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Abstract. Let S be a regular surface endowedwith a very ample line bundleOS(hS). Taking
inspiration from a very recent result by D. Faenzi on K3 surfaces, we prove that if OS(hS)
satisfies a short list of technical conditions, then such a polarized surface supports special
Ulrich bundles of rank 2. As applications, we deal with general embeddings of regular
surfaces, pluricanonically embedded regular surfaces and some properly elliptic surfaces of
low degree in P

N . Finally, we also discuss about the size of the families of Ulrich bundles
on S and we inspect the existence of special Ulrich bundles on surfaces of low degree.

1. Introduction

Let PN be the projective space of dimension N over an algebraically closed field k
of characteristic 0. If X ⊆ P

N is a variety, i.e. an integral closed subscheme, then it
is naturally endowed with the very ample line bundle OX (hX ) := OPN (1) ⊗ OX .
We say that a sheaf E on X is Ulrich (with respect to OX (hX )) if

hi
(
X, E(−ihX )

) = h j (X, E(−( j + 1)hX )
) = 0,

for each i > 0 and j < dim(X).
Ulrich bundles on a variety X have many properties: we refer the interested

reader to [23], where the authors also raised the following questions.
Questions. Is every variety (or even scheme) X ⊆ P

N the support of an Ulrich
sheaf? If so, what is the smallest possible rank for such a sheaf?

When C is a curve, i.e. a smooth variety of dimension 1, the above questions
have very easy answers: indeed if g is the genus of C and L ∈ Picg−1(C) satisfies
h0

(
C,L) = 0, then L(hC ) is an Ulrich line bundle.
At present, no general answers to the above questions are known when X has

dimension greater than 1, though a great number of partial results have been proved:
without any claim of completeness, we recall [2,9,13,14,18,22,24–26,31,32,38,
39]. The interested reader can also refer to the recent survey [10] for further results.
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In this paper we study the case of surfaces, i.e. smooth varieties of dimension 2.
In particular, following the argument used by D. Faenzi for K3 surfaces in [24] we
deal with surfaces S with q(S) = 0, partially extending analogous results proved
in [9,13,14] when q(S) = pg(S) = 0.

In order to state our main result, we quickly recall a few facts and definitions.
Recall that a coherent sheaf G on S is called simple if HomS

(G,G) ∼= k. There
exists a (possibly non–separated) coarse moduli space SplS(r; c1, c2) parameteriz-
ing simple coherent torsion—free sheaves on S with fixed rank r and Chern classes
c1, c2 (see [1]).

Moreover, if we set μ(G) := c1(G)hS/rk(G), the coherent torsion–free sheaf
G is μ–stable (with respect to OS(hS)) if μ(K) < μ(G) for each subsheaf K
with 0 < rk(K) < rk(G). There exists a quasi–projective scheme MS(r; c1, c2)
parameterizing μ—stable coherent torsion–free sheaves on S with fixed rank r and
Chern classes c1, c2. Such a MS(r; c1, c2) can be identified with an open subset of
SplS(r; c1, c2).

An Ulrich bundle E of rank 2 on a surface S is called special if

c1(E) = csp1 := 3hS + KS,

KS being a canonical divisor. Special Ulrich bundles are easier to construct than
arbitrary Ulrich bundles. Indeed, the Serre duality implies that a rank 2 bundle E
with c1(E) = csp1 is Ulrich if and only if

h0
(
S, E(−hS)

) = h1
(
S, E(−hS)

) = 0,

Moreover, when E is a special Ulrich bundle, it is easy to check that

c2(E) = csp2 := 5h2S + 3hSKS

2
+ 2χ(OS).

Finally recall that a line bundle L is non–special if h1
(
S,L) = 0.

We are now able to state the main result of the paper.

Theorem 1.1. Let S be a surface with q(S) = 0 and pg(S) ≥ 1, endowed with a
very ample non–special line bundle OS(hS). Assume h0

(
S,OS(2KS − hS)

) = 0.
If h2S + 4 ≥ hSKS, then S supports special simple Ulrich bundles E of rank

2. If h2S > hSKS and the complement S0 of the union of smooth rational curves is
dense in S, then the aforementioned bundle E can be chosen μ–stable.

The point corresponding to E in either SplS(2; csp1 , csp2 ) or MS(2; csp1 , csp2 )

satisfies dim Ext2S
(E, E) = pg(S), is smooth and lies in a unique component of

dimension h2S − K 2
S + 5χ(S).

Before dealing with the structure of the paper we make some comments about
the hypothesis in the statement above.

If pg(S) = 0 the existence of special Ulrich bundles on S has been proved with
the same construction in [13] without the hypothesis h0

(
S,OS(2KS − hS)

) = 0.
Nevertheless, the proof of theμ–stability of E given here cannot be extended to

the case pg(S) = 0 when the Kodaira dimension κ(S) is negative, because it rests
on the hypothesis S0 �= ∅, which necessarily imply κ(S) ≥ 0.



Special Ulrich bundles on regular surfaces 153

Theμ–stability of E when κ(S) = −∞ has been proved in [14] with a different
argument, under the additional hypothesis that k is uncountable.

A priori, it could happen that S0 is not open even when κ(S) ≥ 0. E.g., in [5]
the authors give an example of a K3 surface containing infinitely many smooth
rational curves.

In particular, we cannot deduce theμ–stability of E without further information.
E.g. if S is a surface of general type, i.e. κ(S) = 2, then S contains at most a finite
number of smooth rational curves by [36], hence S0 is certainly dense in this case.

Finally, the vanishing h0
(
S,OS(2KS − hS)

) = 0 is fullfilled if κ(S) ≤ 1,
thanks to [34, Corollary 2.2.7]. If κ(S) = 2 this is no longer true (see e.g. Example
8.4).

We now deal with the content of the paper. In Sect. 5 we prove the above
theorem via a finite induction. We first construct a vector bundle of rank 2 such that
c1(F) = hS+KS , h1

(
S,F) = 0 and h0

(
S,F) = pg(S) using standard techniques

(see Sect. 3). Then, via a classical result due to I.V. Artamkin (see [3]), we construct
inductively a sequence of vector bundles Fd of rank 2 with 1 ≤ d ≤ pg(S) such
that c1(Fd) = c1(F), h1

(
S,Fd

) = 0 and h0
(
S,Fd

) = pg(S) − d (see Sect. 4).
As pointed out above, it follows that E := Fpg(S)(hS) is a special Ulrich bundle of
rank 2: in the paper we show that it has all the properties listed in the statement of
Theorem 1.1.

