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Abstract

We classify nilmanifolds with an invariant symplectic half-flat structure. We study the transverse
or quotient geometry of six-manifolds with an SU(3)-structure preserved by a Killing vector field,
giving characterizations in the symplectic half-flat and integrable case.

1. Introduction

A half-flat manifold is a six-dimensional manifold endowed with an SU(3)-structure with intrin-
sic torsion that is symmetric. An SU(3)-structure defines a non-degenerate two-form ω, an
almost-complex structure J and a complex volume form �; the half-flat condition is equivalent
to requiring ω ∧ ω and the real part of � be closed [4]. Hypersurfaces in seven-dimensional mani-
folds with holonomy G2 have a natural half-flat structure, given by the restriction of the holonomy
group representation; the intrinsic torsion can then be identified with the second fundamental form.
Conversely, every real analytic half-flat manifold (M, ω, �), can be embedded isometrically as a
hypersurface in a manifold with holonomy contained in G2. Writing the G2 metric explicitly is a
matter of solving certain evolution equations. Hitchin [11] proved that such a solution can be viewed
as an integral line for a Hamiltonian flow on an infinite-dimensional symplectic space, namely the
product of cohomology classes [ω2] × [Re�].

Given a six-manifold M with an SU(3)-structure, one can consider the product G2-structure on
M × S1. Half-flat manifolds satisfying special conditions on this product G2-structure have been
studied: in [3, 5], the six-dimensional nilmanifolds carrying invariant SU(3)-structures of these types
have been classified. More generally, the problem of classifying nilmanifolds admitting invariant
half-flat structures is open.

In this paper, we focus on the symplectic case; that is to say, we take into consideration half-flat
structures for which ω is closed. Symplectic half-flat manifolds can also be viewed as symplectic
manifolds (M, ω) endowed with two extra objects, namely an ω-calibrated almost-complex structure
and a (3, 0)-form with closed real part which is parallel with respect to the Chern connection [7, 8].
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The evolution flow mentioned above is transverse to the space of symplectic half-flat structures,
except at its critical points, that correspond to integrable (namely, Calabi–Yau) SU(3)-structures.

More generally, we consider arbitrary SU(3)-structures on six-manifolds, and we investigate the
geometry determined by a Killing vector field that preserves such a structure. A similar situation has
been studied in [1], in the context of seven-dimensional manifolds with holonomy G2. A special case
has been studied in [12], where it was proved that there is only one complete example of a nearly-
Kähler SU(3)-structure with a Killing vector field of unit norm, namely the standard nearly-Kähler
structure on S3 × S3.

The paper is divided into two parts. In the first part, we classify nilmanifolds carrying an
invariant symplectic half-flat structure; the special case b1 ≥ 4 was carried out by Bedulli in
[2]. Since six-dimensional nilmanifolds can be realized as circle bundles over nilmanifolds of
dimension five, this classification problem can be reduced to a problem in five dimensions:
indeed, the symplectic half-flat structure induces an SU(2)-structure on the base of the circle
bundle, satisfying certain conditions involving the curvature (see Lemma 2.2). In Lemma 2.3,
we classify the five-dimensional nilmanifolds with this type of induced structure. We then use
this lemma to show that every six-dimensional nilmanifold admitting a symplectic half-flat
structure is modelled on one of a list of three Lie algebras (Theorem 2.4). The correspond-
ing nilmanifolds are the torus, a torus bundle over the four-dimensional torus (see [8, 9]) and
a torus bundle over a three-dimensional torus (see [2, 9]). In contrast with the first two, the
third example is irreducible; moreover, the fibres of the torus fibration are special Lagrangian
submanifolds.

In the second part, we generalize this situation and the construction of Lemma 2.2 to the
non-invariant case. More precisely, we consider a six-manifold with an SU(3)-structure and a
nowhere-vanishing Killing vector field preserving the structure. This vector field generates a rank
one foliation, that we can assume regular, working locally. Then the leaf space is a five-dimensional
manifold. If the leaves are compact there is a circle action on the six-manifold, and the leaf space
is a quotient on which the curvature two-form is defined; in fact, a ‘curvature’ two-form can
always be defined on the leaf space using the O’Neill tensor. The geometric structure we are inter-
ested in is an SU(2)-structure induced on the leaf space or quotient. The metric underlying this
SU(2)-structure is not the same as the quotient metric, but it is obtained from the quotient metric
by rescaling along certain directions, as in [1]. We compute the intrinsic torsion of the SU(2)-
structure in terms of the intrinsic torsion of the SU(3)-structure, norm of the Killing vector field
and curvature two-form (Proposition 3.1). As far as we know, this is the first detailed application of
intrinsic torsion for SU(2)-structures on five-manifolds. We then characterize the symplectic half-
flat manifolds in terms of the quotient structure (Proposition 3.2). In the case that the invariant
SU(3)-structure is integrable, we obtain a stronger result: indeed, the intrinsic torsion of the quo-
tient structure is determined by the norm of the Killing vector field, and so is the curvature form
(Theorem 3.3).

