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1 Introduction

The object of this paper is to extend the results and methods of [Vat01], where it was shown how cases

of a conjecture of Mazur on the behavior of L-functions in an anticyclotomic Zp-extension could

be deduced by studying the distribution of Heegner points associated to definite quaternion algebras.

The main result of [Vat01] showed that when the sign in the functional equation is+1, then the special

values of the L-functions in question are generically nonzero. In this paper we propose to study the

special values modulo a prime λ of Q, and can offer three new theorems in this direction.

The first result (Theorem 1.1) determines the Iwasawa µ-invariant of the p-adic L-functions of

Bertolini and Darmon. We show that µ is usually zero but not always; when µ �= 0, we give a precise

formula for the value, and an interpretation of the positivity in terms of congruences.

The second result (Theorem 1.2) pertains to the case where λ has residue characteristic � �= p. In

this case, we show that the L-values are typically units, but, again, that this is not always the case. For

technical reasons, this theorem applies only to a restricted class of �, but it seems rather likely that the

restrictions can be lifted.

Finally, we use the result of Theorem 1.2 to transfer our results from the case where the sign in the

functional equation is +1 to the case of sign −1, and to derivatives of L-functions. This is achieved

by using congruences and the sign-change phenomenon exploited by Bertolini-Darmon, namely, we

prove a ‘Jochnowitz congruence’ which relates the nontriviality of a special value modulo λ to the

nontriviality of a classical Heegner point on a modular curve. The result is stated in Theorem 1.4.

To describe these results more precisely, let g denote a newform on �0(N ). Let K denote an

imaginary quadratic field of discriminant D, such that D is prime to N . Write N = N+ · N−, where

N+ is divisible only by those primes which are split in K , whereas N− is divisible only by primes
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which are inert. We make the assumption that N− is square-free and divisible by an odd number of

primes. Then the L-function L(g , K , s) has a functional equation with sign +1. Furthermore, if χ

is an anticyclotomic character with conductor f prime to N D, then the twisted L-function L(g , χ, s)

also has a functional equation with sign+1.

We are interested in studying the values L(g , χ, 1) as χ varies over characters of p-power conduc-

tor, for some fixed prime p. In our previous paper [Vat01], we showed that L(g , χ, 1) �= 0 for all but

finitely many χ of p-power conductor. In this paper, we shall study the algebraic part of L(g , χ, 1)

modulo a given prime λ of Q.

Thus, we fix a prime λ of Q, with residue characteristic �. Then, following a construction of Hida,

we define a canonical period �can
g associated to g by saying

�can
g = (g , g )

η0
,

where (g , g ) is the Petersson inner product on �0 (N ), and η0 is Hida’s congruence number associ-

ated to g . The precise definition is given in §2.4. Here we remark only that η0 measures congruences

modulo λ between g and modular forms of level dividing N on �0(N ). It is known that the quantity

Lal(g , χ, 1) = L(g , χ, 1)

�can
g

(1)

is a λ-adic integer. We want to determine the valuation of Lal(g , χ, 1) for χ of conductor pn , as n→
∞. To state the results, we need to introduce two further numbers Ccsp and CEis associated to g . We

will give the precise definitions of these in §2.4, and make some further comments in the discussion

following Theorem 1.2 below. For the moment, we content ourselves with saying that Ccsp measures

congruences between g and cuspforms that do not occur on the quaternion algebra B = BK , f , of

discriminant N−. On the other hand, CEis measure congruences between g and a space of Eisenstein

series. Then we will show that the valuation of Lal(g , χ, 1) approaches that of Ccsp · C 2
Eis as n→∞.

Now let Hn denote the ring class field of K with conductor pn , and let H∞ = ∪Hn . Let G∞ =
Gal(H∞/K ), and Gn = Gal(Hn/K ). Then G∞ = G1 × �∞, where �∞ is topologically isomor-

phic to Zp , and Gn = G1 × �n , where �n is cyclic of order pn+δ−1, for some positive integer δ. We

caution the reader that the normalization here is slightly different from that in [Vat01]; the Hn here

corresponds to Hn−δ there. The present normalization is more convenient for our purposes here.

Given any character χ of Gn , we may write χ = χtχw, where χt is a tamely ramified character of G1 ,

and χw is a wildly ramified character of �n . It will be convenient to study together all characters χ

having the same tame part χt .

Let us first consider the case where λ is a prime of residue characteristic p. In this case, there are

two very different possibilities, depending on whether ap = ap (g ) is a λ-adic unit or not. In the first
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case we say that p is ordinary, and in the second we say that p is supersingular. In this paper, we will

only consider the case where p is an ordinary prime (when considering primes λ such that λ|p). In

this ordinary case, our question may be formulated in terms of p-adic L-functions. Let O denote a λ-

adically complete discrete valuation ring containing the Fourier coefficients of g , as well as the values

of a given tame character χt . Then there exists a p-adic L-function L(g , χt ,T ) ∈ O[[T ]] satisfying

an interpolation property as follows. For every nontrivial root of unity ζ of p-power order, we have

L(g , χt , ζ − 1) = 1

α2n

L(g , χ, 1)

�can
g

· Cχ,

where α is the unique unit root of the Hecke polynomial X 2 − ap X + p, and the character χ = χtχw

is determined by χw(u ) = ζ, for some fixed topological generator u of �∞. The integer n in the

interpolation formula is defined so that the conductor of χ is pn . The number Cχ is given by Cχ =√
Dpn . We will describe the construction of this p-adic L-function in §5 below, following a method of

Bertolini-Darmon [BD96]. An alternative construction of the p-adic L-function was given by Perrin-

Riou in [PR88].

According to the Weierstrass preparation theorem, we may write L(g , χt ,T ) = πµ · F (X ) ·
U (X ), where π is a uniformizer in O, F (X ) is a distinguished polynomial, and U (X ) is an invertible

power series. The number µ is called the µ-invariant of the p-adic L-function. Clearly, one has

lim
n→∞ ordλ(L

al (g , χt , 1)) = µ.

Our first theorem may now be stated as follows.

Theorem 1.1 Suppose that p is an ordinary prime for g . Then the µ-invariant is given by the formula

µ = ordλ(C
2
Eis · Ccsp ).

To the best of our knowledge, this theorem provides the first class of examples beyond the classical

results of Ferrero and Washington on cyclotomic fields, and those of Gillard and Schneps on elliptic

curves with complex multiplication, where one can determine the µ-invariant of a broad class of

p-adic L-functions. (H. Hida has recently announced a generalization of the latter to the context

of Hecke L-functions of CM fields, see [Hid01].) Note here that it is not always true that µ = 0.

However, when µ �= 0, then the extra powers of p are accounted for by congruences, and the sign-

change phenomenon studied by Bertolini and Darmon (see [BD96] and its various sequels). We will

discuss this point further below.

Now we consider the case of � �= p. In this case the results are not quite as satisfactory. Neverthe-

less, we can still offer the following
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Theorem 1.2 Suppose that λ has residue characteristic � �= p. Suppose that � splits completely in the

field Q(χt ) generated by the values of χt , and remains inert in Q(µp∞ ). Then

ordλ

(
L(g , χ, 1)

�can
g

)
= ordλ(C

2
Eis · Ccsp ),

for all but finitely many χ = χtχw .

It seems rather likely that one can remove the hypotheses on �, at the cost of introducing some

technical complications. As stated, the theorem requires in particular that the fields Q(χt ) and Q(µp∞ )

be linearly disjoint. This will be the case if and only if the character χt has order prime to p. In this

case, the theorem holds for a positive proportion of λ. In particular, we see that L(g , χ, 1) �= 0 for

all but finitely many χ, provided that the tame group G1 has order prime to p. This result was already

proven in [Vat01]. Note that we do not require that p be an ordinary prime here.

We would like to point out that the proofs of Theorems 1.1 and 1.2 parallel quite closely the ar-

guments of Ferrero and Washington [FW79] and [Was78] in the cyclotomic situation. In fact, it was

an attempt to extend the method of Ferrero and Washington that was the motivation for the present

work. For a discussion of the analogies, we refer the reader to the introduction of [Vat01].

It may sometimes be useful to invert the procedure of Theorem 1.2. Starting with a given �, we

want to know if there exist characters χ such that L (g ,χ,1)
�can

g
is a unit. Then Theorem 1.2 is not so useful.

Indeed, if λ is given, then it is rather hard to find primes p such that λ is inert even in Q(µp ): that

infinitely many such p exist is the content of Artin’s primitive root conjecture, which is still an open

problem. Nevertheless, one can still resolve the question at hand, under a mild hypothesis on the form

g .

To state the result, we let ρ denote the residual representation associated to g modulo λ. Thus

ρ : Gal(Q/Q) → GL2 (O/λ) is such that Tr(ρ(Frob(q )) = aq , for all primes q � N �. We let N

denote the Artin conductor for ρ, so that N is the so-called minimal level for ρ, in the sense of Serre’s

conjectures. Then we have

Theorem 1.3 Let the prime � be given. Suppose that ρ is irreducible, and that there exists some prime q

dividing N which divides N precisely to the first power. Then there exist infinitely many quadratic fields

K and Hecke characters χ of K such that L (g ,χ,1)
�can

g
is a λ-adic unit.

The proof of this theorem boils down to finding conditions that force the numbers Ccsp and CEis

to be λ-adic units, and making a convenient choice of p. We will give the argument in Section 4.3. We

remark that it applies, in particular, when the level N is squarefree.

We want to explain how the numbers Ccsp and CEis may be explained in terms of congruences,

starting with CEis, since it is rather less surprising. As we have already remarked, CEis measures con-

4



gruences modulo λ between g and the space of Eisenstein series. In terms of Galois representations,

this means that the residual representation ρ associated to g modulo λ is reducible. In this case, it

is a well-known phenomenon that the L-values are often non-units. This seems to have first been

observed by Mazur for the unique cuspform on �0(11), with � = 5. This observation was further

pursued by Stevens [Ste89]. On the side of Selmer groups (about which we say nothing here), Green-

berg [Gre89] has observed that an analogous phenomenon holds.

The quantity Ccsp is perhaps more interesting. It will turn out that Ccsp is a nonunit if and only if

there exists no congruence between g and another form h whose level is not divisible by all the primes

in N−. To explain why the existence of such a form h forces the L-values of g to be nonunits, we may

argue as follows. Suppose that there is a congruence g ≡ h (mod λ), and that there is some prime q

dividing N− such that the level M of h is prime to q. For the purposes of this introduction, we shall

assume that there is a unique such prime q. Under this hypothesis, we see that the number of primes

dividing M that are inert in K is even. (This follows from the fact that N− was assumed at the out-

set to have an odd number of prime factors.) It follows then that L(h, χ, s) has functional equation

with sign−1. In particular, the L-functions L(g , χ, s) and L(h, χ, s) have functional equations with

opposite signs for any anticyclotomic character χ of conductor pn . Indeed, we find that L(h, χ, 1)

vanishes trivially, while L(g , χ, 1) is expected to be nonzero. Since the general philosophy of con-

gruences [Vat99] suggests that the algebraic parts of L(g , χ, 1) and L(h, χ, 1) should be congruent,

we are led to expect that the algebraic part of L(g , χ, 1), being congruent to zero, is a non-unit, and

this is precisely what our theorem says.

The sign-change phenomenon described above was first suggested in [Joc94]. It was further stud-

ied and refined by Bertolini and Darmon, in the paper [BD96] and its various sequels, especially

[BD99a]. We will exploit a variant of this notion to transfer our results to the case of forms with func-

tional equation having sign−1. To state the result, let g now denote a form of level N , where all primes

dividing N are split in K . (This is the classical Heegner hypothesis.) Then L(g , K , s) has functional

equation with sign −1. If χ is a character of conductor pn , with (p,N D) = 1, then L(g , χ, s) has

sign −1 as well. In this case, a conjecture of Mazur (see [Maz84], or [Vat01]) asserts that L ′ (g , χ, 1)

is nonzero for almost all χ.

In attempting to prove this conjecture, our only sign-post is the Gross-Zagier theorem, which

states that if χ0 is the trivial character, then L ′(g , χ0 , 1) is, up to a simple constant, the height of a

classical Heegner point Q on the modular curve X0(N ). In particular, if E denotes the abelian variety

quotient of J0(N ) associated to g by Shimura, and π : J0(N )→ E is the modular parametrization,

then the Gross-Zagier theorem states that L ′ (g , χ0 , 1) is nonzero if and only if Q̃ = π(Q ) has infinite

order in E(K ). On the algebraic side, Kolyvagin showed that if Q̃ has infinite order, then E(K ) has
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rank 1.

