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Abstract

Organismal development and many cell biological processes are organized in a modular fashion, where regulatory
molecules form groups with many interactions within a group and few interactions between groups. Thus, the activity of
elements within a module depends little on elements outside of it. Modularity facilitates the production of heritable
variation and of evolutionary innovations. There is no consensus on how modularity might evolve, especially for modules in
development. We show that modularity can increase in gene regulatory networks as a byproduct of specialization in gene
activity. Such specialization occurs after gene regulatory networks are selected to produce new gene activity patterns that
appear in a specific body structure or under a specific environmental condition. Modules that arise after specialization in
gene activity comprise genes that show concerted changes in gene activities. This and other observations suggest that
modularity evolves because it decreases interference between different groups of genes. Our work can explain the
appearance and maintenance of modularity through a mechanism that is not contingent on environmental change. We also
show how modularity can facilitate co-option, the utilization of existing gene activity to build new gene activity patterns, a
frequent feature of evolutionary innovations.
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Introduction

Most functions and structures in cells and organisms can be

decomposed into smaller elements that are organized into modules

[1,2]. Such modules exist on many levels of organization, ranging

from proteins and RNA to complex organs [3]. A module is a

group of elements (transcription factors, signaling proteins, etc.)

whose interactions occur preferentially within the group. Such an

arrangement means that the activity of elements within a module

depends little on elements outside of it. Thus, a module can also be

viewed as a semi-autonomous entity that evolves, functions or

participates in development (or other processes) relatively

independently from other modules [2,4,5]. Modularity can

enhance evolvability, an organism’s capacity to generate adaptive

heritable variation, for two reasons. First, the organization of

biological systems into modules may permit changes inside one

module without perturbing other modules. Second, modules can

be combined and reused to create new biological functions [6–8].

Despite much recent interest in modularity [3], there is no

consensus on the mechanisms that could explain its evolution [7].

Several scenarios have been proposed for the origin and

maintenance of modules [9]. Two scenarios stand out, because

they require conditions that organisms may encounter especially

frequently. The first involves a combination of directional selection

and stabilizing selection [2,8], the second involves modularly-

varying evolutionary goals [10].

Modularity might result from directional selection favoring

change in one trait while stabilizing selection maintains other traits

unchanged [2,8]. Correlations between different traits can hamper

both the favorable constancy of some traits and the change that in

other traits would be beneficial. Under this scenario, modularity

arises because the combination of directional and stabilizing

selection breaks pleiotropic interactions that cause fitness trade-offs

between several traits, thus allowing an escape from adaptive

constraints [8,11]. During most adaptive evolution only a few traits

change while many traits are under stabilizing selection [2,8].

Therefore, this mechanism may be a common way to evolve

modularity. However, despite its eminent plausibility, population

genetics models aiming to use this mechanism to produce an

increase in modularity fail to do so. The reason may be their

overly simple genotype-phenotype map [7].

An environment that fluctuates modularly may pose alternative

evolutionary goals composed of similar sub-goals to an organism.

According to previous research, such modular fluctuations in

evolutionary goals can be sufficient to produce and maintain

modularity [10]. In support of this scenario’s importance speaks

the fact that environmental fluctuation is ubiquitous. Examples

include temporal variation in nutrient availability, temperature

changes, changes in salinity, and many other environmental

factors. Metabolic networks of bacteria living in changing

environments are usually more modular than those of bacteria

living in stable environments, an observation that also supports the

modularly-varying goals scenario [12]. This scenario is the best

current candidate for the origin of modularity in fluctuating

environments. At the same time, the requirement of frequent

changes in adaptive goals to maintain modularity [10] makes this
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scenario irrelevant where environmental demands do not

fluctuate. This holds for many developmental and morphological

traits. For instance, the gene network that is responsible for

segment polarity in Drosophila melanogaster and other insects is a

prominent example of a robust module in gene networks [13–15].

Genes in this network seem to perform similar functions in a wide

range of taxa where segments are generated through otherwise

disparate processes [13,16]. It seems unlikely that such a network

retains its independence from other factors because environmental

demands on the fly’s segments fluctuate modularly to this day. In

addition, although environmental change is certainly frequent, the

extent to which environments vary modularly is unclear. Hence, the

importance of the fluctuating-environment mechanism in creating

modularity is not yet proven.

Questions about modularity are questions about the structure

and organization of the processes that construct phenotypic traits.

Development unfolds through a sequence of gene expression states

that play a major role in determining phenotypic traits [17]. In this

progression some genes affect each other’s activity in a network-

like manner. The gene regulatory networks formed by these genes

often behave modularly. For example, they maintain their intrinsic

behavior even when perturbed externally, or when functioning in

different contexts, such as the different parts of an organism

[13,18–21]. The gene activity patterns they produce are specific to

particular regions of the organism or to different stages of

development, and they drive specific developmental events.

In this contribution, we study the conditions under which a gene

regulatory network becomes partitioned into different semi-

autonomous modules. We here show that modularity can arise

in gene regulatory networks as a byproduct of specialization in

gene activity. Such specialization involves the evolution of new

gene activity patterns that arise in a specific body part or under

specific environmental conditions that organisms encounter

throughout their lifetime. Namely, we show that networks that

attain a gene activity pattern I increase their modularity when

selection favors a second activity pattern II, provided that: i)

Selection still favors I, so that evolved networks are able to produce

both I and II, and ii) Patterns I and II share the activity state of

some genes. Those genes with an activity state unique to pattern I

or II have roles that are specific to their location or time of

expression. Modularity arises because interactions between genes

with shared and specific activities obstruct either the constancy of

the former or the ability of the latter to attain different

combinations of activity states. Hence, such interactions are

selected against, so that the dynamics of one set of genes is affected

little by the dynamics of the other set. We also show that the

increase in modularity in gene networks modifies developmental

constraints, thus facilitating the evolution of new additional gene

activity patterns that make use of already evolved modules.

