV ∈ H. q.e.d.
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In general, for a given Lie subalgebra h ⊂ End(V ) we define the space
of formal curvature maps as

K(h) :=

{

R ∈ Λ2V ∗ ⊗ h

∣

∣

∣

∣

R(x, y)z +R(y, z)x+R(z, x)y = 0
for all x, y, z ∈ V

}

.

This terminology is due to the fact that the curvature map of a torsion
free connection always satisfies the first Bianchi identity, i.e. is contained
in K(h) for an appropriate h. K(h) is an H-module in an obvious way.

There is a map Ric : K(h) → V ∗ ⊗ V ∗, given by Ric(R)(x, y) :=
tr(R(x, )y) for all R ∈ K(h) and x, y ∈ V . Note that Ric(R)(x, y) −
Ric(R)(y, x) = trR(x, y). Thus, if h ⊂ sl(n,F), then Ric(R) ∈ S2(V ∗).

Proposition 2.8. Let h ⊂ sp(V, ω) be a special symplectic subalgebra.
Then there is an H-equivariant injective map h → K(h), given by

(14) h 7−→ Rh, where Rh(x, y) := 2 ω(x, y)h+ x ◦ (hy) − y ◦ (hx).

In fact, Ric(Rh) = 0 iff h = 0.

Proof. The fact that Rh ∈ K(h) follows immediately from (10), and
the H-equivariance is evident. The injectivity will follow from the last
statement. We begin with the following two lemmata.

Lemma 2.9. Let g be a (real or complex) semi-simple Lie algebra
and let h ⊂ g be simple. Then there is a c ∈ (0, 1] such that for the
Killing forms of g and h, the relation

Bh = c(Bg)|h
holds. Moreover, c = 1 iff h ⊳ g.

Proof. Since h is simple and both Bh and (Bg)|h are adh-invariant,
Schur’s Lemma implies that this relation holds for some 0 6= c ∈ F. Note
that c remains unchanged if we replace h and g by their complexification
or a real form. Thus, it suffices to show that c ∈ (0, 1] for compact Lie
algebras h ⊂ g, i.e., for Bh, Bg < 0. For 0 6= x ∈ h, we have

Bg(x, x) = tr(ad2
x) = Bh(x, x) + tr(ad2

x|h⊥).

Since adx is skew symmetric w.r.t. the (positive definite) inner product
−Bg, it follows that ad2

x|h⊥ is negative semidefinite, so that tr(ad2
x|h⊥) ≤

0 with equality iff adx|h⊥ = 0, which implies the claim. q.e.d.

Lemma 2.10. Let h ⊂ sp(V, ω) be a symplectic subalgebra. Then
Ric(R)(x, y) = −ω(R(ω−1)x, y). In particular, Ric(R) ∈ h ⊂ sp(V ) ∼=
S2(V ).

Proof. Let (ei, fi) be a basis of V such that, using the summation
convention, ω−1 = ei ∧ fi. Thus,

Ric(R)(x, y) = tr(R(x, )y) = ω(R(x, ei)y, fi) − ω(R(x, fi)y, ei)

= ω(R(x, ei)fi, y) + ω(R(fi, x)ei, y)

= −ω(R(ei, fi)x, y). q.e.d.
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Let us now suppose that Ric(Rh) = 0. By the lemma, this is the case
iff for all u ∈ h we have

0 = (Rh(ei, fi), u) = 2ω(ei, fi)(h, u) + (ei ◦ (hfi), u) − (fi ◦ (hei), u)

= dimV (h, u) + ω((uhfi), ei) − ω((uhei), fi)

= dimV (h, u) − trV (uh)

= dimV (h, u) − 1

2
(B(h, u) −Bh(h, u))

= dimV (h, u) − 1

2
(−2(dimV + 4)(h, u) −Bh(h, u))

= 2(dimV + 2)(h, u) +
1

2
Bh(h, u).

Here, we use repeatedly the identities from Proposition 2.2. Let

h = h0 ⊕ h1 ⊕ . . .⊕ hk

be the decomposition of h with h0 := z(h) and hr simple for r ≥ 1. By
simplicity of hr and by Lemma 2.9, there are constants cr ∈ [0, 1] such
that Bhr

= crB|hr
, where c0 = 0 and cr ∈ (0, 1] for r > 0. Thus, if we

decompose h = h0 + . . .+hk with hr ∈ hr, then Rh = 0 iff for all ur ∈ hr
we have

0 = 2(dim V + 2)(hr , ur) +
1

2
Bhr

(hr, ur)

= 2(dim V + 2)(hr , ur) +
1

2
crB(hr, ur)

= (2(dim V + 2) − cr(dimV + 4))(hr , ur),

using again Proposition 2.2. But since cr ≤ 1 by Lemma 2.9, it follows
that 2(dim V + 2) − cr(dimV + 4) ≥ dimV > 0, so that we must have
hr = 0 for all r which completes the proof. q.e.d.

For a special symplectic subalgebra h ⊂ sp(V, ω), we can now decom-
pose its curvature space as an h-module into

(15) K(h) = Rh ⊕Wh, where Rh = {Rh | h ∈ h}.
By Proposition 2.8 and Lemma 2.10, it follows that Rh

∼= h as an H-
module and Wh is the kernel of the map Ric : K(h) → h ⊂ sp(V, ω) ∼=
S2(V ∗), i.e. Wh consists of all Ricci flat curvature maps.

In fact, the curvature spaces K(h) have been calculated. Summariz-
ing, we have the following

Theorem 2.11. Let H ⊂ Sp(V, ω) be a special symplectic subgroup
with Lie algebra h ⊂ sp(V, ω) listed in Table 1 on page 240. Then
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1) For the representations corresponding to (i) and (ii), we have
Wh = 0 if n = 1 (p + q = 1, respectively) and Wh 6= 0 if n ≥ 2
(p+ q ≥ 2, respectively).

2) For the representations corresponding to (iii), we have Wh = 0 for
n = 1 whereas Wh 6= 0 for n ≥ 2.

3) For the representations corresponding to entries (iv) – (xviii), we
have K(h) = Rh and hence Wh = 0.

Proof. First of all, note that since hC = hR ⊗C and VC = VR ⊗C, we
also have K(hC) = K(hR)⊗C and RhC

= RhR
⊗C by complexification.

Thus, it suffices to show the claim for the complex representations.
Therefore, to show the first part, it suffices to show that in case (i),

K(h) ∼= S2(W ) ⊗ S2(W ∗) as an h-module, so that the assertion follows
by a dimension count. To see this, let x, y ∈ W and z,w ∈ W ∗. Then
for any R ∈ K(h) we have R(z, x)y − R(z, y)x = −R(x, y)z, and since
the left hand side lies in W while the right hand side lies in W ∗, it
follows that both sides vanish.

The vanishing of the right hand side implies that R(W,W ) = 0 since
x, y ∈ W and z ∈ W ∗ are arbitrary. Analogously, R(W ∗,W ∗) = 0.
Moreover, the vanishing of the left hand side implies that R(z, x)y =
R(z, y)x and, analogously, R(x, z)w = R(x,w)z. Thus, if we define the
tensor σR ∈W ⊗W ⊗W ∗ ⊗W ∗ by

(16) σR(x, y, z, w) := w(R(z, x)y) = −(R(z, x)w)y

for all x, y ∈ W and z,w ∈ W ∗, then σR is symmetric in x and y and
in z and w, i.e. σR ∈ S2(W ) ⊗ S2(W ∗).

Conversely, given σ ∈ S2(W ) ⊗ S2(W ∗), one verifies that the map
Rσ : Λ2(V ) → h determined by R(W,W ) = R(W ∗,W ∗) = 0 and (16)
lies in K(h), showing the above equivalence.

For the second part, consider the Koszul exact sequence . . . → ΛkV ∗⊗
Sl(V ∗) → Λk+1 ⊗ Sl−1(V ∗) → . . . where the maps are given by skew
symmetrization. One observes that under the identification sp(V, ω) ∼=
S2(V ∗) we may regard K(sp(V )) as the kernel of the map Λ2V ∗ ⊗
S2V ∗ → Λ3V ∗ ⊗V ∗, hence K(sp(V )) ∼= (V ∗ ⊗S3(V ∗))/S4(V ∗), so that
the statement follows by a dimension count (cf. [BC1]). The last part
was shown in [MS]. q.e.d.

Now the second Bianchi identity of the covariant derivative of a tor-
sion free connection motivates the following definition. We define the
space of covariant R-derivations by

(17) R(1)
h

:=







ψ ∈ V ∗ ⊗Rh

∣

∣

∣

∣

∣

∣

ψ(x)(y, z) + ψ(y)(z, x)
+ψ(z)(x, y) = 0

for all x, y, z ∈ V







.

Again, R(1)
h

is an H-module in an obvious way.
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Proposition 2.12. Let h ⊂ sp(V, ω) be a special symplectic subal-
gebra other than the subalgebra h = sl(2,F), V = F2. Then as an

h-module, R(1)
h

∼= V with an explicit isomorphism given by

u 7−→ ψu, where ψu(x) := Ru◦x ∈ Rh for all u, x ∈ V .

Proof. As in the proof of Theorem 2.11, it suffices to show the propo-
sition in the complex case by complexifying h and V .

Using (10), it is straightforward to verify that ψu ∈ R(1)
h

for all u ∈ V .

Also, ψu = 0 iff Ru◦V = 0 iff u ◦ V = 0 by Proposition 2.8. But, again

by (10), u ◦ V = 0 iff u = 0, so that {ψu | u ∈ V } ⊂ R(1)
h

is isomorphic

to V as an H-module.
If h = sp(V, ω) then ◦ : S2(V ) → h is given in (11), and from there the

statement follows for dimV > 2 by a direct calculation [BC1]. On the

other hand, if dimV = 2 then evidently, R(1)
h

= V⊗h, and dimh ∈ {1, 3}
as h ⊂ sl(2,C). Thus, by a dimension count the statement follows if
dim h = 1 while it fails if dimh = 3, i.e. if h = sl(2,C) and V = C2.