2. Invariant structures on nilmanifolds

In this section, we introduce half-flat structures on six-manifolds and classify invariant symplectic
half-flat structures on six-dimensional nilmanifolds.

Let M be a six-dimensional manifold. An SU(3)-structure on M is a pair (ω, �), where ω is a non-
degenerate two-form and � is a locally decomposable complex three-form, such that the following
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compatibility conditions hold:

� ∧ ω = 0,

� ∧ � = 4

3
i ω3,

(1)

and the almost-complex structure induced by J is ω-tamed. Recall that a decomposable complex
three-form � = θ1 ∧ θ2 ∧ θ3 determines an almost-complex structure by the condition that θ1, θ2

and θ3 span the space of forms of type (1, 0). The first condition asserts that ω is of type (1, 1), so J

is actually calibrated by ω.
At each point x of M , the three-form �x has stabilizer conjugate to SL(3, C) for the natural action

of GL+(TxM); on the other hand, the stabilizer of ωx is conjugate to the symplectic group Sp(3, R)

for the natural action of GL(TxM). The compatibility conditions ensure that the intersection of the
two stabilizers is conjugate to SU(3), so that an SU(3)-structure is defined.

We shall denote by ψ+ and ψ− the real and imaginary parts of �, respectively. It was shown by
Hitchin [10] that having fixed the orientation, the real three-form ψ+ is sufficient to determine the
almost-complex structure J and therefore ψ−. Thus, an SU(3)-structure (ω, �) is really determined
by the pair (ω, ψ+).

We now introduce a special class of SU(3)-structures on six-manifolds, related to seven-
dimensional Riemannian manifolds with holonomy contained in G2 [4].

DEFINITION 2.1: An SU(3)-structure (ω, ψ+) on a six-manifold is half-flat if ω ∧ ω and ψ+ are
closed.

The two-form ω appearing in the characterization of SU(3)-structures is required to be non-
degenerate; if it is also closed, it defines a symplectic structure. In this case, we say that the SU(3)-
structure is symplectic.

Consider a nilmanifold M , that is, a compact manifold of the form �\G, where G is a six-
dimensional nilpotent group with Lie algebra g and � a uniform discrete subgroup of G. Recall that
in six dimensions, every nilpotent Lie algebra g gives rise to such a nilmanifold.

We say that a structure on the nilmanifold M is invariant if it pulls back to a left-invariant struc-
ture on G. Invariant structures can be viewed as structures on the Lie algebra g; using the above
characterization of SU(3)-structures in terms of differential forms, we shall mainly work with the
dual g∗.

We start by reducing the problem to a problem in five dimensions; the idea is to realize M as
a circle bundle over a five-dimensional manifold, in such a way that the SU(3)-structure on M is
invariant under the circle action. The geometry of this construction will be studied in Section 3; here,
we shall use the following algebraic result.

LEMMA 2.2 Let (ω, ψ+) be a symplectic half-flat structure on a nilpotent Lie algebra g; we have an
orthogonal decomposition

g
∗ = 〈η〉 ⊕ V 5,

where η is a unit form, and
d(g∗) ⊆ �2V 5.
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Define forms α, ω1, ω2 and ω3 on ker η by

ω = ω3 + η ∧ α,

� = (ω1 + iω2) ∧ (η + iα).
(2)

Setting φ = dη, the following hold:

dα = 0, dω1 = 0,

dω3 = −φ ∧ α, d(ω2 ∧ α) = ω1 ∧ φ.
(3)

Proof . By Engel’s theorem, some non-zero ξ in g satisfies

ad(ξ) = 0.

Choosing for η a suitable multiple of ξ � and setting V 5 = η⊥, the first part of the lemma is satisfied.
By definition

0 = dω = dω3 + φ ∧ α − η ∧ dα;
isolating the component in η ∧ �2V 5, we deduce that α is closed and dω3 satisfies the required
equation.