Model
For our study we consider a network of N genes. Each gene’s

activity state is regulated by other genes in the network. The

genotype of an individual is defined as the set of the interactions

among its genes. We represent this set of interactions as a matrix

A~(aij). Non-zero elements in A indicate activation (aij~1) or

repression (aij~{1) of gene i exerted by gene j. The state of the

network at time t is described by a vector st~(s0
t ,:::,sN{1

t ). A

certain gene i at time t can be either active (si
t~1) or inactive

(si
t~{1). We model the change in the activity of the genes in the

network according to the difference equation

si
tzt~s

XN

j~1

aijs
j
t

" #
ð1Þ

where s(x) equals 1 if xw0, and it equals {1 in all other cases.

Despite its simplicity, variants of this model have been

successfully used to study how robustness can evolve in gene

regulatory networks [22–24], how robustness can aid in evolu-

tionary innovation [25,26], and how recombination can produce

negative epistasis [27]. Moreover, similar models have been

successfully used to predict the dynamics of developmental

processes in plants and animals [28,29].

For our purpose, we consider that a phenotypic trait is defined

by an attractor, a stable gene activity pattern resulting from the

dynamics of a gene regulatory network. Attractors are often

associated with developmental end-states and ‘outputs’ of

developmental mechanisms [22,30–32].

In order to study the evolution of modularity in gene regulatory

networks, we implemented evolutionary simulations that consisted

of iterative rounds of mutation and selection in populations of

networks. In these simulations, we compared a set of reference

gene activity patterns to actual network attractors, so that networks

with attractors that were similar to the selected activity patterns

had higher fitness than others (see Methods). To quantify the

modularity of networks in our model, we used an algorithm [33]

that identifies modules as non-overlapping densely connected

groups of nodes with sparser connections between groups (see

Methods). Thus, if genes in individual modules interact with many

genes outside their module, the autonomy of the modules

decreases, which would be reflected in a lowered modularity score.

Results

Specialization increases modularity
To find out whether specialization can increase modularity, we

studied 200 independent evolving populations of gene regulatory

networks (eq. 1). Each of these populations was started with

identical networks, and was subject to 500 generation cycles of

mutations and selection towards attainment of a fixed-point

attractor I (see Methods for details). The number of generations

Author Summary

Throughout life’s history, organisms have produced
evolutionary innovations, features that are useful when
facing new ecological and environmental challenges. A
property that aids in the production of such innovations is
modularity. Modular systems consist of groups of mole-
cules with many interactions within a group but fewer
interactions between groups. Such modularity increases
the chances of innovation, because it allows changes
inside one module without perturbing others, and because
it permits redeployment of modules to create new
biological functions. We simulate the evolution of gene
networks known to be important in development to show
that modularity increases when selection favors speciali-
zation in gene activity. Specialization occurs wherever new
cell types, organs, or other body structures arise. In the
course of this process gene networks acquire the ability to
produce new gene activity patterns specific to these
structures. We also demonstrate how modularity favors
the evolution of new gene activity patterns that make use
of already existing modules. Because specialization in gene
activity is very common in evolution, the mechanism that
we put forward may be important for the origins of
modularity in gene regulatory networks.

Specialization and Modularity in Gene Networks
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was chosen to ensure that networks that stably attain I can arise in

the population. After gene activity pattern I had evolved, we

allowed the population to evolve for 1500 more generations, but

selecting for attainment of gene activity pattern I and a new

pattern II during this time. Under this selection regime, the fittest

networks were those capable of stably attaining I and II from

different initial conditions that may occur in different parts of a

multicellular organism. In other words, selection maintained the

ability to attain I while at the same time favoring acquisition of II.

Pattern II was chosen such that half of the network genes had

identical (shared) expression states in I and II, and the other half

differed in their activity state (Figure 1A). We chose such activity

patterns because we hypothesized that interactions between genes

with shared activity states and the rest of the genes would obstruct

either i) the constant activity state of the former, or ii) the capacity

of the latter to acquire different activity states independently of

genes with constant activity states. If so, interactions between the

different sets of genes may be selected against, thus resulting in two

sets of genes with only sparse connections between them.

In most of the 200 evolving populations, modularity increased

after evolving towards the attainment of both I and II. We observe

this increase both in the networks with the highest fitness in the

population (Figure 1B; Wilcoxon signed-rank test; z~9:4978;

pv2:2|10{16), and when averaged over all networks in a

population (Figure 1C; Wilcoxon signed-rank test; z~10:462;

pv2:2|10{16). Figures 1D,E show an example of how mo-

dularity increases after selection for attainment of activity patterns

I and II. Modularity does not increase when selection for II is

absent, nor when networks evolve in the absence of selection

(Figure S2). The increase in modularity is not transient because it

is maintained around the same level, at least for 10,000 additional

generations, when selecting for both I and II (Figure 2).

