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We investigate the interplay between linear systems on curves and graphs in the

context of specialization of divisors on an arithmetic surface. We also provide

some applications of our results to graph theory, arithmetic geometry, and tropi-

cal geometry.

1. Introduction

1A. Notation and terminology. We set the notation which will be used throughout

the paper unless otherwise noted.

G a graph, by which we will mean a finite, unweighted, connected multigraph

without loop edges. We let V (G) (respectively, E(G)) denote the set of

vertices (respectively, edges) of G.

Ŵ a metric graph (see Section 1D for the definition).

ŴQ the set of “rational points” of Ŵ (see Section 1D).

R a complete discrete valuation ring with field of fractions K and algebraically

closed residue field k.

K a fixed algebraic closure of K .

X a smooth, proper, geometrically connected curve over K .

X a proper model for X over R. For simplicity, we assume unless otherwise

stated that X is regular, that the irreducible components of Xk are all smooth,

and that all singularities of Xk are ordinary double points.

Unless otherwise specified, by a smooth curve we will always mean a smooth,

proper, geometrically connected curve over a field, and by an arithmetic surface
we will always mean a proper flat scheme X over a discrete valuation ring such

that the generic fiber of X is a smooth curve. We will usually, but not always, be
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working with regular arithmetic surfaces. A model for a smooth curve X/K is an

arithmetic surface X/R whose generic fiber is X . An arithmetic surface X is called

semistable if its special fiber Xk is reduced and has only ordinary double points

as singularities. If in addition the irreducible components of Xk are all smooth (so

that there are no components with self-crossings), we will say that X is strongly
semistable.

1B. Overview. In this paper, we show that there is a close connection between

linear systems on a curve X/K and linear systems, in the sense of [Baker and

Norine 2007b], on the dual graph G of a regular semistable model X/R for X . A

brief outline of the paper is as follows. In Section 2, we prove a basic inequality —

the “Specialization Lemma” — which says that the dimension of a linear system

can only go up under specialization from curves to graphs (see Lemma 2.8 for the

precise statement) . In the rest of the paper, we explore various applications of this

fact, illustrating along the way a fruitful interaction between divisors on graphs and

curves. The interplay works in both directions: for example, in Section 3 we use

Brill–Noether theory for curves to prove and/or conjecture some new results about

graphs (compare Theorem 3.12 and Conjecture 3.9) and, in the other direction, in

Section 4 we use the notion of Weierstrass points on graphs to gain new insight

into Weierstrass points on curves (see Corollaries 4.9 and 4.10).

Another fruitful interaction which emerges from our approach is a “machine”

for transporting certain theorems about curves from classical to tropical algebraic

geometry.1 The connection goes through the theory of arithmetic surfaces, by way

of the deformation-theoretic result proved in Appendix B, and uses the approxi-

mation method introduced in [Gathmann and Kerber 2008] to pass from Q-graphs

to arbitrary metric graphs, and finally to tropical curves. As an illustration of this

machine, we prove an analogue for tropical curves (see Theorem 3.20 below) of the

classical fact that if g, r and d are nonnegative integers for which the Brill–Noether

number

ρ(g, r, d) := g − (r + 1)(g − d + r)

is nonnegative, then on every smooth curve X/C of genus g there is a divisor D
with

dim |D| = r and deg(D) ≤ d.

We also prove, just as in the classical case of algebraic curves, that there exist

Weierstrass points on every tropical curve of genus g ≥ 2 (see Theorem 4.13).

We conclude the paper with two appendices which can be read independently of

the rest of the paper. In Appendix A, we provide a reformulation of certain parts of

Raynaud’s theory [1970] of “specialization of the Picard functor” in terms of linear

1See, for example, [Mikhalkin 2006] for an introduction to tropical geometry.



Specialization of linear systems from curves to graphs 615

systems on graphs. We also point out some useful consequences of Raynaud’s

results for which we do not know any references. Although we do not actually

use Raynaud’s results in the body of the paper, it should be useful for future work

on the interplay between curves and graphs to highlight the compatibility between

Raynaud’s theory and our notion of linear equivalence on graphs. Appendix B,

written by Brian Conrad, discusses a result from the deformation theory of stable

marked curves, which implies that every finite graph occurs as the dual graph of

a regular semistable model for some smooth curve X/K with totally degenerate

special fiber. This result, which seems known to the experts but for which we could

not find a suitable reference, is used several times throughout the main body of the

paper.

1C. Divisors and linear systems on graphs. By a graph, we will always mean a

finite, connected multigraph without loop edges.

Let G be a graph, and let V (G) (respectively, E(G)) denote the set of vertices

(respectively, edges) of G. We let Div(G) denote the free abelian group on V (G),

and refer to elements of Div(G) as divisors on G. We can write each divisor on G
as

D =
∑

v∈V (G)

av(v)

with av ∈ Z, and we will say that D ≥ 0 if av ≥ 0 for all v ∈ V (G). We define

deg(D) =
∑

v∈V (G)

av

to be the degree of D. We let

Div+(G) = {E ∈ Div(G) : E ≥ 0}

denote the set of effective divisors on G, and we let Div0(G) denote the set of

divisors of degree zero on G. Finally, we let Divd
+(G) denote the set of effective

divisors of degree d on G.

Let M(G) be the group of Z-valued functions on V (G), and define the Laplacian

operator 1 : M(G) → Div0(G) by

1(ϕ) =
∑

v∈V (G)

∑

e=vw∈E(G)

(ϕ(v) − ϕ(w))(v).

We let

Prin(G) = 1(M(G)) ⊆ Div0(G)

be the subgroup of Div0(G) consisting of principal divisors.

If D, D′ ∈ Div(G), we write D ∼ D′ if D − D′ ∈ Prin(G), and set

|D| = {E ∈ Div(G) : E ≥ 0 and E ∼ D}.
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We refer to |D| as the (complete) linear system associated to D, and call divisors

D and D′ with D ∼ D′ linearly equivalent.
Given a divisor D on G, define r(D) = −1 if |D| = ∅, and otherwise set

r(D) = max{k ∈ Z : |D − E | 6= ∅ for all E ∈ Divk
+(G)}.

Note that r(D) depends only on the linear equivalence class of D, and therefore

can be thought of as an invariant of the complete linear system |D|.
When we wish to emphasize the underlying graph G, we will sometimes write

rG(D) instead of r(D).

We define the canonical divisor on G to be

KG =
∑

v∈V (G)

(deg(v) − 2)(v).

We have deg(KG) = 2g − 2, where g = |E(G)| − |V (G)| + 1 is the genus (or

cyclomatic number) of G.

Theorem 1.1 (Riemann–Roch for graphs [Baker and Norine 2007b,Theorem 1.12]).

Let D be a divisor on a graph G. Then

r(D) − r(KG − D) = deg(D) + 1 − g.

For each linear ordering < of the vertices of G, we define a corresponding

divisor ν ∈ Div(G) of degree g − 1 by the formula

ν =
∑

v∈V (G)

(
|{e = vw ∈ E(G) : w < v}| − 1

)
(v).

One of the main ingredients in the proof of Theorem 1.1, which is also quite

useful for computing r(D) in specific examples, is this:

Theorem 1.2 [Baker and Norine 2007b, Theorem 3.3]. For every D ∈ Div(G),

exactly one of the following holds:

(1) r(D) ≥ 0, or

(2) r(ν − D) ≥ 0 for some divisor ν associated to a linear ordering < of V (G).

In particular, note that r(ν)=−1 for any divisor ν associated to a linear ordering

< of V (G).

1D. Subdivisions, metric graphs, and Q-graphs. By a weighted graph, we will

mean a graph in which each edge is assigned a positive real number called the

length of the edge. Following the terminology of [Baker and Faber 2006], a metric
graph (or metrized graph) is a compact, connected metric space Ŵ which arises

by viewing the edges of a weighted graph G as line segments. Somewhat more

formally, a metric graph should be thought of as corresponding to an equivalence
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class of weighted graphs, where two weighted graphs G and G ′ are equivalent
if they admit a common refinement. (A refinement of G is any weighted graph

obtained by subdividing the edges of G in a length-preserving fashion.) A weighted

graph G in the equivalence class corresponding to Ŵ is called a model for Ŵ. Under

the correspondence between equivalence classes of weighted graphs and metric

graphs, after choosing an orientation, each edge e in the model G can be identified

with the real interval [0, ℓ(e)] ⊆ Ŵ.

We let Div(Ŵ) denote the free abelian group on the points of the metric space

Ŵ, and refer to elements of Div(Ŵ) as divisors on Ŵ. We can write an element

D ∈ Div(Ŵ) as

D =
∑

P∈Ŵ

aP(P)

with aP ∈ Z for all P and aP = 0 for all but finitely many P . We will say that

D ≥ 0 if aP ≥ 0 for all P ∈ Ŵ. We let

deg(D) =
∑

P∈Ŵ

aP

be the degree of D, we let

Div+(Ŵ) = {E ∈ Div(Ŵ) : E ≥ 0}

denote the set of effective divisors on Ŵ, and we let Div0(Ŵ) denote the subgroup

of divisors of degree zero on Ŵ. Finally, we let Divd
+(Ŵ) denote the set of effective

divisors of degree d on Ŵ.

Following [Gathmann and Kerber 2008], a Q-graph is a metric graph Ŵ having

a model G whose edge lengths are rational numbers. We call such a model a

rational model for Ŵ. An ordinary unweighted graph G can be thought of as a

Q-graph whose edge lengths are all 1. We denote by ŴQ the set of points of Ŵ

whose distance from every vertex of G is rational; we call elements of ŴQ rational
points of Ŵ. It is immediate that the set ŴQ does not depend on the choice of a

rational model G for Ŵ. We let DivQ(Ŵ) be the free abelian group on ŴQ, and refer

to elements of DivQ(Ŵ) as Q-rational divisors on Ŵ.

A rational function on a metric graph Ŵ is a continuous, piecewise affine func-

tion f : Ŵ → R, all of whose slopes are integers. We let M(Ŵ) denote the space of

rational functions on Ŵ. The divisor of a rational function f ∈ M(Ŵ) is defined2 as

( f ) = −
∑

P∈Ŵ

σP( f )(P),

2Here we follow the sign conventions from [Baker and Faber 2006]. In [Gathmann and Kerber

2008], the divisor of f is defined to be the negative of the one we define here.
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where σP( f ) is the sum of the slopes of Ŵ in all directions emanating from P . We

let

Prin(Ŵ) = {( f ) : f ∈ M(Ŵ)}

be the subgroup of Div(Ŵ) consisting of principal divisors. It follows from [Baker

and Faber 2006, Corollary 1] that ( f ) has degree zero for all f ∈ M(Ŵ), that is,

Prin(Ŵ) ⊆ Div0(Ŵ).

If Ŵ is a Q-graph, we denote by PrinQ(Ŵ) the group of principal divisors sup-

ported on ŴQ.

Remark 1.3. As explained in [Baker and Faber 2006], if we identify a rational

function f ∈ M(Ŵ) with its restriction to the vertices of any model G for which

f is affine along each edge of G, then ( f ) can be naturally identified with the

weighted combinatorial Laplacian 1( f ) of f on G.

If D, D′ ∈ Div(Ŵ), we write D ∼ D′ if D − D′ ∈ Prin(Ŵ), and set

|D|Q = {E ∈ DivQ(Ŵ) : E ≥ 0 and E ∼ D}

and

|D| = {E ∈ Div(Ŵ) : E ≥ 0 and E ∼ D}.

It is straightforward using Remark 1.3 to show that if G is a graph and Ŵ is the

corresponding Q-graph all of whose edge lengths are 1, then two divisors D, D′ ∈
Div(G) are equivalent on G (in the sense of Section 1C) if and only if they are

equivalent on Ŵ in the sense just defined.

Given a Q-graph Ŵ and a Q-rational divisor D on Ŵ, define rQ(D) = −1 if

|D|Q = ∅, and otherwise set

rQ(D)= max{k ∈ Z : |D−E |Q 6=∅ for all E ∈ DivQ(Ŵ) with E ≥ 0, deg(E)= k}.