It is natural to ask whether surfaces as in Theorem 1.1 actually exist. On the one
hand, each surface S with q(S) = 0 can be endowed with many very ample line
bundles satisfying the hypothesis of Theorem 1.1 (see Example 6.1). On the other
hand, there are several interesting polarized surfaces satisfying the hypothesis of
Theorem 1.1 besides the case of K3 surfaces described in [24]. For instance, each
regular surface of general type S ⊆ P

N withOS(hS) ∼= OS(nKS) for an n ≥ 3 (see
Example 6.2). Some properly elliptic surfaces in P

4 provide a second interesting
example (see Example 6.4).

In Sect. 7 we make some comments about the size of families of Ulrich bundles
on the surfaces described in Examples 6.1, 6.2 and 6.4.

Finally, in Sect. 8, we deal with surfaces of low degree in PN , extending some
results from [15].

2. Some preliminary facts

In this section we list some results which will be used in the paper. For all the other
necessary results we refer the reader to [28].

If G and H are coherent sheaves on the surface S, then the Serre duality holds

ExtiS
(H,G(KS)

) ∼= Ext2−i
S

(G,H)∨
, (2.1)

(see [29, Proposition7.4]: see also [6]). Thusq(S) := h1
(
S,OS

) = h1
(
S,OS(KS)

)
,

pg(S) := h2
(
S,OS

) = h0
(
S,OS(KS)

)
and h2

(
S,OS(KS)

) = h0
(
S,OS

) = 1.
Assume that H is torsion–free. Then there is a natural injective morphism

OS(KS) → HomS
(H,H(KS)

)
. Thus the map induced on cohomology

H0(S,OS(KS)
) → HomS

(H,H(KS)
) ∼= Ext2S

(H,H)∨
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is injective too. In particular

dim HomS
(H,H(KS)

) = dim Ext2S
(H,H) ≥ pg(S). (2.2)

If G is a vector bundle on S, then the Riemann–Roch theorem for G on S is

h0
(
S,G) + h2

(
S,G) = h1

(
S,G) + rk(G)χ(OS) + c1(G)(c1(G) − KS)

2
− c2(G).

(2.3)
We finally recall the Cayley–Bacharach construction of vector bundles on S. Let
Z ⊆ S be a 0–dimensional locally complete intersection subscheme and let L ∈
Pic(S). Recall that Z satisfies the Cayley–Bacharach condition with respect to L
if

h0
(
S, IZ |S ⊗ L) = h0

(
S, IZ ′|S ⊗ L)

for each subscheme Z ′ ∈ Z with deg(Z ′) = deg(Z) − 1.

Theorem 2.1. Let S bea surfaceand let Z ⊆ S bea0–dimensional locally complete
intersection subscheme.

Then there exists a vector bundle F of rank 2 fitting into an exact sequence of
the form

0 −→ OS −→ F −→ IZ |S ⊗ L −→ 0

if and only if Z has the Cayley–Bacharach property with respect to L(KS).

Proof. See [30, Theorem 5.1.1]. ��
We close this section with a remark about the locus of smooth rational curves

on a surface S.

Definition 2.2. If S is a surface, we denote by D the set of smooth rational curves
D ⊆ S and we set S0 := S \ ⋃

D∈D D.

Remark 2.3. Notice that if κ(S) = −∞, then S0 = ∅. On the opposite side, in the
case we are interested in, i.e. κ(S) ≥ 0, then S0 is the complement of a countable
union of proper closed subschemes.

To prove this assertion we first notice that D2 ≤ −1 for each D ∈ D when
κ(S) ≥ 0 by [7, Proposition III.2.3]. If A ∈ |D + ϑ | for some OS(ϑ) ∈ Pic0(S),
then DA ≤ −1, hence D is a component of A. It follows that D = A, because
they have the same degree with respect to any very ample line bundle on S, i.e.
the class of each D ∈ D in the Néron–Severi group NS(S) contains exactly one
smooth rational curve.

We deduce from the above discussion that S0 is certainly non–empty and dense
if k is uncountable (see [28, Exercise V.4.15 (c)]). Nevertheless, as pointed out in
the introduction, in many cases S0 is actually open and non–empty, without any
restriction on the cardinality of k (see [36]).
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3. The base case

As explained in the introduction, the proof of Theorem 1.1 is by induction. In this
section we deal with its base case.

Let S be a surface with q(S) = 0 and OS(hS) a non–special very ample line
bundle. If h0

(
S,OS(KS − hS)

) = 0, then Equality (2.3) yields h0
(
S,OS(hS)

) =
N + 1 where

N := h2S − hSKS

2
+ pg(S). (3.1)

In particular OS(hS) induces an embedding S ⊆ P
N .

Let X be any scheme. In what follows X [N+2] denotes the Hilbert scheme of
0–dimensional subschemes of degree N + 2 inside X .

Construction 3.1. Let S be a surface with q(S) = 0, endowed with a non–special
very ample line bundle OS(hS). Let S ⊆ P

N be the induced embedding.
Since S is integral and non–degenerate in P

N , it follows the existence of an
open non–empty subset Z ⊆ S[N+2] whose points correspond to schemes Z of
N +2 points in general linear position inside PN . Each scheme Z corresponding to
a point in Z satisfies the hypothesis of Theorem 2.1 with respect toOS(hS), hence
there is a rank 2 vector bundle F fitting into

0 −→ OS(KS) −→ F −→ IZ |S(hS) −→ 0. (3.2)

Notice that

c1(F) = hS + KS, c2(F) = h2S + hSKS

2
+ χ(OS) + 1.

By definition h0
(
S,OS(hS)

) = N + 1, h0
(
Z ,OZ

) = N + 2 and
h1

(
S,OS(hS)

) = 0. Moreover, the choice of Z implies h0
(
S, IZ |S(hS)

) = 0.
Thus the cohomology of the exact sequence

0 −→ IZ |S −→ OS −→ OZ −→ 0. (3.3)

tensored by OS(hS) and Equality (2.1) yield

dim Ext1S
(IZ |S(hS),OS(KS)

) = h1
(
S, IZ |S(hS)

) = 1, (3.4)

i.e. F is uniquely determined by Z .

Lemma 3.2. Let S be a surface with κ(S) ≥ 0 and q(S) = 0, endowed with a
non–special very ample line bundle OS(hS). Assume h0

(
S,OS(KS − hS)

) = 0.
Then

h0
(
S,F) = pg(S), h0

(
S,F(−hS)

) = 0, h1
(
S,F) = 0

for the vector bundle F obtained from a scheme Z as in Construction (3.1).
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Proof. Since h0
(
S, IZ |S

) = 0 and h0
(
S,OS(KS − hS)

) = 0, it follows that the
cohomology of Sequence (3.2) tensored byOS(−hS) implies h0

(
S,F(−hS)

) = 0.
The vanishing h0

(
S, IZ |S(hS)

) = 0 implies h0
(
S,F) = pg(S). The equality

h2
(
S,F) = h0

(
S,F(−hS)

) = 0, the cohomology of Sequence (3.2) and the
vanishing h0

(
S, IZ |S(hS)

) = 0 yield the exact sequence

0 −→ H1(S,F) −→ H1(S, IZ |S(hS)
) −→ H2(S,OS(KS)

) −→ 0,

hence h1
(
S,F) = h1

(
S, IZ |S(hS)

) − h2
(
S,OS(KS)

)
. Since h2

(
S,OS(KS)

) = 1,
it follows that h1

(
S,F) = 0, thanks to Equality (3.4). ��

In the next proposition we deal with the properties of the point corresponding
to F in the moduli spaces SplS(2; c1(F), c2(F)) and MS(2; c1(F), c2(F)).