We next verified that our results were insensitive to changes in

model assumptions and parameters. We first decreased the

mutation rate m, and even though the time required to evolve

activity patterns I and II then increases, modularity still increases

significantly (m~0:025; Figure S3A). Modularity increases as well

when m is increased (m~0:1; Figure S3B). We next asked whether

our observations were sensitive to the assumption that individual

gene activity patterns contribute to fitness additively. Changing

this assumption to multiplicative fitness contributions still leads to

a significant increase in modularity (Figure S4). In addition, the

Figure 1. Modularity increases after selection for a new additional gene activity pattern. (A) Activity patterns I and II share the activity
state of genes 0–4 and differ in that of genes 5–9. Black and white squares represent inactive and active genes, respectively. (B,C) The horizontal axes
indicate mean modularity after selection for I. The vertical axes show modularity in networks after selection for both I and II. Specifically, (B) shows
modularity of the network with highest fitness, and (C) shows mean population modularity. Points above the identity line (solid diagonal) show
populations in which modularity increases after selection for the second activity pattern. The length of bars indicates one standard deviation. Plots
show results for 200 evolving populations. (D,E) Nodes filled with the same color represent genes that lie in the same module. Black edges represent
interactions between genes in different modules. (D) Network with the highest fitness in a population after selection for I. The Newman algorithm
[33] partitions this network into sets in which genes 0–4 and 5–9 are intermingled. This network has a non-normalized modularity of 0.18, and a
normalized modularity equal to 20.1. (E) Network with the highest fitness in a population after selection for I and II. This network is partitioned into
modules in which genes with shared (genes 0–4) and different (genes 5–9) activity states in I and II lie apart. This network has a non-normalized
modularity of 0.39, and a normalized modularity equal to 0.7.
doi:10.1371/journal.pcbi.1000719.g001

Specialization and Modularity in Gene Networks
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increase in modularity also occurs for networks containing more

genes (N~20; Figure S5), suggesting that such behavior does not

depend on the number of genes in a network.

In a next analysis, we asked whether the increase in modularity

depends on the identity of gene activity states I and II. We found

that it does not, as long as some genes have the same activity state

in the two patterns. For example, modularity also increases when

the activity patterns differ in the activity of either three or seven

genes (Figure S6A,B). Moreover, modularity increases when both

the first and the second gene activity patterns are randomly

chosen, except that pairs with fewer than two different activity

states are discarded (Figure S6C, based on 100 populations with

different pairs of activity patterns). In contrast, modularity does

not increase when all genes in the activity states I and II differ in

their expression (Figure S6D). This result is not due to a lack of

adaptation, since networks able to attain both activity patterns

arise in all evolving populations. Taken together, these observa-

tions show that modularity does not only increase for specific gene

activity patterns, but that it is a generic evolutionary response.

Moreover, the distinction between two sets of genes, those with

identical and those with different activity in both expression

patterns, is essential for the evolution of modularity. That

modularity increases only in this case suggests that modules arise

as a means of diminishing the effects of genes with unchanging

activity on genes with changing expression in I and II, and vice

versa. If so, modules should correspond to sets of genes that are

required to switch their activity in a concerted manner. The

following section shows that this is the case.

Modularity partitions networks according to genes with
shared and unique activity states

Having established that the evolution of modularity requires

genes with both shared and different activity states, we next asked

whether the partitioning of modules is congruent with these two

sets of genes. In other words, does one module tend to involve the

genes with shared activity states, whereas another involves genes

with different activity states in I and II? We evolved 300 network

populations, first towards activity pattern I and later towards both

I and II, depicted in Figure 1A. Throughout evolution, we

determined for one of the best adapted networks in each

population: i) the frequency ps{s at which two genes with activity

states shared in I and II occur within the same module, ii) the

frequency pn{n at which two genes with different activity states in I

and II occur within the same module, iii) the frequency ps{n with

which a specific gene with a shared activity state and a gene with a

non-shared activity state are in the same module (Figure 3A). As

selection for I and II occurs, ps{s and pn{n increase, while ps{n

decreases (Figure 3B). This observation tells us that genes with

activity states that change concertedly throughout all the selected

activity patterns – be they shared or not – will tend to be included

in the same module, and kept apart from other genes. This is

exemplified in Figure 1D,E, which compares one of the optimal

networks after selection for I with one of the optimal networks after

selection for both I and II. The latter is partitioned into modules in

which genes with shared and distinct activity states in I and II lie

apart. Thus, the structure of modules reflects the manner in which

selection has molded the traits, as has been previously suggested

[2].

Modularity increases further after selection of a third
activity pattern

We also tested whether modularity arises only where selection

favors the attainment of two gene activity patterns, or whether it

increases further with even more gene activity patterns. To this

end, we analyzed 100 evolving populations in which selection first

favored a gene activity pattern I (500 generations), then an

Figure 2. Modularity increase is not transient when selecting
for a second additional gene activity pattern. Modularity in the
best adapted networks reaches a plateau that is maintained for, at least,
10,000 generations when selected to attain gene activity patterns I and
II. Such plateau is significantly higher than that of networks selected to
attain only activity pattern I. The length of bars represents one standard
error. The plot shows results for 100 evolving populations in each
selection regime.
doi:10.1371/journal.pcbi.1000719.g002

Figure 3. Networks become partitioned according to genes
with shared and non-shared activity states. (A) ps{s represents
the frequency at which two specific genes whose activity is the same in
I and II occur within the same module. pn{n stands for the frequency at
which two specific genes with non-shared activity states that change in
a concerted manner occur within the same module. ps{n represents the
frequency with which two genes, one with a shared activity state and
the other with a different activity state in I and II, are in the same
module. (B) As selection for activity patterns I and II starts, ps{s and
pn{n increase but ps{n decreases. The plot shows results for 300
evolving populations.
doi:10.1371/journal.pcbi.1000719.g003

Specialization and Modularity in Gene Networks
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additional pattern II (I+II, next 1,500 generations), and then a

third pattern III (I+II+III, last 3,000 generations). The patterns

share the activity of some genes and differ in others. As selection

for the third pattern begins, more and smaller groups of genes arise

whose activity changes in a concerted manner (Figure 4A).