Similarly, given an arbitrary metric graph Ŵ and a divisor D on Ŵ, we define

rŴ(D) = −1 if |D| = ∅, and otherwise set

rŴ(D) = max{k ∈ Z : |D − E | 6= ∅ for all E ∈ Divk
+(Ŵ)}.

Let k be a positive integer, and let σk(G) be the graph obtained from the (ordi-

nary unweighted) graph G by subdividing each edge of G into k edges. We call

σk(G) the k-th regular subdivision of G. A divisor D on G can also be thought of

as a divisor on σk(G) for all k ≥ 1 in the obvious way. The following recent com-

binatorial result, which had been conjectured by the author, relates the quantities

r(D) on G and σk(G):
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Theorem 1.4 [Hladky–Král–Norine 2007]. Let G be a graph. If D ∈ Div(G), then
for every integer k ≥ 1, we have

rG(D) = rσk(G)(D).

When working with metric graphs, if Ŵ is the metric graph corresponding to G
(in which every edge of G has length 1), then we will usually think of each edge

of σk(G) as having length 1/k; in this way, each finite graph σk(G) can be viewed

as a model for the same underlying metric Q-graph Ŵ.

It is evident from the definitions that rQ(D) and rŴ(D) do not change if the

length of every edge in (some model for) Ŵ is multiplied by a positive integer

k. Using this observation, together with [Gathmann and Kerber 2008, Proposi-

tion 2.4], one deduces from Theorem 1.4 this result:

Corollary 1.5. If G is a graph and Ŵ is the corresponding metric Q-graph in which
every edge of G has length 1, then for every divisor D on G we have

rG(D) = rQ(D) = rŴ(D). (1.6)

By Corollary 1.5, we may unambiguously write r(D) to refer to any of the three

quantities appearing in (1.6).

Remark 1.7. Our only use of Theorem 1.4 in this paper, other than the nota-

tional convenience of not having to worry about the distinction between rQ(D)

and rG(D), will be in Remark 4.1. In practice, however, Theorem 1.4 is quite

useful, since without it there is no obvious way to calculate the quantity rQ(D) for

a divisor D on a metric Q-graph Ŵ.

On the other hand, we will make use of the equality rQ(D) = rŴ(D) given

by [Gathmann and Kerber 2008, Proposition 2.4] when we develop a machine

for deducing theorems about metric graphs from the corresponding results for Q-

graphs (see Section 3D).

Finally, we recall the statement of the Riemann–Roch theorem for metric graphs.

Define the canonical divisor on Ŵ to be

KŴ =
∑

v∈V (G)

(deg(v) − 2)(v)

for any model G of Ŵ. It is easy to see that KŴ is independent of the choice of a

model G, and that

deg(KŴ) = 2g − 2,

where g = |E(G)| − |V (G)| + 1 is the genus (or cyclomatic number) of Ŵ.

The following result is proved in [Gathmann and Kerber 2008] and [Mikhalkin

and Zharkov 2007]:
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Theorem 1.8 (Riemann–Roch for metric graphs). Let D be a divisor on a metric
graph Ŵ. Then

rŴ(D) − rŴ(KŴ − D) = deg(D) + 1 − g. (1.9)

By Corollary 1.5, there is a natural “compatibility” between Theorems 1.1 and 1.8.

1E. Tropical curves. Tropical geometry is a relatively recent and highly active

area of research, and in dimension one it is closely connected with the theory

of metric graphs as discussed in the previous section. For the sake of brevity, we

adopt a rather minimalist view of tropical curves in this paper; the interested reader

should see [Gathmann and Kerber 2008; Mikhalkin 2006; Mikhalkin and Zharkov

2007] for motivation and a more extensive discussion.

Following [Gathmann and Kerber 2008, §1], we define a tropical curve to be a

“metric graph with possibly unbounded ends”. More concretely, a tropical curve Ŵ̃

can be thought of as the geometric realization of a pair (G, ℓ), where G is a graph

and

ℓ : E(G) → R>0 ∪ {∞}
is a length function; each edge e of G having finite length is identified with the

real interval [0, ℓ(e)], and each edge of length ∞ is identified with the extended

real interval [0, +∞] in such a way that the ∞ endpoint of the edge has valence 1.

The main difference between a tropical curve Ŵ̃ and a metric graph Ŵ is that we

allow finitely many edges of Ŵ̃ to have infinite length.3 In particular, every metric

graph is also a tropical curve.

One can define divisors, rational functions, and linear equivalence for tropical

curves exactly as we have done in Section 1D for metric graphs; see [Gathmann

and Kerber 2008, §1 and Definition 3.2] for details. (The only real difference is

that one must allow a rational function to take the values ±∞ at the unbounded

ends of Ŵ̃.) Using the tropical notion of linear equivalence, one defines rŴ̃(D) for

divisors on tropical curves just as we defined rŴ(D) in Section 1D for divisors on

metric graphs. With these definitions in place, the Riemann–Roch formula (1.9)

holds in the context of tropical curves, a result which can be deduced easily from

Theorem 1.8 (see [Gathmann and Kerber 2008, §3] for details).

2. The specialization lemma

In this section, we investigate the behavior of the quantity r(D) under specialization

from curves to graphs. In order to make this precise, we first need to introduce some

notation and background facts concerning divisors on arithmetic surfaces.

3Unlike some other definitions in the literature, the definition of a tropical curve from [Gathmann

and Kerber 2008] allows vertices of valence 1 and 2, and requires that there is a “point at infinity” at

the end of each unbounded edge.
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2A. The specialization map. Let R be a complete discrete valuation ring with

field of fractions K and algebraically closed residue field k. Let X be a smooth

curve over K , and let X/R be a strongly semistable regular model for X with

special fiber Xk (see Section 1A). We let

C = {C1, . . . , Cn}

be the set of irreducible components of Xk .

Let G be the dual graph of Xk , that is, G is the finite graph whose vertices vi

correspond to the irreducible components Ci of Xk , and whose edges correspond

to intersections between these components (so that there is one edge between vi

and v j for each point of intersection between Ci and C j ). The assumption that X

is strongly semistable implies that G is well-defined and has no loop edges.

We let Div(X) (respectively, Div(X)) be the group of Cartier divisors on X
(respectively, on X); since X is smooth and X is regular, Cartier divisors on X
(respectively, X) are the same as Weil divisors. Recall that when K is perfect,

Div(X) can be identified with the group of Gal(K/K )-invariant elements of the

free abelian group Div(X (K )) on X (K ).

We also let Prin(X) (respectively, Prin(X)) denote the group of principal Cartier

divisors on X (respectively, X).

There is a natural inclusion C ⊂ Div(X), and an intersection pairing

C × Div(X) → Z, (Ci , D) 7→ (Ci · D),

where

(Ci · D) = deg(OX(D)|Ci ).

The intersection pairing gives rise to a homomorphism ρ : Div(X) → Div(G)

by the formula

ρ(D) =
∑

vi ∈V (G)

(Ci · D)(vi ).

(If we wish to emphasize the dependence on the ground field K , we will sometimes

write ρK (D) instead of ρ(D).) We call the homomorphism ρ the specialization
map. By intersection theory, the group Prin(X) is contained in the kernel of ρ.

The Zariski closure in X of an effective divisor on X is a Cartier divisor. Ex-

tending by linearity, we can associate to each D ∈ Div(X) a Cartier divisor cl(D)

on X, which we refer to as the Zariski closure of D. By abuse of terminology, we

will also denote by ρ the composition of ρ : Div(X) → Div(G) with the map cl.

By construction, if D ∈ Div(X) is effective, then ρ(D) is an effective divisor on

G. Furthermore, ρ : Div(X) → Div(G) is a degree-preserving homomorphism.
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A divisor D ∈ Div(X) is called vertical if it is supported on Xk , and horizontal
if it is the Zariski closure of a divisor on X . If D is a vertical divisor, then

ρ(D) ∈ Prin(G),

which follows from the fact that ρ(Ci ) is the negative Laplacian of the characteristic

function of the vertex vi . Since every divisor D ∈ Div(X) can be written uniquely

as

Dh + Dv

with Dh horizontal and Dv vertical, it follows that ρ(D) and ρ(Dh) are linearly

equivalent divisors on G.

Consequently, if D ∈ Prin(X), then although the horizontal divisor D := cl(D)

may not belong to Prin(X), it differs from a principal divisor D′ ∈ Prin(X) by a

vertical divisor F ∈ Div(X) for which ρ(F) ∈ Prin(G). Thus we deduce a basic

fact:

Lemma 2.1. If D ∈ Prin(X), then ρ(D) ∈ Prin(G).

When D corresponds to a Weil divisor

∑

P∈X (K )

n P(P)

supported on X (K ), there is another, more concrete, description of the map ρ.

Since X is regular, each point P ∈ X (K ) = X(R) specializes to a nonsingular point

of Xk , and hence to a well-defined irreducible component c(P) ∈ C, which we

may identify with a vertex v(P) ∈ V (G). Then by [Liu 2002, Corollary 9.1.32],

we have

ρ(D) =
∑

P

n P(v(P)). (2.2)

Remark 2.3. Since the natural map from X (K ) = X(R) to the smooth locus of

Xk(k) is surjective (see, for example, [Liu 2002, Proposition 10.1.40(b)]), it follows

from (2.2) that ρ : Div(X)→ Div(G) is surjective. In fact, this implies the stronger

fact that the restriction of ρ to Div(X (K )) (the free abelian group on X (K )) is

surjective.

2B. Behavior of r(D) under specialization. Let D ∈Div(X), and let D =ρ(D)∈
Div(G) be its specialization to G. We want to compare the dimension of the com-

plete linear system |D| on X (in the sense of classical algebraic geometry) with the

quantity r(D) defined in Section 1C. In order to do this, we first need some simple

facts about linear systems on curves.

We temporarily suspend our convention that K denotes the field of fractions of a

discrete valuation ring R, and allow K to be an arbitrary field, with X still denoting
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a smooth curve over K . We let Div(X (K )) denote the free abelian group on X (K ),

which we can view in a natural way as a subgroup of Div(X). For D ∈ Div(X), let

|D| = {E ∈ Div(X) : E ≥ 0, E ∼ D}.

Set r(D) = −1 if |D| = ∅, and otherwise put

rX (K )(D) := max{ k ∈ Z : |D − E | 6= ∅ for all E ∈ Divk
+(X (K )) }.

Lemma 2.4. Let X be a smooth curve over a field K , and assume that X (K ) is
infinite. Then for D ∈ Div(X), we have

rX (K )(D) = dimK L(D) − 1,

where L(D) = { f ∈ K (X) : ( f ) + D ≥ 0} ∪ {0}.

Proof. It is well known that dim L(D − P) ≥ dim L(D) − 1 for all P ∈ X (K ).

If dim L(D) ≥ k + 1, it follows that for any points P1, . . . , Pk ∈ X (K ) we have

dim L(D − P1 − · · · − Pk) ≥ 1, so

L(D − P1 − · · · − Pk) 6= (0) and |D − P1 − · · · − Pk | 6= ∅.

Conversely, we prove by induction on k that if dim L(D) = k, then there exist

P1, . . . , Pk ∈ X (K ) such that L(D−P1−· · ·−Pk)= (0), that is, |D−P1−· · ·−Pk |=
∅. This is clearly true for the base case k = 0. Suppose dim L(D) = k ≥ 1, and

choose a nonzero rational function f ∈ L(D). Since f has only finitely many

zeros and X (K ) is infinite, there exists P = P1 ∈ X (K ) for which f (P) 6= 0. It

follows that L(D − P) ( L(D), so dim L(D − P) = k − 1. By induction, there

exist P2, . . . , Pk ∈ X (K ) such that |D − P − P2 · · ·− Pk | = ∅, which proves what

we want. �

Since dim L(D) remains constant under base change by an arbitrary field exten-

sion K ′/K , we conclude:

Corollary 2.5. Let X be a smooth curve over a field K , and assume that X (K ) is
infinite. Let K ′ be any extension field. Then for D ∈ Div(X), we have

rX (K )(D) = rX (K ′)(D).