We are interested in generalizations of this result to twisted Heegner points of higher level. On the

algebraic side, the result is due to Bertolini-Darmon. To state their result, let χ denote an anticyclo-

tomic character of conductor c , and let Q ∈ J0(N ) be the CM point defined by a pair (A, n), where

A is an elliptic curve with complex multiplications by the order oc , and n is a fractional ideal of oc

with norm N . Then Q is defined over K (c ). By abuse of notation, we shall continue to write Q for

the point (Q −∞) ∈ J0(N ), where∞ denotes the cusp at infinity on X0 (N ). Then Bertolini and

Darmon [BD90] have shown that, if
∑
σ χ(σ)Q

σ is nonzero in E(K (c )) ⊗ C, then the χ-eigenspace

of E(K (c )) has rank 1. Their result is purely algebraic, and makes no reference to the derivative of

the L-series.

On the other hand, the Gross-Zagier formula has recently been generalized by Zhang to give a for-

mula for L ′ (g , χ, 1), if χ is a ramified character satisfying some very mild conditions (see [Zha01] for

a very general statement, valid for automorphic forms over totally real fields). In particular, Zhang’s

generalization holds for characters of conductor pn , where p is as above. It follows from his results

that L ′ (g , χ, 1) is nonzero if and only if
∑
σ χ(σ)Q

σ has nonzero height.

In this paper, we will study the question of whether
∑
σ χ(σ)Q

σ is nonzero in E(K (c )) ⊗ Q(χ),

as χ varies over anticyclotomic characters of p-power conductor. In view of Zhang’s results, this may

be viewed as statement about the derivatives L ′ (g , χ, 1).

Theorem 1.4 Suppose that all primes dividing N are split in K . Let χ vary over the set of anticyclotomic

characters of p-power conductor. Then
∑
σ χ(σ)Q

σ and L ′(g , χ, 1) are nonzero in E(K (Hn )) ⊗
Q(χ) and C respectively, for all but finitely many χ.

As we have already remarked, this theorem is proven by the method of Jochnowitz congruences.

Specifically, we introduce another form h of level N q, such that g ≡ h (mod λ), where λ is a suitably

chosen prime of Q (with characteristic �), and q is a prime such that q � N Dp� which is inert in K .

Then g and h have opposite signs in their functional equations. Specifically, g has sign +1 and h has

sign −1. We then prove the Jochnowitz congruence, which implies that
∑
σ χ(σ)Q

σ is indivisible by

λ if L(h, χ, 1) is a λ-adic unit. This latter hypothesis is satisfied for almost all χ in view of Theorem

1.2. Then we deduce Theorem 1.4 from the fact that the torsion subgroup of E(H∞ ) is finite, so that

a point that is nonzero modulo λ|�, for � sufficiently large, must have infinite order. Note that we do

not require that p be an ordinary prime here.

We want to mention that Cornut [Cor01] has given a proof of a similar result which works directly

with classical Heegner points, and avoids the machinery of Jochnowitz congruences (at least when

p is an ordinary prime; if p is supersingular, it does not seem possible to obtain from his method
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the fact that all but finitely many points are nontrivial). His work relies on the results of this paper,

especially Lemma 5.13 below, in an essential way. On the other hand, our analysis of the so-called

genus subgroup (see Proposition 5.3 below) follows fairly closely ideas introduced in his work.

We would like now to describe the proof of the Jochnowitz congruence, since that part of the

argument may perhaps be quite novel. In particular, our method avoids the analysis of component

groups that occurs in [BD99a]. For simplicity, we assume that g has rational Fourier coefficients, and

so corresponds to an elliptic curve E. We select the prime λ|� such that E[�] is irreducible as a Galois

module. The prime q is chosen to be a Kolyvagin prime, so that q is inert in K , and Frob(q ) acts via

complex conjugation on E[�]. In particular, we have E[�] = V+ ⊕ V−, where V± is the±-eigenspace

for Frob(q ), and each V± is one-dimensional over F�.

Let us consider the general problem of showing that a Heegner point Q ∈ E(Hn ) is indivisible

by �. The basic fact we use is that if Q is a prime of Q over q, then the reduction Q of Q modulo

Q is a supersingular point defined over Fq2 . Furthermore, since q splits completely in Hn , any other

point in E(Hn ) reduces to a point in E(Fq2 ). To show that Q is not divisible by � in E(Fq2 ), it is

therefore enough to exhibit an isogeny E ′ → E, defined over Fq2 , and with kernel isomorphic to F�,

such that there does not exist y ∈ E ′ (Fq2 )which projects to Q in E. Such a isogeny may be constructed

as follows. Let E± = E/V± , and let E± → E denote the dual isogeny. Let W± ⊂ E± denote the

Cartier dual of V±, which is the kernel of the dual isogeny. Note that, under our hypotheses, the

group schemes W± and V± become constant, isomorphic to F�, over Fq2 . Thus, given x ∈ E(Fq2 ),

we may form F± (x ) ∈ W± via the mechanism of the Frobenius substitution of geometric class field

theory. One could also describe F± (x ) more concretely in terms of Kummer theory. Applying this to

the reduction of the CM points, we may conclude that Q is indivisible by � if the number F± (Q ) is

nonzero in W±.

In our applications, we would like to study divisibility of the twisted Heegner points. Namely, we

want to show that
∑
σ χ(σ)F± (Qσ ) ∈ W± ⊗ k is nonzero. To analyze this, we view F± as defining

a function Z[�] → W± ∼= F�, where � denotes the set of supersingular points on X0 (N ). The

function F± enjoys a certain compatibility with respect to the Hecke operators, coming from its very

definition. Furthermore, one has an evident compatibility with the action of Frob(q ), which is the

nontrivial automorphism of Gal(Fq2/Fq ).

But there is another way of constructing such a homomorphism Z[�] → F�, this time starting

from the modular form h of level N q which is congruent to g . Namely, one views Z[�] as the Picard

group M of a Gross curve of level N , associated to the quaternion algebra B of discriminant q, as

in Gross’ special value formula (see §1 below, and [Vat01]). The form h, being new at q, defines a

homomorphism ψ : M → F�, and one checks easily that, with a judicious normalization and choice
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of sign in F±, that one has the same Hecke compatibility. It follows now from a multiplicity-one

theorem, due in this case to Mazur, that F± is equal to ψ. Thus we get

∑
σ

χ(σ)F± (Qσ ) ≡∑
σ

χ(σ)ψ(Q
σ
) (mod λ).

The Jochnowitz congruence follows directly from this, since Gross’ special value formula states that

the right-hand-side of the congruence above is a ‘square root’ of the algebraic part of L(h, χ, 1), and

our previous results show that the latter is a λ-adic unit for almost all χ.
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2 Gross’ special value formula

We want to recall the special value formula of Gross, and the construction of the p-adic L-function.

Since this is amply documented in the literature, we will be brief. For more details, we refer the reader

to [BD96], [BD98], or [BD99b]. We will use the notations of [Vat01], Section 2.

2.1 Let N = N+ · N− as in the introduction, and fix an oriented Eichler order R ⊂ B of level N+.

Then we have the isomorphism

Cl(B ) = B×\B̂×/R̂× = B×\B̂×/Q̂× R̂×

where Cl(B ) denotes the set of conjugacy classes of oriented Eichler orders of level N+. Here the

second equality follows from the fact that Q has class number one, so that Q̂× = Q× · Ẑ× ⊂ Q× · R̂× .

Let �′ = R[1/p]× , viewed as a subgroup of B ⊗ Q×p ∼= GL2 (Qp ). Then strong approximation gives

Cl(B ) = �′\G/K ,

where G = PGL2 (Qp ), and K = PGL2 (Zp ) is a maximal compact subgroup.

Let X denote the Gross curve of level N+ associated to the quaternion algebra B, and let M =
Pic(X ). Thus M is the free Z-module with basis elements given by Cl(B ). Then M is a module for

the Hecke ring T. Let ψ = ψg : T→ Og ⊂ R denote the canonical homomorphism. Let

Mg = MR ⊗T R,
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where the tensor product is taken with respect to the map ψg : T → R. It is known that Mg is a

R-vector space of dimension one. Fix an identification Mg
∼= R, or, equivalently, a nonzero element

v ∈ Mg . Then we may view ψ as a R-valued function, also denoted by ψ, on M by requiring that

ψ(m ) · v = m ⊗ 1. Applying ψ to the basis elements [R] ∈ M , we obtain a function ψ′ : Cl(B )→
R. Choice of a different basis element v in the definition has the effect of scaling ψ′ by a nonzero

constant.

Since we are interested in studying special values modulo λ, we need to make our special values

integral in some canonical way. Thus, it is important to specify the function ψ precisely. To do this,

we let O denote a λ-adically complete discrete valuation ring, containing the Fourier coefficients of g .

Let M g denote the submodule of M ⊗ O where T acts via the characterψ. Then the multiplicity one

theorem states that M g is a free O-module of rank 1. Let w denote a generator of M g . Then we fix

the isomorphism Mg → R so that the element v = ψ(w) ∈ Mg corresponds to 1 ∈ R.

With this fixed normalization, we get a function ψ′ : Cl(B ) → Og , as above. For notational

simplicity, we will write ψ instead of ψ′ . Note also that this normalization implies that there exists

C ∈ Cl(B ) such that ψ(C ) is a λ-adic unit. This follows from the fact that the element w ∈ M is a

linear combination, with integral coefficients, of the basis elements [C], for C ∈ Cl(B ). This will be

useful in the sequel.

2.2 Let oK denote the maximal order of K . We select an orientation on oK , and regard this choice

as fixed. If on ⊂ K denotes the order of conductor pn , we get an induced orientation on on . In this

framework, a Heegner point of conductor pn is a pair

P = ( f, R)

where R is an oriented Eichler order of level N+, and f : K → B is an oriented embedding such that

f −1(R) = on . We identify pairs ( f, R) and ( f ′, R ′ ) if they are conjugate via the action of B×. Write

Xn for the set of Heegner points of conductor pn . The basic facts about Heegner points are as follows:

1. Galois action: There is an action of the group Pic(on ) on the set Xn . The set Xn is a principal

homogeneous space for Pic(on ). Hence if en denotes the order of Pic(on ), there are precisely

en distinct Heegner points of conductor pn .

2. Tree structure: Each Heegner point of conductor pn has p + 1 neighbors, which are Heegner

points of conductor pr , for suitable r . If n ≥ 1, then precisely p of these neighbors have level

pn+1, while the remaining one has level pn−1. This unique Heegner point of level pn−1 is called

the predecessor of P.
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3. Action of Tp : The Hecke correspondence Tp associates to Pn the formal sum of its p + 1 neigh-

bors. If Kn is the kernel of the natural projection Pic(on ) → Pic(on−1), then we have the

formal identity ∑
σ∈Kn

Pσn = Tp (Pn−1 ) − Pn−2,

for n ≥ 2. Here Pn−1 is the predecessor of Pn , and Pn−2 is the predecessor of Pn−1.

4. The function ψ: Each Heegner point P = ( f, R) determines a class [P] = [R] ∈ Cl(B ). Thus

we may view the functionψ above as being defined on the sets Xn , by puttingψ(P ) = ψ([R]).

2.3 Gross’ special value formula may now be stated as follows. Let χ denote a primitive character of

Pic(On ) ∼= Gal(Hn/K ). Then there exists a period � = �g ,K , depending on K and g , but inde-

pendent of n, such that

∣∣∣∣∣∣
∑

σ∈Pic(On )

χ(σ)ψ(Pσ )

∣∣∣∣∣∣
2

= L(g , χ, 1)

�
· Cχ ∈ Q. (2)

We specify the period � more precisely in §2.4 below. The number Cχ is given by Cχ =
√

Dpn ,

so that C 2
χ is the Artin conductor of the dihedral representation IndK

Q (χ). Note that, by our normal-

ization of ψ, the quantity on the right is actually integral.

Computation of the period

2.4 We want to relate the period appearing in the formula (2) above to the canonical integral periods

in [Hid88] and [Vat99]. Let O denote a λ-adically complete discrete valuation ring, and let T be any

finite, flat, reduced, O-algebra, equipped with a homomorphism π : T → O. Let I = ker(π), and

let η denote a generator of the ideal π(Ann(ker(π))). Thus η is the so-called congruence number

for π.

Let T0 denote the Hecke ring (over O) formed in the usual way from modular forms on �0(N ),

and let π : T0 → O denote the canonical homomorphism associated to the modular form g . Let

T = TB denote the Hecke algebra formed by the action of Hecke operators on the module M =
Pic(X ) as above, where X is the Gross curve of conductor N+ and level N−. This time we take for

π the homomorphism ψ associated to g . Applying the construction above to T0 and TB , we obtain

congruence numbers η0 and ηB . Clearly, we have the divisibility ηB |η0 . Following Hida, we define a

canonical period �can
g as follows. If (g , g ) denotes the Petersson inner product of g with itself, then

we put �can
g = (g ,g )

η0
.
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Lemma 2.5 The period� in the special value formula (2) is given by

� = (g , g )

ηB
.