Thus, the major part of the proof is to show that the inclusion {ψu |
u ∈ V } ⊂ R(1)

h
is an equality if h ( sp(V, ω) and dimV > 2. For this,

we begin with the following

Lemma 2.13. (cf. [S2]) Let h ( sp(V, ω) be a special symplectic
proper subalgebra, where h and V are complex and dimV > 2. Let
th ⊂ h be a Cartan subalgebra and ∆h be the set of roots of h. Consider
the decomposition V =

⊕

λ∈Φ Vλ where Φ ⊂ t∗h is the set of weights.
Then the following holds:

1) All weight spaces Vλ are one dimensional, and if λ ∈ Φ then −λ ∈
Φ.

2) There are at most two possible length for the weights which allows
to refer to long and short weights.

3) If λ0 ∈ Φ is a long weight, then there is a disjoint decomposition

Φ = Φ−3 ∪ Φ−1 ∪ Φ1 ∪ Φ3,

where Φ±3 = {±λ0} and Φ±1 = {µ ∈ Φ | ±λ0 − µ ∈ ∆h}.
4) Let V i

2

:=
⊕

λ∈Φi
Vλ for i ∈ {±1,±3}. Then there are decomposi-

tions

h = h−1 ⊕ h0 ⊕ h1, V = V− 3

2

⊕ V− 1

2

⊕ V 1

2

⊕ V 3

2

with

[hi, hj ] ⊂ hi+j, hiVr ⊂ Vi+r,

Vr ◦ Vs ⊂ hr+s, hi =
⊕

r+s=i Vr ◦ Vs.
5) Let v± ∈ V± 3

2

, wr ∈ Vr and hi ∈ hi. Then (v+ ◦ v−)wr =

−2r ω(v+, v−)wr and [v+ ◦ v−, hi] = −2i ω(v+, v−)hi.
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Proof. Let g be the simple Lie algebra associated to h by Proposi-
tion 2.4, and let ∆ be the root system of g. Note that th = t ∩ (Hα0

)⊥

where t is the Cartan subalgebra of g. Moreover, ∆h = {β ∈ ∆ |
〈β, α0〉 = 0} ⊂ ∆, and V ∼= g1 =

⊕

{β∈∆|〈β,α0〉=1} gβ as an h-module. It

follows that

Φ =

{

λ = β − 1

2
α0

∣

∣

∣

∣

β ∈ ∆, 〈β, α0〉 = 1

}

and Vλ = gβ.

Thus, dimVλ = 1 as all root spaces are one dimensional. Moreover,
if 〈β, α0〉 = 1, then γ := α0 − β ∈ ∆ and 〈γ, α0〉 = 1, whence −λ =
−(β − 1

2α0) = γ − 1
2α0 ∈ Φ.

Next, (λ, λ) = (β − 1
2α0, β − 1

2α0) = (β, β) − (β, α0) + 1
4(α0, α0) =

(β, β) − 1
4(α0, α0) since 1 = 〈β, α0〉 = 2(β, α0)/(α0, α0) by (2). Thus,

(λ, λ) > 0 is determined by (β, β), and for the latter there are at most
two possible values.

To show the third property, pick a long weight λ0 ∈ Φ, i.e. λ0 =
β0 − 1

2α0 for some long root β0 ∈ ∆ with 〈β0, α0〉 = 1. Since our
hypothesis implies that ∆ is not of type Ck, such a β0 and hence such
a λ0 exists.

Let γ ∈ ∆ with 〈γ, α0〉 = 1, and let µ := γ− 1
2α0 ∈ Φ. Then γ 6= −β0

so that 〈γ, β0〉 ∈ {−1, 0, 1, 2}, and 〈γ, β0〉 = 2 iff γ = β0 iff µ = λ0.
If 〈γ, β0〉 = 1 then β0 −γ ∈ ∆ with 〈β0 − γ, α0〉 = 0, so that λ0−µ =

β0 − γ ∈ ∆h.
If 〈γ, β0〉 ∈ {0,−1} then 〈γ, α0 − β0〉 = 1−〈γ, β0〉 ∈ {1, 2}, thus when

replacing λ0 by −λ0 and hence β0 by α0 − β0, then we can reduce to
the previous cases.

From this description, it also follows that Φi = {µ ∈ Φ | 〈µ, β0〉 = i
2}

To show the fourth part, let ∆i
h := {γ ∈ ∆h | 〈γ, β0〉 = i}. Since

±β0 6∈ ∆h, it follows that ∆h = ∆−1
h

∪ ∆0
h ∪ ∆1

h, and we let h±1 :=
⊕

γ∈∆±1

h
gγ and h0 := th⊕

⊕

γ∈∆0
h
gγ . Since Φi = {µ ∈ Φ | 〈µ, β0〉 = i

2},
the claims follow.

Finally, for the last part, note that by (10),

(v+ ◦v−)wr = (v+ ◦wr)v− +2ω(v−, wr)v+ +ω(v+, wr)v−−ω(v+, v−)wr.

Now if r > 0 then v+ ◦ wr ∈ h 3

2
+r = 0 and ω(v+, wr) = 0. Also,

ω(v−, wr) = 0 for r = 1/2 showing the claim in this case, whereas for
r = 3/2, wr is a scalar multiple of v+ so that ω(v−, wr)v+ = ω(v−, v+)wr
which implies the assertion in this case as well. The proof of the cases
r < 0 follows analogously.

Note that then for wr ∈ Vr, ws ∈ Vs we also have [v+ ◦ v−, wr ◦ws] =
((v+ ◦ v−)wr) ◦ ws + wr ◦ ((v+ ◦ v−)ws) = −2(r + s)ω(v+, v−)wr ◦ ws,
and the last assertion follows. q.e.d.
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Let us now suppose that h ( sp(V, ω) and dimV > 2, so that we have

the decompositions from the lemma. Let ψ ∈ R(1)
h be a weight element

of weight µ ∈ Φ. Choose a long weight λ0 ∈ Φ, λ0 6= ±µ so that – after
replacing λ0 by its negative if necessary – we may assume that µ ∈ Φ1.
Whence, ψ(Vλ) ∈ gλ+µ implies that ψ(Vr) ⊂ hr+ 1

2

and, in particular,

ψ(V 3

2

) = 0.

Note that g−λ0+µ = Vµ ◦ V−λ0
; namely, 〈−λ0, λ0 − µ〉 < 0 so that

gλ0−µV−λ0
= V−µ as all weight spaces are one dimensional. Thus,

(gλ0−µ, Vµ ◦ V−λ0
) = ω(gλ0−µV−λ0

, Vµ) = ω(V−µ, Vµ) 6= 0 so that 0 6=
Vµ ◦ V−λ0

⊂ g−λ0+µ and the latter is one dimensional.
Pick 0 6= v−λ0

∈ V−λ0
. Since ψ(v−λ0

) ∈ g−λ0+µ, there is a u ∈ Vµ
such that ψ(v−λ0

) = u ◦ v−λ0
. Therefore, after replacing ψ by ψ − ψu,

we may assume that ψ(v−λ0
) = 0 and hence ψ(V± 3

2

) = 0.

If we let v± ∈ V± 3

2

with ω(v+, v−) 6= 0 and w± ∈ V± 1

2

then by (17)

we must have

(18)
0 = Rψ(w±)(v+, v−)

= 2ω(v+, v−)ψ(w±) + v+ ◦ (ψ(w±)v−) − v− ◦ (ψ(w±)v+).

Now ψ(w+) ∈ h1, hence ψ(w+)v+ = 0 and thus v+ ◦ (ψ(w+)v−) =
[ψ(w+), v+◦v−] = 2ω(v+, v−)ψ(w+), where the last identity follows from
the lemma. Then (18) implies that ψ(w+) = 0.

On the other hand, ψ(w−) ∈ h0 so that ψ(w−)v± ∈ V± 3

2

, hence

(18) implies that ψ(w−) = c v+ ◦ v− for some constant c. But then,
ψ(w−)v± = ∓3c ω(v+, v−)v± by the lemma, and substituting into (18)
yields c = 0, i.e. ψ(w−) = 0, and hence, ψ = 0.

Let W ⊂ R(1)
h

be the H-invariant complement of {ψu | u ∈ V } ⊂
R(1)

h
, and let Ψ be the set of weights of W . Since W ⊂ R(1)

h
⊂ V ⊗

K(h) ∼= V ⊗ h, it follows that Ψ ⊂ Φ + ∆0. Also, by what we have
shown above, we must have Ψ ∩ Φ = ∅.

Let ν ∈ Ψ, and write ν = µ + α with µ ∈ Φ and α ∈ ∆0. Since
Ψ ∩ Φ = ∅, it follows that that α 6= 0, i.e., α ∈ ∆. If 〈µ, α〉 < 0 , then
ν = µ + α ∈ Ψ ∩ Φ; if 〈ν, α〉 > 0 then µ = ν − α ∈ Ψ ∩ Φ, both of
which are impossible. Thus, 2 = 〈α,α〉 = 〈ν, α〉 − 〈µ, α〉 ≤ 0 which is a
contradiction.

Thus, we must have Ψ = ∅ and hence W = 0. q.e.d.

Finally, we prove the following result which we shall need later on.

Lemma 2.14. Let h ⊂ sp(V, ω) be a special symplectic subalgebra,
dimV ≥ 4, and let φ : V → V be a linear map such that

(19) φ(x) ◦ y = φ(y) ◦ x for all x, y ∈ V .

Then φ is a multiple of the identity.
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Proof. By (10) we have

(φ(x) ◦ y)z − (φ(x) ◦ z)y = 2ω(y, z)φ(x) + ω(φ(x), z)y − ω(φ(x), y)z.

But (19) now implies that the cyclic sum in x, y, z of the left hand side
vanishes, hence so does the cyclic sum of the right hand side, i.e.

(20)

2 (ω(x, y)φ(z) + ω(y, z)φ(x) + ω(z, x)φ(y))

= (ω(φ(y), z) − ω(φ(z), y))x + (ω(φ(z), x) − ω(φ(x), z))y

+(ω(φ(x), y) − ω(φ(y), x))z.

For each x ∈ V , we may choose vectors y, z ∈ V with ω(x, y) = ω(x, z) =
0 and ω(y, z) 6= 0 since dimV ≥ 4. Then (20) implies that φ(x) ∈
span(x, y, z) so that ω(φ(x), x) = 0. Polarization then implies that
ω(φ(x), y) + ω(φ(y), x) = 0 for all x, y ∈ V .