Interactions between different such groups would obstruct

evolutionary adaptation. Such interactions should thus be selected

against, resulting in a further increase in modularity. Our

observations confirm this hypothesis. After selection for patterns

I and II, we observed a significant first increase in modularity

(Wilcoxon signed-rank test; z~6:8852; p~2:884|10{12). Mod-

ularity increased further after selection for pattern III (Figure 4B;

Wilcoxon signed-rank test; z~4:6572; p~1:603|10{6).

In addition, we observed an increased number of modules in

networks with high fitness after selection for patterns I and II.

Moreover, this number increases further after selection for

patterns I, II and III (Figure S8B). This result suggests that the

increase in modularity after selection for the three patterns occurs

because of the appearance of new modules, and is not a mere

consequence of the consolidation and refinement of previously

evolved modules. We also analyzed how the probability of two

genes being part of the same module changes across evolution. We

found that the frequency of two genes occurring in the same

module in the fittest networks of each evolving population changes

according to whether those genes change their activity concertedly

across the selected patterns (Figure S8C). For example, as we

depict in Figures 4 and S8A, the activity of genes 5 and 6 changes

concertedly across all activity patterns: if in one pattern gene 5 is

active, then gene 6 is inactive in that same pattern, and vice versa.

The frequency with which those genes lie in the same module

increases across evolution. In contrast, the activity of genes 0 and 6

changes concertedly when selecting for patterns I and II, but not

when also selecting for activity pattern III. Thus, the probability of

those genes occurring in the same module increases prior to

selection for pattern III. After selection for pattern III starts, the

probability that genes 0 and 6 lie in the same module decreases

abruptly (Figure S8C). These results show that the modules that

arise after selection for the third pattern also tend to coincide with

sets of genes whose activity states change concertedly throughout

the selected patterns. Computational cost did not allow explora-

tion of further increases in modularity via selection of additional

gene activity patterns. However, our observations already suggest

that modularity will increase as long as there is an increase in the

number of gene groups for which concerted activity changes are

favored.

Modularity facilitates co-option
A question recurring in the literature is how modularity may

increase evolvability by facilitating co-option, the combination of

previously evolved modules to perform new functions [19–21,34–

36]. We addressed how the previous evolution of modules in gene

regulatory networks biases future evolutionary potential by asking

whether gene networks acquire new gene activity patterns faster if

these patterns use gene activity states associated with previously

evolved modules. Specifically, we selected networks for their ability

to stably attain three gene activity patterns I, II and III (Figure 5A).

We chose the specific combination of patterns in Figure 5A

because: i) it promotes the evolution of a module including genes

0–4 and another module including genes 5–9, as shown above,

and, ii) it allows the inclusion of an additional activity pattern (IV)

that is composed entirely of activity states associated with

previously evolved modules (Figure 5A,B). After 3,000 generations,

we subjected networks in 100 evolving populations to selection

favoring such an additional gene activity pattern IV (Figure 5B).

Importantly, this pattern shares the activity states of genes 0–4

with III, and the activity state of genes 5–9 with II. Thus, gene

activity pattern IV may evolve by combining previously evolved

modules in a new manner. In addition, we repeated this approach

in 100 ‘‘control’’ populations where the fourth favored gene

activity pattern was randomly chosen with equal probability for

genes being active and inactive. Notice that we do not expect that

selection for activity pattern IV increases modularity, because the

inclusion of this pattern does not cause an increase in the number

of gene groups with concerted activity changes. Rather, we

hypothesize that modularity facilitates the evolutionary acquisition

of such an activity pattern, as compared to other activity patterns.

We found that networks with high fitness arise much more

rapidly when IV is the new gene activity pattern. This indicates

that pattern IV is much easier to attain than random gene activity

patterns in populations of networks that have previously been

selected for their ability to attain I, II and III (Figure 5C). The

same trend occurs when not just the networks with highest fitness

are considered, but also when we analyze mean population fitness

(Figure S7). We note that in our analysis selection favors the

attainment of IV to the same extent as the attainment of any one

random gene activity pattern in the control populations. This

means that our observations are not simply caused by a greater

increase in fitness conveyed by IV. The fitness increase rather

depends on how easily the new gene activity patterns can be

constructed: it is easier to evolve gene activity patterns that

combine activity states of previously evolved modules.

Figure 4. Modularity increases further after selection for a third
activity pattern III. (A) Gene activity patterns I, II and III. White squares
represent active genes and black squares represent inactive genes.
Background color distinguishes genes that change their activity state in
a concerted manner across all selected patterns. Notice that, in this
case, the inclusion of additional activity patterns results in more and
smaller groups of genes whose activity changes concertedly. (B) The
horizontal axis indicates modularity of the best adapted networks after
selection for I and II. The vertical axis shows modularity of the best
adapted networks after an additional 3000 generations of selection for I,
II and III. Wilcoxon signed-rank test; z~4:6572; p~1:603|10{6. The
plot shows results for 100 evolving populations.
doi:10.1371/journal.pcbi.1000719.g004

Specialization and Modularity in Gene Networks
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Discussion