Thus we have � = �can
g · Ccsp, where Ccsp = η0/ηB .

Proof. Let χ denote a primitive character of Gn , for some n. Then let eχ ∈ Pic(X ) ⊗ Q(χ) be

defined by eχ = ∑σ∈Gn
χ(σ)Pσ . Let ( · , · ) denote the canonical intersection pairing Pic(X ) ×

Pic(X )→Q, extended to a complex pairing which is skew-linear in the second variable, as in [Gro87].

Then the special value formula may be equivalently stated as

(eχ, eχ ) = L(g , χ, 1)

(g , g )
· Cχ.

The lemma follows from this formula, together with the definition of the function ψ. �

Remark 2.6 It is clear from the above that the periods � and �can
g need not be equal. As we have

already remarked in the introduction, this may be explained in terms of congruences. Note that the

period� in Gross’ formula actually depends on the field K .

Remark 2.7 When dealing with questions of congruence, it is often more convenient to work with

forms on �1 (N ) rather than �0(N ). This is the approach taken in [Hid88], [Ste89], and [Vat99].

Hida’s canonical integral period from [Hid88] is in fact defined as

�Hida
g = (g , g )�1 (N )

η1
,

where we take the inner product and congruence divisor relative to �1(N ). Furthermore, if the

canonical periods�±g of [Vat99] are defined, then we will have

�Hida
g = �+g · �−g .

We will not concern ourselves with these alternative periods here, and mention the formulae only to

emphasize the various distinctions, and to facilitate future comparisons.

Finally, we want to explain the other quantity CEis which appears in the statement of our theorems.

We let ν denote the largest integer such that the function ψ is congruent to a constant modulo λν , and

put CEis = λ̃ν, where λ̃ is a λ-adic uniformizer in O.

Lemma 2.8 Let λ denote a prime of Q, and let ν denote the largest positive integer such that the function

ψ : Cl(B ) → O is constant modulo λν. Then λν divides the numbers aq − q − 1, for primes q with

q � N .

11



Proof. Suppose that ψ is congruent to a constant function modulo λr . Then, choosing an x ∈ M

such that ψ(x ) is a unit, we have ψ(Tq x ) = aqψ(x ). Since the Hecke correspondence Tq has degree

q + 1, we see immediately that aq − q − 1 ≡ 0 (mod λr ). �

Remark 2.9 Thus the number CEis measures congruences between g and a space of Eisenstein series.

It is not clear to us whether λν is the exact gcd of the numbers aq − q − 1. The truth of this statement

seems tied to a multiplicity-one type theorem for Pic(X ) in characteristic �, where λ|�, but, as is well

known, such theorems are extremely delicate. At any rate, we have not pursued this question.

3 Theta elements

3.1 The special value formula above may be conveniently formulated in terms of theta elements in a

suitable group algebra of Gn , as in [BD96]. Indeed, one might form

θ = ∑
σ∈Gn

ψ(P )σ,

where P is some fixed Heegner point of conductor pn . Then, if χ is a primitive character of Gn , we

will have

|χ(θ)|2 = L(g , χ, 1)

�
Cχ.

However, the specializations of the θ element so defined to imprimitive characters χ does not admit

any simple description. To get around this difficulty, we must use the notion of regularized Heegner

points, as in [BD96].

To recall the definitions, let

Ep (X ) = X 2 − ap X + p = (X − α)(X − β)

denote the Hecke polynomial of g at p. Given a prime λ of Q, we fix a choice of root, say α, of Ep (X )

which is a λ-adic unit. If the residue characteristic of λ is not equal to p, then αβ = p, so that both of

α and β are λ-adic units. In this case we make the choice arbitrarily. If λ lies above p, then the unit

root α exists only if ap is a λ-adic unit, which is to say, if p is an ordinary prime for g . In this case, α

is uniquely determined.

Let λ be a prime of Q, as above. We fix a λ-adically complete and integrally closed ring O = Oλ

which contains the Fourier coefficients of g . Given a Heegner point Pn of conductor pn , with n ≥ 1,

we let Pn−1 denote the predecessor of Pn . Define the regularized Heegner point P̃n by the formal

expression

P̃n = 1

αn
Pn − 1

αn+1
Pn−1 (3)

12



Note that the coefficients of P̃n lie in O, since α was assumed to be a λ-adic unit. Furthermore, it

follows from the properties listed in (2.2) that, if n ≥ 2, then we have

∑
σ∈Kn

(P̃σn ) = P̃n−1. (4)

This means that the regularized Heegner points are compatible under the norm from Hn to Hn−1.

3.2 Now let�′n = O[Gn ], where Gn = Gal(Hn/K ), and defineψ(P̃n ) = 1

αn
ψ(Pn )− 1

αn+1
ψ(Pn−1 ).

We fix a Heegner point Pn of conductor pn , and define the theta element θ(Pn ) ∈ �′n as follows:

θ(Pn ) =
∑
σ∈Gn

ψ(P̃σn ) · σ. (5)

One checks that if χ is a character of Gn , with conductor pr , with 1 ≤ r ≤ n, then we have the

specialization formula

χ(θ(Pn ))χ
−1(θ(Pn )) = 1

α2n

L(g , χ, 1)

�
· Cχ. (6)

Note also that θ depends on the choice of the point Pn . If we choose another point, P ′n , then we will

have P ′n = Pσn for some σ ∈ Gn , so that χ(θ(Pn )) and χ(θ(P ′n )) differ by a root of unity. Since we are

trying to calculate the λ-adic valuation of χ(θ(Pn )), we may choose the point Pn in any convenient

fashion. This observation will be important later.

3.3 It is now natural to select a compatible sequence of Heegner points P1, P2 , . . . , Pn , . . . , where

each Pn is the predecessor of Pn+1, and form the inverse limit of the corresponding theta elements. For

later use, it will be convenient to refer to the data of a Heegner point Pn , together with its predecessor

Pn−1, as an edge. This terminology is motivated by the tree-like structure of the Heegner points (see

[Vat01], or [BD98], [BD99b]). The regularized Heegner point P̃n introduced above may be more

properly associated to the edge �en with origin Pn−1 and terminus Pn . In this case, we define

ψ(�en ) = ψ(P̃n ) = 1

αn
ψ(Pn ) − 1

αn+1
ψ(Pn−1 ).

An end is a sequence of oriented edges �e = (�e0, �e1 , . . . , �en , . . . ), where the origin of �en is the termi-

nus of �en−1. We require that each �en go from a Heegner point of conductor pn−1 to one of conductor

pn .

Fix a choice of an end �e as above. For each n, let θn = θ(Pn ) ∈ �′n , where Pn is the terminus

of the edge �en . Then one checks that the elements θn are compatible under the natural projection

�′n+1 → �′n , so that we may form

�′ = �′ (�e ) = lim←− θn ∈ �′ = lim←−�
′
n . (7)
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Recall that �′n = O[Gn ], where Gn = G1 × �n , where �n is cyclic of order pn+δ−1. Thus we

have

�′ = O[G1][[�∞]],

where �∞ = lim←−�n . If χ is a character of Gal(H∞/K ), primitive of conductor pn , we have the

specialization formula

χ(�′ ) · χ−1(�′ ) = 1

α2n

L(g , χ, 1)

�
· Cχ. (8)

Note that we have said nothing about the specialization of χ to the trivial character, or to unramified

characters. This is a very interesting question, but we will not discuss it here. Here we remark only that

the answer is connected to certain predictable degeneracies in p-adic height pairings, and is computed

by using p-adic uniformization of the Shimura curves associated to indefinite quaternion algebras. We

refer the reader to [BD98] and [BD99b] for the details.

As in [Vat01], it will be convenient to express the character χ as χ = χt · χw , where χt is a tamely

ramified character of G1 and χw is a wild character of �n , and to consider together all χ with fixed

tame part χt . Thus, suppose χt is fixed. Enlarging O if necessary, we have a homomorphism χt :

O[G1 ]→ O. This induces a map

χt : �′ = O[G1 ][[�∞]]→ O[[�∞]]. (9)

Applying the homomorphism above to the element �′, we get a new theta element

� = �(χt ) ∈ � = O[[�∞]].

Then � satisfies an interpolation property with respect to characters χw of �∞. Namely, it interpo-

lates the ‘square roots’ of special values L(g , χt χw, 1), for the fixed choice of χt .

3.4 Now we would like to consider in more detail the case when λ is a prime of residue characteristic

p. In this event, O is a finite extension of Zp , and� = O[[�∞]] is isomorphic to a power series ring

Zp[[T ]]. This isomorphism is realized by selecting a topological generator u of �∞, and sending u

to 1 + T . In this case, the element �(χt ) may be identified with a power series L(g , χt ,T ), such

that if ζ is a nontrivial root of unity of p-power order, then

L(g , χt , ζ − 1) · L(g , χ−1
t , ζ−1 − 1) = 1

α2n

L(g , χ, 1)

�
· Cχ, (10)

where χ = χtχw, and the character χw is determined by χw(u ) = ζ.

The power series L(g , χt ,T ) is a (twisted) p-adic L-function for g . By the Weierstrass prepara-

tion theorem, we have

L(g , χt ,T ) = pµ · F (T ) ·U (T ),
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where µ is a nonnegative integer, F (T ) is a distinguished polynomial, and U (T ) is an invertible

power series. The integer µ is called the µ-invariant of the p-adic L-function.

Remark 3.5 It would be natural to define the p-adic L-function so as to preserve the symmetry be-

tween χ and χ−1. Furthermore, we would also like to arrange that the period in the interpolation

formula is the canonical period defined by Hida. Thus we define

L(g , χt ,T ) = L(g , χ−1
t ,T ) = L(g , χt ,T ) · L(g , χ−1

t , (1 + T )−1 − 1) · Ccsp,

where the constant Ccsp is defined so that the period � of (2) and the canonical Hida period�can
g are

related by Ccsp · �can
g = �. However, it is more convenient in practice to work with the power series

L(g , χt ,T ), since the corresponding theta elements have a relatively simple form.

We would also like to remind the reader that this definition of a p-adic L-function depends on the

choice of the end �e that we have made above. One verifies easily that choice of a different end changes

the L-function by an invertible power series. We will exploit this freedom later.

Finally, we point out that if λ has residue characteristic � �= p, then there is no λ-adic analytic

function interpolating the special values in question. However, it is still convenient to use the theta

elements.

4 Preliminary reductions

Our goal is to translate our theorems about L-values into statements about the theta elements intro-

duced above, with the idea that one can then study the theta elements in terms of distributions of

Heegner points. To carry out this program, it is convenient to separate the case of λ � p and λ|p.

The case of λ � p.

Let ν be the largest integer such that the function ψ is congruent to a constant modulo λν, as above.

Our goal is to prove the following proposition:

Proposition 4.1 Let the tame character χt be given, and let� denote the corresponding theta element.

Then, for all n � 0, there exists a primitive character χw of �n such that χ(�) satisfies

ordλ(χw(�)) = ν.

Assuming this proposition, and keeping in mind the definitions of the various periods, we may

easily deduce Theorem 1.2 of the introduction. Indeed, it follows directly from
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Corollary 4.2 Suppose that the tame character χt has order prime to p. Suppose also that the prime

λ splits completely in the field Q(χt ) obtained by adjoining to Q the values of χt , and is inert in the field

Q(µp∞ ) obtained by adjoining all p-power roots of unity. Then

ordλ

(
L(g , χ, 1)

�
Cχ

)
= 2ν

for all χ = χtχw primitive of conductor pn , with n � 0.

Proof. By virtue of our hypothesis that λ remains inert in Q(µp∞ ), and splits completely in Q(χt ),

we see that the characters χtχw are all conjugate under the action of a decomposition group Dλ.

Applying the proposition above, we find a character χw such that χw(�) has λ-adic value equal

to ν. Since all the characters χtχw of conductor pn are conjugate under Dλ, we see that χw(�)

has valuation ν for all χw, primitive of conductor pn . Arguing similarly with χ−1
t , and applying the

formula
1

α2n

L(g , χ, 1)

�
Cχ = χw(�(χt )) · χ−1

w (�(χ−1
t )),

we obtain the statement of the corollary. �

4.3 Theorem 1.3 is also a consequence of Proposition 4.1. For the field K we simply take any quadratic

field in which the prime q is inert but all other primes dividing N are split. Since ρ is irreducible, we

see that the number CEis is a λ-adic unit (see Lemma 2.8). Furthermore, since q divides the minimal

level N , and divides N to precisely the first power, we see that any modular form g ′ on �0(N ) con-

gruent to g modulo λ is necessarily special at q. In particular, g ′ occurs in the definite quaternion

algebra B ramified only at q. It then follows that the number Ccsp is also a λ-adic unit (see Lemma

2.5).