Next, we take the symplectic form of (20) with x, and together with
the preceding identity this yields

ω(x, y)ω(φ(x), z) = ω(x, z)ω(φ(x), y) for all x, y, z ∈ V .

Thus, ω(x, y)φ(x) = ω(φ(x), y)x for all x, y ∈ V , and since for 0 6= x ∈ V
we can pick y ∈ V such that ω(x, y) 6= 0, this implies that φ(x) is a
scalar multiple of x for all x ∈ V , whence φ is a multiple of the identity.

q.e.d.

Key Definition 2.15. Let (M,ω) be a (real or complex) symplectic
manifold of (real or complex) dimension at least 4, equipped with a
symplectic connection ∇, i.e. a torsion free connection for which ω is
parallel. We say that ∇ is a special symplectic connection associated
to the (simple) Lie group G if there is a special symplectic subgroup
H ⊂ Sp(V, ω) associated to G in the sense of Definition 2.6 such that
the curvature of ∇ is contained in Rh (cf. (14) and (15)).

Definition 2.15 coincides with the definition of special symplectic con-
nections from the introduction. Namely, note that by the Ambrose-
Singer holonomy theorem, the (restricted) holonomy of a special sym-
plectic connection is evidently contained in H ⊂ Sp(V, ω), so that we
have an H-reduction B → M of the frame bundle of M which is com-
patible with the connection.

If H ⊂ Sp(V, ω) is one of the subgroups (i) or (ii), then either there
are two complementary parallel Lagrangian foliations (case (i)), or the
connection is the Levi-Civita connection of a pseudo-Kähler metric (case
(ii)). In either case, the condition that the curvature lies in Rh is equiv-
alent to the vanishing of the Bochner curvature, and such connections
have been called Bochner-bi-Lagrangian in the first and Bochner-Kähler
in the second case. For a detailed study of these connections, see [Br2].



SPECIAL SYMPLECTIC CONNECTIONS 249

If H = Sp(V, ω) as in (iii), then the condition that the curvature lies in
Rh is equivalent to saying that the connection is a (real or holomorphic)
symplectic connection of Ricci type in the sense of [BC1].

Finally, if H ⊂ Sp(V, ω) is one of the subgroups (iv) − (xviii) in
Table 1 on page 240, then, by Theorem 2.11, any torsion free connection
on such an H-structure must be special. In fact, these subgroups H are
precisely the absolutely irreducible proper subgroups of the symplectic
group which can occur as the holonomy of a torsion free connection (cf.
[MS], [S1], [S3]).

It shall be the aim of the following sections to study special symplectic
connections using the general algebraic setup established here rather
than dealing with each of the geometric structures separately.

3. Special symplectic connections and contact manifolds

We shall now recall some well known facts about contact manifolds
and their symplectic reductions.

Definition 3.1. A contact structure on a real (complex, respectively)
manifold C is a smooth (holomorphic, respectively) distribution D ⊂ TC
of codimension one such that the Lie bracket induces a non-degenerate
map

D ×D −→ TC/D =: L.

The line bundle L→ C is called the contact line bundle, and its dual
can be embedded as

(21) L∗ = {λ ∈ T ∗C | λ(D) = 0} ⊂ T ∗C.
Notice that we can define the line bundles L → C and L∗ → C for

an arbitrary distribution D ⊂ TC of codimension one. It is well known
that such a distribution D yields a contact structure iff the restriction
of the canonical symplectic form Ω on T ∗C to L∗\0 is non-degenerate,
so that in this case L∗\0 is a symplectic manifold in a canonical way.

We regard p : L∗\0 → C as a principal (R\0)-bundle (C∗-bundle,
respectively). In the real case, we may assume that L∗\0 has two com-
ponents each of which is a principal R+-bundle, since this can always
be achieved when replacing C by a double cover if necessary. Thus, we
get the principal R+-bundle (C∗-bundle, respectively)

p : Ĉ −→ C,
where Ĉ ⊂ L∗\0 is a connected component. The vector field E0 ∈ X(Ĉ)
which generates the principal action is called Euler field, so that the flow
along E0 is fiberwise scalar multiplication in Ĉ ⊂ L∗ ⊂ T ∗C. Thus, the
Liouville form on T ∗C is given as λ := E0 Ω, and hence LE0

(Ω) = Ω
and Ω = dλ. This process can be reverted. Namely, we have the
following
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Proposition 3.2. Let p : Ĉ → C be a principal R+-bundle (C∗-

bundle, respectively) with a symplectic form Ω on Ĉ such that LE0
Ω = Ω

where E0 ∈ X(Ĉ) generates the principal action. Then there is a unique

contact structure D on C and an equivariant imbedding ı : Ĉ →֒ L∗\0 ⊂
T ∗C with L∗ from (21) such that Ω is the pullback of the canonical

symplectic form on T ∗C to Ĉ.

Proof. By hypothesis, Ω = dλ where λ := (E0 Ω). Since λ(E0) = 0,

there is for each x ∈ Ĉ a unique λx ∈ T ∗
p(x)C satisfying p∗(λx) = λx.

Moreover, LE0
(λ) = λ, hence λetx = etλx for all t ∈ F, so that the

codimension one distribution D := dp(ker(λ)) ⊂ TC is well defined, and

the correspondence x 7→ λx yields an equivariant imbedding Ĉ →֒ L∗\0
whose image is thus a connected component of L∗\0. Moreover, by

construction, λ is the restriction of the Liouville form to Ĉ ⊂ L∗\0 ⊂
T ∗C. Since Ω = dλ is non-degenerate on Ĉ by assumption, it follows
that D is a contact structure. q.e.d.

Next, we define the fiber bundle

R :=
{

(λ, ξ̂) ∈ Ĉ × T Ĉ ⊂ T ∗C × T Ĉ | λ(dp(ξ̂)) = 1
}

.

Projection onto the first factor yields a fibration R → Ĉ whose fiber is
an affine space.

We call a vector field ξ on C a contact symmetry if Lξ(D) ⊂ D. This
means that the flow along ξ preserves the contact structure D. For each
contact symmetry ξ on C, there is a unique vector field ξ̂ ∈ X(Ĉ), called

the Hamiltonian lift of ξ, satisfying dp(ξ̂) = ξ and L
ξ̂
λ = 0, so that

L
ξ̂
Ω = 0.

We call ξ a transversal contact symmetry if in addition ξ 6∈ D at all
points. Equivalently, we have Ω(E0, ξ̂) 6= 0 everywhere. In the real case,

we say that ξ is positively transversal if Ω(E0, ξ̂) > 0 everywhere, while
in the complex case it is convenient to call any transversal vector field
positively transversal.

Given a positively transversal contact symmetry ξ with Hamiltonian
lift ξ̂, there is a unique section λ of the bundle p : Ĉ → C such that
λ(ξ) ≡ 1, and hence we obtain a section of the bundle R → Ĉ → C
(22) σξ : C −→ R, σξ := (λ, ξ̂) ∈ R.

We call an open subset U ⊂ C regular w.r.t. the transversal contact
symmetry ξ if there is a submersion πU : U →MU onto some manifold
MU whose fibers are connected lines tangent to ξ. Evidently, since ξ is
pointwise non-vanishing, C can be covered by regular open subsets.

Since ξ is a contact symmetry, it follows that ξ dλ = 0 and Lξλ = 0.
Thus, on each MU there is a unique symplectic form ω such that

(23) π∗Uω = −2dλ,
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where the factor −2 only occurs to make this form coincide with one we
shall construct later on.

To link all of this to our situation, let g be a 2-gradable simple real
or complex Lie algebra and let G be the corresponding connected Lie
group with trivial center Z(G) = {1}. Recall the decomposition

g = g−2⊕g−1⊕g0⊕g1⊕g2 ∼= Fe2−⊕(e−⊗V )⊕(Fe+e−⊕h)⊕(e+⊗V )⊕Fe2+

from (4). We let µ := g−1dg be the left invariant Maurer-Cartan form
on G, which we can decompose as

(24) µ =
2

∑

i=−2

µi, µ0 = µh + ν0e+e−

where µi ∈ Ω1(G) ⊗ gi, µh ∈ Ω1(G) ⊗ h and ν0 ∈ Ω1(G). Furthermore,
we define the subalgebras

p := g0 ⊕ g1 ⊕ g2, and p0 := h ⊕ g1 ⊕ g2,

and we let P,P0 ⊂ G be the corresponding connected subgroups. Using
the bilinear form ( , ) from (9), we identify g and g∗, and recall the root
cone from (3) and its (oriented) projectivization

(25) Ĉ := G · e2+ ⊂ g ∼= g∗, C := p(Ĉ) ⊂ Po(g) ∼= Po(g∗),

where Po(g) is the set of oriented lines in g, i.e. Po ∼= Sd if F = R, and
Po ∼= CPd if F = C, where d = dim g−1, and where p : g\0 → Po(g) is the
principal R+-bundle (C∗-bundle, respectively) defined by the canonical

projection. Thus, the restriction p : Ĉ → C is a principal bundle as well.
Being a coadjoint orbit, Ĉ carries a canonical G-invariant symplectic

structure Ω. Moreover, the Euler vector field defined by

E0 ∈ X(Ĉ), (E0)v := v

generates the principal action of p and satisfies LE0
(Ω) = Ω, so that the

distribution D = dp(E⊥Ω

0 ) ⊂ TC yields a G-invariant contact distribu-
tion on C by Proposition 3.2.

Lemma 3.3. As homogeneous spaces, we have C = G/P, Ĉ = G/P0

and R = G/H. Moreover, the fiber bundles R → Ĉ → C from before are
equivalent to the corresponding homogeneous fibrations.

Proof. Using the pairing ( , ) to identify g and g∗, it follows that the

fiber of R over e2+ ∈ Ĉ can be identified with

Re2
+

=

{

1

2
e2− + e− ⊗ v + te+e− + p0 | v ∈ V, t ∈ F

}

⊂ g/p0
∼= Te2

+
Ĉ.