In view of Lemma 2.4 and Corollary 2.5, we will simply write rX (D), or even

just r(D), to denote the quantity rX (K )(D) = dimK L(D) − 1.

Lemma 2.6. Let X be a smooth curve over a field K , and assume that X (K ) is
infinite. If D ∈ Div(X), then r(D − P) ≥ r(D) − 1 for all P ∈ X (K ), and if
r(D) ≥ 0, then r(D − P) = r(D) − 1 for some P ∈ X (K ).
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Proof. Let k = r(D). The result is clear for r(D) ≤ 0, so we may assume that

k ≥ 1. If P = P1, P2, . . . , Pk ∈ X (K ) are arbitrary, then since r(D) ≥ k, we have

|D − P − P2 − · · · − Pk | 6= ∅,

and therefore r(D − P) ≥ k − 1. Also, since r(D) = k, it follows that there exist

P = P1, P2, . . . , Pk+1 ∈ X (K ) such that

|D − P − P2 − · · · − Pk+1| = ∅,

and therefore r(D − P) ≤ k − 1 for this particular choice of P . �

The same proof shows that an analogous result holds in the context of graphs:

Lemma 2.7. Let G be a graph, and let D ∈ Div(G). Then r(D − P) ≥ r(D) − 1

for all P ∈ V (G), and if r(D) ≥ 0, then r(D− P) = r(D)−1 for some P ∈ V (G).

We now come to the main result of this section. Returning to our conventional

notation, we let R be a complete discrete valuation ring with field of fractions K
and algebraically closed residue field k. We let X be a smooth curve over K , and

let X/R be a strongly semistable regular model for X with special fiber Xk and

dual graph G.

Lemma 2.8 (Specialization Lemma). For all D ∈ Div(X), we have

rG(ρ(D)) ≥ rX (D).

Proof. Let D := ρ(D). We prove by induction on k that if rX (D) ≥ k, then

rG(D) ≥ k as well. The base case k = −1 is obvious. Now suppose k = 0, so

rX (D) ≥ 0. Then there exists an effective divisor E ∈ Div(X) with D ∼ E , so that

D − E ∈ Prin(X). Since ρ is a homomorphism and takes principal (respectively,

effective) divisors on X to principal (respectively, effective) divisors on G, we have

D = ρ(D) ∼ ρ(E) ≥ 0,

so rG(D) ≥ 0 as well.

We may therefore assume that k ≥1. Let P ∈ V (G) be arbitrary. By Remark 2.3,

there exists P ∈ X (K ) such that ρ(P)= P . Then rX (D−P)≥k−1, so by induction

we have

rG(D − P) ≥ k − 1

as well (and in particular, rG(D)≥ 0). Since this is true for all P ∈ V (G), it follows

from Lemma 2.7 that rG(D) ≥ k as desired. �

Remark 2.9. In the situation of Lemma 2.8, it can certainly happen that

rG(ρ(D)) > rX (D).
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For example, on the dual graph of the modular curve X0(73) there is an effective

divisor D of degree 2 with r(D)=1, but since X0(73) is not hyperelliptic, r(D)=0

for every effective divisor D of degree 2 on X with ρ(D) = D (see Example 3.6).

2C. Compatibility with base change. Let K ′/K be a finite extension, let R′ be

the valuation ring of K ′, and let

X K ′ := X ×K K ′.

It is known that there is a unique relatively minimal regular semistable model X′/R′

which dominates X ×R R′, and the dual graph G ′ of the special fiber of X
′ is

isomorphic to σe(G), where e is the ramification index of K ′/K . If we assign a

length of 1
e to each edge of G ′, then the corresponding metric graph is the same

for all finite extensions K ′/K . In other words, G and G ′ are different models for

the same metric Q-graph Ŵ, which we call the reduction graph associated to the

model X/R (see [Chinburg and Rumely 1993] for further discussion).

The discussion in [Chinburg and Rumely 1993], together with (2.2), shows that

there is a unique surjective map τ : X (K ) → ŴQ for which the induced homomor-

phism

τ∗ : Div(X K ) ∼= Div(X (K )) → DivQ(Ŵ)

is compatible with ρ, in the sense that for D ∈ Div(X (K ′)), we have

τ∗(D) = ρK ′(D).

Concretely, if K ′/K is a finite extension and P ∈ X (K ′), then τ(P) is the point

of ŴQ corresponding to the irreducible component of the special fiber of X
′ to

which P specializes.

Remark 2.10. In general, for D ∈ Div(X) we will not always have ρ(D) = τ∗(D),

but ρ(D) and τ∗(D) will at least be linearly equivalent as divisors on the metric

graph Ŵ. (This is a consequence of standard facts from arithmetic intersection

theory, see, for example [Liu 2002, Propositions 9.2.15 and 9.2.23].)

From the discussion in Section 1D, we deduce from the proof of Lemma 2.8:

Corollary 2.11. Let D ∈ Div(X K ). Then

rQ(τ∗(D)) ≥ rX (D).

Remark 2.12. For the reader familiar with Berkovich’s theory of analytic spaces

[1990], it may be helpful to remark that the metric Q-graph Ŵ can be identified with

the skeleton of the formal model associated to X, and the map τ : X (K ) → ŴQ can

be identified with the restriction to X (K ) ⊂ X an of the natural deformation retrac-

tion X an
։ Ŵ, where X an denotes the Berkovich K -analytic space associated to X .
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3. Some applications of the specialization lemma

3A. Specialization of gr
d
’s. Recall that a complete gr

d on X/K is defined to be a

complete linear system |D| with

D ∈ Div(X K ), deg(D) = d, and r(D) = r.

For simplicity, we will omit the word “complete” and just refer to such a linear

system as a gr
d . A gr

d is called K -rational if we can choose the divisor D to lie in

Div(X).

By analogy, we define a gr
d on a graph G (respectively, a metric graph Ŵ) to

be a complete linear system |D| with D ∈ Div(G) (respectively, D ∈ Div(Ŵ))

such that deg(D) = d and r(D) = r . Also, we will denote by gr
≤d (respectively,

g≥r
d ) a complete linear system |D| with deg(D) ≤ d and r(D) = r (respectively,

deg(D) = d and r(D) ≥ r ).

As an immediate consequence of Lemma 2.8 and Corollary 2.11, we obtain:

Corollary 3.1. Let X be a smooth curve over K , and let X/R be a strongly
semistable regular model for X with special fiber Xk . Let G be the dual graph
of Xk , and let Ŵ be the corresponding metric graph. If there exists a K -rational gr

d
on X , then there exists a g≥r

d and a gr
≤d on G. Similarly, if there exists a gr

d on X ,

then there exists a g≥r
d and a gr

≤d on Ŵ.

This result places restrictions on the possible graphs which can appear as the

dual graph of some regular model of a given curve X/K .

In the particular case r = 1, we refer to the smallest positive integer d for which

there exists a g1
d (respectively, a K -rational g1

d ) on X as the gonality (respectively,

K -gonality) of X .

Similarly, we define the gonality of a graph G (or a metric graph Ŵ) to be the

smallest positive integer d for which there exists a g1
d on G (or Ŵ).

As a special case of Corollary 3.1, we have:

Corollary 3.2. The gonality of G (respectively, Ŵ) is at most the K -gonality (re-
spectively, gonality) of X.

Example 3.3. Let Kn denote the complete graph on n ≥ 2 vertices.

Claim. The gonality of Kn is equal to n − 1.

Indeed, let D =
∑

av(v) be an effective divisor of degree at most n − 2 on Kn ,

and label the vertices v1, . . . , vn of G so that av1
≤ · · · ≤ avn . Then it is easy to

see that av1
= 0 and avi ≤ i − 2 for all 2 ≤ i ≤ n. If ν is the divisor associated

to the linear ordering v1 < · · · < vn of V (Kn), it follows that D − (v1) ≤ ν, so

r(D − (v1)) = −1 by Theorem 1.2. In particular, we have r(D) ≤ 0, and thus the
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gonality of Kn is at least n − 1. On the other hand, for any vertex v0 ∈ V (Kn), the

divisor

D =
∑

v∈V (Kn)\{v0}
(v)

has degree n − 1 and rank at least 1, since

D − (v0) ∼ (n − 2)(v0).

It follows from Corollary 3.2 that if X/K has K -gonality at most n −2, then no

regular model X/R for X can have Kn as its dual graph. For example, K4 cannot

be the dual graph of any regular model of a hyperelliptic curve X/K .

3B. Hyperelliptic graphs. Focusing now on the special case d = 2, we recall from

[Hartshorne 1977, §IV.5] that a smooth curve X/K of genus g is called hyperel-
liptic if g ≥ 2 and there exists a g1

2 on X . If such a g1
2 exists, it is automatically

unique and K -rational.

Similarly, we say that a graph G (or a metric graph Ŵ) of genus g is hyperelliptic
if g ≥ 2 and there exists a g1

2 on G (or Ŵ).

Remark 3.4. One can show that if such a g1
2 exists, it is automatically unique.

Also, if G is 2-edge-connected of genus at least 2, then G is hyperelliptic if and

only if there is an involution h on G for which the quotient graph G/〈h〉 is a tree.

These and other matters are discussed in [Baker and Norine 2007a].

By Clifford’s theorem for graphs [Baker and Norine 2007b, Corollary 3.5], if

g ≥ 2 and D is a divisor of degree 2 on G with r(D)≥ 1, then in fact r(D)= 1, and

thus G is hyperelliptic. Combining this observation with Corollary 3.1, we find:

Corollary 3.5. If X is hyperelliptic and G has genus at least 2, then G is hyperel-
liptic as well.

The converse is false, as the following example shows.

Example 3.6. (1) Let G = Bn be the “banana graph” of genus n − 1 consisting of

2 vertices Q1, Q2 connected by n ≥ 3 edges. Then the divisor D = (Q1) + (Q2)

on G has degree 2 and r(D) = 1, so G is hyperelliptic. On the other hand, there

are certainly nonhyperelliptic curves X possessing a regular strongly semistable

model with dual graph G. For example, let p ≡ 1 (mod 12) be prime, and let

K = Qnr
p be the completion of the maximal unramified extension of Qp. Then

the modular curve X0(p) has a regular semistable model over K (the “Deligne–

Rapoport model” [1973]) whose dual graph is isomorphic to Bn with n = p−1
12

.

However, by a result of Ogg [1974], X0(p) is never hyperelliptic when p > 71.

(2) More generally, let G = B(ℓ1, . . . , ℓn) be the graph obtained by subdividing the

i-th edge of Bn into ℓi edges for 1 ≤ i ≤ n (so that B(1, 1, . . . , 1) = Bn). Then one
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easily checks that |(Q1)+ (Q2)| is still a g1
2 , so G is hyperelliptic. The dual graph

of X is always of this type when the special fiber of Xk consists of two projective

lines over k intersecting transversely at n points. For example, the modular curve

X0(p) with p ≥ 23 prime has a regular model whose dual graph G is of this type.

For all primes p > 71, G is hyperelliptic even though X0(p) is not.

Remark 3.7. Every graph of genus 2 is hyperelliptic, since by the Riemann–Roch

theorem for graphs, the canonical divisor KG has degree 2 and dimension 1. It

is not hard to prove that for every integer g ≥ 3, there are both hyperelliptic and

nonhyperelliptic graphs of genus g.

3C. Brill–Noether theory for graphs. Classically, it is known by Brill–Noether
theory that every smooth curve of genus g over the complex numbers has gonality

at most
⌊

1
2
(g + 3

)⌋
, and this bound is tight: for every g ≥ 0, the general curve of

genus g has gonality exactly equal to
⌊

1
2
(g + 3

)⌋
. More generally:

Theorem 3.8 (Classical Brill–Noether theory). Fix integers g, r, d ≥ 0, and define
the Brill–Noether number

ρ(g, r, d) = g − (r + 1)(g − d + r).

Then

(1) if ρ(g, r, d) ≥ 0, then every smooth curve X/C of genus g has a divisor D
with r(D) = r and deg(D) ≤ d;

(2) if ρ(g, r, d)< 0, then on a general smooth curve of genus g, there is no divisor
D with r(D) = r and deg(D) ≤ d.