Now, consider characters of the anticyclotomic Zp-extension of K , where p is prime with � �= p.

Equivalently, we will take χt = 1. (Here p is a prime with � �= p; we will specify the choice of p

below.) Then Proposition 4.1 states that we can find characters χ = χw such that χ(�) is a unit.

Now, in view of equation (8), we want to arrange matters so that χ−1(�) is also a unit. This does not

follow directly from the proposition, but we may instead argue as follows.

The main point is to select p in some convenient fashion. Indeed, it suffices to choose p so that

the characters χ and χ−1 will be conjugate under the action of the decomposition group Dλ. But if

χ takes values in µpr , then the automorphism ζ �→ ζ−1 of Q(µpr ) is induced by the element −1 ∈
(Z/pr Z)× ∼= Gal(Q(µpr )/Q). Thus we need to choose an odd prime p such that the cyclic group

generated by � in (Z/pZ)× has even order 2t , for some t . Indeed, in this case, �pr−1
has order 2t in

(Z/pr Z)×, and we get �tpr−1 = −1, as required. Furthermore, we want to ensure that p is relatively
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prime to N D�. But it is an elementary matter to find such a p: we simply choose p so that � is a

quadratic nonresidue modulo p, and there are infinitely many such p by quadratic reciprocity.

Now we want to reduce the proof of Proposition 4.1 to a statement about the distribution of Heeg-

ner points.

4.4 As before, we regard the tame character χt and the end �e as given. We want to study the λ-adic

valuation of the numbers χ(�), where χ = χtχw, and χw varies in the set Yn of faithful characters

of �n . Thus we consider the formal expression

Sn = 1

pn−2

∑
χw∈Yn

∑
σ∈Gn

χ(σ)P̃σn ,

so that ψ(Sn ) = 1
pn−2

∑
χw
χ(�), where we extend ψ by linearity. Note that the factor 1/pn−2 is a

λ-adic unit. It is enough to show that if n � 0, then ordλ(ψ(Sn )) ≤ ν. Indeed, it would then follow

that there exists some χ = χtχw such that 0 ≤ ordλ(χ(�)) ≤ ν. On the other hand, the function ψ

is congruent to a constant c modulo λν, by definition of ν. Thus
∑
σ∈Gn

χ(σ)ψ(Pσ ) ≡ c
∑
χ(σ) ≡ 0

(mod λν ). It follows that χ(�) ≡ 0 (mod λν ) for all χ, and we get ordλ(χ(�)) = ν for at least

one χ, as required.

Thus, we must compute the λ-adic valuation of ψ(Sn ). We start with a formal manipulation.

Applying Lemma 2.11 of [Vat01], we obtain

Sn =
∑
τ∈G1

χt (τ ) ·
⎛
⎝P̃τn − p

∑
σ∈Kn

P̃τσn

⎞
⎠ .

Applying the norm compatibility of the regularized Heegner points, this reduces to

Sn =
∑
τ∈G1

χt (τ ) ·
(

P̃τn − pP̃τn−1

)
.

Finally, inserting the definition of P̃n , we get

Sn =
∑
τ∈G1

χt (τ ) ·
{(

1

αn
Pτn − 1

αn+1
Pτn−1

)
− p

(
1

αn−1
Pτn−1 − 1

αn
Pτn−2

)}

=∑
τ

χt (τ ) ·
{

1

αn
Pτn −

(
1

αn+1
+ p

αn−1

)
Pτn−1 + p

αn
Pτn−2

}
. (11)

Now the number α is a unit. Thus, for a given end �e, define the formal quantity

ξn = ξn (�e ) = 1

α
Pn −

(
1

α2
+ p

)
Pn−1 + 1

α
Pn−2. (12)
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Then we have

αn−1Sn =
∑
τ∈G1

χt (τ ) · ξn (�e )τ .

Our task is to bound the absolute value of
∑
χt (τ ) · ψ(ξτn ), where we define ξτn and ψ(ξτn ) in the

obvious manner. Recall that we may fix the end �e arbitrarily.

Now Proposition 4.1 is an immediate consequence of the following result, whose proof will be

given in §5.

Proposition 4.5 Let the character χt be fixed. Then, for n � 0, there exist ends �e and �d such that∑
τ∈G1

χt (τ ) · ψ(ξn (�eτ )) �=
∑
τ∈G1

χt (τ ) · ψ(ξn ( �dτ )) (mod λν+1).

In particular, at least one of the numbers
∑
τ∈G1

χt (τ ) · ψ(ξn (�eτ )) or
∑
τ∈G1

χt (τ ) · ψ(ξn ( �dτ ))
has valuation less than v + 1.

The case of λ|p
4.6 This case is similar but easier. Let the tame characterχt be fixed, and let � denote the corre-

sponding theta element. Then it is clear from the definitions that χ(�) ≡ 0 (mod λν ), for any

χ = χtχw. Thus the µ-invariant of L(g , χt ,T ) satisfies µ ≥ ν. It suffices therefore to show that the

power series L(g , χt ,T ) = ∑ cnT n has at least one coefficient cn with valuation at most ν. Equiv-

alently, we want to find the valuations of the coefficients of � ∈ O[[�∞]]. But now it is enough to

consider the theta elements at finite level n. Thus, with the notations of (7) and (9), we write

�n = χt (θn ) =
∑
σ∈�n

cn (σ )σ.

Then our problem to show that at least one of the numbers cn (σ ) has valuation at most ν.

We can give an explicit formula for the cn (σ ) as follows. Let �e denote the end arising in the defi-

nition of the theta element, and write P̃n for the regularized Heegner point corresponding to the edge

�en . Then we have

θn =
∑
σ∈Gn

ψ(P̃n ) · σ,

which then leads to

cn (σ ) =
∑
τ∈G1

χt (τ ) · ψ(P̃στn ). (13)

Thus we find that the coefficient cn (1) of the identity element in �n is given explicitly by

cn (1) =
∑
τ∈G1

χt (τ ) · ψ(P̃τn ).
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Now Theorem 1.1 follows from

Proposition 4.7 There exist ends �e and �d, with corresponding regularized Heegner points P̃n and Q̃n ,

such that ∑
τ∈G1

χt (τ )ψ(P̃
τ
n ) �=

∑
τ∈G1

χt (τ )ψ(Q̃
τ
n ) (mod λν+1).

The proof of this proposition will be given in §5 below.

5 Proof of the main results

In this section, we will complete the proof of Propositions 4.5 and 4.7. Using the results and notations

of [Vat01], we reduce everything to a statement about discrete subgroups in SL2 (Qp ).

5.1 As in [Vat01], we will write T for the Bruhat-Tits tree of SL2 (Qp ). The basic facts we will use are

as follows:

1. The choice of a basepoint P = ( f, R) of level 1 determines an origin of T , corresponding to

the maximal order Rp = R ⊗ Zp .

2. Write �1 for the subgroup of�′ = R[1/p]× consisting of elements with reduced norm 1. Then

�1 ⊂ B× ⊂ SL2 (Qp ) is a discrete cocompact subgroup. Let � ⊂ �1 denote a fixed torsion-

free subgroup of finite index, and put G = �\T . Note that the graph G is bipartite; this will

cause us some minor inconvenience in the sequel.

3. Each vertex v of T determines a Heegner point P ′ = Pv of level pn , for some n depending on

v. The point P ′ is represented by a pair ( f, R ′ ), where the embedding f is the same as that for

the base point P, and the Eichler order R ′ is in normal form with respect to R, in the sense that

R ′� = R� as Eichler orders in B�, for � �= p. The class of P ′ in Cl(B ) is determined as the image

of v in �′\T . (Note that there are other Heegner points which are not of this kind, but those

will not concern us in this paper.)

4. If τ ∈ G1 , and P ′ , v are as above, then there exists τp ∈ B×p ∼= GL2 (Qp ), independent of P and

v, such that the class of P
′ τ is that of the vertex vτ = τpv.

5. The function ψ : Cl(B ) → R induces a function G → R. If L2 denotes the vector space

of functions on the vertices of G, then ψ is an eigenfunction for the operator ∇ defined by

∇(φ)(v ) =∑w∼v φ(w), for φ ∈ L2, and the sum is taken over the p + 1 verticesw of G that

are adjacent to v. The eigenvalue of ∇ acting on ψ is the Fourier coefficient ap .
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The genus subgroup

5.2 The proofs of Propositions 4.5 and 4.7 are based on the studying the image of the vectors (Pτn )τ∈G1

in the product
∏
τ∈G1

G, where G ∼= Cl(B ) is the ideal class group of B. Roughly speaking, one would

like to say that the vectors (Pτn )τ∈G1 are uniformly distributed, as n → ∞. However, this turns out

to be false in general, as the image of the Heegner points is constrained by the geometric action of

a certain subgroup G0 of G1 coming from genus theory (see [Cor01], [Vat01]). We now proceed to

describe this.

Let q denote a prime number such that q divides the discriminant D of K . Let q denote the

unique prime ideal of K lying above q. Then q2 = (q ), and since q is a rational integer, we see that

(q ) represents the trivial class in each ring class group Pic(On ) (we have assumed at the outset that

(D, p) = 1, so q �= p). It follows that Frob(q ) has order 2 in each Galois group Gn , so that Frob(q )

lies in the torsion subgroup G1 of Gal(H∞/K ). We let G0 ⊂ G1 denote the subgroup generated by

the elements Frob(q ), as q varies over primes dividing D.

It is easy to verify (see [Vat01], Section 3.8) that the group G0 is isomorphic to (Z/2Z)r , where r

is the number of distinct primes dividing D. The elements Frob(q ), for primes q dividing D, form a

basis for G0 over Z/2Z. Given τ ∈ G0 , there exists a unique subset Iτ ⊂ {q1, q2 , . . . , qr } such that

τ = ∏
q∈Iτ

Frob(q).

Conversely, any I ⊂ {q1, q2, . . . , qr } is of the form Iτ for a unique τ = ∏q∈I Frob(q). For τ ∈ G0

we may therefore define a squarefree integer d = dτ by saying

d = dτ =
∏
q∈Iτ

q.

The above facts are implicit in [Cor01], but do not seem to be stated explicitly there.

Now let χt denote any fixed tame character of G1. We define a modified function ψ∗ on Heegner

points as follows:

ψ∗(P ) =
∑
τ∈G0

χt (τ )ψ(P
τ ). (14)

Note that χt (τ ) = ±1 for τ ∈ G0 , since G0 has exponent 2. Thus ψ∗ takes values in the ring

generated by the values of ψ. Note also that ψ∗ depends on χt , although we have suppressed this

from the notation. Since we will be dealing throughout with a fixed character χt , this should not

cause any problems. Furthermore, the function ψ∗ takes on only finitely many values, since this is

already true of ψ.
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Now observe that if χt is given, then one has the simple identity

∑
τ∈G1

χt (τ )ψ(P
τ ) = ∑

τ∈G1/G0

χt (τ )ψ∗ (Pτ ).

Let C denote a set of coset representatives for G1/G0 . We will see below that the vectors (Pτn )τ∈C

satisfy good independence properties. Thus we are led to reformulate everything in terms of the func-

tion ψ∗, rather than the original ψ.

The following proposition verifies that ψ∗ factors through a finite quotient graph of the tree T , in

the same as manner ψ, and also satisfies the same basic properties. It is the analogue in our situation

of the level raising that occurs in [Cor01]. We will also need an analogue of a lemma of Ihara, which

is elementary in this context; the argument given here is drawn from Section 2 of [DT94].

We let the notation be as in §5.1.

Proposition 5.3 The following statements hold:

1. There exists a finite index subgroup �D ⊂ � and a function ψD defined on GD = �D\T , such

that if the vertex v corresponds to the Heegner point P ′ , then we we have ψD ([v]) = ψ∗ (P ′ ),
where [v] denotes the class of v in GD .

2. The function ψD takes values in the ring O. It is nonzero, and if the original ψ is nonconstant

modulo λν+1, then ψD is also nonconstant modulo λν+1.