Now it is straightforward to verify that P0 = exp(p0) acts transitively
on this set. Moreover, for all p0 ∈ p0 one calculates that (ad(1

2e
2
− +

p0))
2(e2+) ∈ F(1

2e
2
− + p0) iff p0 = 0. Since (adx)

2(g) ⊂ Fx for all x ∈ Ĉ,
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it follows that (1
2e

2
− + p0) ∩ Ĉ = 1

2e
2
−, and hence each of the cosets

{1
2e

2
− + e− ⊗ v + te+e− + p0} ∈ g/p0 has a unique representative in Ĉ.

From all of this it now follows that G acts transitively on R, and
the stabilizer of the pair (e2+,

1
2e

2
− + p0) equals the stabilizer of the pair

(e2+,
1
2e

2
−) which is H by Proposition 2.7 as Z(G) = {1}. Thus, R = G/H

as claimed.
The fibers of the homogeneous fibrations R → Ĉ and R → C are

connected, and since R = G/H and H is connected, it follows that the

stabilizers of e2+ ∈ Ĉ and [e2+] ∈ C are connected as well. Since the
Lie algebras of these stabilizers are evidently p0 and p, respectively, the
claim follows. q.e.d.

For each a ∈ g we define the vector fields a∗ ∈ X(C) and â∗ ∈ X(Ĉ)
corresponding to the infinitesimal action of a, i.e.

(26) (a∗)[v] :=
d

dt

∣

∣

∣

∣

t=0

(exp(ta)·[v]) and (â∗)v :=
d

dt

∣

∣

∣

∣

t=0

(exp(ta)·v).

Note that a∗ is a contact symmetry and â∗ is its Hamiltonian lift. Let

(27)
Ĉa := {λ ∈ Ĉ | λ(a∗) ∈ R+(∈ C∗, respectively)} and

Ca := p(Ĉa) ⊂ C,

so that p : Ĉa → Ca is a principal R+-bundle (C∗-bundle, respectively)
and the restriction of a∗ to Ca is a positively transversal contact sym-
metry. Therefore, we obtain the section σa : Ca → R = G/H from
(22).

Let π : G → G/H = R be the canonical projection, and let Γa :=
π−1(σa(Ca)) ⊂ G. Then evidently, the restriction π : Γa → σa(Ca) ∼= Ca
is a (right) principal H-bundle.

Theorem 3.4. Let a ∈ g be such that Ca ⊂ C from (27) is non-empty,

define a∗ ∈ X(C) and â∗ ∈ X(Ĉ) as in (26), and let π : Γa → Ca with
Γa ⊂ G be the principal H-bundle from above. Then there are functions
ρ : Γa → h, u : Γa → V , f : Γa → F such that

(28) Adg−1(a) =
1

2
e2− + ρ+ e+ ⊗ u+

1

2
fe2+

for all g ∈ Γa. Moreover, the restriction of the components µ−2 +
µ−1 +µh of the Maurer-Cartan form (24) to Γa yields a pointwise linear
isomorphism TΓa → h ⊕ g−1 ⊕ g−2, and if we decompose this coframe
as

µ−2 + µ−1 + µh = −2κ

(

1

2
e2− + ρ

)

+ e− ⊗ θ + η,

where κ ∈ Ω1(Γa), θ ∈ Ω1(Γa) ⊗ V, η ∈ Ω1(Γa) ⊗ h,
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then κ = −1
2π

∗(λ) where λ ∈ Ω1(Ca) is the contact form for which
σa = (λ, â∗). Moreover, we have the structure equations

(29) dκ =
1

2
ω(θ ∧ θ),

and

(30)
dθ + η ∧ θ = 0,

dη + 1
2 [η, η] = Rρ(θ ∧ θ),

dρ+ [η, ρ] = u ◦ θ

du+ η · u = (ρ2 + f) · θ

df + d(ρ, ρ) = 0.

Proof. According to the above identifications, we have g ∈ Γa iff
(g · e2+, g · (1

2e
2
− + p0)) = σa([g · e2+]) iff g · (1

2e
2
− + p0) = (â∗)g·e2

+
iff

(Adg−1(â∗))e2+ = 1
2e

2
− mod p0 iff Adg−1(a) = 1

2e
2
− mod p0, i.e.

(31)

Γa =
{

g ∈ G
∣

∣ Adg−1(a) ∈ Q
}

,where

Q := 1
2e

2
− + p0 =







1
2e

2
− + ρ+ e+ ⊗ u+ 1

2fe
2
+

∣

∣

∣

∣

∣

∣

ρ ∈ h,
u ∈ V,
f ∈ F







,

and from this (28) follows. Thus, if dLgv ∈ TgΓa with v ∈ g, then we
must have

p0 ∋ d

dt

∣

∣

∣

∣

t=0

(

Ad(g exp(tv))−1(a)
)

= −[v,Adg−1(a)]

= −
[

v,
1

2
e2− + ρ+ e+ ⊗ u+

1

2
fe2+

]

,

and from here it follows by a straightforward calculation that v must
be contained in the space

(32) FAdg−1a⊕
{

e− ⊗ x+ e+ ⊗ ρx+
1

2
ω(u, x)e2+

∣

∣

∣

∣

x ∈ V

}

⊕ h,

and since v was arbitrary, it follows that µ(TgΓa) is contained in (32). In
fact, a dimension count yields that dim(µ(TgΓa)) = dimΓa = dim Ca +
dim H coincides with the dimension of (32), hence (32) equals µ(TgΓ),
i.e. µ−2+µ−1+µh : TΓa → g−2⊕g−1⊕h yields a pointwise isomorphism.

Let ξa denote the right invariant vector field on G characterized by
µ(ξa) = Adg−1(a). Then the flow of ξa is left multiplication by exp(ta)
and hence evidently leaves Γa invariant. Moreover, by (32) we have

(33) L∗
ξa

(µ) = 0, and dρ(ξa) = du(ξa) = df(ξa) = 0.

Let us write the components of the Maurer-Cartan form µ as

µ±2 := κ±e
2
±, µ±1 := e± ⊗ α±, µ0 := νe+e− + µh
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with κ±, ν ∈ Ω1(G), α± ∈ Ω1(G)⊗V and µh ∈ Ω1(G)⊗h. Now µ(TΓa)
is given by (32) so that by (28), the restriction of µ to Γa satisfies

ν = 0, α+ = ρα− − 2uκ, κ+ = 1
2ω(u, θ) − 2fκ µh = η − 2κρ,

where κ := −κ−, θ := α− and η := µh + 2κρ. Substituting this into the

Maurer-Cartan equation dµ+ 1
2 [µ, µ] = 0, a straightforward calculations

yields (29) and
(34)

dθ + η ∧ θ = 0,

dη + 1
2 [η, η] −Rρ(θ ∧ θ) = −2κ ∧ (dρ+ [η, ρ] − u ◦ θ),

(dρ+ [η, ρ] − u ◦ θ) ∧ θ = −2κ ∧ (du+ η · u− (ρ2 + f) · θ),

ω(du+ η · u− (ρ2 + f) · θ, θ) = −2κ ∧ (df + d(ρ, ρ)).

By (33), we have θ(ξa) = η(ξa) = 0, κ(ξa) ≡ −1
2 , and ξa dθ =

ξa dη = 0. Thus, the contraction of the left hand sides of (34) with ξa
vanishes, and from there, (30) follows.

Note that dp(ξa) = â∗, where p : Γa → Ĉ is the canonical projection,
and from (28) it follows that λ(a∗) = −2κ(ã∗) ≡ 1, so that (λ, â∗) ∈ R

which shows that κ = −1
2π

∗(λ). q.e.d.

With these structure equations, we are now ready to prove the follow-
ing result which immediately implies Theorem A of the introduction.

Theorem 3.5. Let a ∈ g and Ca ⊂ C as before. Let U ⊂ Ca be a
regular open subset , i.e. the local quotient MU := Tloc

a \U is a manifold,
where

Ta := exp(Fa) ⊂ G.

Let ω ∈ Ω2(M) be the symplectic form from (23). Then MU carries a
canonical special symplectic connection associated to g, and the (local)
principal Ta-bundle π : U → M admits a connection κ ∈ Ω1(U) whose
curvature is given by dκ = π∗(ω).

Proof. Let us consider the commutative diagram

(35) Γa
Ta //

H
��

Ta\Γa
H

��

Ca
Ta // Ta\Ca

where the maps π : Γa → Ta\Γa and Γa → Ca are principal bundles with
the indicated structure groups, whereas the arrows Ta\Γa → Ta\Ca and
Ca → Ta\Ca stand for fibrations with a locally free, but not necessarily
free group action of the indicated structure group.
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It follows now immediately from (29) and (30) that θ + η and κ are
the pull backs of one forms on Ta\Γa and Ca, respectively, and we shall
by abuse of notation denote these forms by the same symbols.

Let U ⊂ Ca be a regular open subset, let ΓU := π−1(U) ⊂ Γa and
B := Tloca \ΓU be the corresponding subsets. It follows then that the
induced commutative diagram

ΓU
Tloc

a //

H
��

B

H
��

U
Tloc

a // M

consists of (local) principal bundles, and B and U carry a V ⊕ h-valued
coframe θ+ η and a one form κ, respectively, satisfying dκ = π∗(ω) and
(30), where ω ∈ Ω2(M) is the canonically induced symplectic form from
(23).

Standard arguments now show that B → M is an H-structure with
tautological one form θ, and η defines a connection on M . By (30), this
connection is torsion free and its curvature is given by Rρ(θ ∧ θ), i.e.
this connection is special symplectic in the sense of Definition 2.15.

q.e.d.

Remark 3.6. If we replace a by a′ := Adg0(a), then it is clear that
in the above construction we have Γa′ = Lg0Γa. Thus, identifying Γa
and Γa′ via Lg0, the functions ρ + µ + f and the forms κ + θ + ω will
be canonically identified and hence both satisfy (30). Therefore, the
connections from the preceding theorem only depend on the adjoint orbit
of a.

Also, let et0 with t0 ∈ F. Since Ca = Cet0a and Ta = Tet0a, the above
construction yields equivalent connections when replacing a by et0a. In
this case, however, the symplectic form ω on the quotient will be replaced
by e−t0ω.

4. The structure equations

In this section, we shall revert the process of the preceding section,
showing that any special symplectic connection is equivalent to the ones
given in Theorem 3.5 in a sense which is to be made precise. We begin
by deriving the structure equations for special symplectic connections.