Based on extensive computer calculations by Adam Tart (an undergraduate at

Georgia Tech), we conjecture that similar results hold in the purely combinatorial

setting of finite graphs:

Conjecture 3.9 (Brill–Noether conjecture for graphs). Fix integers g, r, d ≥ 0, and
set

ρ(g, r, d) = g − (r + 1)(g − d + r).

Then

(1) if ρ(g, r, d) ≥ 0, then every graph of genus g has a divisor D with r(D) = r
and deg(D) ≤ d;

(2) if ρ(g, r, d) < 0, there exists a graph of genus g for which there is no divisor
D with r(D) = r and deg(D) ≤ d.

In the special case r = 1, Conjecture 3.9 can be reformulated as follows:

Conjecture 3.10 (Gonality conjecture for graphs). For each integer g ≥ 0,

(1) the gonality of any graph of genus g is at most
⌊

1
2
(g + 3

)⌋
and
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(2) there exists a graph of genus g with gonality exactly
⌊

1
2
(g + 3

)⌋
.

Adam Tart has verified Conjecture 3.10 (2) for g ≤ 12, and Conjecture 3.9 (2)

for 2 ≤ r ≤ 4 and g ≤ 10. He has also verified that Conjecture 3.10 (1) holds

for approximately 1000 randomly generated graphs of genus at most 10, and has

similarly verified Conjecture 3.9 (1) for around 100 graphs in the case 2 ≤ r ≤ 4.

Although we do not know how to handle the general case, it is easy to prove

that Conjecture 3.10 (1) holds for small values of g:

Lemma 3.11. Conjecture 3.10 (1) is true for g ≤ 3.

Proof. For g ≤ 2, this is a straightforward consequence of Riemann–Roch for

graphs. For g = 3, we argue as follows. The canonical divisor KG on any genus

3 graph G has degree 4 and r(KG) = 2. By Lemma 2.7, there exists a vertex

P ∈ V (G) for which the degree 3 divisor KG − P has rank 1. (In fact, it is not

hard to see that r(KG − P) = 1 for every vertex P .) Therefore G has a g1
3 , so the

gonality of G is at most 3, proving the lemma. �

For metric Q-graphs, we can prove the analogue of Conjecture 3.9 (1) using the

Specialization Lemma (Lemma 2.8) and classical Brill–Noether theory (Theorem

3.8):

Theorem 3.12. Fix nonnegative integers g, r , and d for which g ≥(r+1)(g−d+r).
Then every metric Q-graph Ŵ of genus g has a divisor D with r(D) = r and
deg(D) ≤ d.

Proof. By uniformly rescaling the edges of a suitable model for Ŵ so that they all

have integer lengths, then adding vertices of valence 2 as necessary, we may assume

that Ŵ is the metric graph associated to a graph G (and that every edge of G has

length 1). By Theorem B.2, there exists a strongly semistable regular arithmetic

surface X/R whose generic fiber is smooth of genus g and whose special fiber has

dual graph G. By classical Brill–Noether theory, there exists a gr
d ′ on X for some

d ′ ≤ d , so according to (the proof of) Corollary 3.1, there is a Q-rational divisor

D on Ŵ with deg(D) ≤ d and r(D) = r . �

In Section 3D, we will generalize Theorem 3.12 to arbitrary metric graphs, and

then to tropical curves, using ideas from [Gathmann and Kerber 2008].

Remark 3.13. It would be very interesting to give a direct combinatorial proof

of Theorem 3.12. In any case, we view the above proof of Theorem 3.12 as an

example of how one can use the Specialization Lemma, in conjunction with known

theorems about algebraic curves, to prove nontrivial results about graphs (or more

precisely, in this case, metric graphs).

For a given graph G (or metric graph Ŵ) and an integer r ≥ 1, let D(G, r) (or

D(Ŵ, r)) be the minimal degree d of a gr
d on G (or Ŵ).
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Conjecture 3.14. Let G be a graph, and let Ŵ be the associated Q-graph. Then
for every r ≥ 1, we have

(1) D(G, r) = D(σk(G), r) for all k ≥ 1 and

(2) D(G, r) = D(Ŵ, r).

Adam Tart has verified Conjecture 3.14 (1) for 100 different graphs with 1 ≤
r, k ≤ 4, and for 1000 randomly generated graphs of genus up to 10 in the special

case where r = 1 and k = 2 or 3.

Note that Conjecture 3.14, in conjunction with Theorem 3.12, would imply Con-

jecture 3.9 (1).

Finally, we have the analogue of Conjecture 3.9 (2) for metric graphs:

Conjecture 3.15 (Brill–Noether conjecture for metric graphs). Fix integers g, r ,

d ≥ 0, and set

ρ(g, r, d) = g − (r + 1)(g − d + r).

If ρ(g, r, d) < 0, then there exists a metric graph of genus g for which there is no
divisor D with r(D) = r and deg(D) ≤ d.

Note that Conjecture 3.15 would follow from Conjecture 3.14 and Conjecture

3.9 (2).

Remark 3.16. By a simple argument based on Theorem B.2 and Corollary 3.2, a

direct combinatorial proof of Conjecture 3.15 in the special case r = 1 would yield

a new proof of the classical fact that for every g ≥ 0, there exists a smooth curve X
of genus g over an algebraically closed field of characteristic zero having gonality

at least
⌊

1
2
(g + 3)

⌋
.

3D. A tropical Brill–Noether theorem. In this section, we show how the ideas

from [Gathmann and Kerber 2008] can be used to generalize Theorem 3.12 from

metric Q-graphs to arbitrary metric graphs and tropical curves.

The key result is the following “Semicontinuity Lemma”, which allows one to

transfer certain results about divisors on Q-graphs to arbitrary metric graphs. For

the statement, fix a metric graph Ŵ and a positive real number ǫ smaller than all

edge lengths in some fixed model G for Ŵ. We denote by Aǫ(Ŵ) the “moduli space”

of all metric graphs that are of the same combinatorial type as Ŵ, and whose edge

lengths are within ǫ of the corresponding edge lengths in Ŵ. Then

Aǫ(Ŵ) ∼=
∏

e∈E(G)

[ℓ(e) − ǫ, ℓ(e) + ǫ]

can naturally be viewed as a product of closed intervals. In particular, there is a

well-defined notion of convergence in Aǫ(Ŵ).
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Similarly, for each positive integer d, we define

M = Md
ǫ (Ŵ)

to be the compact polyhedral complex whose underlying point set is

M :=
{
(Ŵ′, D′) : Ŵ′ ∈ Aǫ(Ŵ), D′ ∈ Divd

+(Ŵ′)
}
.

Lemma 3.17 (Semicontinuity Lemma). The function r : M → Z given by

r(Ŵ′, D′) = rŴ′(D′)

is upper semicontinuous, that is, the set {(Ŵ′, D′) : rŴ′(D′) ≥ i} is closed for all i .

Proof. Following the general strategy of [Gathmann and Kerber 2008, Proof of

Proposition 3.1], but with some slight variations in notation, we set

S :=
{
(Ŵ′, D′, f, P1, . . . , Pd) :

Ŵ′ ∈ Aǫ(Ŵ), D′ ∈ Divd
+(Ŵ′), f ∈ M(Ŵ′), ( f ) + D′ = P1 + · · · + Pd

}
.

Also, for each i = 0, . . . , d , set

Mi := {(Ŵ′, D′, P1, . . . , Pi ) : Ŵ′ ∈ Aǫ(Ŵ), D′ ∈ Divd
+(Ŵ′), P1, . . . , Pi ∈ Ŵ′}.

As in [Gathmann and Kerber 2008, Lemma 1.9 and Proposition 3.1], one can en-

dow each of the spaces S and Mi (0 ≤ i ≤ d) with the structure of a polyhedral

complex.

The obvious “forgetful morphisms”

πi : S → Mi , (Ŵ′, D′, f, P1, . . . , Pd) 7→ (Ŵ′, D′, P1, . . . , Pi )

and

pi : Mi → M, (Ŵ′, D′, P1, . . . , Pi ) 7→ (Ŵ′, D′)

are morphisms of polyhedral complexes, and in particular they are continuous

maps between topological spaces. Following [Gathmann and Kerber 2008, Proof

of Proposition 3.1], we make some observations:

(1) pi is an open map for all i (since it is locally just a linear projection).

(2) Mi\πi (S) is a union of open polyhedra, and in particular, is an open subset of

Mi .

(3) For (Ŵ′, D′) ∈ M , we have rŴ′(D′) ≥ i if and only if (Ŵ′, D′) 6∈ pi (Mi\πi (S)).

From (1) and (2), it follows that pi (Mi\πi (S)) is open in M . So by (3), we see

that the subset {(Ŵ′, D′) : rŴ′(D′) ≥ i} is closed in M , as desired. �

The following corollary shows that the condition for a metric graph to have a

gr
≤d is closed:
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Corollary 3.18. Suppose Ŵn is a sequence of metric graphs in Aǫ(Ŵ) converging
to Ŵ. If there exists a gr

≤d on Ŵn for all n, then there exists a gr
≤d on Ŵ as well.

Proof. Without loss of generality, we may assume that r ≥ 0. Passing to a subse-

quence and replacing d by some d ′ ≤ d if necessary, we may assume that for each

n, there exists an effective divisor Dn ∈Div+(Ŵn) with deg(Dn)=d and r(Dn)= r .

Since M is compact, {(Ŵn, Dn)} has a convergent subsequence; by passing to this

subsequence, we may assume that (Ŵn, Dn)→ (Ŵ, D) for some divisor D ∈Div(Ŵ).

By Lemma 3.17, we have r(D) ≥ r . Subtracting points from D if necessary, we

find that there is an effective divisor D′ ∈ Div(Ŵ) with deg(D′) ≤ d and r(D) = r ,

as desired. �

Corollary 3.19. Fix nonnegative integers g, r , and d. If there exists a gr
≤d on every

Q-graph of genus g, then there exists a gr
≤d on every metric graph of genus g.

Proof. We can approximate a metric graph Ŵ by a sequence of Q-graphs in Aǫ(Ŵ)

for some ǫ > 0, so the result follows directly from Corollary 3.18. �

Finally, we give our promised application of the Semicontinuity Lemma to Brill–

Noether theory for tropical curves:

Theorem 3.20. Fix integers g, r, d ≥ 0 such that

ρ(g, r, d) = g − (r + 1)(g − d + r) ≥ 0.

Then every tropical curve of genus g has a divisor D with r(D)= r and deg D ≤ d.

Proof. By Theorem 3.12, there exists a gr
≤d on every metric Q-graph, so it follows

from Corollary 3.19 that the same is true for all metric graphs. By [Gathmann

and Kerber 2008, Remark 3.6], if Ŵ̃ is a tropical curve and Ŵ is the metric graph

obtained from Ŵ̃ by removing all unbounded edges, then for every D ∈ Div(Ŵ) we

have rŴ̃(D) = rŴ(D). Therefore the existence of a gr
≤d on Ŵ implies the existence

of a gr
≤d on Ŵ̃. �

4. Weierstrass points on curves and graphs

As another illustration of the Specialization Lemma in action, in this section we

will explore the relationship between Weierstrass points on curves and (a suitable

notion of) Weierstrass points on graphs. As an application, we will generalize and

place into a more conceptual framework a well-known result of Ogg concerning

Weierstrass points on the modular curve X0(p). We will also prove the existence

of Weierstrass points on tropical curves of genus g ≥ 2.
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4A. Weierstrass points on graphs. Let G be a graph of genus g. By analogy with

the theory of algebraic curves, we say that P ∈ V (G) is a Weierstrass point if

r(g(P)) ≥ 1. We define Weierstrass points on metric graphs and tropical curves
in exactly the same way.

Remark 4.1. By Corollary 1.5, if Ŵ is the Q-graph corresponding to G (so that

every edge of G has length 1), then P ∈ V (G) is a Weierstrass point on G if and

only if P is a Weierstrass point on Ŵ.

Let P ∈ V (G). An integer k ≥ 1 is called a Weierstrass gap for P if

r(k(P)) = r((k − 1)(P)).