Similarly, the rest of (3) follows from

0 = dψ+ = dω1 ∧ η + ω1 ∧ φ − d(ω2 ∧ α).

REMARK: The forms (α, ωi) introduced in Lemma 2.2 define an SU(2)-structure on g. More generally,
we recall that differential forms (α, ω1, ω2, ω3) on a five-manifold define an SU(2)-structure if and
only if at each point (and hence locally), there exists a coframe e1, . . . , e5 such that

α = e5, ω1 = e12 + e34,

ω2 = e13 + e42, ω3 = e14 + e23.
(4)

Here and in the sequel, e12 is short for e1 ∧ e2 and so on. If one fixes an orientation, the condition
above is equivalent to the existence of a triplet (ω1, ψ2, ψ3) with

ω1 = e12 + e34, ψ2 = e135 + e425, ψ3 = e145 + e235.

By construction, V 5 is itself the dual of a nilpotent Lie algebra; we shall proceed by listing the
five-dimensional Lie algebras that arise this way. To describe Lie algebras, we shall use symbolic
expressions such as

g = (0, 0, 0, 0, 0, 12),

meaning that g∗ has a basis η1, . . . , η6 such that dη6 = η1 ∧ η2, and ηi is closed for i = 1, . . . , 5.

LEMMA 2.3 In the hypotheses of Lemma 2.2, V 5 is one of

(0, 0, 0, 0, 0), (0, 0, 0, 0, 12), (0, 0, 0, 12, 13).
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Proof . By the same argument we used in the proof of Lemma 2.2, we can construct a filtration

V 0 ⊂ · · · ⊂ V 5, where dim V i = i, dV i+1 ⊂ �2V i.

We can assume that ker d coincides with some V i . Moreover, by Lemma 2.2, we can assume that α

lies in V 1 ⊂ V 4; therefore, using the fact that SU(2) acts transitively on the three-dimensional sphere,
we can fix a basis e1, . . . , e5 of V 5 satisfying (4), with e4 in (V 4)⊥.

We will show that the operator d : V 5 → �2V 5 satisfies

ker d ⊃ V 3, d(V 5) ⊂ �2V 3. (5)

Then it will follow from the classification of five-dimensional nilpotent Lie algebras that V 5 is one
of the Lie algebras appearing in the statement.

By Lemma 2.2
0 = de12 + de34 ≡ de3 ∧ e4 mod �2V 4,

implying that e3 is closed. Thus, we can assume

V 2 = 〈e3, e5〉; V 4 = 〈e1, e2, e3, e5〉.

Define a real constant h, a two-form γ ∈ �2〈e1, e2, e3〉 and one-forms φ4, φ5 in 〈e1, e2, e3〉, such that

φ = φ5 ∧ e5 + φ4 ∧ e4 + he45 + γ.

Since φ is closed,

dφ5 ∧ e5 − φ4 ∧ de4 + hde4 ∧ e5 + dγ = −dφ4 ∧ e4; (6)

the left-hand side lies in �3V 4, that is, it has no component containing e4, so both sides are zero and
dφ4 = 0.

By Lemma 2.2 dω3 = −φ ∧ α, giving

de14 + de2 ∧ e3 = −φ4 ∧ e45 − γ ∧ e5; (7)

comparing the components in e4 ∧ �2V 4, we obtain

de1 = φ4 ∧ e5.

Again by Lemma 2.2, dψ2 = ω1 ∧ φ; on the other hand, dψ2 = dω2 ∧ α, so we can drop the
component of φ not containing e5 and write

(de13 + de42) ∧ e5 = (e12 + e34) ∧ (φ5 ∧ e5 + he45). (8)

The components containing e4 give

de2 ∧ e5 = e3 ∧ φ5 ∧ e5 − he125,
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and wedging with e3,
de2 ∧ e35 = −he1235.

Since de2 is in �2V 3, the left-hand side is in �4V 3, and so it is zero. We conclude that h = 0 and

de2 ∧ e5 = e3 ∧ φ5 ∧ e5. (9)

Now, either V 3 = 〈e1, e3, e5〉, or some linear combination λe1 + e2 lies in V 3 and consequently
0 = (λde1 + de2) ∧ e5 = de2 ∧ e5. Either way,

φ5 ∈ 〈e1, e3〉.
By Lemma 2.2 ω1 is closed, giving

φ4 ∧ e52 − e1 ∧ de2 = e3 ∧ de4. (10)

In order to prove (5), we must distinguish three cases.