Proposition 4.1. Let (M,ω,∇) be a (real or complex) symplectic
manifold of dimension ≥ 4 with a special symplectic connection of reg-
ularity C4 associated to the Lie algebra g, and let h ⊂ g be as before.
Then there is an associated H̃-structure π : B → M on M which is
compatible with ∇, where H̃ ⊂ Sp(V, ω) is a Lie subgroup with Lie al-
gebra h, and there are maps ρ : B → h, u : B → V and f : B → F,
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where F = R or C, such that the tautological form θ ∈ Ω1(B) ⊗ V , the
connection form η ∈ Ω1(B)⊗ h and the functions ρ, u and f satisfy the
structure equations (30).

To slightly simplify our arguments, we shall assume that H̃ = H is
connected, which can be achieved by passing to an appropriate covering
of M . However, our results (and in particular Theorem B) also hold if

H̃ is not connected.
For clarification, we restate the structure equations (30) as follows. If

for h ∈ h and x ∈ V we let the vector fields ξh, ξx ∈ X(B) be the vector
fields which are characterized by

(36) θ(ξh) ≡ 0, η(ξh) ≡ h and θ(ξx) ≡ x, η(ξx) ≡ 0,

then for all h, l ∈ h and x, y ∈ V ,

(37)

[ξh, ξl] = ξ[h,l], [ξh, ξx] = ξhx,

[ξx, ξy] = −2ω(x, y)ξρ − ξx◦ρy + ξy◦ρx

ξh(ρ) = −[h, ρ], ξx(ρ) = u ◦ x,

ξh(u) = −hu, ξx(u) = (ρ2 + f)x,

ξh(f) = 0, ξx(f) = −2ω(ρu, x)

The proof can be found e.g. in [BC1] for the case of connections
of Ricci type, in [S3] for the case of the special symplectic holonomies
and in [Br2] in the case of Bochner Kähler metrics. But for the sake
of completeness (and since our notation here is slightly different) we
restate it here.

Proof. Let F be the H-structure on the manifold M , and denote the
tautological and the connection 1-form on F by θ and η, respectively.
Since by hypothesis, the curvature maps are all contained in Rh, it
follows that there is an H-equivariant map ρ : B → h such that the
curvature at each point is given by Rρ with the notation from (14).
Thus, we have the structure equations

(38)
dθ + η ∧ θ = 0
dη + 1

2 [η, η] = Rρ · (θ ∧ θ),
The H-equivariance of ρ yields that ξh(ρ) = −[h, ρ] for all h ∈ h. More-
over, since the covariant derivative of the curvature is represented by

ξx(ρ) for all x ∈ V and this must lie in R(1)
h , it follows by Proposi-

tion 2.12 that ξx(ρ) = u ◦ ρ for some H-equivariant map u : B → V ,
which shows the asserted formula

(39) dρ+ [η, ρ] = u ◦ θ.
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Since u is H-equivariant, it follows that ξh(u) = −hu for all h ∈ h.
Also, differentiation of (39) yields that for all x, y ∈ V

(

ξxu− ρ2x
)

◦ y =
(

ξyu− ρ2y
)

◦ x.
Thus, by Lemma 2.14 it follows that there is a smooth function f : B →
F for which ξxu− ρ2x = fx for all x ∈ V so that

(40) du+ η · u = (ρ2 + f)θ.

Finally, taking the exterior derivative of (40) yields that df+d(ρ, ρ) = 0.
q.e.d.

It is now our aim to construct the equivalent to the line bundle Γ → B
from the preceding section. Motivated by (31) and (32), we define the
following function A and one form σ

(41)
A : B −→ Q ⊂ g, A := 1

2e
2
− + ρ+ e+ ⊗ u+ 1

2fe
2
+,

σ ∈ Ω1(B) ⊗ g, σ := e− ⊗ θ + η + e+ ⊗ (ρθ) + 1
2ω(u, θ)e2+,

where Q := 1
2e

2
− + p0 ⊂ g is the affine hyperplane from (31). It is then

straightforward to verify that (30) is equivalent to

(42) dA = −[σ,A] and dσ +
1

2
[σ, σ] = 2π∗(ω)A.

Let us now enlarge the principal H-bundle B → M to the principal
G-bundle

B := B ×H G −→M,

where H acts on B × G from the right by (b, g) · h := (b · h, h−1g),
using the principal H-action on B in the first component. Evidently,
the inclusion B × H →֒ B × G induces an embedding B →֒ B.

Proposition 4.2. The function A and the one form α defined by

(43)
A : B −→ g, A[(b, g)] := Adg−1(A(b)),

α ∈ Ω1(B) ⊗ g, α[(b,g)] := Adg−1σb + µ,

on B are well defined, where µ = g−1dg ∈ Ω1(G)⊗g is the left invariant
Maurer-Cartan form on G, and the restriction of A to B ⊂ B coincides
with A. Moreover, α yields a connection on the principal G-bundle
B →M which satisfies

(44) dA = −[α,A] and dα+
1

2
[α,α] = 2π∗(ω)A.
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Proof. First, note that A : B → H and σ ∈ Ω1(B) ⊗ g are H-
equivariant, i.e. R∗

hA = Adh−1A and R∗
hσ = Adh−1σ. Thus, if we

define the function Â and the one form α̂ by

Â := Adg−1(A) : B × G −→ g

α̂ := Adg−1σ + µ ∈ Ω1(B × G) ⊗ g,

then Â(bh, h−1g) = Â(b, g), so that Â is the pull back of a well defined
function A : B → g. Also, α̂ is invariant under the right H-action from
above, and for h ∈ h we have

α̂((ξh)b, dRg(−h)) = Adg−1(σb(ξh)) − µ(dRg(h))

= Adg−1(h) − Adg−1(h) = 0,

so that α̂ is indeed the pull back of a well defined form α ∈ Ω1(B) ⊗ g.
Moreover, R∗

g(α̂) = Ad−1
g α̂ is easily verified, and since α̂ coincides with

µ on the fibers of the projection B × G → B, it follows that the value
of α̂ on each left invariant vector field on G is constant. Since the left
invariant vector fields generate the principal right action of the bundle
B × G → B, it follows that α̂ is a connection on this bundle, hence so
is α on the quotient B →M .

Finally, to show (44) it suffices to show the corresponding equations

for α̂ and Â. We have

dÂ = −[µ,Adg−1(A)] + Adg−1(dA) = −[µ, Â] − Adg−1([σ,A])

= −[µ, Â] − [Adg−1σ, Â] = −[α̂, Â]

by (42), and

dα̂+
1

2
[α̂, α̂] = (−[µ,Adg−1σ] + Adg−1dσ + dµ)

+
1

2
(Adg−1 [σ, σ] + 2[µ,Adg−1σ] + [µ, µ])

= Adg−1(dσ +
1

2
[σ, σ]) + dµ+

1

2
[µ, µ]

= Adg−1(2π∗(ω)A) = 2π∗(ω)Â,

where the second to last equation follows from the Maurer-Cartan equa-
tion and (42). q.e.d.

Proof of Theorem B. Let M̂ ⊂ B be a holonomy reduction of α, and let
T̂ ⊂ G be the holonomy group, so that the restriction M̂ →M becomes
a principal T̂-bundle. By the first equation of (44), it follows that

M̂ ⊂ A−1(a) for some a ∈ g, and by choosing the holonomy reduction
such that it contains an element of B ⊂ B, we may assume w.l.o.g. that
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a ∈ Q. We let

(45)
Ŝ := Stab(a) = {g ∈ G | Adga = a} ⊂ G and

ŝ := z(a) = {x ∈ g | [x, a] = 0},
so that Ŝ ⊂ G is a closed Lie subgroup whose Lie algebra equals ŝ.
Observe that the restriction A−1(a) →M is a principal Ŝ-bundle, hence

we conclude that T̂ ⊂ Ŝ. Moreover, on M̂ , we have

α̂ = 2κa

for some κ ∈ Ω1(M̂ ) which by (44) satisfies dκ = π∗(ω). In particular,
the Ambrose-Singer Holonomy theorem implies that Ta = exp(Fa) ⊂ G

is the identity component of T̂ which is thus a one dimensional (possibly

non-regular) subgroup of Ŝ, and κ yields the desired connection form on

the principal T̂-bundle M̂ →M which shows the first part.
Define Ca ⊂ C as in (27) and Γa ⊂ G and Q ⊂ g as in (31), and let

(46) B̂ := p−1(M̂ ) ⊂ B × G,

where p : B × G → B ×H G = B is the canonical projection. Then the
restriction of the map

ı : B × G −→ G, ı(b, g) := g−1

satisfies ı(B̂) ⊂ Γa; indeed, since A(M̂ ) ≡ a, it follows that Adg−1A(b) =

a for all (b, g) ∈ B̂ and hence Adga = A(b) ∈ Q, so that g−1 ∈ Γa. Since
2κa = α̂ = Adg−1σ + µ, it follows by (41) that

ı∗(µ) = −Adgµ = −2κAdga+ σ

= −2κA+ e− ⊗ θ + η + e+ ⊗ (ρθ) +
1

2
ω(u, θ)e2+,

and hence

ı∗(µ) = −2κ

(

1

2
e2− + ρ

)

+ e− ⊗ θ + η mod g1 ⊕ g2.

Comparing this equation with the structure equations in Theorem 3.4,
it follows that the induced map ı̂ : M̂ = B̂/H → Ca = Γa/H is a

local diffeomorphism and the induced map ı : M̃ := T\M̂ → Ta\Ca
is connection preserving, where Ta\Ca is (locally) equipped with the
special symplectic connection from Theorem 3.5. q.e.d.

Remark 4.3. The proof of Theorem B generalizes immediately to
orbifolds. Namely, if M is an orbifold, then a special symplectic orbifold
connection consists of an almost principal H-bundleB →M , i.e. H acts
locally freely and properly on B such that M = B/H, and a coframing
θ + η ∈ Ω1(B) ⊗ (V ⊕ h) on B such that η(ξh) ≡ h ∈ h and θ(ξh) ≡ 0
for all infinitesimal generators ξh of the H-action, and such that the
structure equations (38) hold for some function ρ : B → h.
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Now the proofs of Propositions 4.1 and 4.2 as well as the proof of
Theorem B go through verbatim as we never used the freeness of the
H-action on B. In particular, the holonomy reduction M̂ is a manifold
on which T̂ acts locally freely, and M = T̂\M̂ as an orbifold.