Proof. Letψ denote our original function on Cl(B ) ∼= B×\B̂×/Q̂× R̂× , where R is the Eichler order

corresponding to our fixed Heegner point P = ( f, R) of level 1. From this viewpoint, the relationship

with Heegner points is given by ψ(P ′ ) = ψ(x ), where x is chosen so that xR̂x−1 = R̂ ′ as oriented

Eichler orders, and P ′ = ( f, R ′ ) as usual. We want to study the modified functions P ′ �→ ψ(P ′τ ),
for τ ∈ G0 , and find an adelic function ψD , left invariant under B× and right invariant under an

open compact subgroup, to represent ψ∗. So given τ ∈ G0, we let τ̃ denote an idele of K whose Artin

symbol is τ. We may view τ̃ as an element of B̂, via the embedding f : K → B. Now define a function

ψD on B̂× as follows:

ψD (x ) =
∑

d

χt (τd )ψ(x τ̃d ),

where the sum is taken over squarefree divisors d of D, τd ∈ G0 is the corresponding element of the

Galois group, and τ̃d is the corresponding idele, as explained above. Then ψD is indeed left-invariant

under B× and right invariant under a suitable open compact subgroup. We proceed to clarify its

relationship with ψ∗.
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So let P ′ = ( f, R ′ ) be a Heegner point corresponding to the vertex v on the tree T . From the

definition of the Galois action, we have P
′τ = ( f, R ′τ ), where R ′τ is such that R̂ ′τ = τ̃ R̂ ′ τ̃−1, so

that P ′ �→ ψ(P
′ τ ) is represented by ψ(P

′ τ ) = ψ(τ̃x ). This means, in particular, that the function

ψD which appeared above does not represent ψ∗ in any obvious manner (since ψ(τ̃x ) �= ψ(x τ̃)

for general x). The key is therefore to choose the point x in some intelligent manner, and we shall

accomplish this by raising the level, exactly as in [Cor01].

Given any Heegner point P = ( f, R ′ ), we define a new oriented Eichler order of level N+D by

requiring that R ′D ⊗ Z� = R ′ ⊗ Z�, if � � D, and R ′D ⊗ Zq = R ′ (q ) = R ′q ∩ τ̃q R ′q τ̃−1
q for q|D. The

embedding f : on → R ′ restricts to an embedding on → R ′D . To fix orientations, we choose an

arbitrary orientation of the maximal order o ⊂ K at each prime q|D. This induces orientations on

each order on , and we fix the orientations on R ′D at primes q|D by requiring that the embedding

on → R ′D be orientation-preserving.

Now, if RD is the Eichler order of level N+D obtained in this way from our base point P = ( f, R)

of level 1, then we claim that ψ∗ (P ′ ) = ψD (x ), where x ∈ B̂× is chosen so that xR̂D x−1 = R̂ ′D , as

oriented Eichler orders of level N+D.

To prove this, let τd ∈ G0 . Then d = q1q2 . . . qr for distinct primes qi |D, and τ̃d = τ̃q1 . . . τ̃qr .

The idele τ̃d is trivial away from the primes qi . Now let the basepoint P be fixed, as above. Let P ′ =
( f, R ′ ) be given. Then our choice of x = (x� ) implies that x�R�x−1

� = R ′�, if � is any prime such

that � � D. If � = q is a prime dividing D, then write T and T ′ for the conjugates of Rq and R ′q under

τ̃q respectively. Put R(q ) = Rq ∩ T , and R ′ (q ) = R ′q ∩ T ′ , so R(q ) and R ′ (q ) are local Eichler

orders of level q. By definition, we have xq R(q )x−1
q = R ′ (q ) . Note that this implies already that

conjugation by xq takes the pair of (local) maximal orders (R,T ) to the pair (R ′ ,T ′ ). Since we have

chosen x so that it preserves the local orientations, we see that xq Rx−1
q = R ′ and xqT x−1

q = T ′. Now

an easy calculation shows that x−1
q τ−1

q xqτq normalizes Rq , so that x−1
q τ−1

q xqτq ∈ Rq , and we have

xqτq Rq = τq xq Rq , for each prime q. By multiplicativity we get xτd R̂ = τd xR̂, for any τd ∈ G0, which

implies that ψ(τ̃x ) = ψ(x τ̃ ), for τ ∈ G0 . It follows that ψ(P
′ τ ) = ψ(x τ̃ ) for τ ∈ G0. Finally, one

finds that the function P ′ �→ ψ∗ (P ′ ) is given by ψ∗ (P ′ ) = ψD (x ), where the point x is chosen as

above.

We note that it follows from these considerations that the function ψD is right-invariant under

R̂×D , and ψ∗(P ′ ) depends only on the class of R ′D in the set of conjugacy classes of oriented Eichler

orders of level N+D.

We may now complete the proof of the proposition, beginning with the the first assertion. Indeed,

if P ′ = ( f, R ′ ) is a Heegner point corresponding to the vertex v, then by definition R ′ is in normal

form with respect to the base point R, and it is clear that R ′D is in normal form with respect to RD .
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Thus we may identify R ′D with the same vertex v. Applying strong approximation in B̂, we deduce

from ψD a function on T , also denoted by ψD , such that ψD is invariant on the left by the group

�′D = RD [1/p]× , which is commensurable with �′ = R[1/p]× . Thus we may simply take �D =
�′D ∩ � to obtain the first statement of the proposition.

As for the second, it suffices to show that the function ψD on B̂× is nonzero and nonconstant

modulo λν+1. We begin with some general observations. Suppose B is a definite quaternion algebra,

and R ⊂ B any Eichler order. Suppose q is a prime number at which B is split, and such that Rq is a

maximal compact subring. Fix isomorphisms Bq
∼= M2(Qq ) and Rq

∼= M2(Zq ). Let τ̃q denote any

element of Rq with reduced norm q, and let R̂(q ) = R̂ ∩ τ̃q R̂ τ̃−1
q . If we write S = B×\B̂×/Q̂×R̂×

and Sq = B×\B̂×/Q̂× R̂(q )× , then there are two projections (degeneracy maps) Sq → S, induced

by the two inclusions of R̂(q ) → R̂, namely, the identity inclusion R̂(q ) ⊂ R̂, and the conjugation

x �→ τ̃−1
q x τ̃q . We write 1∗ and τ̃∗q to denote the corresponding pullback maps on k-valued functions,

where k is any ring. In our application, we will have k = O/λν+1. Since S and Sq are defined as

quotients of B̂×, we may view functions on S or Sq as functions on B̂× via the natural projection maps;

note that from this viewpoint we have 1∗ψ(x ) = ψ(x ), and τ̃∗qψ(x ) = ψ(x τ̃q ), for any function ψ

on S.

Now let ψ1 and ψ2 denote arbitrary nonconstant k-valued functions on the set S. We claim

that the functions 1∗ψ1 and τ̃∗qψ2 are linearly independent. This is easy to see. Indeed, suppose

there is a linear dependence relation; then, by scaling the functions ψi we may assume that 1∗ψ1 =
τ̃∗qψ2. But 1∗ψ1 = ψ1 (viewed as a function on B̂×) is right-invariant under SL2 (Zq ) ⊂ R̂× , by

definition. Since ψ2 is also right-invariant under SL2 (Zq ), one finds that τ̃∗qψ2 is invariant under

τ̃q SL2 (Zq )τ̃
−1
q . Since 1∗ψ1 = τ̃∗qψ2, it follows that 1∗ψ1 and τ̃∗qψ2 are invariant under the group

generated by SL2 (Zq ) and τ̃q SL2 (Zq )τ̃
−1
q . But it is well known that these two subgroups generate all

of SL2 (Qq ) (this is a theorem of Ihara, see [Ser80]). Since all our functions are left-invariant under

B×, and right invariant under the product of SL2 (Qq ) · ∏� �=q R×� · Q̂×, it follows from strong ap-

proximation in B̂× that they must be constant, which is contradictory to our hypothesis. (Note that

1∗ψ1 and τ̃∗qψ2 are constant on B̂× if and only if the original ψ1 and ψ2 are so on S.)

We can actually sharpen this observation as follows. It is known that the spaces of functions on

S and Sq are endowed with an action of Hecke operators T� , for all but finitely many primes �. With

the notation above, we have T� = 1∗ τ̃∗� , where 1∗ is the adjoint of 1∗. (See for [DT94], Section 2,

for a detailed discussion.) So suppose further that the functions ψ1 and ψ2 are eigenfunctions for all

but finitely many T� , corresponding to the same system of eigenvalues, so that T�ψi = a�ψi , where

the eigenvalue a� is independent of i . We will also assume that a� �= � + 1, for all �. Note that

this already implies that the ψi are nonconstant, since the eigenvalue of T� acting on the constants

23



is � + 1. In this situation, we claim that any nontrivial linear combination a · 1∗ψ1 + b · τ̃∗qψ2 is

not only nonzero (which was proven above) but also nonconstant. But this is clear: since the Hecke

operator T� commutes with τ̃∗q if q �= �, one finds that a · 1∗ψ1 + b · τ̃∗qψ2 is a nonzero eigenvector

for T� with eigenvalue a� �= � + 1, which implies that it is not constant.

But it is now immediate that ψD is nonzero and nonconstant. Indeed, if we fix a prime q|D, then,

using multiplicativity, we can rewrite ψD as

ψD = 1∗ψD/q + χt (τq )τ̃
∗
qψD/q,

where

ψD/q =
∑

(d ,q )=1

χt (τd )ψ(x τ̃d ),

where this time the sum is taken over squarefree divisors d of D such that d is prime to q. The preced-

ing considerations show that ψD will be nonzero and nonconstant, and will be an eigenvector for T�

with eigenvalue a� �= � + 1, if the same is true for ψD/q . But we may now argue inductively, to reduce

to the case of ψ, which is known to satisfy the requisite conditions. �

Remark 5.4 In the sequel, we will work with the quotient graph GD = �D\T rather than G. Thus

we will use the notation [v] and [P] to denote the image of a vertex v, or the class of a Heegner point

P ′ , in GD . We shall also view the function ψD as being defined on the vertices of GD .

Note that if P and Q are Heegner points such that [P] = [Q] in GD , then we have

ψD (P ) =
∑
τ∈G0

χt (τ )ψ(P
τ ) = ∑

τ∈G0

χt (τ )ψ(Q
τ ) = ψD (Q ),

by definition of GD and ψD . This will be useful in the sequel.

Note also that the graph GD is bipartite. However, it follows from the discussion above that ψD

factors through a non-bipartite quotient, as was for case for ψ. Indeed, we have seen already that ψD

factors through �′D\T , where �′D = RD[1/p]× . But by Lemma 1.5 of [BD98], the latter contains an

element whose determinant has odd valuation.

Proof of Propositions 4.5 and 4.7

5.5 We want to make a good choice for the end �P = (�e0 , �e1, . . . , �en , . . . ) as in the definition of the

theta elements and p-adic L-function. If τ ∈ G1 , then write �eτn for the conjugate of en under the action

of τ. Let Pn be the origin of the edge �en . Then Pn is also the terminus of the preceding edge �en−1. Since

the formula (12) involves the predecessors of Pn , we are motivated to consider the vertices Pn−1 and

Pn−2 traversed by the end �e at steps n − 1 and n − 2. Observe that for each n and τ, the vertices
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[Pτi ] of GD corresponding to the Heegner points Pτi satisfy the condition that [Pτn+1] and [Pτn−1] are

distinct neighbors of [Pτn ].

With this notation, we have the following important proposition. It is the analogue in our situation

of the main lemma in Ferrero-Washington [FW79]. Recall that the graph G is bipartite, so that the

vertices of GD are divided into two sets, depending on whether the distance from some given vertex

is even or odd.

Proposition 5.6 Let Qr be a given Heegner point of conductor pr , with predecessors Qr−1 and Qr−2

of conductors pr−1 and pr−2 respectively. Let C be a fixed set of representatives of G1/G0 . Then, for

all n ∈ Z sufficiently large, with n ≡ r (mod 2), we may find an end �e, and τ0 ∈ C , satisfying the

following two conditions:

1. [Pτn−i ] = [Qτ
r−i ] for τ ∈ C, τ �= τ0, and 0 ≤ i ≤ 2;

2. [Pτ0
n ] = [vn ], [Pτ0

n−1] = vn−1, and [Pτ0
n+1] = vn+1, where the v i are any given vertices of GD

such that vn−1 and vn+1 are distinct neighbors of vn , subject to the constraint that [vn ] and [Qr ]

are in the same class of the bipartition of GD .

The element τ0 ∈ G1 depends only the quadratic field K .

Remark 5.7 We may view the end �d as determining an infinite walk, without backtracking, on the

finite graph GD . In concrete terms, the proposition above means that we can choose �e so that, when

τ ∈ C, τ �= τ0, then the vertices traversed by �eτ at stages n, n − 1, n − 2, are given by the original

[Qτ
r ], [Qτ

r−1], [Qτ
r−2] respectively, while still retaining the freedom to specify the vertices traversed

(at the same 3 stages) by �eτ0 .

To complement this proposition, we need to know that we can make good choices for the vertices

traversed by �eτ0 . That such choices exist is the content of

Lemma 5.8 There exists a vertex x of GD , together with distinct neighbors y and z , such that ψD (y )

and ψD (z ) are not congruent modulo λν+1. We may choose the vertex x to lie in either class of the

bipartition of G.