(i) Suppose that φ4 is not a multiple of e3; then

V 3 = 〈e3, e5, φ4〉
and d is zero on V 3. Moreover e1 is not closed, so V 4 = V 3 ⊕ 〈e1〉. Since e2 is in V 4, we have
de2 = k e5 ∧ φ4 for some (possibly zero) constant k. So (10) becomes

φ4 ∧ e52 − k e15 ∧ φ4 = e3 ∧ de4,

implying that
de4 ∧ e3 ∧ φ4 = 0 = de4 ∧ e35.

Since the space of closed two-forms in �2V 4 is

�2V 3 ⊕ 〈e15, e1 ∧ φ4〉,
we can conclude that de4 lies in �2V 3; we already know that d(V 3) = 0, so there is nothing left to
prove in this case.

In general, the component of (7) in �3V 4 gives

−e1 ∧ de4 + de2 ∧ e3 = −γ ∧ e5; (11)

in particular, de4 ∧ e15 = 0. Moreover, we can rewrite (6) as

−φ4 ∧ de4 + dγ = 0. (12)

(ii) Suppose now that φ4 = 0; then e1 is closed and we can assume that V 3 = 〈e1, e3, e5〉. By (10)

−e1 ∧ de2 = e3 ∧ de4,

so clearly de4 ∧ e13 = 0; moreover de4 ∧ e35 = 0, since by (9) de2 ∧ e15 is zero. It follows that de4

lies in �2V 3, completing the proof in this case.
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(iii) The remaining case is the one where φ4 = ae3 for some non-zero a. By (12) and (10), this
condition implies

dγ = ae3 ∧ de4 = a2e352 − ae1 ∧ de2. (13)

Equations (9) and (10) show that

de2 ∧ e15 = 0 = de2 ∧ e13 = de2 ∧ e35,

so de2 lies in �2〈e1, e3, e5〉. Hence the space of closed forms in �2V 4 is contained in

�2〈e1, e3, e5〉 ⊕ e2 ∧ 〈e3, e5〉;
wedging the closed two-form γ − ae12 with e35 we deduce

γ ∧ e35 = ae1235.

Comparing with (11), we find e13 ∧ de4 = −ae1235, which together with (13) gives the contradiction

−a2e1235 = a2e1352.

All three possibilities listed in Lemma 2.3 can occur.

• On V 5 = (0, 0, 0, 0, 0), set

ω1 = η12 + η34, ψ2 = η135 + η425, ψ3 = η145 + η235, φ = 0.

• On V 5 = (0, 0, 0, 0, 12), set

ω1 = η34 + η15, ψ2 = η312 + η542, ψ3 = η352 + η412, φ = −η13.

• On V 5 = (0, 0, 0, 12, 13), set

ω1 = η24 + η35, ψ2 = η123 + η154, ψ3 = η125 + η143, φ = −2η23; or

ω1 = η24 − η35, ψ2 = −η123 + η154, ψ3 = η125 − η143, φ = 0.

It is easy to verify that equations (3) are satisfied in these cases. The construction can then be inverted:
define

g
∗ = 〈η〉 ⊕ V 5,

declaring that dη = φ; clearly, g∗ is the dual of a nilpotent Lie algebra g.A straightforward calculation
shows that the SU(3)-structure on g defined by (2) is half-flat and symplectic.

So, there are at least three non-isomorphic nilpotent Lie algebras that admit a symplectic half-flat
structure. It only remains to show that this list is complete. Indeed, we prove the following.

THEOREM 2.4 The six-dimensional nilpotent Lie algebras whose corresponding nilmanifold carries
an invariant symplectic half-flat structure are

(0, 0, 0, 0, 0, 0), (0, 0, 0, 0, 12, 13), (0, 0, 0, 12, 13, 23).
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Proof . We retain the notation from the proof of Lemma 2.3. We first show that φ4 is zero; in other
words, case (i) of Lemma 2.3 cannot occur, like case (iii), which we have already ruled out. Indeed,
suppose that φ4 is independent of e3 and e5. Hence V 5 = (0, 0, 0, 12, 13); indeed, de1 and de4 must
be independent, since otherwise a combination of e1 and e4 would lie in ker d, which is orthogonal
to e4 by construction.