5. Symmetries and compact special symplectic manifolds

Definition 5.1. Let (M,∇) be a manifold with a connection. A
(local) symmetry of the connection is a (local) diffeomorphism φ : M →
M which preserves ∇, i.e. such that ∇dφ(X)dφ(Y ) = dφ(∇XY ) for all

vector fields X,Y on M . An infinitesimal symmetry of the connection
is a vector field ζ on M such that for all vector fields X,Y on M we
have the relation

[ζ,∇XY ] = ∇[ζ,X]Y + ∇X [ζ, Y ].

Furthermore, let π : B → M be an H-structure compatible with
∇, and let θ, η denote the tautological and the connection form on B,
respectively. A (local) symmetry on B is a (local) diffeomorphism φ :
B → B such that φ∗(θ) = θ and φ∗(η) = η. An infinitesimal symmetry
on B is a vector field ζ on B such that Lζ(θ) = Lζ(η) = 0.

The ambiguity of the terminology above is justified by the one-to-one
correspondence between (local or infinitesimal) symmetries on M and
B. Namely, if φ : M →M is a (local) symmetry, then there is a unique
(local) symmetry φ : B → B with π◦φ = φ◦π, and vice versa. Likewise,
for any infinitesimal symmetry ζ on M , there is a unique infinitesimal
symmetry ζ on B such that ζ = dπ(ζ).

The infinitesimal symmetries form the Lie algebra of the (local) group
of (local) symmetries. We also observe that an infinitesimal symmetry
on B is uniquely determined by its value at any point. (The correspond-
ing statement fails for infinitesimal symmetries on M in general.)

Proof of Corollary C. The first part follows immediately from Theo-
rem B since Ca ⊂ C is an open subset of the analytic manifold C, and
the action of Ta on Ca is analytic as well. Also, the C4-germ of the
connection at a point determines uniquely the G-orbit of a ∈ g by (30)
and hence the connection by Theorem B.

Note that the generic element a ∈ g is G-conjugate to an element in
the Cartan subalgebra which is uniquely determined up to the action
of the (finite) Weyl group. Since multiplying a ∈ g by a scalar does
not change the connection, it follows that the generic special symplectic
connection associated to g depends on (rk(g) − 1) parameters.

For the second part, by virtue of Theorem B it suffices to show the
statement for manifolds of the form M = MU where U ⊂ Ca is a regular
open subset for some a ∈ g. Let ΓU ⊂ Γa ⊂ G be the H-invariant subset
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such that we have the principal H-bundle ΓU → U , and let BU := Ta\ΓU
so that BU →MU is the associated H-structure.

Let x ∈ ŝ, and denote by ζ̂x the right invariant vector field on G
corresponding to −x, so that the map x 7→ ζ̂x is a Lie algebra homo-
morphism. Then L

ζ̂x
(µ) = 0 where µ denotes the Maurer-Cartan form.

By (31), it follows that the restriction of ζ̂x to Γa is tangent, and since

ΓU ⊂ Γa is open, we may regard ζ̂x as a vector field on ΓU . Since
ζ̂x commutes with the action of Ta, it follows that there is a related
vector field ζx on the quotient BU = Tloc

a \ΓU , and since the tautolog-
ical and curvature form of the induced connection on BU pull back to
components of µ, it follows that ζx is an infinitesimal symmetry on BU .

Conversely, suppose that ζ is an infinitesimal symmetry on BU . Since
an infinitesimal symmetry must preserve the curvature and its covariant
derivatives, we must have ζ(A) = 0. But the tangent of the fiber of the
map A : ΓU → g is spanned by the vector fields ζx, x ∈ ŝ, and since
infinitesimal symmetries are uniquely determined by their value at a
point, it follows that ζ = ζx for some x ∈ ŝ.

Finally, it is evident that ζx = 0 iff ζ̂x is tangent to Ta iff x ∈ Fa,
hence the claim follows. q.e.d.

The rest of this section shall be devoted to the study of compact
simply connected manifolds with special symplectic connections. In fact,
the main result which we aim to prove is the following

Theorem 5.2. Let g be a 2-gradable simple Lie algebra, let G be the
connected Lie group with Lie algebra g and trivial center, and let Ŝ ⊂ G
be a maximal compact subgroup. Then C = Ŝ/K for some compact

subgroup K ⊂ Ŝ where C ⊂ Po(g) is the root cone. Moreover, let T ⊂ Ŝ

be the identity component of the center of Ŝ. Then the following are
equivalent:

1) There is a compact simply connected symplectic manifold M with
a special symplectic connection associated to the simple Lie algebra
g.

2) g is a real Lie algebra and dimT = 1, i.e. T ∼= S1.
3) g is a real Lie algebra and T 6= {e}.
If these conditions hold then T\C ∼= Ŝ/(T ·K) is a compact hermitian

symmetric space, and the map ı : M → T\C from Theorem B is a con-
nection preserving covering. Thus, M is a hermitian symmetric space
as well.

This theorem allows us to classify all compact simply connected man-
ifolds with special symplectic connections, as the maximal compact sub-
groups of semisimple Lie groups are fully classified (e.g. [OV]). Thus,
we obtain Theorem D from the introduction as an immediate conse-
quence.
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The proof of Theorem 5.2 will be split up into several steps. First,
we observe the following

Lemma 5.3. If the connected Lie group G acts transitively on the
compact manifold X, then so does any maximal compact subgroup Ŝ ⊂
G.

Thus, we can write the root cone as C = Ŝ/K for some compact

subgroup K ⊂ Ŝ as asserted in Theorem 5.2.

Proof. Let X = G/H as a homogeneous space, and let K ⊂ H be
a maximal compact Lie subgroup. Then there is a maximal compact
Lie subgroup Ŝ ⊂ G which contains K. Since the inclusions Ŝ →֒ G
and K →֒ H are homotopy equivalences, standard homotopy arguments
imply that the inclusion Ŝ/K →֒ X is also a homotopy equivalence. In
particular, since both spaces are compact, they have equal dimension,
so that Ŝ/K = G/H. q.e.d.

Let us now suppose that M is real. The proof that the first con-
dition in Theorem 5.2 implies the second and that in this case M is
the universal cover of the hermitian symmetric space T\C is pursued in
Lemmas 5.4 through Proposition 5.12.

Lemma 5.4. Let M be a compact real simply connected manifold
with a special symplectic connection associated to the real Lie algebra g,
and let a ∈ g, Ta ⊂ G and Ca ⊂ C as in Theorem 3.5. Then Ta ∼= S1

and Ca = C. Moreover, Ta acts freely on the universal cover C̃ of C, and
M = Ta\C̃.

Proof. If M is simply connected, then by Theorem B from the intro-
duction there is an a ∈ g and a principal Ta-bundle π : M̂ → M with
a connection form κ whose curvature equals dκ = π∗(ω). Thus, π∗(ω)
is exact, while ω cannot be exact if M is compact. This implies that
π cannot be a homotopy equivalence, i.e. Ta cannot be contractible,
hence Ta

∼= S1. Thus, M̂ is also compact, hence the local diffeomor-
phism ı̂ : M̂ → C from (1) must be surjective and a finite Ta-equivariant
covering. In particular, Ca = C.

Therefore, there is a Ta-equivariant covering C̃ → M̂ , where C̃ is the
universal cover of C, and since Ta acts freely on M̂ , it acts also freely on
C̃. Thus, the induced map Ta\C̃ → Ta\M̂ = M must also be a covering,
hence a diffeomorphism as M is simply connected. q.e.d.

We continue with the investigation of two special classes of examples.

Proposition 5.5. For g := su(p + 1, q + 1) with p + q ≥ 1, there
are two orbits of maximal root vectors which are negatives of each other
and are hence denoted by C and −C. Moreover, these orbits are simply
connected.
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Let a ∈ g be such that Ta ∼= S1, Ca = C and the action of Ta on Ca is
free. Then a is conjugate to a scalar multiple of diag((q + 1)i, . . . , (q +
1)i,−(p+1)i, . . . ,−(p+1)i). In particular, Ta\C ∼= CPp×CPq with the
hermitian symmetric connection as described in Theorem E.

Proof. We let J : Cp+1,q+1 → Cp+1,q+1 be the g-equivariant complex
structure such that the metric g(x, y) := ω(Jx, y) has signature (p +
1, q + 1). Now g is a real form of sl(p + q + 2,C) whose maximal root
cone consists of all traceless endomorphisms of (complex) rank 1, hence
the same is true for g. The image of such an endomorphism must be a
null line, so that the maximal root cone of g consist of all endomorphisms
of the form

{αx | x 6= 0, g(x, x) = 0}∪̇{−αx | x 6= 0, g(x, x) = 0} =: Ĉ∪̇(−Ĉ),

where

αx(v) := g(v, x)Jx − g(v, Jx)x.

Observe that αλx = |λ|αx for all λ ∈ C∗, hence the projectivizations ±C
of ±Ĉ consist of all null lines in Cp+1,q+1.

Decomposing Cp+1,q+1 = Cp+1,0⊕C0,q+1 =: C+⊕C−, each null vector
can be written as x = x+ + x− with x± ∈ C± and ||x+|| = ||x−||. In
particular, C = (S2p+1×S2q+1)/diag(S1), and a glance at the homotopy
exact sequence now implies that C is simply connected for p+ q ≥ 1.

Let a ∈ g be such that Ta
∼= S1. Then a is conjugate to an element of

the form diag(iθ0, . . . iθp, iψ0, . . . , iψq). If we denote the standard basis
of Cp+1,q+1 by e0, . . . , ep, f0, . . . , fq, then x = er+fs is a null vector and

(a, x◦x) = θr−ψs. Since x◦x ∈ Ĉ, this implies that θr > ψs for all r, s.
Consider T := exp(2π/(θr − ψs)a) ∈ Ta. We have T (er + fs) =

exp(2πiθr/(θr − ψs))(er + fs) so that T fixes C(er + fs) ∈ C. Thus,
since Ta acts freely on C, it follows that T = exp(2πiθr/(θr − ψs))Id,
which implies that exp(2πiθt/(θr − ψs)) = exp(2πiψu/(θr − ψs)) =
exp(2πiθr/(θr − ψs)) for all t, u. Therefore, (θt − ψu)/(θr − ψs) ∈ Z

for all r, s, t, u, and by switching (r, s) and (t, u) we conclude that
(θt − ψu)/(θr − ψs) = ±1. But θt − ψu, θr − ψs > 0, whence this
quotient must equal 1 for all r, s, t, u, so that θr = θt and ψs = ψu for
all r, s, t, u, hence a must be of the asserted form, and the remaining
statements now follow from the construction of the special symplectic
connection. q.e.d.