To this purpose, we denote byZ0 the open subset ofZ of points corresponding
to schemes Z such that h0

(
S, IZ |S(KS)

) = 0. Trivially,Z0 �= ∅ if N +2 ≥ pg(S).
It is immediate to check that such an inequality is equivalent to h2S + 4 ≥ hSKS if
h0

(
S,OS(KS − hS)

) = 0.

Finally, letZ1 := S[N+2]
0 ∩Z . As pointed out in Remark 2.3,Z1 could be empty,

but if k is uncountable and κ(S) ≥ 0, then it is certainly dense inside S[N+2].

Proposition 3.3. Let S be a surface with q(S) = 0 and pg(S) ≥ 1, endowed with
a non–special very ample line bundle OS(hS). Assume h0

(
S,OS(KS − hS)

) = 0.
Then the following properties hold for the vector bundle F obtained from a

scheme Z ∈ Z as in Construction (3.1)

(1) F is simple.
(2) pg(S) ≤ dim Ext2S

(F ,F) ≤ pg(S)+h0
(
S,OS(2KS −hS)

)
if h2S +4 ≥ hSKS

and Z ∈ Z0.
(3) F is μ–stable if h2S > hSKS and Z ∈ Z1.

Proof. In order to prove assertion (1), applying HomS
(F ,−)

to Sequences (3.3)
tensored by OS(hS) and (3.2), taking into account of Lemma 3.2 we obtain

HomS(F ,F) ⊆ HomS(F , IZ |S(hS)
) ⊆ HomS(F ,OS(hS)

) ∼= H0(S,F(−KS)
)
.

Tensoring the cohomology of Sequence (3.2) by OS(−KS) we obtain

h0
(
S,F(−KS)

) ≤ 1 + h0
(
S, IZ |S(hS − KS)

)
.

The choice of Z and the hypothesis pg(S) ≥ 1 imply

h0
(
S, IZ |S(hS − KS)

) ≤ h0
(
S, IZ |S(hS)

) = 0,

hence F is simple.
Let us prove assertion (2). The choice of Z implies h0

(
S, IZ |S(KS)

) = 0, then
the cohomology of Sequence (3.2) tensored by OS(KS − hS) yields

h0
(
S,F(KS − hS)

) = h0
(
S,OS(2KS − hS)

)
.
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The cohomology of the same exact sequence tensored by F(−hS) ∼= F∨(KS)

returns

dim Ext2S
(F ,F) = h0

(
S,F ⊗ F∨(KS)

)

≤ h0
(
S,F ⊗ IZ |S

) + h0
(
S,OS(2KS − hS)

)
.

The obvious inclusion F ⊗ IZ |S ⊆ F yields h0
(
S,F ⊗ IZ |S

) ≤ pg(S) thanks to
Lemma 3.2, hence

dim Ext2S
(F ,F) ≤ pg(S) + h0

(
S,OS(2KS − hS)

)
.

Assertion (2) follows by combining Inequality (2.2) with the above inequality.
Let us prove assertion (3). Thanks to [43, Theorem II.1.2.2], ifF is notμ–stable,

then there should exist a sheaf M ⊆ F of rank 1 such that F/M is torsion–free
and

μ(M) ≥ μ(F) = h2S + hSKS

2
.

The sheaf M is trivially torsion–free and it is also normal (see [43, Lemma
II.1.1.16]). Thus it is a line bundle, because it has rank 1 (see [43, Lemmas II.1.1.12
and II.1.1.15]). It follows thatM ∼= OS(E) for some divisor E on S.

We have

(KS − E)hS ≤ hSKS − h2S
2

< 0.

The Nakai criterion then implies

h0
(
S,OS(KS − E)

) = 0, (3.5)

henceOS(E) is not contained in the kernelK ∼= OS(KS) of themapF → IZ |S(hS)
in Sequence (3.2) and the composition OS(E) ⊆ F → IZ |S(hS) is necessarily
non–zero. In particular h0

(
S, IZ |S(hS − E)

) ≥ 1, hence there is A ∈ |hS − E |
through Z .

We claim that AhS ≥ N + 1. Assuming the claim, Equality (3.1) yields

h2S − hSKS

2
+ pg(S) + 1 ≤ AhS = (hS − E)hS ≤ h2S − hSKS

2
,

a contradiction. We deduce that a sheaf M as above does not exist, hence F is
μ–stable.

It remains to prove the claim. To this purpose, let C1, . . . ,Cs be the integral
components of A intersecting Z and B their union. Since Z ⊆ S0, it follows that
pa(Ci ) ≥ 1. It is well known that pa(Ci ∪ C j ) = pa(Ci ) + pa(C j ) + CiC j − 1
for each i, j ∈ { 1, . . . , s }, i �= j (e.g. see [28, Exercise V.1.3 (c)]): by combining
these remarks with an easy induction on s we then deduce

pa(B) ≥
s∑

i=1

pa(Ci ) − s + 1 ≥ 1. (3.6)
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On the one hand, the cohomology of

0 −→ OS(hS − B) −→ OS(hS) −→ OB(hB) −→ 0

yields h1
(
B,OB(hB)

) ≤ h2
(
S,OS(hS − B)

)
. Vanishing (3.5) then implies

h2
(
S,OS(hS − B)

) = h0
(
S,OS(B − hS + KS)

)

≤ h0
(
S,OS(A − hS + KS)

) = h0
(
S,OS(KS − E)

) = 0,

hence h1
(
B,OB(hB)

) = 0. Thus the Riemann–Roch theorem for the curve B
and Inequality (3.6) above yield h0

(
B,OB(hB)

) ≤ BhS . On the other hand, the
curve B is not contained in any hyperplane inside PN , because it contains Z , hence
h0

(
B,OB(hB)

) ≥ N + 1.
We then deduce that AhS ≥ BhS ≥ N + 1, hence the claim is proved and the

proof of assertion (3) is complete. ��
Remark 3.4. Construction 3.1 makes sense also in the case pg(S) = 0. Indeed it is
the method we used in [13,14] for proving the existence of special Ulrich bundles
when pg(S) = q(S) = 0. Notice that in this case the inequality h2S > hSKS is for
free.