In sum, we showed here that modularity arises in gene networks

when they acquire the ability to attain new activity patterns that

share the activity state of some genes with old patterns. Our

observations indicate that selection to attain the new activity

patterns can cause modularity to arise in gene regulatory networks

when pleiotropic effects obstruct adaptation [2,8,11]. Such

pleiotropic effects are caused by interactions between (i) genes

whose activity is shared between different patterns, and (ii) genes

whose activity is specific to one pattern: If changes in the latter

affect the former, evolutionary acquisition of the new pattern is

hindered. Thus, the scenario we propose favors networks with few

interactions between genes with an unchanging activity state and

genes that adopt new regulatory functions. In this way, genes that

have correlated activity states come to lie in the same network

module (Figures 3 and S8C). Our results suggest that modularity

increases as long as selection favors new activity patterns involving

more and smaller groups of genes whose activity changes in a

concerted manner (Figures 4 and S8).

Empirical falsification (or validation) of the mechanism that we

propose ideally requires comparative analyses of the structure of

gene regulatory networks in several related species. Such

information might not be available soon. However, existing

information from various sources suggests that the mechanism we

propose could be important. Specifically, the evolutionary

acquisition of new gene activity states by regulatory networks is

ubiquitous in evolution, and nowhere more than in the evolution

of development. It occurs wherever new cell types, organs, or body

structures, arise from previously undifferentiated ones. Many

examples in the literature suggest that some genes exhibit

specialized activity in different parts of an organism, whereas

others present shared activity patterns. Indeed, gene functions may

be inferred via correlated gene expression patterns in conventional

or high-throughput expression analyses [37–39]. For example, the

activity of the same genes patterns both vegetative and floral

meristems in the plant Arabidopsis thaliana. Floral identity genes are

active exclusively in floral meristems, so that the floral structure is

determined by both the floral identity genes and the shared

patterning genes [40–42]. In the sea urchin Strongylocentrus

purpuratus, some differentiation genes are active in the micromer

lineage that produces the euechinoid exclusive embryonic skeleton

and also in the independently derived juvenile skeletogenic centers

that produce the adult skeleton [43]. Some other genes of the gene

network that specifies the skeletogenic micromere lineage are

active in those cells but not in the juvenile skeletogenic centers.

Examples include genes involved in induction of neighbouring

cells or in triggering the initial stages of micromere specification

[43,44]. Another example involves the cellular level. Mammalian

brown fat cells share some traits and gene activity patterns with

white fat cells, and others with muscle cells [45]. More generally,

evolutionarily derived cell types usually perform just a fraction of

the functions that ancestral cell types performed [46], a trend that

will lead to similar activity states for some genes and different states

for others in sister cell types.

In a similar vein, evolutionary specialization of initially

homogeneous metameric units is likely to occur mainly by

modifications (such as changes in the transcriptional circuitry)

that result in metamers with different activity states of some genes

but not of others; otherwise, differentiated metameric units would

be hardly recognizable as such. For example, in D. melanogaster,

limbs are positioned and patterned by mechanisms that are

reiterated along the body, however limb identity relies on segment-

specific mechanisms [47]. Moreover, in heteronomous arthropods,

in which the morphology of segments along an individual is very

distinct, processes underlying segmentation and limb differentia-

tion interact less than in homonomous arthropods, in which the

segments along a body are very similar [47]. Segment formation is

performed throughout the organism (shared), and, in heterono-

mous taxa, limb identity determination is specialized according to

the place where a limb develops. Thus, when there is specialization

in limb identity, the two processes are more independent, in

contrast to taxa that lack this specialization.

Co-option, the recruitment of previously evolved modules to

perform new functions, is a common feature of evolutionary

innovations [20,21,34,36,43]. A case in point regards the gene

network regulating pharyngeal dentition in fish, which is co-opted

to also generate oral dentition [36]. Another example is the gene

network that patterns the insect wing blade. It is co-opted to

determine the localization of eyespots in butterfly wings [34]. Our

work shows that a modular network may readily generate new

gene activity patterns that make use of gene activity states of

previously evolved modules. The existence of such structured, or

‘‘facilitated’’ variation has been known for a long time [48–51].

Our work provides a candidate mechanism to create such

variation, namely via network modularity that results from

Figure 5. Maximal fitness increases faster when co-option of
existing gene activity states is possible. (A,B) Black and white
squares represent inactive and active genes, respectively. (A) Networks
first attained activity patterns I, II and III after 3,000 generations of
evolution. The selection regime promotes the evolution of modules
containing genes 0–4 on one hand, and genes 5–9 on the other. (B)
After 3,000 generations, selection favored gene activity pattern IV,
which is a combination of activity patterns matching those of
previously evolved modules, as indicated by the background colors.
(C) Networks selected to attain a fourth activity pattern increase their
fitness much faster if this pattern is IV, than if it is a randomly chosen
activity pattern. The length of bars indicates one standard error.
doi:10.1371/journal.pcbi.1000719.g005
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specialization in gene activity. Our observations could thus help

explain the repetitive co-option of several modules, such as that

responsible for proximal-distal polarity in lateral appendages and

body outgrowths [20,21], or the achaete and scute module that

operates in a wide range of developmental processes in animals

[19].