The Riemann–Roch theorem for graphs, together with the usual arguments from

the theory of algebraic curves, yields the following result, whose proof we leave

to the reader:

Lemma 4.2. The following are equivalent:

(1) P is a Weierstrass point.

(2) There exists a positive integer k ≤ g which is a Weierstrass gap for P.

(3) r(KG − g(P)) ≥ 0.

Remark 4.3. Unlike the situation for algebraic curves, there exist graphs of genus

at least 2 with no Weierstrass points. For example, consider the graph G = Bn of

genus g = n − 1 introduced in Example 3.6. We claim that Bn has no Weierstrass

points if n ≥ 3. Indeed, the canonical divisor KG is (g − 1)(Q1) + (g − 1)(Q2),

and by symmetry it suffices to show that

r
(
(g − 1)(Q2) − (Q1)

)
= −1.

This follows directly from Theorem 1.2, since

(g − 1)(Q2) − (Q1) ≤ ν := g(Q2) − (Q1)

and ν is the divisor associated to the linear ordering Q1 < Q2 of V (G).

More generally, let G = B(ℓ1, . . . , ℓn) be the graph of genus g = n −1 obtained

by subdividing the i-th edge of Bn into ℓi edges. Let Ri j for 1 ≤ j ≤ ℓi −1 denote

the vertices strictly between Q1 and Q2 lying on the i-th edge (in sequential order).

Then Q1 and Q2 are not Weierstrass points of G. Indeed, by symmetry it again

suffices to show that r
(
(g −1)(Q2)− (Q1)

)
= −1, and this follows from Theorem

1.2 by considering the linear ordering

Q1 < R11 < R12 < · · · < R1(ℓ1−1) < R21 < · · · < Rn(ℓn−1) < Q2.

Other examples of families of graphs with no Weierstrass points are given in

[Baker and Norine 2007a]. The graphs in these examples are all hyperelliptic.
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More recently, S. Norine and P. Whalen have discovered examples of nonhyper-

elliptic graphs of genus 3 and 4 without Weierstrass points. It remains an interesting

open problem to classify all graphs without Weierstrass points.

By the proof of Theorem 4.13 below, given any graph G of genus at least 2, there

exists a positive integer k for which the regular subdivision σk(G) (see Section

1D) has at least one Weierstrass point. In particular, there are always Weierstrass

points on the metric graph associated to G. From the point of view of arithmetic

geometry, this is related to the fact that Weierstrass points on an algebraic curve

X/K of genus at least 2 always exist, but in general they are not K -rational. So

just as one sometimes needs to pass to a finite extension L/K in order to see the

Weierstrass points on a curve, one needs in general to pass to a regular subdivision

of G in order to find Weierstrass points.

Example 4.4. On the complete graph G = Kn on n ≥ 4 vertices, every vertex is

a Weierstrass point. Indeed, if P, Q ∈ V (G) are arbitrary, then g(P) − (Q) is

equivalent to the effective divisor

(g − (n − 1))(P) − (Q) +
∑

v∈V (G)

(v),

and thus r(g(P)) ≥ 1.

The following example, due to Serguei Norine, shows that there exist metric

Q-graphs with infinitely many Weierstrass points:

Example 4.5. Let Ŵ be the metric Q-graph associated to the banana graph Bn for

some n ≥ 4. Then Ŵ has infinitely many Weierstrass points.

Indeed, label the edges of Ŵ as e1, . . . , en , and identify each ei with the segment

[0, 1], where Q1 corresponds to 0, say, and Q2 corresponds to 1. We write x(P) for

the element of [0, 1] corresponding to the point P ∈ ei under this parametrization.

Then for each i and each P ∈ ei with x(P) ∈ [1
3
, 2

3
], we claim that r(3(P)) ≥ 1,

and hence P is a Weierstrass point on Ŵ.

To see this, we will show explicitly that for every Q ∈ Ŵ we have

|3(P) − (Q)| 6= ∅.

For this, it suffices to construct a function f ∈ M(Ŵ) for which

1( f ) ≥ −3(P) + (Q).

This is easy if P = Q. Otherwise we have:

Case 1(a): If Q ∈ ei and x(P) < x(Q), let y = 1
2

(
3x(P) − x(Q)

)
and take f to

be constant on e j for j 6= i , and on ei to have slope −2 on [y, x(P)], slope 1 on

[x(P), x(Q)], and slope 0 elsewhere.
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Case 1(b): If Q ∈ ei and x(Q) < x(P), we again let y = 1
2

(
3x(P) − x(Q)

)
and

take f to be constant on e j for j 6= i , and on ei to have slope −1 on [x(Q), x(P)],
slope 2 on [x(P), y], and slope 0 elsewhere.

If Q ∈ e j for some j 6= i , take f to be constant on ek for k 6= i, j . On e j , let

z = min(x(Q), 1−x(Q)), and take f to have slope 1 on [0, z], slope 0 on [z, 1−z],
and slope −1 on [1 − z, 1]. Finally, along ei , we have two cases:

Case 2(a): If x(P) ∈ [ 1
3
, 1

2
], let y = 3x(P) − 1, and define f on ei to have slope

−1 on [0, y], slope −2 on [y, x(P)], and slope 1 on [x(P), 1].
Case 2(b): If x(P) ∈ [1

2
, 2

3
], we again let y = 3x(P) − 1, and define f on ei to

have slope −1 on [0, x(P)], slope 2 on [x(P), y], and slope 1 on [y, 1].

Remark 4.6. Similarly, one can show that for each integer m ≥ 2, if x(P) ∈
[ 1

m , m−1
m ] then r(m(P)) ≥ 1, and thus P is a Weierstrass point on Ŵ as long as the

genus of Ŵ is at least m.

We close this section with a result which generalizes Remark 4.3, and which

can be used in practice to identify non-Weierstrass points on certain graphs.

Lemma 4.7. Let v be a vertex of a graph G of genus g ≥ 2, and let G ′ be the graph
obtained by deleting the vertex v and all edges incident to v . If G ′ is a tree, then v

is not a Weierstrass point.

Proof. Since G ′ is a tree, there is a linear ordering

v1 < · · · < vn−1

of the vertices of G ′ such that each vertex other than the first one has exactly one

neighbor preceding it in the order. Extend < to a linear ordering of V (G) by letting

v be the last element in the order. Since the corresponding divisor ν is equal to

g(v) − (v1), it follows from Theorem 1.2 that |g(v) − (v1)| = ∅, and therefore

r(g(v)) = 0. Thus v is not a Weierstrass point. �

Remark 4.8. It is easy to see that if (G, v) satisfies the hypothesis of Lemma 4.7,

then so does (G̃, v), where G̃ is obtained by subdividing each edge ei of G into

mi edges for some positive integer mi .

4B. Specialization of Weierstrass points on totally degenerate curves. We say

that an arithmetic surface X/R is totally degenerate if the genus of its dual graph

G is the same as the genus of X . Under our hypotheses on X, the genus of X is the

sum of the genus of G and the genera of all irreducible components of Xk , so X is

totally degenerate if and only if all irreducible components of Xk have genus 0.

Applying the Specialization Lemma and the definition of a Weierstrass point,

we immediately obtain:



636 Matthew Baker

Corollary 4.9. If X is a strongly semistable, regular, and totally degenerate arith-
metic surface, then for every K -rational Weierstrass point P ∈ X (K ), ρ(P) is a
Weierstrass point of the dual graph G of X. More generally, for every Weierstrass
point P ∈ X (K ), τ∗(P) is a Weierstrass point of the reduction graph Ŵ of X.

As a sample consequence, we have this concrete result:

Corollary 4.10. (1) Let X/R be a strongly semistable, regular, totally degenerate
arithmetic surface whose special fiber has a dual graph with no Weierstrass
points (for example, the graph Bn for some n ≥ 3). Then X does not possess
any K -rational Weierstrass points.

(2) Let X/R be a (not necessarily regular) arithmetic surface whose special fiber
consists of two genus 0 curves intersecting transversely at 3 or more points.
Then every Weierstrass point of X (K ) specializes to a singular point of Xk .

(3) More generally, let X/R be a (not necessarily regular) strongly semistable
and totally degenerate arithmetic surface whose dual graph G contains a ver-
tex v for which G ′ :=G\{v} is a tree. Then there are no K -rational Weierstrass
points on X specializing to the component C of Xk corresponding to v .

Proof. Part (1) follows from what we have already said. For (2), it suffices to

note that X has a strongly semistable regular model X
′ whose dual graph G ′ is

isomorphic to B(ℓ1, . . . , ℓg) for some positive integers ℓi , and a point of X (K )

which specializes to a nonsingular point of Xk will specialize to either Q1 or Q2

in G ′, neither of which is a Weierstrass point by Remark 4.3. Finally, (3) follows

easily from Lemma 4.7 and Remark 4.8. �

We view Corollary 4.10 as a generalization of Ogg’s argument [1978] showing

that the cusp ∞ is never a Weierstrass point on X0(p) for p ≥ 23 prime, since

X0(p)/Qnr
p has a model X0(p) of the type described in Corollary 4.10 (2) (the

Deligne–Rapoport model), and ∞ specializes to a nonsingular point on the special

fiber of X0(p). More generally, Corollary 4.10 shows (as does Ogg’s original

argument) that all Weierstrass points of X0(p) specialize to supersingular points in

the Deligne–Rapoport model. Corollaries 4.9 and 4.10 give a recipe for extending

Ogg’s result to a much broader class of curves with totally degenerate reduction.

Remark 4.11. Corollary 4.10 has strong implications concerning the arithmetic

of Weierstrass points on curves. For example, in the special case where K = Qnr
p ,

the conclusion of Corollary 4.10 (1) implies that every Weierstrass point on X is

ramified at p.

Example 4.12. The hypothesis that X is totally degenerate is necessary in the

statement of Corollary 4.9. For example, it follows from [Atkin 1967, Theorem 1]

that the cusp ∞ is a Q-rational Weierstrass point on X0(180). The mod 5 reduction

of the Deligne–Rapoport model of X0(180) consists of two copies of X0(36)F5
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intersecting transversely at the supersingular points, and the cusp ∞ specializes

to a nonsingular point on one of these components. (This does not contradict

Corollary 4.10 because X0(36) does not have genus 0.)

We conclude this section with another application of algebraic geometry to tropi-

cal geometry: we use the classical fact that Weierstrass points exist on every smooth

curve of genus at least 2 to show that there exist Weierstrass points on every tropical

curve of genus at least 2.

Theorem 4.13. Let Ŵ̃ be a tropical curve of genus g ≥ 2. Then there exists at least
one Weierstrass point on Ŵ̃.

Proof. We first consider the case of a Q-graph Ŵ. By rescaling if necessary, we

may assume that Ŵ is the metric graph associated to a finite graph G, with every

edge of G having length one. By Theorem B.2, there exists a strongly semistable,

regular, totally degenerate arithmetic surface X/R whose generic fiber is smooth

of genus g and whose special fiber has reduction graph Ŵ. Let P ∈ X (K ) be a

Weierstrass point, which exists by classical algebraic geometry since g ≥ 2. By

Corollary 4.9, τ∗(P) is a Weierstrass point of Ŵ. We have thus shown that every

metric Q-graph of genus at least 2 has a Weierstrass point.

Now let Ŵ be an arbitrary metric graph. As in Section 3D, for ǫ > 0 sufficiently

small, we can approximate Ŵ by a sequence Ŵn of Q-graphs within the space Aǫ(Ŵ).

Let Pn ∈ Ŵn be a Weierstrass point. Passing to a subsequence if necessary, we may

assume without loss of generality that

(Ŵn, Pn) → (Ŵ, P)

in M1
ǫ (Ŵ) for some point P ∈ Ŵ. Since rŴn (g Pn) ≥ 1 for all n and

(Ŵn, g Pn) → (Ŵ, g P)

in Mg
ǫ (Ŵ), we conclude from the Semicontinuity Lemma that rŴ(g P) ≥ 1, that is,

P is a Weierstrass point on Ŵ.