On the one hand, the proof of Lemma 3.2 can be carried over word by word to
this case. On the other hand, the proof of assertion (1) of Proposition 3.3 cannot be
extended to the case pg(S) = 0. Moreover, the proof of assertion (3) is alternative
to [13,14, Theorem 1.2] when Z1 �= ∅: in particular, it certainly needs κ(S) ≥ 0.

One of the hypothesis of [13,14, Theorem 1.2] is that k is uncountable. Thus,
the above proof and [36] extend such a result when κ(S) = 2 also to the case of a
countable base field. When pg(S) = 0 and κ(S) ≤ 1, as in the case pg(S) ≥ 1, the
condition Z1 �= ∅ is not immediate: e.g. there exist Enriques surfaces containing
infinitely many rational curves (see [19]).

4. The inductive step

In this section we explain the inductive step of the proof of Theorem 1.1.

Construction 4.1. Let S be a surface endowed with a very ample line bundle
OS(hS). Let F be a vector bundle of rank 2 such that h0

(
S,F) ≥ 1. Thus for

each point p ∈ S, there exist non–zero morphisms ϕ : F → Op.
Each ϕ as above is surjective and we have the exact sequence

0 −→ Fϕ −→ F ϕ−→ Op −→ 0, (4.1)

where Fϕ := ker(ϕ). Notice that

c1(Fϕ) = c1(F), c2(Fϕ) = c2(F) + 1,

because c1(Op) = 0 and c2(Op) = −p: see [27, Example 15.3.1].



Special Ulrich bundles on regular surfaces 159

Lemma 4.2. Let S be a surface endowed with a very ample line bundle OS(hS).
Assume that F is a vector bundle of rank 2 such that h0

(
S,F(−hS)

) = 0 and
h0

(
S,F) ≥ 1.
If p ∈ S and ϕ ∈ HomS

(F ,Op
)
are general, then

h0
(
S,Fϕ

) = h0
(
S,F) − 1, h0

(
S,Fϕ(−hS)

) = 0, h1
(
S,Fϕ

) = h1
(
S,F)

for the sheaf Fϕ obtained from F as in Construction (4.1).

Proof. The inequality h0
(
S,Fϕ(−hS)

) ≤ h0
(
S,F(−hS)

) ≤ 0 is trivial. The
equality h0

(
S,Fϕ

) = h0
(
S,F) − 1 is equivalent to the surjectivity of the map

ϕ : H0
(
S,F) → k induced by ϕ. The fact that ϕ is surjective for general p ∈ S

and ϕ ∈ HomS
(F ,Op

)
is an open property, thus it suffices to check the existence

of at least one p and one ϕ with such a property.
To this purpose there exists a non zero s ∈ H0

(
S,F)

. Its zero locus is the union
of a 0–dimensional scheme X and a divisor E on S. In particular we have an exact
sequence of the form

0 −→ OS(E)
ε−→ F −→ IX |S(c1(F) − E) −→ 0,

Let now p /∈ X ∪ E . Applying HomS
(IX |S(c1(F) − E),−)

to the exact sequence

0 −→ Ip|S(E) −→ OS(E) −→ Op −→ 0, (4.2)

we obtain the exact sequence

Ext1S
(IX |S(c1(F) − E), Ip|S(E)

) δ−→Ext1S
(IX |S(c1(F) − E),OS(E)

)

−→ Ext1S
(IX |S(c1(F) − E),Op

)
.

We have

HomS
(IX |S(c1(F) − E),Op

) ∼= Op,

Ext1S
(IX |S(c1(F) − E),Op

) = 0

because we compute them locally on X and p /∈ X ∪ E . The exact sequence of the
low degree terms of the spectral sequence

Ei, j
2 := Hi (S, Ext jS

(IX |S(c1(F) − E),Op
))

then yields Ext1S
(IX |S(c1(F) − E),Op

) = 0. It follows that the map δ above is
surjective, hence we can lift Sequence (4.1) to another exact sequence obtaining a
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commutative diagram of the form

0 0
⏐⏐
�

⏐⏐
�

0 −−−−→ Ip|S(E) −−−−→ Fϕ −−−−→ IX |S(c1(F) − E) −−−−→ 0
⏐⏐�

⏐⏐�
∥∥∥

0 −−−−→ OS(E) −−−−→ F −−−−→ IX |S(c1(F) − E) −−−−→ 0
⏐⏐�ε

⏐⏐�ϕ

Op Op
⏐⏐�

⏐⏐�

0 0

Since p /∈ E , it follows that h0
(
S, Ip|S(E)

) = h0
(
S,OS(E)

) − 1, hence the
map ε : H0

(
S,OS(E)

) → k induced by ε is surjective. The commutativity of the
diagram then implies that the same is true for ϕ. Thus h0

(
S,Fϕ

) = h0
(
S,F) − 1

and h1
(
S,Fϕ

) = h1
(
S,F)

for ϕ general enough. ��
Proposition 4.3. Let S be a surface endowedwith a very ample line bundleOS(hS).
Assume that F is a vector bundle of rank 2 with h0

(
S,F) ≥ 1.

Then the following properties hold for a sheaf Fϕ obtained from F as in (4.1)

(1) Fϕ is simple if the same is true for F .
(2) pg(S) ≤ dim Ext2S

(Fϕ,Fϕ

) ≤ dim Ext2S
(F ,F)

.
(3) Fϕ is μ–stable if the same is true for F .

Proof. In order to prove assertion (1), we notice that the quotient map OS → Op

induces by duality an inclusion 0 �= HomS
(Op,Op

) ⊆ HomS
(OS,Op

) ∼= k,
hence

HomS
(Op,Op

) ∼= k. (4.3)

Equality (2.1) yields

dim ExtiS
(Op,F

) = h2−i (S,F∨(KS) ⊗ Op
) = 2δ2,i .

Thus the functor HomS
(Op,−

)
applied to Sequence (4.1) we obtain

Ext1S
(Op,Fϕ

) ∼= HomS
(Op,Op

)
. (4.4)

On the one hand, each map in HomS
(F ,Fϕ

)
induces a map in HomS

(F ,F)
by

composing with the inclusion Fϕ ⊆ F : it follows that the composed map is never
surjective. On the other hand, each non–zero element in HomS

(F ,F)
must be

a homothety because F is simple, hence it is an isomorphism. We deduce that
HomS

(F ,Fϕ

) = 0.
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Thus we obtain HomS
(Fϕ,Fϕ

) ⊆ Ext1S
(Op,Fϕ

)
, by applying HomS(−,Fϕ

)

to Sequence (4.1). If we combine this inclusion with Equality (4.3) and (4.4), we
finally obtain that Fϕ is simple, i.e. assertion (1) is proven.