Proof. We have seen in Proposition 5.3 that the function ψD on GD is not congruent to a constant

function modulo λν+1. So ψD takes on at least two distinct values modulo λν+1. Suppose that, for

every vertex x of GD , the function ψD is constant modulo λν+1 on the neighbours y of x. Since this

is true for every x, it would follow that ψD takes on precisely two values modulo λν+1, say a and b.

Dividing the vertices of GD into corresponding sets A and B, it follows that every edge of GD goes
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from A to B. Then GD must be a bipartite graph, and the function ψD must respect the bipartition.

ButψD factors through the quotient �′D\GD of GD , and we have remarked above that �′D contains an

element which interchanges the two halves of the bipartition. This implies thatψD is constant modulo

λν+1, a contradiction. Thus we obtain at least one vertex x satisfying our requirements. The fact that

we may choose x to lie in either class of the bipartition also follows from the fact that �′D contains an

element that interchanges the vertices in the bipartition. �

5.9 Before embarking upon the proof of Proposition 5.6, we want to show how it implies Propositions

4.5 and 4.7. Let x, y, z denote the vertices of GD provided by Lemma 5.8. Note that the vertex x may

be chosen from either half of the bipartition; we will have to keep track of this choice in the sequel.

Now select a vertexw such thatw is adjacent to x, but such thatw is distinct from both y and z . Such

a w exists because GD is regular of degree p + 1 ≥ 4. Since w and y are adjacent to x, it is clear from

the considerations of [Vat01] that there exists a Heegner point Zr of level pr , with predecessors Zr−1

and Zr−2, such that [Zr−1] = x, while [Zr+1] = y, and [Zr−2] = w. Observe that the choice of x

determines the parity of r .

Now Proposition 5.6 states that, for all n � 0, of suitable parity, there exists an end �e (perhaps

depending on n), with corresponding Heegner points Pj , such that [Pτn−i ] = [Z τ
r−i ], for each i ,

and τ ∈ C . In particular, the vertices [Pτ0
j ] traversed by �eτ0 at stages n − 2, n − 1, n, are w, x, y

respectively. Applying Proposition 5.6 again, we now find another end �d, with corresponding Heegner

points Q j , such that [Qτ
n−i ] = [Z τ

r−i ], for i = 0, 1, 2, and τ ∈ C, τ �= τ0. At τ = τ0 , we require that

[Qτ0
n−2], [Qτ0

n−1], [Qτ0
n ] are w, x, z , respectively.

Now we compare the associated theta elements. We begin by considering the situation of Propo-

sition 4.5. Fixing some end of T , and letting ξn denote the quantity defined in (12), our job is to

compute the absolute value of the expression∑
τ∈G1

χt (τ )ψ(ξ
τ
n ) =

∑
τ∈C

χt (τ )ψD (ξ
τ
n ),

whereψD (ξ
τ
n ) =

∑
τ∈G0

χt (τ )ψ(ξ
τ
n ). But since the functionψD factors through the finite graph GD ,

we find that ψD (ξn (�e )τ ) = ψD (ξn ( �d )τ ), for τ ∈ C, τ �= τ0. On the other hand, we have [Pτ0
n−1] =

[Qτ0
n−1] = x and [Pτ0

n−2] = [Qτ0
n−2] = w, while [Pτ0

n ] = y and [Qτ0
n−1] = z . By choice of the vertices

y and z , and the formula (12), we find that

ψD (ξn (�e )τ0 ) − ψD (ξn ( �d )τ0 ) = 1

α2

(
ψD (z ) − ψD (y )

) �= 0 (mod λν+1).

This gives the statement of Proposition 4.5, for all n � 0 of suitable parity. To complete the proof,

one simply repeats the argument, upon choosing x appropriately. Finally, one obtains Proposition 4.7

in precisely the same fashion.
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We now proceed to the proof of Proposition 5.6.

5.10 Let P denote a Heegner point, corresponding to the vertex v ∈ T . We want to control the

classes in GD of the various Pτ , for τ ∈ C , and then say something about the various predecessors.

Then it is natural to introduce the vector (τpv )τ∈C , and study its distribution in the product GD ×
. . .GD , where the product is indexed by the elements of C . Note also that GD = �D\T . If we put

�τD = τp�Dτ
−1
p , and Gτ

D = �τD\G, then there is an isomorphism GD
∼= Gτ

D induced by v �→ τpv.

It will be convenient in the sequel to reformulate the problem so that we consider the distribution of

the diagonal vector (v, . . . , v ) in
∏
τ∈C

Gτ
D . Letting K̃ denote a maximal compact subgroup of G̃ =

PGL2 (Qp ), we have T = G̃/K̃ , and

∏
τ∈C

Gτ
D =

∏
τ∈C

�τD\G̃/K̃ .

We are therefore led to consider �C \G̃C , where �C = ∏τ∈C �
τ
D , and G̃C = ∏τ∈C G̃ . In order to

do this, we need some simple preliminary results. Note that PSL2 (Qp ) ⊂ PGL2 (Qp ) is a subgroup

of index two; it will actually be essential to work with the smaller group, as it is a simple group, and

generated by unipotent elements.

Lemma 5.11 Let G denote the group PSL2 (Qp ) = SL2 (Qp )/ ± 1. Then G admits no nontrivial au-

tomorphism commuting with all inner automorphisms.

Proof. Let φ denote any automorphism of G which commutes with all conjugations. Let x and g be

arbitrary elements of G; then we have

gφ(x )g−1 = φ(g xg−1 ) ⇐⇒ gφ(x )g−1 = φ(g )φ(x )φ(g )−1

since φ commutes with the conjugation by g . This implies that g−1φ(g ) commutes with φ(x ), for

any x and g . Letting x vary, we find that g−1φ(g ) is in the center of G, so that g−1φ(g ) = 1. �

Lemma 5.12 Let r ≥ 2 denote an integer, and let G∗ = ∏r
i=1 G, where G = PSL2 (Qp ). Let � ⊂ G∗

denote the diagonal subgroup consisting of the elements �(x ) = (x, . . . , x ), for x ∈ G. Let H ⊂ G∗
denote any nontrivial subgroup which is normalized by�. Then one of two possibilities occurs: either

1. H = �, or

2. there is a proper subset S ⊂ {1, 2, . . . , r} such that H has nonempty intersection with GS∗ =∏
i∈S G. In this case, H ∩GS∗ is normalized by the diagonal subgroup�S ⊂ GS . Here�S consists

of the elements�S (x ), for x ∈ G, where�S (x ) = (x1, . . . , xr ) has component xi = x for i ∈ S,

and xi = 1 if not.
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Proof. We note at the outset that H ∩GS∗ is normalized by�S , because H is normalized by�. Now

since H is nontrivial, we may assume, by relabeling if necessary, that the projection of H to the first

factor is nontrivial. Then, since H is normalized by�, and G = PSL2 (Qp ) is a simple group, we find

that the projection of H onto the first factor is surjective. Thus, for any x ∈ G, we may select some

φ(x ) = (φ1 (x ) . . . , φr (x )) ∈ H such that φ1(x ) = x. Suppose that there exists some x ∈ G such

that φ(x ) is not unique. In this case, there exist distinct elements φ(x ), φ′ (x ) in H such that each

of φ(x ) and φ′ (x ) have first component x. Considering φ(x )φ′ (x )−1, we find that H has nontrivial

intersection with the subgroup GS∗ , where S = {2, 3, . . . , r}. Thus case 2 of the lemma holds.

We may therefore assume that, for each x ∈ G, there is a unique φ(x ) with first component x.

Letting x, y ∈ G, we find that

φ(x )φ(y ) = (x, . . . , φr (x )) · (y, . . . , φr (y ) = (xy, . . . , φr (x )φr (y )).

Thus φ(x )φ(y ) is an element of H with first component xy. By uniqueness, we find that φ(x )φ(x ) =
φ(xy ) by definition of φ(xy ). It follows from the formula above that φi (x )φi (y ) = φi (xy ), for ev-

ery x, y, so that each φi is a homomorphism. If φi (x ) = 1 for some x and i , we see that H ∩ GS∗
is nonempty for S = {1, 2, . . . , i − 1, i + 1 . . . , r} and we are in case 2. Thus we may assume that

each φi is injective. Using the fact that H is normalized by the diagonal, together with the uniqueness,

we see in fact that each φi : G → G is surjective, and commutes with all conjugations. But now the

lemma above implies that each φi is the identity map, so that H is the diagonal subgroup, as stated in

case 1.

Lemma 5.13 Let G∗ be as in the lemma above. For each i = 1, . . . , r , let �i denote a discrete and

cocompact subgroup of G, and let�∗ =∏r
i=1 �i ⊂ G∗ . Let X denote the closure of of the product�∗ ·�,

where� is the diagonal, as above. Suppose that, for i �= j , the groups �i and � j are not commensurable.

Then X contains a subgroup of the form 1 × . . .G × 1, concentrated on the i-th factor, for some i with

1 ≤ i ≤ r .

Proof. As in [Vat01], the main ingredient is Ratner’s theorem (see [Rat95], Theorem 2, and [Vat01],

Theorem 4.7) on closures of unipotent orbits. Indeed, Ratner’s theorem implies that the set X is of

the form �∗ · H , where H is a closed subgroup of G∗ containing�, such that �∗ · H is closed in G∗.
Note that H must strictly contain the diagonal, since the groups �i and � j are not commensurable

for i �= j (this follows from the case r = 2, which was already proven in Corollary 4.8 of [Vat01]).

Also, since � ⊂ H , it is trivial that H is normalized by �. Choose some (x1, x2 , . . . , xr ) ∈ H

with, say, x1 �= x2. Since (x1, x1 , . . . , x1 ) ∈ H , we see that H S = H ∩ GS∗ is nontrivial, where

S = {2, 3, . . . , r}. Furthermore, H S is normalized by �S . It follows from the lemma above that H S
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is either diagonal, or has nonempty intersection with some GS ′∗ , where S ′ � S. If H S is diagonal, then

we are done by induction on r . If not, we repeat the argument with S ′ instead of S. If H S ′ is diagonal,

then we are done, otherwise we can shrink S ′ . Repeating this argument, we reduce to the case when

S ′ has just one element, and H S = H ∩ GS ′∗ is nontrivial and concentrated on the i-th factor. Since

H S is normalized by the diagonal, and PSL2 (Qp ) is simple, we find that H contains the i-th factor,

as required.

5.14 We may now prove Proposition 5.6. We are interested in triples v = (vn−1, vn , vn+1), where

each v i is a vertex of T , and there are oriented edges leading from vn−1 to vn , and then from vn to

vn+1. Equivalently, the vertices vn−1 and vn+1 are distinct neighbours of vn . Given such a triple v,

and an element τ ∈ G1, we may define the conjugate vτ in the obvious manner.

Now let X denote the set of such triples v′ = (v ′n−1, v
′
n , v
′
n+1 ), where this time the v ′i are ver-

tices of the finite graph GD , subject to the same adjacency conditions. Then X is a finite set, and we

are interested in studying the image of (vτ )τ∈C inside
∏
τ X . So write X̃ for the set of triples v =

(vn−1, vn , vn+1 ) as above, but this time with the v i ∈ T . Then there is an action of G̃ = PGL2 (Qp )

on X̃ , by left translation, and, using the description of vertices of T in terms of homethety classes of

lattices [Ser80], one checks easily that this action is transitive. Furthermore, the stabilizer of any

given v is an open compact subgroup N (a subgroup of ‘level’ p2). One deduces from this that

X = �D\G̃/N , and that the image of v in X is computed simply as the image of v in the quotient.

Furthermore, the class of vτ is simply computed as the image of τpv. Equivalently, the class of vτ is

determined by the image of v in Xτ = �τD\G/N .

We apply the foregoing results, taking as the �i the groups �τD . Note that
∏
�τD ⊂

∏
SL2 (Qp ),

by definition of the groups �τD . Now, the points Qi of Proposition 5.6 determines a triple v, and we let

x ∈ G̃ represent the corresponding point in G̃/N . In view of Lemma 5.13 above, there exist τ0 ∈ C ,

and y ∈ G = SL2 (Qp ), together with elements γτ ∈ �τD , for τ ∈ C such that γτ y is very close to

1 in PSL2 for all τ �= τ0, and γτ0 y may be specified to lie in an arbitrary open set (again in PSL2).

Taking the element yx ∈ G, we find that yx determines the same class as x in Xτ for τ �= τ0 , while

the image of yx ∈ G
τ0
D may be specified arbitrarily, subject to the stated parity condition. Note also

that the element τ0 depends only on the quadratic field K . This proves that the desired patterns occur

for Heegner points of some large conductor; that the patterns occur for points of conductor pn for all

n � 0, with n ≡ r (mod 2), follows from Ratner’s theorem on uniform distribution (see [Vat01],

Theorem 4.11, or [Rat95], Theorem 4). �

We want to point out a simple consequence of Lemma 5.13.