Finally, suppose that Ŵ̃ is a tropical curve, and let Ŵ be the metric graph obtained

from Ŵ̃ by removing all unbounded edges. It follows from [Gathmann and Kerber

2008, Remark 3.6] that every Weierstrass point on Ŵ is also a Weierstrass point

on Ŵ̃. Therefore the existence of Weierstrass points on Ŵ implies the existence of

Weierstrass points on Ŵ̃. �

Remark 4.14. We do not know a direct combinatorial proof of Theorem 4.13, but

it would certainly be interesting to give such a proof. Also, in light of Example 4.5,

it is not clear if there is an analogue for metric graphs of the classical fact that the

total weight of all Weierstrass points on a smooth curve of genus g ≥ 2 is g3 − g.
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4C. Specialization of a canonical divisor. Since P ∈ X (K ) is a Weierstrass point

of X if and only if r(K X −g(P)) ≥ 0, where K X denotes a canonical divisor on X ,

and since P ∈ V (G) is a Weierstrass point of G if and only if r(KG − g(P)) ≥ 0,

Corollary 4.9 suggests a relationship between the canonical divisor of G and the

specialization of K X when X is totally degenerate. We investigate this relationship

in this section.

Let X be a strongly semistable, regular, totally degenerate arithmetic surface.

Let ωX/R be the canonical sheaf for X/R, and let KX be a Cartier divisor such that

OX(KX) ∼= ωX/R.

We call any such KX a canonical divisor.

Lemma 4.15. ρ(KX) = KG .

Proof. This is a consequence of the adjunction formula for arithmetic surfaces (see

[Liu 2002, Theorem 9.1.37]), which tells us that

(KX · Ci ) = 2g(Ci ) − 2 − (Ci · Ci ) = −2 − (Ci · Ci ) (4.16)

for all i . Since (Ci ·
∑

j C j ) = 0 for all i , we have

(Ci · Ci ) = −
∑

j 6=i

(Ci · C j ) = − deg(vi ). (4.17)

Combining (4.16) and (4.17) gives

(KX · Ci ) = deg(vi ) − 2

for all i , as desired. �

Remark 4.18. More generally, if we do not assume that X is totally degenerate,

then the above proof shows that

ρ(KX) = KG + 2

n∑

i=1

g(Ci )(vi ),

where Ci is the irreducible component of Xk corresponding to the vertex vi of G.

Remark 4.19. Lemma 4.15 helps explain why there is in fact a canonical divisor
on a graph G, rather than just a canonical divisor class, and also explains the

connection between the canonical divisor on a graph and the canonical divisor class

in algebraic geometry. This connection is implicit in the earlier work of S. Zhang

[1993].

Lemma 4.20. Let K X ∈ Div(X) be a canonical divisor. Then ρ(K X ) is linearly
equivalent to KG .
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Proof. Since the Zariski closure of K X differs from a canonical divisor KX on

X by a vertical divisor, this follows from Lemma 4.15 and the remarks preceding

Lemma 2.1. �

Remark 4.21. By a general moving lemma (see, for example, [Liu 2002, Corol-

lary 9.1.10 or Proposition 9.1.11]), there exists a horizontal canonical divisor KX

on X. Since KX is the Zariski closure of K X in this case, it follows that there exists

a canonical divisor K X ∈ Div(X) for which ρ(K X ) is equal to KG (and not just

linearly equivalent to it).

4D. An example. We conclude with an explicit example which illustrates many

of the concepts that have been discussed in this paper.

Let p be an odd prime, and let X be the smooth plane quartic curve over Qp

given by F(x, y, z) = 0, where

F(x, y, z) = (x2 − 2y2 + z2)(x2 − z2) + py3z. (4.22)

By classical algebraic geometry, we have g(X) = 3, and the Qp-gonality of X
is also 3. We let K = Qnr

p , and consider X as an algebraic curve over K .

Let X
′ be the model for X over the valuation ring R of K given by (4.22).

According to [Liu 2002, Exercise 10.3.10], the special fiber of X
′ is semistable

and consists of two projective lines ℓ1 and ℓ2 with equations x = z and x = −z,

respectively, which intersect transversely at the point (0 : 1 : 0), together with the

conic C defined by x2−2y2+z2 =0, which intersects each of ℓ1 and ℓ2 transversely

at 2 points. The model X′ is not regular, but a regular model X can be obtained from

X
′ by blowing up the point (0 : 1 : 0) of the special fiber of X

′, which produces an

exceptional divisor E in Xk isomorphic to P1
k , and which intersects each of ℓ1 and

ℓ2 transversely at a single point (see [Liu 2002, Corollary 10.3.25]). The special

fiber Xk of X and the dual graph G of Xk are depicted in Figure 1.

In the diagram on the right, the vertex P corresponds to the conic C , Qi corre-

sponds to the line ℓi (i = 1, 2), and P ′ corresponds to the exceptional divisor E of

.
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Figure 1. Left: The special fiber Xk . Right: The dual graph G of Xk .
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the blowup. Note that G is a graph of genus 3, and that X has totally degenerate

strongly semistable reduction.

Claim. Q1 and Q2 are Weierstrass points of G, while P and P ′ are not.

Indeed, since 3(Q1) ∼ 3(Q2) ∼ 2(P) + (P ′), it follows easily that r(3(Q1)) =
r(3(Q2)) ≥ 1, and therefore Q1 and Q2 are Weierstrass points. On the other hand,

P is not a Weierstrass point of G by Lemma 4.7, and P ′ is not a Weierstrass point

either, since 3(P ′) − (P) is equivalent to (Q1) + (Q2) + (P ′) − (P), which is the

divisor associated to the linear ordering P < Q1 < Q2 < P ′ of V (G).

Claim. The gonality of G is 3.

We have already seen that r(3(Q1)) ≥ 1, so the gonality of G is at most 3.

It remains to show that G is not hyperelliptic, that is, there is no g1
2 on G. By

symmetry, and using the fact that (Q1) + (Q2) ∼ 2(P ′), it suffices to show that

r(D)=0 for D = (P)+(P ′) and for each of the divisors (Q1)+(X) with X ∈ V (G).

For this, it suffices to show that |D|=∅ for each of the divisors (Q1)+2(Q2)−(P),

(P) + 2(Q1) − (P ′), and (P) + (P ′) + (Q1) − (Q2). But these are the ν-divisors

associated to the linear orderings P < Q1 < P ′ < Q2, P ′ < Q2 < P < Q1, and

Q1 < P < Q2 < P ′ of V (G), respectively. The claim therefore follows from

Theorem 1.2.

The canonical divisor KG on G is 2(P) + (Q1) + (Q2). We now compute

the specializations of various canonical divisors in Div(X (K )). Since a canonical

divisor on X is just a hyperplane section, the following divisors are all canonical:

K1 : (x = z) ∩ X = (0 : 1 : 0) + 3(1 : 0 : 1),

K2 : (x = −z) ∩ X = (0 : 1 : 0) + 3(1 : 0 : −1),

K3 : (z = 0) ∩ X = 2(0 : 1 : 0) + (
√

2 : 1 : 0) + (−
√

2 : 1 : 0),

K4 : (y = 0) ∩ X = (1 : 0 : 1) + (1 : 0 : −1) + (1 : 0 :
√

−1) + (1 : 0 : −
√

−1).

The specializations of these divisors under ρ (or equivalently, under τ∗) are

ρ(K1) : (P ′) + 3(Q1),

ρ(K2) : (P ′) + 3(Q2),

ρ(K3) : 2(P ′) + 2(P),

ρ(K4) : (Q1) + (Q2) + 2(P).

It is straightforward to check that each of these divisors is linearly equivalent to

KG = (Q1) + (Q2) + 2(P), in agreement with Lemma 4.20.

Finally, note that (as follows from the above calculations) (1 :0 :1) and (1 :0 :−1)

are Weierstrass points on X , and they specialize to Q1 and Q2, respectively. As we

have seen, these are both Weierstrass points of G, as predicted by Corollary 4.9.
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On the metric graph Ŵ associated to G, there are additional Weierstrass points.

A somewhat lengthy case-by-case analysis shows that the Weierstrass points of Ŵ

are the four points at distance 1
3

from P , together with the two intervals [Qi , Ri ] of

length 1
3
, where R1, R2 are the points at distance 2

3
from P ′. It would be interesting

to compute the specializations to Ŵ of the remaining Weierstrass points in X (K ).

Appendix A. A reformulation of Raynaud’s description of the Néron model

of a Jacobian

In this appendix, we reinterpret in the language of divisors on graphs some results

of Raynaud concerning the relation between a proper regular model for a curve and

the Néron model of its Jacobian. The main result here is that the diagrams (A.5)

and (A.6) below are exact and commutative. This may not be a new observation,

but since we could not find a reference, we will attempt to explain how it follows

in a straightforward way from Raynaud’s work.

In order to keep this appendix self-contained, we have repeated certain defini-

tions which appear in the main body of the text. Some references for the results

described here are [Bertolini and Darmon 1997, Appendix; Bosch et al. 1990;

Edixhoven 1998; Raynaud 1970].

Raynaud’s description. Let R be a complete discrete valuation ring with field of

fractions K and algebraically closed residue field k. Let X be a smooth, proper,

geometrically connected curve over K , and let X/R be a proper model for X with

reduced special fiber Xk . For simplicity, we assume throughout that X is regular,

that the irreducible components of Xk are all smooth, and that all singularities of

Xk are ordinary double points. We let C = {C1, . . . , Cn} be the set of irreducible

components of Xk .

Let J be the Jacobian of X over K , let J be the Néron model of J/R, and let

J0 be the connected component of the identity in J. We denote by

8 = Jk/J0
k

the group of connected components of the special fiber Jk of J.

Let Div(X) (respectively, Div(X)) be the group of Cartier divisors on X (respec-

tively, on X); since X is smooth and X is regular, Cartier divisors on X (respec-

tively, X) are the same as Weil divisors.

The Zariski closure in X of an effective divisor on X is a Cartier divisor. Ex-

tending by linearity, we can associate to each D ∈ Div(X) a Cartier divisor D on

X, which we refer to as the Zariski closure of D.

Let Div0(X) denote the subgroup of Cartier divisors of degree zero on X . In

addition, let Div(0)(X) denote the subgroup of Div(X) consisting of those Cartier

divisors D for which the restriction of the associated line bundle OX(D) to each
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irreducible component of Xk has degree zero, that is, for which

deg(OX(D)|Ci ) = 0 for all Ci ∈ C.

Finally, let

Div(0)(X) = {D ∈ Div0(X) : D ∈ Div(0)(X)},

where D is the Zariski closure of D.

Let Prin(X) (respectively, Prin(X)) denote the group of principal Cartier divisors

on X (respectively, X). There is a well-known isomorphism

J (K ) = J(R) ∼= Div0(X)/ Prin(X),

and according to Raynaud, there is an isomorphism

J 0(K ) := J0(R) ∼= Div(0)(X)/ Prin(0)(X), (A.1)

where

Prin(0)(X) := Div(0)(X) ∩ Prin(X).

The isomorphism in (A.1) comes from the fact that J0 = Pic0
X/R represents the

functor “isomorphism classes of line bundles whose restriction to each element

of C has degree zero”. (Recall that there is a canonical isomorphism between

isomorphism classes of line bundles on X and the Cartier class group of X.)

Remark A.2. In particular, it follows from the above discussion that every element

P ∈ J 0(K ) can be represented as the class of D for some D ∈ Div(0)(X).

There is a natural inclusion C ⊂ Div(X), and an intersection pairing

C × Div(X) → Z, (Ci , D) 7→ (Ci · D),

where (Ci · D) = deg(OX(D)|Ci ).

The intersection pairing gives rise to a map

α :ZC → Z
C,

f 7→
(

Ci 7→
∑

C j ∈C

(Ci · C j ) f (C j )

)
.

Since k is algebraically closed and the canonical map J (K ) → Jk(k) is sur-

jective by [Liu 2002, Proposition 10.1.40(b)], there is a canonical isomorphism

J (K )/J 0(K ) ∼= 8. According to Raynaud, the component group 8 is canonically

isomorphic to the homology of the complex

ZC α−−−→ ZC
deg−−−→ Z, (A.3)
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where

deg : f 7→
∑

Ci

f (Ci ).