Observe that 〈e1, e3, φ4〉 has dimension three, because φ4 is closed but e1 is not, and we are
assuming that φ4 is not a multiple of e3. Therefore

〈e1, e3, φ4〉 = 〈e1, e2, e3〉,

and we can write γ = a e13 + b e1 ∧ φ4 + c e3 ∧ φ4. Equation (11) then yields

−e1 ∧ de4 + ke5 ∧ φ4 ∧ e3 = −a e135 + b e15 ∧ φ4 + c e35 ∧ φ4,

so in particular
de4 = a e35 − b e5 ∧ φ4.

Substituting in (12), it follows that

−a φ4 ∧ e35 + a φ4 ∧ e53 = 0,

that is, a = 0; but then de4 = b e5 ∧ φ4 is a multiple of de1, which is absurd.
We have proved that φ4 is necessarily zero; now assume that e2 is closed. Then (10) and (11) give

e3 ∧ de4 = 0, e1 ∧ de4 = γ ∧ e5.

It follows that de4 = λ e35 + μ e13 and γ = λ e13 for some constants λ and μ. The components of
(8) not containing e4 give

μ e1325 = −e125 ∧ φ5.

Since as a consequence of (9) φ5 is a multiple of e3, it follows that φ5 = −μ e3. Summing up,

φ = −μ e35 + λ e13,

so that φ and de4 are either linearly independent or both zero. The resulting six-dimensional Lie
algebras are

(0, 0, 0, 0, 12, 13), (0, 0, 0, 0, 0, 0).

If e2 is not closed, V 5 is (0, 0, 0, 12, 13). As both de4 and de2 are in �2V 3, (11) implies that γ

is a multiple of e13. Therefore, φ lies in �2V 3 as well, forcing g to be either (0, 0, 0, 12, 13, 23) or
(0, 0, 0, 0, 12, 13).

For the convenience of the reader, we write down explicitly examples of symplectic half-
flat structures on the nilmanifolds associated to the Lie algebras of Theorem 2.4. Consis-
tently with Lemma 2.2, we apply (2) to the examples of page 4. With notation as introduced
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before Lemma 2.3:

(1) On g = (0, 0, 0, 0, 12, 13), we set

ω = η35 + η41 − η62, � = (η3 + iη5) ∧ (η4 + iη1) ∧ (−η6 + iη2);
then dω = 0 = dψ+. Similarly,

ω = η25 − η43 + η61, � = (η2 + iη5) ∧ (η4 − iη3) ∧ (η6 + iη1)

is a symplectic half-flat structure on g.
(2) On g = (0, 0, 0, 12, 13, 23), we set

ω = η25 + η43 − 1
2η61, � = (η2 + iη5) ∧ (η4 + iη3) ∧ (− 1

2η6 + iη1
)
.

Again, dω = 0 = dψ+.

3. Circle bundles, quotients and intrinsic torsion

In this section, we pursue an idea introduced in Section 2, namely that of reducing a six-dimensional
manifold to a five-dimensional manifold by means of a quotient, and establishing a relation between
the two geometries in terms of G-structures. Here we work in a more general context, without
requiring invariance under a transitive action; however, for the construction to make sense we still
need invariance along one direction, that is, a Killing vector field X on the six-manifold. Then
the directions orthogonal to X give a rank 5 distribution on which an SU(2)-structure is induced.
Thus, if X is regular, the leaf space is a five-dimensional manifold with what we call the quotient
SU(2)-structure. Otherwise, this description is valid only locally.

We are interested in the intrinsic torsion of this induced SU(2)-structure. In particular, we char-
acterize the intrinsic torsion of the SU(2)-structures obtained by taking the quotient of a symplectic
half-flat structure, generalizing Lemma 2.2. Then, in the assumption that the starting SU(3)-structure
is integrable, we write down a differential equation that the norm t of the Killing vector field must
satisfy and prove that the intrinsic torsion of the quotient structure depends only on t . More precisely,
we give necessary and sufficient conditions on (N, α, ωi, t) for it to arise, locally, as the quotient of a
six-manifold with an integrable SU(3)-structure. Observe that in the integrable case the six-manifold
cannot be compact, unless it is reducible.

We consider objects of the form (M, ω, ψ+, X), where M is a six-dimensional manifold, (ω, ψ+)

is an SU(3)-structure on M and X is a regular vector field on M which preserves the SU(3)-structure,
that is,

LXω = 0 = LXψ+.