We prove assertion (2). Since F is a vector bundle, the following obvious
equalities

h0
(
S,F∨ ⊗ Op

) = 2, h1
(
S,F∨ ⊗ Op

) = h2
(
S,F∨ ⊗ Op

) = 0

hold, hence Ext2S
(F ,Fϕ

) ∼= Ext2S
(F ,F)

, by applying HomS
(F ,−)

to Sequence
(4.1). Equality (2.1) and HomS

(Fϕ,−)
applied to Sequence (4.1) tensored by

OS(KS) yield

Ext2S
(Fϕ,Fϕ

)∨ ∼= HomS
(Fϕ,Fϕ(KS)

) ⊆ HomS
(Fϕ,F(KS)

)

∼= Ext2S
(F ,Fϕ

)∨ ∼= Ext2S
(F ,F)∨

.

The statement follows from the above inclusion and Inequality (2.2).
Consider now assertion (3). Since Fϕ ⊆ F and μ(Fϕ) = μ(F), it follows that

each subsheaf destabilizing Fϕ also destabilizes F . Thus assertion (3) is proven. ��

5. The proof of Theorem 1.1

In this sectionwe put together the above results with the following classical theorem
for proving Theorem 1.1 stated in the introduction.

Theorem 5.1. Let S be a surface, p ∈ S, F a simple vector bundle of rank r ≥ 2
with Ext2S

(F ,F) = pg(S), ϕ ∈ HomS
(F ,Op

)
non–zero and Fϕ := ker(ϕ).

Then Fϕ has a universal deformation whose general sheaf is locally free at p.

Proof. See [3, Theorem 1.4 and Corollary 1.5]. The simplicity hypothesis is men-
tioned in [3, p. 450]. ��

As pointed out in the Introduction, if E is a vector bundle on S with first Chern
class c1(E) = 3hS + KS , then Equality (2.1) implies that E is Ulrich if and only if

h0
(
S, E(−hS)

) = h1
(
S, E(−hS)

) = 0.

Let F be the bundle defined in Construction 3.1. If pg(S) ≥ 1, then E := F(hS)
satisfies all the conditions for being a special Ulrich bundle, but the vanishing
h0

(
S, E(−hS)

) = h0
(
S,F) = 0. Nevertheless,F can be viewed as a good approx-

imation of a special Ulrich bundle. For this reason we introduce the following
definition.

Definition 5.2. Let S be a surface endowed with a very ample line bundleOS(hS).
A torsion–free coherent sheaf F of rank 2 on S is called d–good if c1(F) = c1
where c1 := hS + KS , h0

(
S,F) = d and h1

(
S,F) = h0

(
S,F(−hS)

) = 0.
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As explained above, if F is a 0–good bundle, then E := F(hS) is a special
Ulrich bundle of rank 2.

If q(S) = 0, then the bundleF obtained from a scheme Z as in Construction 3.1
is pg(S)–good by Lemma 3.2: in particular if pg(S) = 0, then F(hS) is a special
Ulrich bundle.

Remark 5.3. Notice that, thanks to Equality (2.3), a vector bundle F of rank 2 is
d–good if and only if

c1(F) = c1, c2(F) = c(d)
2 := h2S + hSKS

2
+ 2χ(OS) − d

and h1
(
S,F) = h0

(
S,F(−hS)

) = 0, because h2
(
S,F) = h0

(
S,F(−hS)

)
.

We are now able to prove Theorems 1.1 stated in the introduction.

Proof of Theorem 1.1.. We will prove the statement by descending induction,
showing for each d = pg(S), . . . , 0 the existence of a simple (resp. μ–stable)
d–good bundle Fd with dim Ext2S

(Fd ,Fd
) = pg(S).

For the base step let Fpg(S) be the bundle F defined in Construction (3.1) from
Z ∈ Z (resp. Z ∈ Z1) which is pg(S)–good and simple when h2S + 4 ≥ hSKS

(resp. μ–stable when h2S > hSKS), thanks to Lemma 3.2 and Proposition 3.3.
Now let pg(S) ≥ d ≥ 1 and assume the existence of a simple (resp. μ–stable)

d–good bundle Fd with dim Ext2S
(Fd ,Fd

) = pg(S). It follows from Construc-
tion 4.1 the existence of a simple (resp. μ–stable) (d − 1)–good sheaf Fϕ with
dim Ext2S

(Fϕ,Fϕ

) = pg(S), thanks to Lemmas 3.2, 4.2 and Proposition 4.3.
Thanks to [40, Theorem0.3], the point corresponding toFϕ in SplS(2; c1, cd−1

2 )

(resp. MS(2; c1, cd−1
2 )) is smooth and it lies in a component M of dimension

dim Ext1S
(Fϕ,Fϕ

) = h2S − K 2
S + 5χ(OS) − 4d + 4.

Thus we have an integral open smooth neighborhood B ⊆ M of the point corre-
sponding to Fϕ and a flat family F over B with Fb0

∼= Fϕ for some b0 ∈ B.
Since Fd satisfies the hypothesis of Theorem 5.1 and Fϕ is locally free on

S \ { p }, up to shrinking B we can assume that Fb is locally free at p for each
b ∈ B \{ b0 }. Thus the sheafFd−1 := Fb is a simple (resp.μ–stable) (d−1)–good
bundle for each choice b ∈ B \ { b0 }.

The smoothness of B implies that the tangent space at b ∈ B has dimension

h2S − K 2
S + 4χ(OS) − 4d + 5 + dim Ext2S

(Fd−1,Fd−1
)

= dim Ext1S
(Fd−1,Fd−1

) = dim Ext1S
(Fϕ,Fϕ

)
,

hence dim Ext2S
(Fd−1,Fd−1

) = pg(S).
We can repeat the above steps untill d = 1. After pg(S) steps we obtain the

existence of a 0–good bundleF0 representing a smooth point in SplS(2; c1, c(pg(S))

2 )

(resp. MS(2; c1, c(pg(S))

2 ) lying in a component of dimension h2S − K 2
S + 5χ(OS),

which is necessarily unique.
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In order to prove the theorem we finally notice that the map G �→ G(hS)

induces awell defined isomorphism SplS(2; c1, c(pg(S))

2 ) ∼= SplS(2; csp1 , csp2 ) (resp.

MS(2; c1, c(pg(S))

2 ) ∼= MS(2; csp1 , csp2 )). ��

6. Examples

In this section we give some applications of Theorem 1.1. We first show that Ulrich
bundles are quite common on regular surfaces. Then we give examples of polarized
surfaces fulfilling the hypothesis of Theorem 1.1.