The isomorphism

φ : J (K )/J 0(K ) ∼= Ker(deg)/ Im(α)

can be described in the following way. Let P ∈ J (K ), and choose D ∈ Div0(X)

such that P = [D]. Let D ∈ Div(X) be the Zariski closure of D. Then

φ(P) = [Ci 7→ (Ci · D)].

When D corresponds to a Weil divisor supported on X (K ), we have another

description of the map φ. Write

D =
∑

P∈X (K )

n P(P)

with
∑

n P = 0. Since X is regular, each point P ∈ X (K ) = X(R) specializes to

a well-defined element c(P) of C. Identifying a formal sum
∑

Ci ∈C ai Ci with the

function Ci 7→ ai ∈ ZC, we have

φ([D]) =
[∑

P

n Pc(P)

]
. (A.4)

The quantities appearing in (A.3) can be interpreted in a more suggestive fashion

using the language of graphs. Let G be the dual graph of Xk , that is, G is the finite

graph whose vertices vi correspond to the irreducible components Ci of Xk , and

whose edges correspond to intersections between these components (so that there

is one edge between vi and v j for each point of intersection between Ci and C j ).

We let Div(G) denote the free abelian group on the set of vertices of G, and define

Div0(G) to be the kernel of the natural map deg : Div(G) → Z given by

deg
(∑

ai (vi )
)
=

∑
ai .

In particular, the set V (G) of vertices of G is in bijection with C, and the group

Div(G) is isomorphic to ZC, with Div0(G) corresponding to Ker(deg).

Let M(G) = ZV (G) be the set of Z-linear functions on V (G), and define the

Laplacian operator 1 : M(G) → Div0(G) by

1(ϕ) =
∑

v∈V (G)

∑

e=vw

(ϕ(v) − ϕ(w)) (v),

where the inner sum is over all edges e of G having v as an endpoint. Finally,

define

Prin(G) = 1(M(G)) ⊆ Div0(G),
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and let

Jac(G) = Div0(G)/ Prin(G)

be the Jacobian of G. It is a consequence of Kirchhoff’s Matrix-Tree Theorem that

Jac(G) is a finite abelian group whose order is equal to the number of spanning

trees of G.

Since the graph G is connected, one knows that Ker(1) consists precisely of

the constant functions, and it follows from (A.3) that there is a canonical exact

sequence

0 −−−→ Prin(G)
γ1−−−→ Div0(G)

γ2−−−→ 8 −−−→ 0.

In other words, the component group 8 is canonically isomorphic to the Jaco-

bian group of the graph G.

We can summarize much of the preceding discussion by saying that the follow-

ing diagram is commutative and exact:

0 0 0
y

y
y

0 −−−→ Prin(0)(X)
α1−−−→ Div(0)(X)

α2−−−→ J 0(K ) −−−→ 0
y

y
y

0 −−−→ Prin(X)
β1−−−→ Div0(X)

β2−−−→ J (K ) −−−→ 0
y

y
y

0 −−−→ Prin(G)
γ1−−−→ Div0(G)

γ2−−−→ Jac(G) ∼= 8 −−−→ 0
y

y
y

0 0 0

(A.5)

A few remarks are in order about the exactness of the rows and columns in (A.5).

It is well known that the natural map from X (K ) = X(R) to the smooth locus of

Xk(k) is surjective (see for example [Liu 2002, Proposition 10.1.40(b)]); by (A.4),

this implies that the natural maps

Div(X) → Div(G) and Div0(X) → Div0(G)

are surjective. The surjectivity of the horizontal map α2 : Div(0)(X) → J 0(K )

follows from Remark A.2. Using this, we see from the Snake Lemma that since the

vertical map Div0(X)→Div0(G) is surjective, the vertical map Prin(X)→Prin(G)

is also surjective. All of the other claims about the commutativity and exactness

of (A.5) follow in a straightforward way from the definitions.
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Passage to the limit. If K ′/K is a finite extension of degree m with ramification

index e | m and valuation ring R′, then by a sequence of blow-ups we can obtain

a regular model X
′/R′ for X whose corresponding dual graph G ′ is the graph

σe(G) obtained by subdividing each edge of G into e edges. If we think of G as

an unweighted graph and of σe(G) as a weighted graph in which every edge has

length 1
e , then G and σe(G) are different models for the same metric Q-graph Ŵ,

which one calls the reduction graph of X/R. The discussion in [Chinburg and

Rumely 1993] shows that the various maps

cK ′ : X (K ′) → G ′

are compatible, in the sense that they give rise to a specialization map τ : X (K )→Ŵ

which takes X (K ) surjectively onto ŴQ.

It is straightforward to check that the diagram (A.5) behaves functorially with

respect to finite extensions, and therefore that there is a commutative and exact

diagram

0 0 0
y

y
y

0 −−−→ Prin(0)(X (K ))
α1−−−→ Div(0)(X (K ))

α2−−−→ J 0(K ) −−−→ 0
y

y
y

0 −−−→ Prin(X (K ))
β1−−−→ Div0(X (K ))

β2−−−→ J (K ) −−−→ 0
y

y
y

0 −−−→ PrinQ(Ŵ)
γ1−−−→ Div0

Q
(Ŵ)

γ2−−−→ JacQ(Ŵ) −−−→ 0 .
y

y
y

0 0 0 (A.6)

Remark A.7. Let K̃ be the completion of an algebraic closure K of K , so that K̃
is a complete and algebraically closed field equipped with a valuation

v : K̃ → Q ∪ {+∞},

and K is dense in K̃ . By continuity, one can extend τ to a map τ : X (K̃ ) → Ŵ and

replace K by K̃ everywhere in the diagram (A.6).

A few explanations are in order concerning the definitions of the various groups

and group homomorphisms which appear in (A.6). Since K is algebraically closed,

we may identify the group Div(X K ) of Cartier (or Weil) divisors on X K with

Div(X (K )), the free abelian group on the set X (K ). We define Prin(X (K )) to be

the subgroup of Div(X (K )) consisting of principal divisors. The group Div(X (K ))
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(respectively, Prin(X (K ))) can be identified with the direct limit of Div(X K ′) (re-

spectively, Prin(X K ′)) over all finite extensions K ′/K . Accordingly, we define

the group J 0(K ) to be the direct limit of the groups J 0(K ′) over all finite exten-

sions K ′/K , and we define Div(0)(X (K )) and Prin(0)(X (K )) similarly. Finally, we

define JacQ(Ŵ) to be the quotient Div0
Q
(Ŵ)/ PrinQ(Ŵ).

That PrinQ(Ŵ), as defined in Section 1, coincides with the direct limit over all

finite extensions K ′/K of the groups Prin(G ′) follows easily from Remark 1.3.

With these definitions in place, it is straightforward to check using (A.5) that

the diagram (A.6) is both commutative and exact.

We note the following consequence of the exactness of (A.5) and (A.6):

Corollary A.8. The canonical maps

Prin(X) → Prin(G) and Prin(X (K )) → PrinQ(Ŵ)

are surjective.

Remark A.9. It follows from Corollary A.8 that if G is a graph, the group Prin(G)

can be characterized as the image of Prin(X) under the specialization map from

Div(X) to Div(G) for any strongly semistable regular arithmetic surface X/R
whose special fiber has dual graph isomorphic to G. (Such an X always exists

by Corollary B.3 below.)

Remark A.10. Another consequence of (A.6) is that there is a canonical isomor-

phism

J (K )/J 0(K ) ∼= JacQ(Ŵ),

so that the group JacQ(Ŵ) plays the role of the component group of the Néron

model in this situation, even though there is not a well-defined Néron model for J
over K or K̃ , since the valuations on these fields are not discrete. One can show

using elementary methods that JacQ(Ŵ) is (noncanonically) isomorphic to (Q/Z)g

(compare with the discussion in [Grothendieck 1972, Exposé IX, §11.8]).

Appendix B. A result from the deformation theory of stable marked curves

by Brian Conrad

Recall from Section 1A that by an arithmetic surface, we mean an integral scheme

that is proper and flat over a discrete valuation ring such that its generic fiber is

a smooth and geometrically connected curve. By Stein factorization, the special

fiber of an arithmetic surface is automatically geometrically connected.

In this appendix, we describe how one can realize an arbitrary graph G as the

dual graph of the special fiber of some regular arithmetic surface whose special

fiber C is a totally degenerate semistable curve (or Mumford curve), meaning that
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C is semistable and connected, every irreducible component of C is isomorphic to

the projective line over the residue field k, and all singularities of C are k-rational.

Lemma B.1. Let G be a connected graph, and let k be an infinite field. Then there
exists a totally degenerate semistable curve C/k whose dual graph is isomorphic
to G.

The proof is left to the reader.

The crux of the matter is the following theorem, whose proof is a standard

application of the deformation theory of stable marked curves.

Theorem B.2. Let C be a proper and geometrically connected semistable curve
over a field k, and let R be a complete discrete valuation ring with residue field k.
Then there exists an arithmetic surface X over R with special fiber C such that X

is a regular scheme.

Combining these two results, we obtain:

Corollary B.3. Let R be a complete discrete valuation ring with field of fractions
K and infinite residue field k. For any connected graph G, there exists a regular
arithmetic surface X/R whose generic fiber is a smooth, proper, and geometrically
connected curve X/K , and whose special fiber is a totally degenerate semistable
curve with dual graph isomorphic to G.

Remark B.4. By [Liu 2002, Lemma 10.3.18], the genus of X coincides with the

genus g = |E(G)| − |V (G)| + 1 of the graph G.

Proof of Theorem B.2. Let g = dim H1(C, OC) denote the arithmetic genus of

C . The structure theorem for ordinary double points [Freitag and Kiehl 1988, III,

§2] ensures that C sing splits over a separable extension of k, so we can choose

a finite Galois extension k ′/k so that the locus C sing

k′ of nonsmooth points in Ck′

consists entirely of k ′-rational points and every irreducible component of Ck′ is

geometrically irreducible and has a k ′-rational point. (If C is a Mumford curve

then we can take k ′ = k.) In particular, each smooth component in Ck′ of arithmetic

genus 0 is isomorphic to P1
k′ and so admits at least three k ′-rational points. We can

then construct a Gal(k ′/k)-stable étale divisor D′ ⊆ C sm
k′ whose support consists

entirely of k ′-rational points in the smooth locus such that for each component X ′

of Ck′ isomorphic to P1
k′ we have

#(X ′ ∩ C sing

k′ ) + #(X ′ ∩ D′) ≥ 3.

In particular, if we choose an enumeration of D′(k ′) then the pair (Ck′, D′) is a

stable n-pointed genus-g curve, where n = #D′(k ′) and 2g − 2 + n > 0. Let

D ⊆ C sm be the étale divisor that descends D′. We let R′ be the local finite étale

R-algebra with residue field k ′/k.
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The stack Mg, n classifying stable n-pointed genus-g curves for any g, n ≥ 0

such that 2g −2+n > 0 is a proper smooth Deligne–Mumford stack over Spec Z.4

The existence of Mg, n as a smooth Deligne–Mumford stack ensures that (Ck′, D′)
admits a universal formal deformation (Ĉ′, D̂′) over a complete local noetherian

R′-algebra A′ with residue field k ′, and that A′ is a formal power series ring over

R′. Moreover, there is a relatively ample line bundle canonically associated to any

stable n-pointed genus-g curve (X, {σ1, . . . , σn}) → S over a scheme S, namely

the twist

ωX/S
(∑

σi
)

of the relative dualizing sheaf of the curve by the étale divisor defined by the

marked points. Hence, the universal formal deformation uniquely algebraizes to a

pair (C′, D′) over Spec A′.
Since (Ck′, D′) = k ′ ⊗k (C, D), universality provides an action of the Galois

group Ŵ = Gal(k ′/k) on A′ and on (C′, D′) covering the natural Ŵ-action on

(Ck′, D′) and on R′. The action by Ŵ on C′ is compatible with one on the canon-

ically associated ample line bundle ωC′/A′(D′). Since R → R′ is finite étale with

Galois group Ŵ, the Ŵ-action on everything in sight (including the relatively ample

line bundle) defines effective descent data: A= (A′)Ŵ is a complete local noetherian

R-algebra with residue field k such that R′ ⊗R A → A′ is an isomorphism, and

(C′, D′) canonically descends to a deformation (C, D) of (C, D) over A. This

can likewise be shown to be a universal deformation of (C, D) in the category of

complete local noetherian R-algebras with residue field k, but we do not need this

fact.