Proposition 5.15 Let τ �→ Cτ be any function from C to Cl(B ). Then there exists a Heegner point P
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of conductor pn , for all n � 0, such that [Pτ ] = Cτ , for each τ ∈ C .

Proof. It follows from Lemma 5.13 and induction on r that �D · � is dense in G∗ . �

6 Jochnowitz Congruences

In this section we will show how the foregoing results may be used to study the nontriviality of classical

Heegner points on modular curves. Thus let g denote a modular form of level N , and let K denote

a quadratic field in which all primes dividing N are split, so that L(g , K , s) has functional equation

with sign −1. (This is the classical Heegner hypothesis.) Let E denote the abelian variety attached by

Shimura to g . Then we are interested in studying E(H∞ ), where H∞ = ∪Hn is the compositum of

all ring class fields of conductor pn , and the goal is to find points of infinite order. As for the torsion

points, the following lemma is well-known (see [BD96], Lemma 6.3):

Lemma 6.1 We have E(Hn ) = Fn ⊕ En , where En is Z-free and Fn is finite of order bounded inde-

pendent of n. Thus the torsion subgroup F∞ of E(H∞ ) is finite, and Fn = Fm = F∞, for n and m

sufficiently large.

The basic mechanism for producing points is that of complex multiplication. As in the introduc-

tion, we let Q ∈ X0 (N ) be the CM point defined by a pair (A, n), where A is an elliptic curve with

complex multiplications by the order Oc of conductor c , and n is a fractional ideal of Oc with norm

N . Then the point Q is defined over K (c ). By abuse of notation, we shall continue to write Q for the

point (Q −∞) ∈ J0(N ), where∞ denotes the cusp at infinity on X0 (N ).

Let Q̃ denote the image of Q in E(K (c )). We want some criterion for determining whether or

not the point Q̃ and its various twists are of infinite order. This is provided by the following simple

observation, at least when c = pn .

Lemma 6.2 Let c = pn , and let the groups En and Fn be as in the preceding lemma. Let � denote a

prime number such that the order of F∞ = ∪Fn is prime to �. Let Q̃ be any point in E(Hn ). Then Q̃

has infinite order if and only if it is nonzero in En ⊗ F�.

More generally, let χ be a character of Gal(Hn/K ), and let λ|� denote a prime of Z[χ] above �.

Write k for the residue field of Z[χ] at λ. Then Q̃χ = ∑χ(σ)Q̃σ has nonzero height if and only if Q̃χ

is nonzero in E(Hn ) ⊗ k.

Proof. Clear, because Fn ⊗ F� = 0 by our choice of �. Note also that the height pairing is nondegen-

erate on the free part of E(Hn ), and isotropic on the torsion part Fn . �
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Preliminary choices

We will prove our main result (Theorem 1.4) by relating the nonvanishing of Q̃χ in E(Hn ) ⊗ k to the

nonvanishing modulo λ of the special value L(h, χ, 1), where h is a suitably chosen form of level N q,

congruent modulo λ to the original g , and applying our previous results to show that the latter is a

unit for almost all χ.

We begin by specifying more precisely the choices of � and q which intervene in this program. It

will be convenient in the sequel to write χ = χtχw, and to group together all characters with a fixed

tame part χt . To make the choices below, we assume that the tame character χt is fixed.

6.3 Let the modular form g = ∑ an (g )qn be as above. Then, for any prime λ of Q, of residue

characteristic �, there exists a Galois representation ρ = ρλ : Gal(Q/Q)→ GL2 (O), where O is a λ-

adically complete DVR such that Tr(Frob(q )) = aq (g ) ∈ O, for q � N �. If k denotes the residue field

O/λ, then there is a unique semisimple residual representation ρ : Gal(Q/Q)→ GL2 (k ) satisfying

Tr(Frob(q )) = aq (g ) ∈ k.

We will choose the primes λ (and �) such that the following conditions are met. To make sense of

condition 5 below, we assume that the fields Q(χt ) and Q(µp∞ ) are linearly disjoint. This will always

be the case if the class number of K is prime to p.

1. The prime number � is relatively prime to 2N Dp.

2. � does not divide the order of the Shimura subgroup, which is by definition the kernel of the

natural map J0(N )→ J1(N ).

3. � does not divide the order of F∞, where F∞ is as above.

4. The representation ρ is irreducible, and

5. � splits completely in Q(χt ), while remaining inert in Q(µp∞ ).

There are clearly infinitely many λ|� satisfying these conditions.

6.4 Now we want to choose an auxiliary prime q, for the purpose of raising the level. We will select q

such that

1. q � 2N Dp�,

2. q is inert in K , and

3. ρ(Frob(q )) = ρ(c ), where c denotes a complex conjugation.
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Note that the third condition implies that X 2 − aq X + q ≡ X 2 − 1 (mod λ). In particular, we

have q ≡ −1 (mod �).

Under the above hypotheses, the following theorem of Ribet [Rib84] is fundamental.

Theorem 6.5 There exists a modular form h =∑ bn (h)qn on �0(N q ) such that an ≡ bn (mod λ),

for all (n, q ) = 1, and such that bq ≡ ±1 (mod λ).

Observe that h is of level M = N q, and so L(h, χ, s) has functional equation with sign+1. Thus

the results developed in the first part of this paper are applicable. As we have already remarked, our

goal is to relate the nonvanishing of L(h, χ, 1) modulo λ to the indivisibility of classical Heegner

points for g . The next section collects the necessary facts about Heegner points on modular curves.

CM points on modular curves

We note at the outset of this discussion that if A is an elliptic curve with complex multiplication by

the quadratic field K , then we identify EndQ(A) ⊗ Q with K by fixing an embedding K ↪→ Q, and

an isomorphism Lie(A)Q
∼= Q. Then the natural action of EndQ(A) ⊗ Q on LieQ(A) gives a map

EndQ(A) ⊗ Q→ Q which identifies EndQ(A) ⊗ Q with K .

6.6 Enhanced elliptic curves. Recall that an enhanced elliptic curve over a field k is a pair (A, b )

where A is an elliptic curve over k and b ⊂ A is a k-rational subgroup of order N whose points over

an algebraic closure of k form a cyclic group. (This terminology is due to Ribet, [Rib90].) There is an

evident notion of isomorphism classes of such enhanced elliptic curves. Each enhanced elliptic curve

over k is by definition a k-rational point of the modular curve X0 (N ).

Now recall the usual Heegner points on X0 (N ). Over C, these are pairs Q = (A, b ), where A

is an elliptic curve with complex multiplication by an order oc of conductor c in K , enhanced with

a cyclic subgroup b of order N which is stable under the action of endomorphisms in oc . We shall

assume throughout that N is prime to c .

Let n ⊂ oc denote the annihilator of b in oc . Then b determines and is determined by n, since

b = A[n] ⊂ A is the set of elements killed by n. Note also that oc/n ∼= Z/N Z. We will sometimes

write (A, n) instead of (A, b ), and say that the subgroup b is associated to the ideal n.

In this situation, the theory of complex multiplication states that the point (A, b ) on X0 (N )may

be defined over the ring class field K (c ). There are ec such Heegner points Q on X0 (N ), where ec is

the order of the group Pic(oc ), and the group Gal(K (c )/K ) ∼= Pic(oc ) acts simply and transitively

on the set of Heegner points.

Let Q be a prime of Q whose residue characteristic q is prime to N Dc , where D is the discriminant
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of K , and such that q = Q ∩ K is inert in K . The curve A admits a model over K (c ) with good

reduction at Q, and the reduction A of A at Q is a supersingular elliptic curve in characteristic q.

According to classical results of Deuring, the supersingular elliptic curves in characteristic q cor-

respond bijectively (via the endomorphism rings) to the set of conjugacy classes of maximal orders in

the definite quaternion algebra B ramified only at q and∞. Thus A determines a class [A] (depend-

ing on Q) of maximal orders in B. On the other hand, the reduction b of b is a cyclic subgroup of

order N in A. Thus the pair Q = (A, b ) ∈ X0(N )(Fq2 ) is an enhanced supersingular elliptic curve

in characteristic q.

The following proposition generalizes the classical results of Deuring.

Proposition 6.7 The enhanced supersingular elliptic curves in characteristic q are in 1-1 correspon-

dence with the right ideal classes of any fixed Eichler order R of level N in B. Equivalently, the enhanced

supersingular curves correspond to conjugacy classes of oriented Eichler orders of level N .

Proof. This is Proposition 3.3 of [Rib90]. The construction of the correspondence will be recalled

below. �

6.8 Ribet’s construction. In this section we will recall how reduction mod Q of CM points on

X0 (N ) produces Heegner points on quaternion algebras, in the sense previously considered in this

paper. In other words, if we are given a pair (A, b ) where A in an elliptic curve with complex multipli-

cations by oc , and b is a cyclic subgroup of order N , we want to construct an oriented Eichler order R

of level N , together with an oriented embedding f : Oc → R. Our discussion will follow pp 439-441

of [Rib90]; for an alternative viewpoint, the reader may consult [Cor01].

From now on, we shall assume that the conductor c is a power of p, for a fixed prime p. This will

be adequate for our purposes in the rest of this paper. We shall also fix an ideal n of norm N in oK .

Then n ∩ on is an ideal of index N in on . If A is a given elliptic curve with complex multiplications by

on , for n ≥ 0, we may view A as being enhanced with the cyclic subgroup b = A[n].

So let (A, b ) be as above. The reduction (at Q) of endomorphisms gives an embedding

f : on → R,

where R ⊂ End(A ) is the Eichler order of level N given as follows. If we let t : A→ A/b denote the

canonical quotient map, then there is a natural inclusion of End(A/b ) into End(A ) ⊗ Q ∼= B given

by φ �→ t ◦ φ ◦ t−1. Then R is presented as the intersection End(A ) ∩ End(A/b ). One checks

readily that on → End(A ) induces an embedding on → R.

Note that this prescription allows us to associate to any enhanced supersingular curve (A, b ) an

Eichler order R of level N . This is the correspondence of Proposition 6.7, but we need to fix the
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orientations. In the present situation, this is easy. The fixed ideal n chosen at the outset gives a ho-

momorphism oK → Z/N Z, which defines local orientations on oK at each (split) prime dividing N .

This induces local orientations on each order on . Similarly, an arbitrary choice of local orientation at

q on oK leads to an orientation at q on each on . We therefore orient the Eichler order R that we have

constructed by requiring that the embedding on → R be an oriented embedding.

Note however that the Eichler order R so constructed arises as a subring of the quaternion algebra

End(E ) ⊗ Q, and that there is no canonical way to compare the Eichler orders associated to different

elliptic curves. Thus we fix an enhanced elliptic curve (A, n) of conductor 1. For any elliptic curve

A0 with CM by on , we choose a a nonzero isogeny γ : A → A0. Then t �→ γ−1 ◦ t ◦ γ induces

End(A)0 → EndA, and an isomorphism End(A)0 ⊗ Q→ End(A) ⊗ Q. If R0 is the Eichler order

associated to A0 (or A0 ), then this procedure identifies R0 with an oriented Eichler order of level N

inside the quaternion algebra B = End(A ) ⊗ Q. Owing to the indeterminacy in the choice of γ , the

order R0 is only determined up to conjugacy in B×.

In summary, given an enhanced elliptic curve (A, n) where A has complex multiplication by on

and b is associated to a fixed ideal n of norm N in oK , we have constructed a pair ( f, R), where R

is an oriented Eichler order in a fixed realization B of the quaternion algebra of discriminant q, and

f : on → R is an oriented embedding. The pair ( f, R) is a Heegner point on B as defined in the first

part of this paper.

For completeness, we shall review the construction of Ribet which leads to the proof of Propo-

sition 6.7 above. As explained above, any enhanced elliptic curve (A, b ) in characteristic q gives

rise to an Eichler order R of level N inside the quaternion algebra B = End(A) ⊗ Q. We fix an en-

hanced elliptic curve (A, b ) in characteristic q, together with the associated Eichler order R. Then the

set of oriented Eichler orders of level N in B = End(A) ⊗ Q coincides with the double coset space

B×\B̂/Q̂× R̂×. As we have already remarked, B×\B̂/Q̂× R̂× = B×\B̂/R̂× is isomorphic to the set

of right ideal classes of R.