Evidently, there is no need to consider both maximal root orbits C
and −C, since one is obtained from the other by replacing the symplectic
form ω (or the complex structure J) by its negative which is irrelevant
for our purposes. An analogous remark applies to the following case.

Proposition 5.6. For g := sp(n + 1,R) with n ≥ 2, there are two
orbits of maximal root vectors which are negatives of each other and are
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hence denoted by C and −C. Moreover, C and −C are diffeomorphic to
RP2n+1 and therefore have fundamental group Z2.

Let a ∈ g be such that Ta
∼= S1, Ca = C and the action of Ta on

the universal cover C̃ ∼= S2n+1 is free. Then a = cJ for some c > 0,
where J is a complex structure on R2n+2 such that g(x, y) := ω(Jx, y)

is symmetric and positive definite. In particular, Ta\C̃ = Ta\C ∼= CPn

with the hermitian symmetric connection as stated in Theorem E.

Proof. Since the conjugatets of the maximal root vectors in sp(n +
1,R) are the elements of rank one, the maximal root cone can be written
as {x ◦ x | x 6= 0}∪̇{−x ◦ x | x 6= 0} =: C∪̇ − C, where the product

◦ : S2(Rn+1) → sp(n + 1,R) is given in (11). Thus, ±C = ±Ĉ/R+ ∼=
RP2n+1.

Let J ∈ sp(n + 1,R) be a complex structure such that ω(Jx, x) > 0
for all x 6= 0, and let a ∈ g be such that T = exp(Ra) ∼= S1. Then a is
conjugate to an element of the form Jdiag(θ1, . . . , θ2n+2), and Ca = C
implies that 0 < (a, x ◦ x) = ω(ax, x) which is equivalent to θi > 0 for
all i.

Consider T := exp(π/θia) ∈ Ta. We have T (ei) = −ei so that T (if

we consider the action on C) or T 2 (if we consider the action on C̃) has
a fixed point. Thus, it follows that T (ej) = ±ej for all j which implies
that θj|θi for all j, and switching the roles of i and j, it follows that
θi = ±θj. But since θi > 0 for all i, we must have θi = θj , hence a is of
the asserted form, and the remaining statements follow. q.e.d.

In order to work towards the general case, we continue with the following

Lemma 5.7. Let g be a real 2-gradable simple Lie algebra with the
decomposition (4). Let a ∈ g be such that Ta

∼= S1 is a circle. Then a
is conjugate to an element of the form

(47)
c

2
(e2+ + e2−) + ρ0

with c ∈ R and ρ0 ∈ h.

Proof. Let TG ⊂ G be the maximal compact abelian subgroup con-
taining the circle SO(2) := exp(R(e2+ + e2−)). Since stab(e2+ + e2−) =
R(e2+ + e2−) ⊕ h, it follows that TG ⊂ SO(2) · H.

The lemma now follows since any subgroup of G isomorphic to S1 is
conjugate to a subgroup of TG. q.e.d.

Lemma 5.8. Let g be a real 2-gradable simple Lie algebra with the
decomposition (4), and let α0 ∈ ∆ be the long root with g±2 = g±α0

. Let
β ∈ ∆ be a root with 〈β, α0〉 = 1, and let β denote the conjugate root
w.r.t. the real form g. If we define

g<β> := g ∩
〈

g±α0
⊕ g±β ⊕ g±β

〉

,
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where < > denotes the generated Lie subalgebra, then g<β> is isomor-
phic to either sl(3,R), sp(2,R), g′2, su(1, 2), or so(2, 4) ∼= su(2, 2).

Proof. Since α0 is a real root, it follows that {α0, β, β} is invariant
under conjugation, hence g<β> is a real form of the complex simple Lie

algebra whose root system is generated by {α0, β, β}. Since g±α0
⊂

g<β>, it follows that g<β> is also 2-gradable, and the decomposition (4)

reads g<β> =
⊕2

i=−2(g<β> ∩ gi).

If β = β is a real root, then the root system generated by α0, β is
irreducible of rank two and contains only real roots, i.e. g<β> is the
split real form of type A2, B2 or G2 as listed above.

Therefore, for the rest of the proof we shall assume that β 6= β. Since
α0 is real, it follows that

〈

β, α0

〉

= 〈β, α0〉 = 1, hence β 6= −β and

thus β, β are linearly independent roots of equal length, so that they
generate a root system either of type A2 or of type A1 + A1. Since
this root system is invariant under conjugation, it follows that there is
a corresponding subalgebra ĝ<β> ⊂ g<β> which is a real form of either
sl(3,C) or so(4,C). This real form must contain roots which are neither
real nor purely imaginary since β 6= ±β. In particular, it is neither split
nor compact, and thus, the only real forms possible are su(1, 2) in the
first and so(1, 3) in the second case.

If ĝ<β> ∼= su(1, 2), then ĝ<β> is 2-gradable, and hence the root system

generated by β, β must contain a real root. This implies that β+β ∈ ∆,
and since

〈

β + β, α0

〉

= 2, it follows that β + β = α0, i.e. ĝ<β> =
g<β> ∼= su(1, 2).

Let us now suppose that ĝ<β> ∼= so(1, 3). We assert that in this

case, β must be a long root. For if β and hence β are short, then
〈β, α0〉 =

〈

β, α0

〉

= 1 implies that β + β = α0 so that the root system

generated by {α0, β, β} is irreducible of rank two with roots of different
length, i.e. g<β> is a 2-gradable real form with root system B2 or G2.
However, by Table 1 on page 240, the only 2-gradable real forms of these
root systems are the split forms which have only real roots, contradicting
that β 6= β.

Thus, we are left with the case where ĝ<β> ∼= so(1, 3) and β ∈ ∆ is a

long root. Then
〈

β, β
〉

= 0, and the intersections

W± := g ∩ (g±α0
⊕ g±(α0−β) ⊕ g±(α0−β) ⊕ g±(α0−β−β))

are ĝ<β>-modules. In fact, considering the weights of the action of ĝ<β>
on W± implies that W±

∼= R1,3 as a ĝ<β>-module, and one verifies that
[W+,W+] = [W−,W−] = 0, whereas [W+,W−] ⊂ ĝ<β> ⊕ RHα0

. It
follows now that (g<β>, ĝ<β> ⊕ RHα0

) is an irreducible symmetric pair
whose isotropy representation coincides with that of the symmetric pair
(so(2, 4), so(1, 3)⊕so(1, 1)), hence these symmetric pairs are isomorphic.
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In particular, we have g<β> ∼= so(2, 4) ∼= su(2, 2) which completes the
proof. q.e.d.

Lemma 5.9. Let g be one of the real Lie algebras from Lemma 5.8,
and let a ∈ g be such that Ta

∼= S1. Define Ca ⊂ C as in (27). Then

1) If g ∼= sl(3,R), g′2 then Ca ( C is a proper subset for any such
a ∈ g.

2) Let g ∼= sp(2,R), su(1, 2), su(2, 2) and C̃ be the universal cover

of C. If Ca = C and the (lifted) action of Ta on C̃ is free, then
the action of Ta on C is free and a is conjugate to an element of
the form (47) with c > 0, ρ2

0 = −c2IdV and ω(ρ0x, x) > 0 for all
0 6= x ∈ V .

Proof. By Lemma 5.7, we may assume that a is of the form (47).
Since sl(3,R), g′2 are split real forms, it follows that gβ ⊂ V1 ∩ C for all
long roots β with 〈β, α0〉 = 1, hence V1 ∩C 6= ∅, whereas (a, V1 ∩C) = 0.
Thus, Ca 6= C.

The second part now follows immediately from Propositions 5.5 and
5.6 where the explicit form of a was given. q.e.d.

This lemma now allows us to treat the general case. Namely we have

Lemma 5.10. Let g be a 2-gradable real Lie algebra, and let a ∈ g

be such that Ta ∼= S1, Ca = C and that the action of Ta on the universal
cover of C is free. Then a is conjugate to an element of the form (47)
with c > 0, ρ2

0 = −c2IdV and ω(ρ0x, x) > 0 for all 0 6= x ∈ V .

Proof. Lemma 5.7 allows us to assume that a is of the form (47).
Indeed, we may assume that ρ0 is contained in the Cartan subalgebra
of hC, so that the Lie subalgebras g<β> ⊂ g from Lemma 5.8 are Ta-
invariant.

Let G be a connected Lie group with Lie algebra g and let G<β> ⊂ G
be the connected Lie subgroup with Lie algebra g<β> ⊂ g. Then Cβ :=
G<β> · e2+ ⊂ C is Ta-invariant, and (Cβ)a = Cβ ∩ Ca = Cβ as Ca = C.
Thus, since Cβ is the cone of maximal roots of g<β>, by Lemma 5.8 and
the first part of Lemma 5.9 we conclude that g<β> ∼= sp(2,R), su(1, 2)
or su(2, 2).

The inverse image M̂<β> := ı̂−1(Cβ) ⊂ M̂ with the covering ı̂ : M̂ →
C from (1) must also be Ta-invariant, and every connected component

of M̂<β> is a covering of Cβ. Since Ta acts freely on M̂<β> ⊂ M̂ , it
follows from the second part of Lemma 5.9 that c > 0, ρ2

0|V<β>
= −c2Id

and ω(ρ0x, x) > 0 for all 0 6= x ∈ V<β>, where V<β> ⊂ V is defined by
the relation e± ⊗ V<β> = g<β> ∩ g±1.