The space of integral lines of X is a five-manifold N . Since X is a Killing vector field, the norm of
X is constant along the integral lines, and so defines a smooth function t on N . Let η be the the dual
form to X, rescaled so that η(X) = 1; set φ = dη. It is easy to check that

LXφ = 0, X� φ = 0. (14)

In general, a form φ on M satisfying (14) is said to be basic, and it is the pullback of a form on N .
In the sequel, we shall identify basic forms on M with forms on N . Note that if M is a circle bundle
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over N , its Chern class is represented by 1/2π . Now define forms (α, ωi) on M by

α = X� ω, ω3 = tX� (ω ∧ η),

ω1 = X� ψ+, ω2 = X� ψ−.
(15)

By construction, all the forms appearing on the right-hand side of (15) are basic.
Now choose a local orthonormal basis of 1-forms

1√
t
e1, . . . ,

1√
t
e4,

1

t
e5, e6

on M , with η = t−1 e6, such that

ω = 1

t
(e14 + e23 + e65), � = 1

t
(e1 + ie4) ∧ (e2 + ie3) ∧

(
e6 + 1

t
ie5

)
.

Then (4) is satisfied, so (α, ωi) defines an SU(2)-structure on N . In particular, e1, . . . , e5 is an
orthonormal basis of 1-forms on N : so, we are not using the quotient metric on the five-manifold,
but a modified metric obtained by D-homothety.

Conversely, suppose we have
(N, α, ω1, ω2, ω3, φ, t),

where N is a five-manifold, (α, ωi) is an SU(2)-structure on N , t is a function on N and φ is a closed
two-form on N such that [

1

2π
φ

]
∈ H 2(N, Z).

Let M be a circle bundle over N with Chern class [φ/(2π)]. Let A be the standard generator of the
Lie algebra u(1), and let X = A∗ be the associated fundamental vector field. Choose a connection
form η such that dη = φ and define

ω = t−1ω3 + η ∧ α,

� = (ω1 + iω2) ∧ (η + it−2α).
(16)

It is clear that this defines an SU(3)-structure preserved by X, which has norm tη(X) = t , and
equations (15) give back the original SU(2)-structure on N .

REMARK: The reduction we have chosen behaves well with respect to evolution theory. Indeed, let
N be a five-manifold with an SU(2)-structure; recall that N is called hypo if the forms ω1, ω2 ∧ α,
and ω3 ∧ α are closed. It is easy to verify that the SU(3)-structure induced on N × S1 by the above
construction (corresponding to taking φ = 0 and t = 1) is half-flat if and only if the structure on N

is hypo. Moreover, hypo geometry also has evolution equations similar to those mentioned in the
introduction, and it turns out that a one-parameter solution of the hypo evolution equations lifts to a
solution of the half-flat evolution equations.



SPECIAL SYMPLECTIC SIX-MANIFOLDS 307

Recall from [4] that the intrinsic torsion of an SU(3)-structure takes values in a 42-dimensional
space, and its components can be represented as follows:

W+
1 W−

1

W+
2 W−

2

W3

W4

W5

∈

R R

[�1,1
0 ] [�1,1

0 ]
[[�2,1

0 ]]
[[�1,0]]
[[�1,0]]

(17)

meaning that the component W+
1 takes values in R and so on. Explicitly, we can write

dψ+ = ψ+ ∧ W5 + W+
2 ∧ ω + W+

1 ω2,

dψ− = ψ− ∧ W5 + W−
2 ∧ ω + W−

1 ω2,

dω = −3

2
W−

1 ψ+ + 3

2
W+

1 ψ− + W3 + W4 ∧ ω.

(18)

We can do the same for SU(2)-structures on five-manifolds [6]; the intrinsic torsion now takes values
in a 35-dimensional space, and we can arrange its components in the following table.

λ

f1 f2 f3

g2
1 g3

1 g3
2

β

γ1 γ2 γ3

ω−

σ−
1 σ−

2 σ−
3

∈

R

R R R

R R R

�1

�1 �1 �1

�2−
�2− �2− �2−

In the above table, �1 is the four-dimensional representation of SU(2) such that the tangent space at
a point is

T = �1 ⊕ R,

whereas �2− is the three-dimensional representation of SU(2) consisting of anti-self-dual two-forms
on �1. We shall write, say, (ω)�2− for the �2− component of a two-form ω.