An alternative hypothesis for the evolution of modularity is the

‘modularly-varying goals’ scenario [10]. This scenario requires

that populations are exposed to evolutionary goals that fluctuate

over time, so that modularity can arise and be maintained. In

contrast, our scenario requires specialization of gene activity, that

is, new gene activity patterns must be attained while old activity

patterns are preserved. Relatedly, the modularly-varying goals

scenario requires genetic changes for evolutionary adaptation after

an evolutionary goal changes. In contrast, our mechanism requires

one genotype to produce different activity patterns under different

conditions, conditions that may occur in different parts of a

multicellular organism. In other words, in our scenario, modular-

ity arises to avoid obstruction to attain different selected patterns

within the same genotype. Our scenario may thus be more

appropriate for traits where environmental demands are not

constantly fluctuating, such as in the development of many

morphological traits in plants and animals.

Thus far, we motivated our approach with the development of

multicellular organisms. However, the approach could also explain

modularity in unicellular organisms. For example, the metabolic

networks of bacteria living in changing environments tend to be

more modular than those of bacteria living in stable environments

[12]. Similar patterns may exist for gene regulatory networks. If so,

the modularly varying goals scenario is not their only possible

explanation. Unicellular organisms respond to changing environ-

ments by tuning their gene activity pattern. In other words, they

usually have adaptively plastic phenotypes. For example, different

sets of genes are activated or repressed when yeast cells are

exposed to different environments [52–54]. Evolving the ability to

switch gene expression according to the environment requires

producing several alternative activity patterns, as we propose here.

Importantly, some yeast genes change their expression concertedly

in several environments, whereas others have responses that are

specific to any one environment [52–54]. This observation

suggests that the activity of some genes is shared across alternative

activity patterns while the activity of other genes is particular to

certain environments, as our model demands. In sum, because

organisms in changing environments are required to produce

different gene activity patterns according to the environment, our

scenario can explain the evolution of modularity both in

fluctuating and non-fluctuating environments.

A question that remains unanswered is whether our model

applies to genotype-phenotype maps different from those of gene

regulatory networks. A prominent example is metabolic networks,

whose phenotypes are patterns of metabolic fluxes through

network reactions. Our framework may apply to some instances

of modularity in metabolic systems, as the following example

illustrates. The main requirement of our model is an increase in

the number of functions that a network must perform (i.e. in the

number of selected gene activity patterns). The appearance of new

functions in a metabolic network usually involves the production of

new metabolites. Hintze and Adami [55] performed evolutionary

simulations of an artificial metabolism in which the fittest

metabolic networks were able to produce an increasingly diverse

spectrum of metabolites. This selection regime resulted in

increased modularity of metabolic networks, an observation

consistent with the mechanism that we propose for gene regulatory

networks.

Our work aimed at conceptual clarity by using only few essential

assumptions in explaining the evolution of modularity. We

therefore neglected many processes that doubtlessly play a major

role in the evolution of regulatory gene networks. For example, we

did not consider mutations changing the number of genes in a

network, even though processes such as gene loss or duplication

may be frequently involved in the appearance of new gene activity

patterns. Similarly, the appearance of new body structures or cell

types requires interactions among cells, tissues and organs. Such

interactions ensure the proper placement of cells with the

combination of general and specialized gene activity that is

characteristic of specialization. The incorporation of these and

other processes in future work will deepen our understanding of

the evolution of modularity, and thus of evolvability.

Methods

Modularity
We here identify modularity using one [33,56] of several

algorithms aimed at identifying structural modules, densely

connected groups of nodes with sparser connections between

groups. The measure of modularity in this algorithm is a score

Q that compares the abundance of intra-module connections

between a given network to that of random networks with the

same degree distribution [57]. Q is defined as:

Q~
XK

i

li

L
{

di

2L

� �2
" #

ð2Þ

where i denotes one of the K prospective modules in a network, L

stands for the total number of edges in the network, li represents

the number of edges within module i, and di is the sum of the

number of connections that each node in module i has [33,56–58].

The algorithm we use [33] identifies a partitioning of networks

into modules that maximizes Q. We use this algorithm because of

its computational efficiency and accuracy [33,56]. We also

explored different algorithms [57,58] and found that our results

hold regardless of these choices.

Typical Q values of partitions that maximize intra-module

connections in random networks vary depending on the number of

nodes, edges and connectivity distribution [59]. For example, the

maximum Q value of a network varies as a function of the total

number of edges in it [60]. Hence, a fair comparison of modularity

in different networks requires first addressing how atypical Q is in

the best partition of each network when compared with random

networks with the same attributes. Following [10] we use for

normalization the equation:

Qn~
Q{Qran

Qmax{Qran

ð3Þ

where Q is the modularity returned by the Newman algorithm

[33,56] for a certain network, Qran stands for the average Q value

of 1,000 random networks with the same number of genes and

edges and the same degree distribution as the original network. Q

values for these random networks are also calculated using the

Newman algorithm. Qmax is the maximal Q value in these 1,000

random networks. The normalized modularity Qn tells us how

modular a network is in comparison to random networks with the

same attributes. Non-normalized and normalized Q values render

equivalent results in our analysis (Figure S1). Therefore, we restrict

ourselves to report results for normalized modularity.
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Fitness
The fitness function we use compares a set of reference gene

activity patterns to actual network attractors. Our fitness measure

also incorporates the likelihood that an attractor is attained in the

face of perturbations. In doing so, it takes into account not only the

identity of an attractor but also its robustness, an important feature

for the stability and reproducibility of developmental processes

[13,18,61–63].