Example 6.1. Let S be a surface with q(S) = 0, pg(S) ≥ 1 and OS(H) an ample
line bundle. Then there exists an integer n0 such that for each n ≥ n0 the surface
S supports a special Ulrich bundle of rank 2 with respect to OS(nH). If Z1 �= ∅
such bundles can be taken μ–stable.

Indeed, it suffices to check that there is n0 such that OS(nH) satisfies the
hypothesis of Theorem 1.1 for n ≥ n0, i.e. n2H2 > nHKS and h0

(
S,OS(2KS −

nH)
) = 0.
Since H is ample, it follows that there is n1 such that n1H is very ample and

non–special. Again the ampleness of H implies H2 ≥ 1, hence there is n2 such that
(2KS − n2H)H < 0, hence h0

(
S,OS(2KS − n2H)

) = 0 by the Nakai criterion.
Finally, it is easy to check that for such an n2 we also have (n2H − KS)H > 0. It
then suffices to chose n0 := max{ n1, n2 }.

The case when there exists a relatively minimal elliptic fibration without multi-
ple fibresψ : S → P

1 is of particular interest. Indeed, in this casewe have κ(S) ≤ 1,
thus h0

(
S,OS(2KS − hS)

) = 0 as pointed out in the introduction.
We know that OS(KS) ∼= ψ∗OP1(e − 2) where OP1(e) := (R1ψ∗OS)

∨ (see
[7, Theorem V.12.1]): in particular κ(S) ≥ 0 implies e ≥ 2 and we will assume
it from now on, hence HKS ≥ 0. Moreover, pg(S) = h0

(
P
1,OP1(e − 2)

)
and

χ(OS) = e, hence q(S) = 0 (see [7, Proposition V.12.2] and its proof).
IfOS(H) is very ample andOS(hS) := OS(H +KS), then h1

(
S,OS(hS)

) = 0
by the Kodaira vanishing theorem and OS(hS) is very ample because OS(KS)

is globally generated. Finally, h2S = H2 + 2HKS > HKS = hSKS because
HKS ≥ 0.

An example of the above set up is the case of an elliptic fibration with a section:
in this case there are trivially no multiple fibres. This case has been inspected in
[39] with a more direct approach.

In [24] the author proved the existence of special Ulrich bundles of rank 2 on
each polarized K3 surface, extending some earlier results (see [2,18]). The case
of Enriques surfaces was examined in [9,13]. We list below some other interesting
examples.

Example 6.2. Let S be a regular surface andOS(hS) ∼= OS(nKS) for some integer
n ≥ 3. Then S supports a μ–stable special Ulrich bundle of rank 2 with respect to
OS(hS).
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Indeed, in this caseZ1 �= ∅ (see [36]) and KS is ample, hence S is minimal: then
h1

(
S,OS(hS)

) = 0 thanks to [7, Proposition VII.5.3]. Moreover, the conditions
h2S > hSKS and h0

(
S,OS(2KS − hS)

) = 0 are trivially satisfied in this case.
The above result cannot be extended to the cases 1 ≤ n ≤ 2 using the same

argument. Indeed, h0
(
S,OS(2KS − hS)

) ≥ 1 in these cases. In particular, we
cannot apply Theorem 5.1 in the base case of the induction in the proof of Theorem
1.1.

Notice that the case n = 2 could be within reach: indeed it would be sufficient
to check that h0

(
S,F ⊗IZ |S

)
< h0

(
S,F)

in the proof of Proposition 3.3, because
h0

(
S,OS(2KS − hS)

) = 1 (for some similar results in this direction see Example
8.4).

On the other hand, the case n = 1 seems to be out of reach with our methods,
because h0

(
S,OS(2KS − hS)

) = pg(S) in this case.

It is classically known (see [11] and the references therein) that non–degenerate
surfaces S of degree d = 2N − 2 + s in P

N are geometrically ruled or K3 when
s ≤ 0. In [11] the author gives a description of surfaces with 1 ≤ s ≤ N − 3 when
OS(hS) is non–special. In all these cases s ≡ hSKS (mod 2),

hSKS ≤
{
3s if 0 ≤ s ≤ N − 3,
s − 2 if s < 0.

Example 6.3. Let k ∼= C and S ⊆ P
N a non–ruled, non–degenerate surface of

degree 2N − 2 + s where N ≥ 3 + s and 0 ≤ s ≤ 3 such that OS(hS) is non–
special. Moreover, if pg(S) ≥ 1 and κ(S) = 2, we also assume

N ≥ 5s + 3

2
. (6.1)

Then S supports special Ulrich bundles of rank 2 with respect to OS(hS). Since
k ∼= C, it follows that Z1 �= ∅ hence such bundles can be taken μ–stable.

The classification given in [11, Propositions 2.1, 2.2, 2.3] and [11, Lemma
1.10] imply that S is always regular in these cases, hence the assertion follows
from [13,14] if pg(S) = 0. Thus, from now on, we will assume pg(S) ≥ 1. Notice
that the inequality N ≥ 3 + s implies h2S > hSKS .

If κ(S) ≤ 1, then h0
(
S,OS(2KS − hS)

) = 0 trivially. If κ(S) = 2, then
Inequality (6.1) implies 2hSKS −h2S < 0, hence h0

(
S,OS(2KS −hS)

) = 0 thanks
to the Nakai criterion. In both the cases the assertion then follows from Theorem
1.1.

Example 6.4. Let S ⊆ P
N be a non–degenerate regular surface with κ(S) ≤ 1,

N ≥ pg(S)−2 and such thatOS(hS) is non–special. Then S supports simple special
Ulrich bundles of rank 2 with respect to OS(hS). If Z1 �= ∅ and N ≥ pg(S) + 1
such bundles can be taken μ–stable.

Indeed, in this case, we already know that

h0
(
S,OS(KS − hS)

) = h0
(
S,OS(2KS − hS)

) = 0.
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The inequalities N ≥ pg(S)− 2 and N ≥ pg(S)+ 1 are respectively equivalent to
h2S + 4 ≥ hSKS and h2S > hSKS . Thus the assertions follows from Theorem 1.1.

As a more concrete example, assume that k ∼= C and let S ⊆ P
4 be a surface

with κ(S) = 1 and degree d = 7, 8. In [41,42] it is shown that the surfaces S
are exactly the ones linked to a plane in either a quadro–quartic or a cubo–cubic
complete intersection inside P4.

The results in [44] imply that the minimal free resolutions of IS|P4 look like

0 −→ OP4(−5)⊕2 −→ OP4(−2) ⊕ OP4(−4)⊕2 −→ IS|P4 −→ 0,

0 −→ OP4(−5)⊕2 −→ OP4(−3)⊕2 ⊕ OP4(−4) −→ IS|P4 −→ 0

respectively. The cohomology of the exact sequence

0 −→ IS|P4 −→ OP4 −→ OS −→ 0

implies that OS(hS) is non–special, q(S) = 0, pg(S) = 2.
In both the cases S is determinantal. Nevertheless, S is not defined by a matrix

with linear entries, hence we cannot use the results proved in [31,32] for deducing
the existence of an Ulrich bundle.