The claim now follows since V is the direct sum of the V<β>, and for
all β, γ ∈ ∆ with 〈β, α0〉 = 〈γ, α0〉 = 1 and V<β> ∩ V<γ> = 0 we have
ω(V<β>, V<γ>) = 0. q.e.d.
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Lemma 5.11. Let g be a 2-gradable real Lie algebra, and let a ∈ g

be of the form (47) with c > 0, ρ2
0 = −c2IdV and ω(ρ0x, x) > 0 for all

0 6= x ∈ V . Then

(48)
ŝ = stab(a) := {x ∈ g | [x, a] = 0}

= Ra⊕ k ⊕ {c(e+ ⊗ x) − (e− ⊗ ρ0x) | x ∈ V },
where k := {h ∈ h | [h, ρ0] = 0}. Moreover, ŝ ∼= Ra ⊕ s, where s is a
compact semisimple Lie algebra, and (ŝ,Ra⊕k) is a hermitian symmetric
pair. Also, ŝ ⊂ g is a maximal Lie subalgebra.

Proof. It is straightforward to verify (48) and z(ŝ) = Ra, and that
(ŝ,Ra ⊕ k) is a hermitian symmetric pair. Also, note that k is the Lie
algebra of the compact group K = H ∩ U(V, 1/c ρ0). Thus, there is
a positive definite adk-invariant metric on g, so that ad2

h : g → g is
negative semidefinite for all h ∈ k and hence B(h, h) = tr(ad2

h) ≤ 0 with
equality iff adh = 0 iff h = 0 since g is simple and hence has trivial
center. Thus, (h, h) > 0 for all 0 6= h ∈ k by (9). Also, ((e+ ⊗x)− (e−⊗
ρ0x), (e+ ⊗ x) − (e− ⊗ ρ0x)) = 2ω(ρ0x, x) > 0 for all 0 6= x ∈ V , and
(e2++e2−, e

2
++e2−) = 4 > 0. Since e2++e2−, k and {c(e+⊗x)−(e−⊗ρ0x) |

x ∈ V } are orthogonal w.r.t. ( , ), it follows that ( , ) is positive definite
and ad-invariant on ŝ. Thus, adx : ŝ → ŝ is skew symmetric w.r.t. ( , )
for all x ∈ ŝ, so that Bŝ(x, x) = tr(ad2

x) ≤ 0 with equality iff x ∈ z(ŝ),
hence ŝ = z(ŝ) ⊕ s for a compact semisimple Lie algebra s as asserted.

To see that ŝ ⊂ g is a maximal subalgebra, let ŝ ⊂ g′ ( g be a
subalgebra. Considering the eigenspaces of ad(e2+ +e−)2, it follows that

g′ = (g′ ∩ sl(2,R)) ⊕ (g′ ∩ h) ⊕ (g′ ∩ R2 ⊗ V ).
But sl(2,R) and ŝ generate g, so it follows that g′∩ sl(2,R) = R(e2+ +

e2−). Also, if e+ ⊗ x ∈ g′, then [e+ ⊗ x, e+ ⊗ y − e− ⊗ ρ0y] ∈ g′ implies
ω(x, y) = 0, as one sees by looking at the sl(2,R)-component. Since
this is the case for all y ∈ V , it follows that g′ ∩ R2 ⊗ V = ŝ ∩ R2 ⊗ V .
Finally, if h ∈ g′ ∩ h then [h, e+ ⊗ x− e− ⊗ ρ0x] ∈ g′ ∩ R2 ⊗ V ⊂ ŝ, and
from here it follows that h ∈ k, so that g′ = ŝ as claimed. q.e.d.

Now we are ready to prove that in the real case, the first condition in
Theorem 5.2 implies the second, and that in this case M is hermitian
symmetric.

Proposition 5.12. Let M be a real compact simply connected mani-
fold with a special symplectic connection, and let a ∈ g be from The-
orem B. Then Ta\C is a hermitian symmetric space, and the map
ı : M → Ta\C is a connection preserving covering. Moreover, Ta is

the connected component of the center of Ŝ ⊂ G, where Ŝ is a maximal
compact subgroup of G.

Proof. By Lemma 5.11, it follows that the connected Lie subgroup
Ŝ ⊂ G with Lie subalgebra ŝ must be compact as Ta

∼= S1 is compact.
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Indeed, it is a maximal compact subgroup as ŝ ⊂ g is maximal, and
Ta ⊂ Ŝ is the connected component of its center.

Thus, if we write C = Ŝ/K by Lemma 5.3, then K has k = ŝ ∩ p as

its Lie algebra by (48), and hence Ta\C = Ŝ/(Ta · K) is a hermitian
symmetric space by Lemma 5.11, and the covering ı : M → Ta\C is
connection preserving. q.e.d.

Evidently, the second condition in Theorem 5.2 implies the third,
hence the real case will be finished with the following

Lemma 5.13. Let G be a real simple connected Lie group with 2-
gradable Lie algebra g and trivial center, and let Ŝ ⊂ G be a maximal
compact Lie subgroup whose center contains Ta = exp(Ra), some 0 6=
a ∈ g. Then - after changing a to its negative if necessary - we have
Ca = C, and the action of Ta on C is free. Moreover, Ta\C has finite
fundamental group.

By Theorem 3.5, it then follows that Ta\C carries a special sym-
plectic connection associated to g, hence so does its universal cover
M := (Ta\C)˜. Since Ta\C is compact and has finite fundamental group,
M is compact as well. Thus, the lemma shows that the third condition
in Theorem 5.2 implies the first.

Proof. Since G acts transitively on C, so does Ŝ by Lemma 5.3, hence
we can write C = Ŝ/K for some compact subgroup K ⊂ Ŝ. Let a ∈ g

be such that T = Ta and consider the corresponding contact symmetry
a∗ from (26). We assert that a∗ is transversal. For if there is a p ∈ C
with (a∗)p ∈ Dp, then dLg((a

∗)p) ∈ dLg(Dp) = Dg·p for all g ∈ Ŝ by the

Ŝ-equivariance of the contact structure. On the other hand,

dLg((a
∗)p) =

d

dt

∣

∣

∣

∣

t=0

g · exp(ta) · p =
d

dt

∣

∣

∣

∣

t=0

exp(tAdg(a)) · g · p = (a∗)g·p,

since Adg(a) = a for g ∈ Ŝ. Thus, (a∗)g·p ∈ Dg·p, and since Ŝ acts tran-
sitively on C, it follows that (a∗)q ∈ Dq for all q ∈ C. But a∗ is a contact
symmetry, hence this implies that a∗ ≡ 0 which is a contradiction.

Thus, λ(a∗) 6= 0 for all λ ∈ Ĉ and - after replacing a by its negative if

necessary - we may assume that λ(a∗) > 0 for all λ ∈ Ĉ, so that Ca = C.

Since Ta lies in the center of Ŝ and G acts effectively on C = Ŝ/K as G
has trivial center, it follows that Ta acts freely on C.

It now follows from Lemmas 5.10 and 5.11 that Ta ⊂ Ŝ is the con-
nected component of the center, hence the inclusion Ta·K →֒ Ŝ induces a
map with finite cokernel between the fundamental groups. Now the ho-
motopy exact sequence of the fibration Ta ·K →֒ Ŝ → Ŝ/(Ta ·K) = Ta\C
implies that Ta\C has finite fundamental group as claimed. q.e.d.

Finally, we need to deal with the complex case which we do in the
following
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Proposition 5.14. There are no compact simply connected complex
manifolds M with a special symplectic connection associated to a com-
plex simple Lie algebra g.

Proof. If M is such a manifold, then as in the proof of Lemma 5.4, we
conclude that the fibration M̂ →M cannot be a homotopy equivalence,
so that Ta

∼= C∗ and hence a ∈ g is semisimple. This means that the
eigenvalues of ada are all linearly dependent over Q, so that – after
replacing a by a suitable non-zero multiple – we may assume that all
these eigenvalues are integers. Thus, we may choose the split real form
gR ⊂ g such that a ∈ gR and TR

a := exp(Ra) ⊂ gR is isomorphic to R.
Let CR ⊂ P0(gR) be the projectivization of the root cone of gR, and

consider the Hopf fibration pr : P0(gR) → P0(g) which maps each real
line to the corresponding complex one. Then pr(CR) ⊂ C is a regular
submanifold which is diffeomorphic to either CR or CR/Z2. In particular,
the restriction pr : CR → pr(CR) is a regular covering. Also, as the
distribution D consists of complex subspaces, it follows that

pr
(

CR
a

)

= pr(CR) ∩ Ca,

so that the restriction pr : CR
a → pr(CR) ∩ Ca is also a regular covering.

In particular, pr(CR
a ) ⊂ Ca is a regular closed submanifold.

Recall the covering map ı̂ : M̂ → Ca from (1). Standard homotopy

arguments show that there is a manifold M̂R and regular coverings
ı̂R : M̂R → CR

a and p̃r : M̂R → ı̂−1(pr(CR) ∩ Ca) where ı̂R is equivariant
w.r.t. the action of TR

a ⊂ Ta. Note that TR
a acts freely and properly

discontinuously on M̂ and hence also on M̂R, so that MR := TR
a \M̂R

is a manifold. Hence, we obtain the following commutative diagram,
where the dotted lines indicate immersions which are regular covers of
their images with a deck group of order at most 2:

M̂R

TR
a

��

p̃r
))

ı̂R // CR
a

TR
a

��

pr

))
M̂

Ta

��

ı̂ // Ca

Ta

��

MR
ıR //

))

TR
a \CR

a

((

M
ı // Ta\Ca

Thus, Theorem B implies that MR carries a special symplectic con-
nection associated to gR, and the principal TR

a -bundle M̂R →MR coin-
cides with the one given in that theorem.
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But the image of the covering MR →M is a closed submanifold, and
since we assume that M is compact, it follows that MR is compact.
Thus, as in the proof of Lemma 5.4, we conclude that TR

a
∼= S1, which

is a contradiction as TR
a
∼= R by our choice of gR. q.e.d.
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Vol.II, Math. Phys. Stud. 22, 81–91 (2000), MR 1805906, Zbl 0983.53032.

[CGHR] M. Cahen, S. Gutt, J. Horowitz & J. Rawnsley, Homogeneous symplec-

tic manifolds with Ricci-type curvature, J. Geom. Phys. 38 No.2, 140–151
(2001), MR 1823665, Zbl 0999.53050.

[CGS] M. Cahen, S. Gutt & L.J. Schwachhöfer, Construction of Ricci-type con-
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