For each gene activity pattern X that contributes to fitness and

for each network in our analysis, evaluation of fitness involved the

following steps: i) The initial state of the gene network at time 0

was chosen to be a perturbation of the target pattern X , drawn

from a probability distribution where the initial state of each gene

differs from that of X with probability p~0:15. ii) We carried out

network dynamics (eq. 1) until some new attractor Y was reached;

iii) We recorded the Hamming distance (D) separating Y from X ,

and calculated the contribution to fitness of this developmental

trajectory as c~(1{D=Dmax)5; modifications of c by varying the

exponent produce equivalent results. iv) We repeated steps i)–iii)

500 times to determine 500 values ci (1ƒiƒ500). Notice that

several of such 500 ci values would correspond to the same initial

condition, and that the distribution of possible initial conditions is

biased towards gene activity patterns similar to the reference

pattern X . This reflects our assumption, for the sake of simplicity,

that selection favors similar initial conditions leading to the same

selected activity pattern. We also assumed that gene activity

patterns that are similar to the reference pattern are more likely to

be required as initial conditions. Relaxation of such assumptions

by variation in p did not modify our results.

We then calculated the network’s fitness as

f (g)~1{e{3g ð4Þ

where g is the arithmetic mean of all ci. Wherever fitness needed

to be evaluated for multiple gene activity patterns, we calculated

the arithmetic mean of f (g) over these multiple patterns. Notice

that selection is pushing the acquisition of different gene activity

patterns that would appear under different conditions (such as

different parts of the organism). Hence, the optimal networks will

be those with dynamics that lead to different attractors matching

the reference activity patterns, and not those with a single attractor

that is a combination of the reference patterns.

Had we used multiplicative contributions to fitness then the

benefits that result from attaining a gene activity pattern would

have depended on the acquisition of all other activity patterns.

Because our simulations start with selection for a single activity

pattern, it was preferable to assume otherwise. Using additive

contributions to fitness guarantees that networks that are not able

to attain the new gene activity pattern still have a chance to

contribute to the next generation. However, usage of multiplica-

tive fitness contributions does not affect our results qualitatively.

Evolutionary simulations
For each simulation of gene network evolution, we first built a

10 node network and added 20 interactions at random to its

interaction matrix A. These interactions were activating or

repressing, with equal probability. To construct the initial

population we exposed 100 copies of this initial network to

random mutation. Mutations occurred independently among

different genes. A mutation of a gene either added a positive or

negative interaction affecting the gene’s activity, or eliminated one

of the interactions that regulated the gene. Such mutations can be

interpreted as changes in the regulatory regions of a gene, adding

or eliminating cis-regulatory elements. Most of our results are

based on a probability of a mutation occurring in a gene (m) of

0.05. This value of m allowed adaptation within a tractable

number of generations. Variation in m did not affect our results,

but only affected the time required for adaptation. For a gene u
undergoing mutation, we defined the probability of losing an

interaction as

p(u)~
4ru

4ruz(N{ru)
ð5Þ

and the probability of acquiring a new interaction as

q(u)~1{p(u). Here ru represents the number of regulators of

the gene u, and N equals the number of genes in the network, and

hence, the maximum number of regulators of any gene. This

procedure results in networks that evolve towards low connectiv-

ities of 2–3 regulators per gene. Such low connectivity is often

observed in transcriptional regulation networks of plants, animals,

fungi and bacteria [64]. Loss of interactions may also help explain

the observation that loss of gene expression is more common than

acquiring new expression patterns in the evolution of gene families

[65].

In our evolutionary simulations, we kept populations of constant

size (100 individuals) and imposed iterative rounds of mutations

and selection to those populations. Every new generation, we

sampled networks from the ones in the previous generation with

probability proportional to the networks’ fitness. Specifically, we

defined the probability of copying network i from generation t{1
into a network k in the new generation (t) as P(i)~vi=

P
j vj ,

where vi stands for the fitness of network i. Each of the new

networks underwent mutation with a probability of m per gene.

Finally, we evaluated the fitness of each new network. We iterated

these steps through the end of the simulation.

All simulation code (written in C++) took advantage of the

LEDA library of C++ data types [66].

Supporting Information

Figure S1 Non-normalized modularity increases after selection

for a new additional gene activity pattern. The horizontal axis

indicates mean non-normalized modularity after 500 generations

of selection for gene activity pattern I. The vertical axis shows non-

normalized modularity in networks after an additional 1500

generations of selection for both gene activity patterns I and II.

Specifically, (A) shows modularity of the networks with highest

fitness (Wilcoxon signed-rank test; z = 8.8597; p,2.2610216), and

(B) shows mean population modularity (Wilcoxon signed-rank test;

z = 10.073; p,2.2610216). Points above the identity line (solid

diagonal) show populations in which modularity increases after

selection for the second gene expression pattern. The length of

bars represents one standard deviation. The plots show results for

200 evolving populations.

Found at: doi:10.1371/journal.pcbi.1000719.s001 (2.95 MB TIF)

Figure S2 Modularity does not increase when selection does not

favor specialization. The length of bars represents one standard

deviation. The plots show results for 100 evolving populations. (A)

Modularity does not increase under selection for a single gene

activity pattern (I in Figure 1A in the main text). Wilcoxon signed-

rank test; z = 20.02063; p = 0.50823. The horizontal axis shows

modularity in the best adapted networks after 500 generations.

The vertical axis shows modularity in the best adapted networks

after 2000 generations. (B) Networks evolving in the absence of

selection do not increase their modularity (Wilcoxon signed-rank

test; z = 20.2882; p = 0.61364). The horizontal axis indicates

Specialization and Modularity in Gene Networks
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mean modularity after 500 generations. The vertical axis shows

modularity in networks after an additional 1500 generations.