What matters for our purposes is structural information about A and the proper

flat A-curve C. By the functorial characterization of formal smoothness, A is for-

mally smooth over R since the same holds for A′ over R′, so A is a power series ring

over R in finitely many variables. We claim that the Zariski-open locus of smooth

curves in Mg,n is dense, which is to say that every geometric point has a smooth

deformation. Indeed, since Knudsen’s contraction and stabilization operations do

nothing to smooth curves, this claim immediately reduces to the special cases n =0

with g ≥ 2, g = n = 1, and g = 0, n = 3. The final two cases are obvious and the

first case was proved by Deligne and Mumford [1969, 1.9] via deformation theory.

It follows that the generic fiber of C′ over A′ is a smooth curve, so the same holds

for C over A. In other words, the Zariski-closed locus in C where �1
C/A is not

invertible has its closed image in Spec(A) given by a closed subset Spec(A/I ) for

4 This is a standard fact: it can be found in [Deligne and Mumford 1969, 5.2] if n = 0 (so g ≥ 2),

in [Deligne and Rapoport 1973, IV, 2.2] if g = n = 1, and is trivial if g = 0, n = 3 (in which

case (P1, {0, 1, ∞}) is the only such object, so the stack is Spec Z). The general case follows from

these cases by realizing Mg, n as the universal curve over Mg, n−1 (due to Knudsen’s contraction and

stabilization operations [1983, 2.7]).
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a unique nonzero radical ideal I ⊆ A. Since A is a power series ring over R and I
is a nonzero ideal, we can certainly find a local R-algebra map φ : A → R in which

I has nonzero image. The pullback Xφ of C along φ is a proper flat semistable

curve over R deforming C such that the generic fiber is smooth (as otherwise the

map Spec(R) → Spec(A) would factor through Spec(A/I ), a contradiction).

The only remaining problem is to show that if φ is chosen more carefully then

Xφ is also regular. If C is k-smooth then C is A-smooth, so Xφ is R-smooth (and in

particular regular). Thus, we may assume that C is not k-smooth. The main point is

to use an understanding of the structure of C near each singular point c ∈ C −C sm.

We noted at the outset that each finite extension k(c)/k is separable, and if Rc

is the corresponding local finite étale extension of R then the structure theory of

ordinary double points [Freitag and Kiehl 1988, III, §2] provides an Rc-algebra

isomorphism of henselizations

Oh
C, c ≃ Ac[u, v]h

(mc,u,v)/(uv − ac)

for some nonzero nonunit ac ∈ Ac, where (Ac, mc) is the local finite étale extension

of A with residue field k(c)/k; we have ac 6= 0 since C has smooth generic fiber.

For

B = Z[t, u, v]/(uv − t),

the B-module
∧2(

�1
B/Z[t]

)
is B/(u, v) = B/(t). Thus, by a formal computation

at each c we see that the annihilator ideal of
∧2

(�1
C/A) on C cuts out an A-finite

closed subscheme of the nonsmooth locus in C that is a pullback of a unique closed

subscheme Spec(A/J )⊆Spec(A). We made the initial choice of k ′/k large enough

so that it splits each k(c)/k. Hence, the method of proof of [Deligne and Mumford

1969, 1.5] and the discussion following that result show that for each singularity

c′ in Ck′ , the corresponding element ac′ ∈ A′ may be chosen so that the ac′’s are

part of a system of variables for A′ as a formal power series ring over R′. The

ideal J A′ is the intersection of the ideals (ac′). To summarize, A is a formal

power series ring over R and we can choose the variables for A′ over R′ such that

J A′ is generated by a product of such variables, one for each singularity on Ck′ .

In particular, the local interpretation of each ac′ on C′ shows that for a local R′-
algebra map φ′ : A′ → R′, the pullback X

′
φ′ of C′ along φ′ is regular if and only

if φ′(ac′) ∈ R′ is a uniformizer for each c′. This condition on φ′ is equivalent to

saying that φ′(J A′) ⊆ R′ is a proper nonzero ideal with multiplicity equal to the

number ν of geometric singularities on C .

Since J A′ = J⊗A A′ is a principal nonzero proper ideal, and hence it is invertible

as an A′-module, it follows that J is principal as well, say J = (α) for some nonzero

nonunit α ∈ A. We seek an R-algebra map φ : A → R such that φ(I ) 6= 0 and

φ(α)∈ R is nonzero with order ν, for then φ∗(C) will have smooth generic fiber (by
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our earlier discussion) and will become regular over R′, and so it will be regular

since R′ is finite étale over R. The information we have about α ∈ A is that in

the formal power series ring A′ over R′ we can choose the variables so that α is

a product of ν of the variables. We are now reduced to the following problem

in commutative algebra. Let R → R′ be a local finite étale extension of discrete

valuation rings, A = R[[x1, . . . , xN ]], I ⊆ A a nonzero ideal, and α ∈ A an element

such that in A′ = R′ ⊗R A we can write α = x ′
1 · · · x ′

ν for some 1 ≤ ν ≤ N and

choice of R′-algebra isomorphism A′ ≃ R′[[x ′
1, . . . , x ′

N ]]. Then we claim that there

is an R-algebra map φ : A → R such that ordR(φ(α)) = ν and φ(I ) 6= 0.

If we can choose k ′ = k, such as in the case when C is a Mumford curve, then

such a φ obviously exists. Hence, for the intended application to Corollary B.3,

we are done. To prove the claim in general, consider the expansions

x ′
j = a′

0 j +
N∑

i=1

a′
i j xi + · · ·

where a′
0 j ∈mR′ and (a′

i j )1≤i, j≤N is invertible over R′. Let π ∈mR be a uniformizer.

We seek φ of the form φ(xi ) = tiπ for ti ∈ R. The requirement on the ti ’s is that

(a′
0 j/π) +

∑
a′

i j ti ∈ R′×

for 1 ≤ i ≤ ν and that

h(t1π, . . . , tN π) 6= 0

for some fixed nonzero power series h ∈ I . The unit conditions only depend on

ti mod mR . Thus, once we find ti that satisfy these unit conditions, the remaining

nonvanishing condition on the nonzero power series h is trivial to satisfy by modi-

fying the higher-order parts of the ti ’s appropriately. It remains to consider the unit

conditions, which is a consequence of the lemma below. �

Lemma B.5. Let k ′/k be a finite extension of fields. For 1≤ν ≤ N let {H ′
1, . . . , H ′

ν}
be a collection of independent hyperplanes in k ′N . For any v ′

1, . . . , v
′
ν ∈ k ′N

, the

union of the affine-linear hyperplanes v ′
i + H ′

i in k ′N cannot contain k N .

Proof. The case of infinite k is trivial, but to handle finite k we have to do more

work. Throughout the argument the ground field k may be arbitrary. Assuming

we are in a case with k N ⊆
⋃

(v ′
i + H ′

i ), we seek a contradiction. Observe that

ν ≤ N since the H ′
i are linearly independent hyperplanes in k ′N

. Each overlap

k N ∩(v ′
i + H ′

i ) is either empty or a translate of Vi = k N ∩ H ′
i by some vi ∈ V = k N .

For 1 ≤ d ≤ N , any d-fold intersection

Vi1
∩ · · · ∩ Vid = k N ∩ (H ′

i1
∩ · · · ∩ H ′

id
)
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has k-dimension at most N − d . Indeed, otherwise it contains N − d + 1 linearly

independent vectors in k N , and these may also be viewed as k ′-linearly independent

vectors in the overlap H ′
i1

∩· · ·∩ H ′
id

of d linearly independent hyperplanes in k ′N
.

This contradicts the linear independence of such hyperplanes. It now remains to

prove the following claim that does not involve k ′ and concerns subspace arrange-

ments over k: if V is a vector space of dimension N ≥ 1 over a field k and if

V1, . . . , Vm are linear subspaces with 1 ≤ m ≤ N such that V is a union of the

translates vi + Vi for v1, . . . , vm ∈ V then there is 1 ≤ d ≤ m such that some

d-fold intersection Vi1
∩ · · · ∩ Vid has dimension at least N − d + 1. This claim

was suggested by T. Tao, and the following inductive proof of it was provided by

S. Norine.

The claim is trivial for N = 1, and in general we induct on N so we may assume

N >1. The case m =1 is trivial, so with N >1 fixed we can assume m >1. The case

Vi = V for all i is also trivial, so we may assume Vm is contained in a hyperplane H .

Let v =0 if vm 6∈ H and v ∈ V −H if vm ∈ H , so (vm+Vm)∩(v+H) is empty. Since

the vi +Vi cover V , it follows that v+H is covered by the vi +Vi for 1 ≤ i ≤ m−1,

so H is covered by the (vi − v) + Vi for 1 ≤ i ≤ m − 1 ≤ N − 1. Each overlap

H ∩((vi −v)+Vi ) for such i is either empty or a translate wi +Wi of Wi = Vi ∩ H .

Setting wi = 0 if H ∩ ((vi − v) + Vi ) is empty, we can relabel the Vi ’s such that

H is covered by wi + Wi for 1 ≤ i ≤ m − 1. By induction there is 1 ≤ d ≤ N − 1

so that after relabeling we have dim(W1 ∩ · · · ∩ Wd) ≥ dim(H) − d + 1 = N − d .

Hence, for W = V1 ∩ · · · ∩ Vd we have that dim(H ∩ W ) = N − d . In particular,

dim(W ) ≥ N − d. If dim(W ) ≥ N − d + 1 then {V1, . . . , Vd} works as required

in the claim we are aiming to prove, so we can assume dim(W ) = N − d > 0.

Let W ′ ⊆ V be a complementary subspace to W , and consider W ′
i = W ′ ∩ Vi for

1 ≤ i ≤ d . Obviously dim W ′ = d and

Vi = W ⊕ W ′
i

for such i . If some collection of translates w′
i + W ′

i for 1 ≤ i ≤ d and w′
i ∈

W ′ covers W ′ then by induction there is 1 ≤ d ′ ≤ d such that (after relabeling)

dim(W ′
1 ∩ · · · ∩ W ′

d ′) ≥ d − d ′ + 1, so

dim(V1 ∩ · · · ∩ Vd ′) = dim(W ) + dim(W ′
1 ∩ · · · ∩ W ′

d ′)

= (N − d) + d − d ′ + 1 = N − d ′ + 1,

as required.

Hence, we can now assume that no collection of translates w′
i + W ′

i in W ′ for

1 ≤ i ≤ d can cover W ′. In particular, under the decomposition V = W ⊕ W ′, we

may write vi = (wi , w
′
i ) for 1 ≤ i ≤ N and these w′

i +W ′
i for 1 ≤ i ≤ d do not cover

W ′. Since each of V1, . . . , Vd contains W , it follows that v1 + V1, . . . , vd + Vd do

not cover W ′. Thus, we can choose w′ ∈ W ′ not in any of these d translates, so
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w′ + W is disjoint from all of them (since the projections into W ′ are disjoint as

well). By the initial covering hypothesis we therefore have that w′ + W is covered

by v j + V j for d +1 ≤ j ≤ m, so W is covered by translates of V j ∩ W for such j .

The number of such j’s is m−d ≤ N −d, so since 0 < dim W = N −d < N we can

conclude by induction that there is some 1 ≤ d ′′ ≤ m − d so that (after relabeling)

the intersection

(Vd+1 ∩ W ) ∩ · · · ∩ (Vd+d ′′ ∩ W ) = V1 ∩ · · · ∩ Vd ∩ Vd+1 ∩ · · · ∩ Vd+d ′′

has dimension at least (N − d) − d ′′ + 1 = N − (d + d ′′) + 1. This completes the

induction and so proves the claim. �
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