Setting g
j

i = −gi
j , the components of the intrinsic torsion are given by

dα = α ∧ β +
3∑

j=1

f jωj + ω−,

dωi = γi ∧ ωi + λ α ∧ ωi +
∑
j �=i

g
j

i α ∧ ωj + α ∧ σ−
i .

(19)
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We can now prove the following.

PROPOSITION 3.1 Define the intrinsic torsion of M as above, and write

Wi = η ∧ �i + �i, where �i = X� Wi ; (20)

then the intrinsic torsion of the quotient is given as follows.

− 〈�5, α〉
3
2W−

1 − 3
2W+

1 − 1
2 〈�3, ω2〉 −t−1�4 − 1

2 〈�3, ω3〉
− t−2�5 −2t−1W+

1 − t−1〈�+
2 , α〉 −2t−1W−

1 − t−1〈�−
2 , α〉

− (
�4

)
�1 − α� �3

− (
�5

)
�1 − t−1�+

2 � ω2 −(
�5

)
�1 + t−1�−

2 � ω1
(
�4 + d log t + 1

2 tω3� �3
)
�1

− (
�3

)
�2−

− �+
2 −�−

2 t
(
α� �3 − φ

)
�2−

Proof . Taking the interior product of (18) with X, then substituting (15) in the left-hand side and
(16) in the right-hand side, one easily computes

dα = 3

2
W−

1 ω1 − 3

2
W+

1 ω2 − �3 − t−1�4 ω3 + �4 ∧ α,

dω1 = −ω1 ∧ �5 − t−2�5 ω2 ∧ α − t−1�+
2 ∧ ω3 − �+

2 ∧ α − 2t−1W+
1 ω3 ∧ α,

dω2 = −ω2 ∧ �5 + t−2�5 ω1 ∧ α − t−1�−
2 ∧ ω3 − �−

2 ∧ α − 2t−1W−
1 ω3 ∧ α.

On the other hand, dω3 = d log t ∧ ω3 − tX� d(ω ∧ η) by (15). Using (18) and then (16), we obtain

d(ω ∧ η) = 3

2
t−2W−

1 ω2 ∧ α ∧ η + 3

2
t−2W+

1 ω1 ∧ α ∧ η + �3 ∧ η

+ t−1�4 ∧ ω3 ∧ η + t−1ω3 ∧ φ + η ∧ α ∧ φ ;
therefore

dω3 = d log t ∧ ω3 + 3
2 t−1W−

1 ω2 ∧ α + 3
2 t−1W+

1 ω1 ∧ α + t�3 + �4 ∧ ω3 − tα ∧ φ.

The decompositions (20) of the components W3 and W±
2 correspond to projections

[[�2,1
0 ]] → ω⊥

1 ⊕ (α ∧ ω1)
⊥, [�1,1

0 ] → T ⊕ �2
−, (21)

respectively; the statement is now a straightforward consequence of (19).

REMARK: Of the decompositions (21), the first is not surjective; in other words, the components �3

and �3 are not independent.

It is clear that one can write down a converse to Proposition 3.1, because the quotient determines
the intrinsic torsion of M; one can then characterize the M with special intrinsic torsion in terms of
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the quotient. For example, in the symplectic half-flat case, one obtains the following generalization
of Lemma 2.2.

PROPOSITION 3.2 M is symplectic half-flat if and only if the quotient satisfies

dα = 0, dω1 = 0, dω2 ∧ α = t2ω1 ∧ φ + 2d log t ∧ ω2 ∧ α,

dω3 = d log t ∧ ω3 − tα ∧ φ.
(22)

Proof . This follows immediately from (16).

We now consider the case where M is integrable. In order to state our theorem, we need to introduce
two differential operators on five-manifolds with an SU(2)-structure. The first one is ∂α , which maps
a function f to 〈α, df〉. Secondly, consider the endomorphism J3 of T ∗N characterized by

J3α = 0, ω1 ∧ β = ω2 ∧ J3β for β ∈ α⊥;

we can then define an operator dc which maps a function f to dcf = J3df . We can now express the
intrinsic torsion in terms of the norm t of the Killing vector field.