Found at: doi:10.1371/journal.pcbi.1000719.s002 (1.00 MB TIF)

Figure S3 Modularity increases under evolution with different

mutation rates. The horizontal axes indicate modularity in the best

adapted networks after 1000 generations of selection for gene

activity pattern I. The length of bars represents one standard

deviation. The plots show results for 100 evolving populations. (A)

Modularity increases using a mutation rate that equals half of the

value used in other simulations (m = 0.025; Wilcoxon signed-rank

test; z = 6.8835; p = 2.9194610212). This increase occurs but

requires longer time scales to achieve adaptation. The vertical axis

shows modularity in the best adapted networks after an additional

3000 generations of selection for both gene activity patterns I and

II. (B) Modularity increases using a mutation rate that doubles the

value used in other simulations (m = 0.1; Wilcoxon signed-rank test;

z = 7.4921; p = 3.3862610214). The vertical axis shows modularity

in the best adapted networks after an additional 1500 generations

of selection for both gene activity patterns I and II.

Found at: doi:10.1371/journal.pcbi.1000719.s003 (1.48 MB TIF)

Figure S4 Modularity increases when fitness components

related to each activity pattern combine multiplicatively

instead of additively. Wilcoxon signed-rank test; z = 6.9385;

p = 1.9809610212. The horizontal axis indicates modularity in

the best adapted networks after 500 generations of selection for

gene activity pattern I. The vertical axis shows modularity in the

best adapted networks after an additional 1500 generations of

selection for both gene activity patterns I and II. The length of bars

represents one standard deviation. The plot shows results for 100

evolving populations.

Found at: doi:10.1371/journal.pcbi.1000719.s004 (0.83 MB TIF)

Figure S5 Modularity increases when evolving networks com-

posed of twice as many genes as in other simulations. N = 20;

Wilcoxon signed-rank test; z = 5.1987; p = 1.003261027. (A)

Activity patterns I and II share the activity state of genes 0–9,

but show different activity patterns for genes 10–19. White squares

represent active genes and black squares represent inactive genes.

(B) The horizontal axis indicates modularity in the best adapted

networks after 800 generations of selection for gene activity

pattern I. The vertical axis shows modularity in the best adapted

networks after an additional 2700 generations of selection for

activity patterns I and II. We adjusted the mutation rate m so that

the expected number of individuals without any mutation is

approximately the same as in all other simulations. Because of

computational cost, we here followed 250 developmental trajec-

tories for each network to evaluate the contribution to fitness

associated to a certain gene activity pattern, instead of 500 as in

our other analyses. The length of bars represents one standard

deviation. The plot shows results for 100 evolving populations.

Found at: doi:10.1371/journal.pcbi.1000719.s005 (1.70 MB TIF)

Figure S6 The increase in modularity does not depend on the

identity of the selected activity patterns. The horizontal axes

indicate modularity after 500 generations of selection for a single

gene activity pattern. The vertical axes show modularity after an

additional 1500 generations of selection for two gene activity

patterns. The length of bars represents one standard deviation.

The plots show results for 100 evolving populations. (A)

Modularity increases in the best adapted networks when the two

selected gene activity patterns differ in the activity state of 3 genes

(Wilcoxon signed-rank test; z = 6.7185; p = 9.1811610212). (B)

The same occurs when the two selected gene activity patterns

differ in the activity state of 7 genes (Wilcoxon signed-rank test;

z = 5.6045; p = 1.044561028). (C) Modularity increases after

selection for two gene activity patterns picked at random

(Wilcoxon signed-rank test; z = 5.9449; p = 1.383461029). We

discarded pairs of gene activity patterns with less than two different

activity states. The probability of picking a pair with k activity

differences in a 10-gene network is p(k) = C10
k0.510, where CN

k

is the binomial coefficient. However, after discarding activity

patterns with less than two different activity states,

p(k) = [C10
k0.510][12(C10

0+C10
1)0.510]21. (D) Modularity does

not increase when gene activity patterns differ in the activity state

of all genes (Wilcoxon signed-rank test; z = 1.0281; p = 0.15196).

This result is not due to a lack of adaptation, since networks that

can attain both activity patterns in a stable manner arise in all

evolving populations.

Found at: doi:10.1371/journal.pcbi.1000719.s006 (3.14 MB TIF)

Figure S7 Mean fitness increases faster when co-option of

existing gene activity states is possible. Mean population fitness

increases faster when selecting for a new gene activity pattern (IV

in Figure 5 in the main text) that co-opts activity states matching

those of previously evolved modules than when such activity

pattern is picked at random. This shows that the increase in fitness

when selecting for pattern IV permeates the whole population, and

affects not only the best adapted networks. The length of bars

represents one standard error.

Found at: doi:10.1371/journal.pcbi.1000719.s007 (1.02 MB TIF)

Figure S8 New modules arise after selection for a third

additional pattern. (A) Gene activity patterns I, II and III, as in

Figure 4A. (B) The number of modules in the networks with the

highest fitness in each population, averaged across populations,

increases after selection for the new additional patterns. The

length of bars represents one standard error. (C) px,y stands for the

frequency with which genes x and y occur in the same module in

the networks with the highest fitness of each evolving population.

When selection for a new activity pattern causes the activity of two

genes to cease changing concertedly across the selected patterns,

the probability of such genes lying in the same module decreases

rapidly. This is the case of genes 0 and 8 after selection for activity

pattern II starts, and also of genes 0 and 6 after selection for

pattern III begins (red arrow). The plots show results for 100

evolving populations.

Found at: doi:10.1371/journal.pcbi.1000719.s008 (4.06 MB TIF)
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