Similarly, we cannot use the results in [39]. Indeed, in [35, Theorem III.4.2
and Observation III.3.5], the author proves that for a surface S as above which is
also very general, then Pic(S) is generated by hS and KS . If the canonical map
ψ : S → P

1 has a section σ : P1 → S, then C := im(σ ) is a rational curve linearly
equivalent to xhS + yKS for some integers x, y. SinceC is the image of a section of
the canonicalmap, it follows that 1 = CKS = xhSKS which is impossible, because
the last number is a multiple of 3 or 4 (according with the two cases h2S = 7, 8).

7. Ulrich–wildness

In this very short section we deal with the size of the families of Ulrich bundles
supported on the surfaces we are interested in.

A variety X is called Ulrich–wild if it supports families of dimension p of
pairwise non–isomorphic, indecomposable, Ulrich sheaves with respect toOX (hX )

for arbitrary large p.

Lemma 7.1. Let X be a smooth variety endowed with a very ample line bundle
OX (hX ).

If E is a simple Ulrich bundle on X such that dim Ext1S
(E, E) ≥ 3, then X is

Ulrich–wild.

Proof. It is an immediate consequence of [26, Theorem A, Corollary 2.1 and
Remark 1.6 v)], because every Ulrich bundle is semistable by [12, Theorem 2.9]
and each non–zero automorphism of a simple sheaf is an isomorphism. ��

We deduce the following criterion for the surfaces we are interested in.
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Proposition 7.2. Let S be a surface with q(S) = 0, pg(S) ≥ 1, endowed with a
very ample non–special line bundle OS(hS). Assume h0

(
S,OS(2KS − hS)

) = 0
and h2S + 4 ≥ hSKS.

Then S is Ulrich–wild.

Proof. Consider the bundleF defined in Construction (3.1). We know from Propo-
sition 3.3 that F is simple and dim Ext1S

(F ,F) = pg(S). Then, Equality (2.3)
yields

h2S − K 2
S + χ(OS) + 4 = 1 + pg(S) − χ(F ⊗ F∨) = dim Ext1S

(F ,F) ≥ 0.

The same argument applied to the Ulrich bundle E defined in Theorem 1.1, then
yields

dim Ext1S
(E, E) = 1 + pg(S) − χ(E ⊗ E∨) = h2S − K 2

S + 5χ(OS) ≥ 3.

Thus the statement follows immediately from Lemma 7.1. ��
The above proposition extends [13, Theorem 1.3] to the case pg(S) ≥ 1.

Corollary 7.3. Let S be one of the surfaces described in Examples 6.1, 6.2, 6.3,
6.4.

Then S is Ulrich–wild.

Proof. The statement is a trivial consequence of Proposition 7.2. ��

8. Ulrich bundles on surfaces of low degree

In [15, Theorems 1.4 and 1.5] the author deals with the existence of special Ulrich
bundles on surfaces of low degree on surfaces S ⊆ P

N .
We start this section by improving [15, Theorem1.4].Wework over the complex

field C, hence S0 is dense for each surface S with κ(S) ≥ 0 by Remark 2.3.

Theorem 8.1. Let k ∼= C, S ⊆ P
N a surface of degree d ≤ 8.

Then the following assertions holds.

(1) If κ(S) ≤ 1, then S supports special Ulrich bundles.
(2) If κ(S) = 2 and S is general, then S supports special Ulrich bundles.

Proof. Thanks to [15, Theorem 1.4] we know that if κ(S) �= 1, then S supports
Ulrich bundles E of even rank rspUlrich as in [15, Table A] and such that

c1(E) = rspUlrich

2
(3hS + KS).

In particular rspUlrich = 2 if either κ(S) ≤ 0 or κ(S) = 2 and S is general. Thus
such an Ulrich bundle E is special in these cases.

If κ(S) = 1, taking into account of the classification in [15, Table A] and the
results in [41,42], we know that S ⊆ P

4 is a properly elliptic surface of degree
either 7 or 8. The existence of special Ulrich bundles on such surfaces has been
proved in Example 6.4. ��
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We now extend [15, Theorem 1.5]. Here π(S) denotes the genus of a general
plane section of S.

Theorem 8.2. Let k ∼= C, S ⊆ P
N a surface of degree d ≤ 8.

Then S is Ulrich–wild if and only if either d ≥ 5, or d ≤ 4 and π(S) ≥ 1.

Proof. The statement coincides with [15, Theorem 1.5] when κ(S) �= 1.
If κ(S) = 1, then we know (see the proof of Theorem 8.1) that S is regular,

non–special, h2S + 4 ≥ hSKS and h0
(
S,OS(2KS − hS)

) = 0. Then the statement
follows from Proposition 7.2. ��

We close the section with some examples dealing with non–degenerate surfaces
of degree d > 8 in P4.

Example 8.3. Let k ∼= C and S ⊆ P
4 a non–degenerate surface of degree 9 with

non–special OS(hS) and h2S > hSKS .
The surfaces as above are regular, thanks to [4, Theorem0.1]. If pg(S) = 0, then

S supports special Ulrich bundles which are μ–stable thanks to [13,14], because S
is neither a rational normal scroll nor a plane by degree reasons. In what follows
we will briefly deal with the case pg(S) ≥ 1.

We have h2
(
S,OS(hS)

) = 0 because 9 = h2S > hSKS . The so–called Severi
Theorem (see [46]) implies h0

(
S,OS(hS)

) = 5. Since OS(hS) is non–special, it
follows from Equality 2.3 that hSKS = 2χ(OS) − 1. Moreover, the adjunction
formula returns hSKS = 2π(S)− 11. By combining such two equalities we obtain
χ(OS) = π(S) − 5. Finally, the inequality 9 > hSKS forces π(S) ≤ 9.

Thanks to the above discussion and to the classification in [4, Theorem 0.1 and
its proof] we have to deal only with the following cases.

• A minimal properly elliptic surface S with hSKS = 3, K 2
S = 0, pg(S) = 1.

• A minimal surface S of general type with hSKS = 5, K 2
S = 1, pg(S) = 2.

• A surface S linked with a possibly singular/reducible cubic scroll Y via a cubo–
quartic complete intersection: in this case hSKS = 7, K 2

S = 2, pg(S) = 3.

In the first case case we trivially have h0
(
S,OS(2KS − hS)

) = 0, hence Theorem
1.1 yields the existence of μ–stable special Ulrich bundles on S.