Now let (A0, b0 ) denote any other enhanced supersingular curve in characteristic q. Write HomN (A, A0 )

for the subset of Hom(A, A0 ) consisting of homomorphisms that carry b to b0. Then HomN (A, A0 )

is a locally free right-R module, under composition with endomorphisms of A. Thus we can associate

to the pair (Ao, b0 ) the class in B×\B̂/R̂× of the locally free right-R-module HomN (A, A0 ). In

terms of Eichler orders, we may associate to (A0, b0 ) the left order of the right ideal HomN (A, A0 ).

One checks without difficulty that if (A, n) is a CM point of conductor pn on X0 (N ) (with a fixed

choice of n), and P = ( f, R) is the point on B constructed above, then the class of R in Cl(B ) coin-

cides with the class associated to the enhanced supersingular curve (A, b ) by Ribet’s construction.

6.9 Action of the Picard group. Let A denote an elliptic curve with complex multiplication by on ,
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enhanced with a cyclic subgroup b, and let Q = (A, b ) be the corresponding a CM point on X0 (N ).

Then we have seen that reduction at Q gives rise to a pair P = ( f, R), where R is an oriented Eichler

order of level N in the quaternion algebra B ramified at q and infinity. Thus P is a Heegner point on

B, as in the first part of this paper.

The next lemma verifies that the association Q �→ P is compatible with the action of Pic(on ),

but before stating the result, we would also like to fix some notation. Given a point Q = (A, b ), we

have two distinct notations of reduction, namely we have the geometric point x = x (Q ) = (A, b ) ∈
X0 (N )(Fq2 ), and the point P = ( f, R) on the definite quaternion algebra arising from the supersin-

gular point x. It will be convenient in the sequel to write Q to denote the point P, since it will be the

point P that is of primary interest, and it will be important to keep track of the dependence of P = Q

on Q.

Lemma 6.10 Let Q = (A, b ) denote a CM point on X0 (N ) as above. Let P = Q denote the corre-

sponding point on the definite quaternion algebra B. Then, if σ ∈ Pic(On ), we have

Qσ = Q
σ
,

where σ acts on the left via the Artin map Pic(On )→ Gal(K (pn )/K ), followed by the Galois action

on geometric points, and the action on the right is the one from section 2.2.

Proof. This is [BD97], Lemma 4.2. �

Raising the level

Theorem 6.5 states that there exists a form h =∑ bn (h)qn of level N q, new at q, such that an (g ) ≡
bn (h) (mod λ) (for (n, q ) = 1, and bq(h) = ε = ±1. The precise value of ε will not be relevant

to our discussion. We let ψ denote the function considered in the first part of this paper, attached to

the modular form g . We may now state the theorem that is our target in this section:

Theorem 6.11 Let χ denote any anticyclotomic character of conductor pn , with n ≥ 1. Let Qn denote a

Heegner point on X0(N ) of conductor pn , and let Q̃n denote its image under the quotient map J0 (N )→
E. Let Pn denote its reduction modulo Q, as above. If the number

∑
σ χ(σ)ψ(P

σ
n ) is a λ-adic unit, then

the point
∑
σ χ(σ)Q̃

σ
n is nonzero in E(Hn ) ⊗ k, and so in E(Hn ) ⊗ Q(χ)

As described in the introduction, the proof of this theorem amounts to finding two different ways

of describing the function ψ : Cl(B ) → O/λ, one in terms of the modular curve X0(N ), and the

other in terms of the Gross curve X of level M = N q. Furthermore, it is clear that this theorem,

together with Theorem 1.2, implies Theorem 1.4 of the introduction.

35



Construction of an unramified cover

6.12 We want to define the Galois cover of X0(N ) which is necessary for our construction. Let

π : J0(N ) → E denote the modular parametrization of E. We may assume that the kernel of π is

connected, and stable under the Hecke operators, so that there is an induced action of the Hecke al-

gebra on E. We let m denote the maximal ideal of T cut out by the form g modulo λ; it it follows from

the fact that ρ is irreducible that E[m] has dimension two over k = T/m. Furthermore, the action of

Frob(q ) on E[m] is given up to conjugation by the matrix

⎛
⎝1 0

0 −1

⎞
⎠. We let V = E[m], and let V±

denote the ± eigenspace for Frob(q ). Then V± is a finite flat group scheme over Fq , which becomes

constant over Fq2 .

Now let E± = E/V± . Then E± is defined over Fq , since the finite subgroup V± is Fq-stable. Let

E± → E denote the dual isogeny, so that the kernel W± of E± → E is Cartier dual to V±. Note that

under our hypotheses, we have q ≡ −1 (mod �), so that µ� becomes constant over Fq2 ; this implies

that we have W± ∼= V± over Fq2 , and that in fact all these group schemes are constant. In particular,

the covering map E± → E is a Galois cover over Fq2 , with Galois group W± ∼= k. A priori, this is an

isomorphism of additive groups, but, note also that V± is stable under the action of the Hecke algebra,

and that the module W± being dual to V±, it inherits the structure of a k-module as well.

Now consider the composite X0 (N )→ J0(N )→ E. Pullback of the cover E± → E gives a cover

X± → X0(N ), which has structural group W±, and so is Galois over Fq2 .

Let x ∈ X0 (N )(Fq2 ). Then the mechanism of the Frobenius substitution (see [Ser59], Ch. VI,

§22), gives an element F (x ) ∈ Gal(X±/X ) ∼=W±. Thus we deduce a map

F± : X0 (N )(Fq2 )→W±.

This applies in particular when x is a supersingular point, since, as is well-known, all supersingular

points are rational over Fq2 . Note that the cover X± , being the pullback of an isogeny, depends on the

embedding X0 (N )→ J0(N ). We shall follow the standard procedure and take this embedding to be

given by x �→ (x −∞). It should be pointed out that the cusp infinity is rational over Fq , and that

the fiber over infinity, being the group scheme W±, becomes constant over Fq2 . It follows from this

that the map F± is well-defined on X0(N )(Fq2 ).

Fixing an isomorphism W± ∼= k, writing � for the set of supersingular points on X0 (N ), and

extending F± by linearity, we obtain a morphism

F± : Z[�]→ k, (15)

Lemma 6.13 The following statements hold:
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1. The map F± defined in (15) is nonzero and surjective.

2. If x ∈ X0(N )(Fq2 ) is any point, and Tr is a Hecke operator with q �= r , then we have F± (Tr x ) =
tr F± (x ), where tr is the image of Tr in T/m.

3. If φ denotes the Frobenius element in Gal(Fq2/Fq ), and x ∈ X0 (N (Fq2 )) is any point, then we

have F± (φ(x )) = φ(F± (x )), where φ(q ) acts on F± (x ) ∈ W± via the usual Galois module

structure.

Proof. The first statement follows from a theorem of Ihara. Indeed, Theorem 1 of [Iha75], shows that

if X (N ) denotes the modular curve corresponding to the full congruence subgroup of level N , then

the fundamental group of X (N )(Fq2 ) is generated by the Frobenius elements of the supersingular

points. Thus, if X ′ → X (N ) is any connected unramified Galois cover over Fq2 , then the reciprocity

map Z[�(N )]→ Gal(X ′/X (N )) is nonzero and surjective, where�(N ) denotes the set of super-

singular points on X (N ). Note that the supersingular points on X (N ) are all rational over F(q2 ) and

that the natural projection X (N )→ X0 (N ) takes �(N ) to �.

We let X ′ = X ′± be the pullback to X (N ) of X± → X0 (N ), where the cover X± of X0(N ) is

as above, and the pullback is taken under the natural projection of X (N ) to X0 (N ). Then we claim

that X ′± is connected. Indeed, if this were not the case, then the kernel of J0(N ) → J (N ) would

have an element of order �, since X± is a degree � cover of X0(N ). But J0(N ) → J (N ) factors as

J0(N ) → J1(N ) → J (N ), and the latter map is injective since the cusp ∞ is totally ramified in

X (N ) → X1 (N ). Thus ker{J0(N ) → J (N )} = ker{J0(N )→ J1(N )} is the Shimura subgroup,

and we have assumed that � is relatively prime to the order of this subgroup.

Thus X ′± is connected, and Z[�(N )] → Gal(X ′/X (N )) is nonzero and surjective. But now it

also follows from the fact that � is prime to the order of the Shimura subgroup that the cover X± →
X0 (N ) is linearly disjoint from X (N )→ X0 (N ). Thus Gal(X ′±/X (N )) is canonically isomorphic

to Gal(X±/X0 (N )). Since �(N ) projects to �, and all these points are rational over Fq2 , the first

statement now follows from the functorial properties of the reciprocity map.

As for the second, select y ∈ J0(N )(Fq ) such that �y = x. Then, if π± : E → E± = E/V± is

the quotient map, and π∗± is the dual, we have π∗± ◦ π±(y ) = �y = x, so that if z = π± (y ), then

π∗±(z ) = x. If φ′ = φq denotes the Frobenius element in Gal(Fq/Fq2 ), then z ′ = φ′(z ) also satisfies

π∗±(z ′ ) = x, since x is fixed by φ′ . Thus z ′ − z ∈ ker(π∗± ), and one checks without difficulty that

F± (x ) = z ′ − z ∈W±. See also [Ser59], Ch. 6, §23.

On the other hand, we also have �Tr y = Tr x. Since Tr is defined over Fq, we find that

φ′ (Tr y ) − Tr y = Tr (φ
′ (y ) − y ) ∈ J0(N )[�].
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The required statement follows upon applying π±. Care has to be taken with one point, namely, that

the action of T on W±, viewed as a quotient of J0(N )[�], coincides with the one induced by duality

from V±. But this follows from autoduality of J0(N )[�] under the twisted Weil pairing. (Note that

the Atkin-Lehner involution acts as±1 on J0(N )[m].)

The final statement may be proved in a similar fashion. Choosing z ∈ E± such that π∗±(z ) = x,

we have π±(φ(z )) = φ(x ), so that

φ(F± (x )) = φ(φ′ (z ) − z ) = φ′ (φ(z )) − φ(z ).

�

6.14 Now let Q = (A, b ) ∈ X0 (N )(Hn ) denote a Heegner point, as above. Recall our convention

that x denotes the geometric point (A, b ) ∈ X0 (N )(Fq2 ), and that Q denotes the point deduced from

x on the quaternion algebra B.

Applying F± to the point x, we obtain F± (x ) = F± (Q ) ∈ W±. It is clear that if F± (Q ) �= 0,

then the image of x in E(Fq2 ) is nonzero in E(Fq2 ) ⊗ k. In view of our choice of �, we find that Q̃ has

infinite order in E(Hn ). Indeed, the following slightly stronger lemma is obvious:

Lemma 6.15 Let Q = (A, b ) be as above, and let χ denote any character of Gal(Hn/K ). Then, if∑
σ χ(σ)F± (Qσ ) is nonzero in W± ⊗ k(χ), the point

∑
σ χ(σ)Q̃

σ is nonzero in E(Hn ) ⊗ Q(χ).

6.16 To complete the proof of Theorem 6.11, we relate the functions F± to certain functions ψ com-

ing from definite quaternion algebras. Let h be a form of level M = N q, congruent to g , as above. Let

X denote the Gross curve of level N , associated to the quaternion algebra B ramified at infinity and

q. Let M denote the group Pic(X ). It follows from Proposition 6.7 that M may be identified with

the free Z-module on the set � of supersingular points on the modular curve X0(N ). Furthermore,

if T(M ) denotes the Hecke algebra of level M = N q acting on M = Z[�], then one can relate the

action of the Hecke operators in T(M ) to those in T = T(N ) as follows. For clarity, we will write T M
r

or T N
r to denote the r-th Hecke operator at levels M and N respectively. With these notations, it is

known that, if r is prime to q, then the action of T M
r on M ∼= Z[�] is induced from the action of T N

r

acting on �(N ). For a discussion of this, we refer the reader to [Rib90], pp 444-445. On the other

hand, one knows ([Rib90], Proposition 3.8) that Tq (M ) acts on Z[�(N )]0 via the Frobenius auto-

morphism x �→ φ(x ) of �(N ), where the superscript 0 denotes the subgroup of divisors of degree

zero.

Let ψ = ψh : M → O denote the homomorphism associated to h, as in §1. If x ∈ Z[�]0 , we

may view x as an element of M . Then we have ψ(Tr (x )) = br (h)ψ(x ), for the eigenvalue br (h) of

Tr = Tr (M ) acting on h. Furthermore, we have ψ(Tq (x )) = εψ(x ), where bq (x ) = ε = ±1. It
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follows from a multiplicity-one theorem of Mazur [Rib90], Theorem 6.4, that, up to unit multiples,

there is a unique such nonzero homomorphism M 0 → F�. Choosing the sign α = ± judiciously, and

scaling by a unit if needed, we find, from Lemma 6.13, that the function Fα satisfies the same prop-

erties of Hecke invariance, so that we get Fα = unit · ψ (mod λ). Theorem 6.11 is now immediate

consequence.
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