THEOREM 3.3 If the SU(3)-structure on M is integrable, t is a solution of

∂2
α log t − (∂α log t)2 − 2t−1 ‖(d log t)�1‖2 = 0. (23)

The intrinsic torsion is determined by t as follows: α, ω1 and ω2 are closed, and ω3 satisfies

dω3 = (d log t)�1 ∧ ω3 + 1

∂αt
α ∧ (2d log t ∧ dc log t − ddc log t)�2− ; (24)

moreover the ‘curvature form’ is

φ = t−1∂α log t ω3 − 1

t2∂α log t
(2d log t ∧ dc log t − ddc log t)�2− − 2t−2α ∧ dc log t. (25)

Conversely, let N be a five-manifold with an SU(2)-structure (α, ωi) and a function t, where α, ω1

and ω2 are closed, and (23), (24) are satisfied. Then the two-form φ defined by (25) is closed; if the
cohomology class [φ/2π ] is an element of H 2(N, Z), there is a circle bundle over N on which an
integrable SU(3)-structure is defined by (16), where η is a connection form such that dη = φ.

Locally, Theorem 3.3 is a characterization. Indeed, in the second part one can restrict N to a
contractible open subset N ′, so that

0 = [φ/2π ] ∈ H 2(N ′, Z).
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Proof . It is clear from (15) that α, ω1 and ω2 are closed. Hence, the only non-vanishing components
of the intrinsic torsion are γ3 and σ−

3 , determined by

dω3 = γ3 ∧ ω3 + α ∧ σ−
3 .

Using (16), we find
t−1ω3 ∧ (γ3 − d log t) + α ∧ (t−1σ−

3 + φ) = 0.

Hence γ3 = (d log t)�1 , and the component of φ in �2(α⊥) is determined by

〈φ, ω1〉 = 0 = 〈φ, ω2〉, 〈φ, ω3〉 = 2t−1∂α log t, (φ)�2− = −t−1σ−
3 .

It also follows from (16) that

ω1 ∧ φ + 2t−3dt ∧ ω2 ∧ α = 0,

ω2 ∧ φ − 2t−3dt ∧ ω1 ∧ α = 0.

Therefore
α� φ = −2t−2dc log t.

For brevity, we set s = ∂α log t . By construction φ is closed, so

0 = t−1(−s d log t ∧ ω3 + ds ∧ ω3 + s (d log t − s α) ∧ ω3 + s α ∧ σ−
3

+ d log t ∧ σ−
3 dσ−

3 ) + 2t−2α ∧ (−2d log t ∧ dc log t + ddc log t). (26)

We can split (26) into two equations by taking the wedge and the interior product with α. One of
these is satisfied automatically: indeed, taking d of dω3 we find

0 = α ∧ (d log t ∧ σ−
3 − dσ−

3 + ds ∧ ω3),

so the right-hand side of (26) vanishes on wedging with α. Taking the interior product gives

(∂αs − s2)ω3 + 2sσ−
3 + 2t−1(−2d log t ∧ dc log t + ddc log t)�2(α⊥).

It is now clear that σ−
3 can be expressed in terms of t , giving (24). Using the general formula

〈β ∧ J3β, ω3〉 = ‖β‖2 − 〈β, α〉2,

we also deduce that t satisfies (23).
Conversely, suppose (24) and (23) are satisfied, and define φ by (25). The above calculations show

that φ is closed and (16) defines an integrable SU(3)-structure.

REMARK: The condition of Theorem 3.3 implies in particular that 28 out of the 35 components of
the intrinsic torsion of (N, α, ωi) vanish. A similar construction was described in [1], starting with a
seven-manifold with holonomy G2 and defining an SU(3)-structure on the quotient. In that case, the
vanishing components of the intrinsic torsion of the quotient are also 28, though out of 42.



SPECIAL SYMPLECTIC SIX-MANIFOLDS 311

In general, (23) and (24) are not independent, because the norm on one-forms depends on ω3.
Motivated by this observation, we consider the special case

(d log t)�1 = 0.

In order to apply Theorem 3.3, we have to assume that the SU(2)-structure is integrable. Let x be a
coordinate in the direction of α, so that α = dx. Set t = (1 − x)−1; then (23) is satisfied. Suppose
that one has a circle bundle over N with Chern class [1/2πω3]; then the hypotheses of Theorem 3.3
hold. Define a connection form η such that dη = ω3; then

ω = (1 − x)ω3 + η ∧ α, � = (ω1 + iω2) ∧ (η + i(1 − x)2α)

defines an integrable SU(3)-structure. One can actually prove that if the original five-manifold has
holonomy SU(2), then the Calabi–Yau six-manifold has holonomy SU(3).
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