In the remaining cases the vanishing h0
(
S,OS(2KS − hS)

) = 0 is not evident
as above. E.g., let us examine the second case. If h0

(
S,OS(2KS − hS)

) �= 0, then
h0

(
S,OS(2KS)

) ≥ h0
(
S,OS(hS)

) = 5. Moreover, h2
(
S,OS(2KS)

) = 0 by the
Serre duality. Thus Equality (2.3) implies

h0
(
S,OS(2KS)

) − h1
(
S,OS(2KS)

) = K 2
S + χ(OS).

It follows that h1
(
S,OS(2KS)

) ≥ 1, hence S would not be minimal thanks to [7,
Corollary VII.5.4], a contradiction. Thus h0

(
S,OS(2KS − hS)

) = 0, hence the
existence of μ–stable special Ulrich bundles on S still follows from Theorem 1.1.

In the third case the same argument does not hold. Indeed κ(S) ≥ 1 and K 2
S = 2.

The minimal model Smin of S satisfies K 2
Smin

≥ 2, thus κ(S) = 2. Nevertheless,

the vanishing h0
(
S,OS(2KS − hS)

) = 0 can be proved also in this case. Indeed,
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in [4, Section (2.13)] the authors show that the general hyperplane section C of the
surface Y linked to S is aCM with pa(C) = 0. This fact and the Riemann–Roch
theorem on C implies that the ideal of C , hence of Y , is generated by the minors
of a 3 × 2 matrix of linear forms. Thus there exists an exact sequence of the form

0 −→ OP4(−3)⊕2 −→ OP4(−2)⊕3 −→ IY |P4 −→ 0.

Thanks to [44] there is a resolution of the form

0 −→ OP4(−5)⊕3 −→ OP4(−3) ⊕ OP4(−4)⊕3 −→ IX |P4 −→ 0.

Thus [20, Proposition II.2.4] implies h0
(
S,OS(2KS − hS)

) = 0, hence Theorem
1.1 yields the existence of μ–stable special Ulrich bundles on S.

Example 8.4. Let k ∼= C and S ⊆ P
4 a non–degenerate surface of degree 10 with

non–special OS(hS) and h2S > hSKS .
Surfaces as above are classified in [45, Theorem 0.1]. If q(S) = pg(S) = 0,

then S is not a rational normal scroll by degree reasons, hence it supports special
Ulrich bundles which are μ–stable from [13,14].

From now onwewill assume that q(S) and pg(S) do not vanish simultaneously.
The argument of Example 8.3 yields hSKS = 2χ(OS) and hSKS = 2π(S) − 12,
hence χ(OS) = π(S) − 6 and π(S) ≤ 10. Thus the results in [45, Theorem 0.1
and its proof in Section 9] lead us to deal only with the following cases.

• An abelian surface.
• A bielliptic surface.
• A minimal surface S of general type with hSKS = 6, K 2

S = 3, pg(S) = 2: in
this caseOS(hS) ∼= OS(2KS − A), where A is a curve such that A2 = −2 and
AKS = 0.

• A minimal surface S of general type with hSKS = 8, K 2
S = 4, q(S) = 0,

pg(S) = 3: in this case OS(hS) ∼= OS(2KS − A1 − A2 − A3), where the Ai ’s
are disjoint curves such that A2

i = −2 and Ai KS = 0.

The existence of special Ulrich bundles on Abelian or bielliptic surfaces has been
proved in [8,10]. Such bundles can be taken μ–stable: see [8] for abelian surfaces
and [16,17] for bielliptic surfaces.

In the other cases h0
(
S,OS(2KS −hS)

) = 1, hence Theorem 1.1 does not give
any information on the existence of special Ulrich bundles on such an S.

Example 8.5. Let k ∼= C and S ⊆ P
4 a non–degenerate surface of degree d ≥ 11

with OS(hS) non–special and h2S > hSKS .
In [33, Theorems 1 and 2] and [37, Proposition] the authors classify non–special

and non–degenerate surfaces S ⊆ P
4 which are not of general type.As a by–product

they show that such surfaces have degree at most 10. Thus S is necessarily a surface
of general type, hence χ(OS) ≥ 1. Equality (2.3), the vanishings

h0
(
S,OS(KS − hS)

) = 0, h1
(
S,OS(KS − hS)

) = h1
(
S,OS(hS)

) = 0 (8.1)

and the equality h0
(
S,OS(hS)

) = 5 (see [46]) imply that

hSKS = 2χ(OS) + d − 10 ≥ 3 :
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hence the condition hSKS < h2S = d yields χ(OS) ≤ 4. The double point formula
(see [28], Example A.4.1.3) is

K 2
S = χ(OS) + 25 + d(d − 15)

2
. (8.2)

The Hodge index theorem for the divisors hS , KS , Equality (8.2) and the hypothesis
hSKS < d then yields d ≤ 12.

Taking into account the bound 1 ≤ χ(OS) ≤ 4, computing K 2
S, hSKS , applying

again the Hodge index theorem for the divisors hS , KS and Equality (8.2) one easily
checks that the case d = 12 cannot occur. If d = 11, the same argument yields the
χ(OS) = 4, K 2

S = 7, hSKS = 9. If S is not minimal, then KS = K0 + E where
K0E = 0, K 2

0 ≥ 8 and hSK0 ≤ 8. The Hodge index theorem for the divisors hS ,
K0, then yields a contradiction. It follows that S is minimal. If q(S) ≥ 1, then
pg(S) ≥ 4, hence we should have K 2

S ≥ 8, thanks to [21, Théorè eme 6.1], a
contradiction. We deduce that S is minimal and regular.

We do not know if such a surface exists. Anyhow, if it exists, let C ∈ |KS|: we
have deg(C) = hSKS = 9 and pa(C) = K 2

S + 1 = 8. The cohomology of the
exact sequence

0 −→ OS(−C) −→ OS −→ OC −→ 0, (8.3)

tensored byOS(2KS − hS), Equalities (8.1) and the Riemann–Roch theorem on C
imply

h0
(
S,OS(2KS − hS)

) = h0
(
C,OC ⊗ OS(2KS − hS)

)

= h0
(
C,OC (KC ) ⊗ OS(hS − 2KS)

) − 2.

The adjunction formula on S returns OC (KC ) ∼= OC ⊗ OS(2KS), hence

h0
(
S,OS(2KS − hS)

) = h0
(
C,OC (hC )

) − 2

Thus h0
(
C,OC (hC )

) ≥ 2. If h0
(
C,OC (hC )

) = 2, then the cohomology of
Sequence (8.3) tensored by OS(hS) would imply that C is contained in three lin-
early independent hyperplanes of P4, hence C would be a line, a contradiction. We
deduce that 3 ≤ h0

(
C,OC (hC )

)
, hence 1 ≤ h0

(
S,OS(2KS−hS)

)
: again Theorem

1.1 does not give any information on Ulrich bundles.
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