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SPECIALIZATION OF MACPHERSON’S CHERN CLASSES

GARY KENNEDY

In [4] MacPherson created a theory of Chern classes for singular algebraic
varieties over the field of complex numbers. He defined a natural transformation
between two covariant functors:

(a) constructible functions
(b) an appropriate homology theory; let us say rational equivalence theory [2].

In [3] it is observed that, via results of Sabbah [5], this theory can be extended to
varieties over an arbitrary algebraically closed field of characteristic zero. Ver-
dier [6], using derived categories, has shown that MacPherson’s Chern classes
enjoy a nice specialization property: there are specializations of constructible
functions and of homology classes compatible with the Chern class. In the
present paper it is shown that this specialization property can likewise be
extended to varieties over an arbitrary algebraically closed field of characteristic
zero.

Asin [3] we rely on Sabbah’s conormal space constructions, which show in his
words that “la théorie des classes de Chern se raméne a une théorie de Chow . . .,
qui ne fait intervenir que des classes fondamentales”. Our sole contribution is to
combine Sabbah’s constructions with the specialization apparatus of [2].

I am indebted to Bernard Teissier for his series of lectures on Lagrangian
varieties at the University of North Carolina in 1986, and have borrowed freely
from a preliminary version of a joint paper of Lé and Teissier.

1. Lagrangian varieties; MacPherson’s Chern classes.

Let k be an algebraically closed field of characteristic zero. Consider the
category of divisorial schemes (separated and of finite type) over k, and of proper
morphisms. From this category to the category of abelian groups there are two
covariant functors:

— The functor 4, assigns to each scheme X the group 4, X of cycles modulo
rational equivalence. See [2, Chap. 1] for details.
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— The constructible function functor € assigns to each scheme X the group
&X of constructible functions. The definition of the pushforward homomor-
phisms is given in [3, Sec. 3] and summarized below. In case k = C the definition
is essentially “calculate the topological Euler characteristic of the fiber”.

In [3, Sec. 4] it is shown that there is a natural transformation ¢, from @ to 4,,.
If X is nonsingular then c,: $X — 4,X takes the characteristic function to the
Poincaré dual of the total Chern class of the tangent bundle. Of particular
interest is the case k = C, which was studied by MacPherson [4].

The natural transformation c, is defined by introducing a third functor %,
which we call the Lagrangian functor. To avoid an annoying technicality in the
definition of Z X, let us assume that X is a closed subscheme of a nonsingular
variety M. (We deal with this technicality in the final paragraph). Let m denote
the dimension of M. Let n: T ¥ M — M denote the cotangent bundle of M. The
total space T ¥ M is equipped with a canonical differential form «: if A is a point
of TV M, i.e., alinear form on T,;,M, and vis a tangent vector to T M at 4, then
by definition

a(v) = A(dn(v).

A closed subvariety A of TV M is called conical Lagrangrian (or homogeneous
Lagrangian)ifit is of dimension m, and if « annihilates each tangent vector at each
nonsingular point of A.

Let TV M|y denote the restriction of TV M to X. A conical Lagrangian
subvariety of T Y M|y will be called a conical Lagrangian variety over X. We
define ZX to be the free abelian group on the set of conical Lagrangian varieties
over X. Note that #X is a subgroup of the group of cycles on T ¥ M|; we call an
element of £ X a conical Lagrangian cycle over X.

An example (in fact the only example) of such a subvariety is the conormal space
C(W) of a closed subvariety W < X. The fiber of C(W) over a nonsingular point
x € Weconsists of all forms annihilating the tangent space T, W; C(W) is obtained
by taking the closure in TV M.

LEMMA. Every conical Lagrangian subvariety of T M is the conormal space of
a closed subvariety of M. Hence %X is isomorphic to the free abelian group on the
set of conormal spaces of subvarieties of X.

PROOF. Suppose that A is a conical Lagrangian subvariety. Let W = n(A).
For a generic point A€ A the derivative T;A — T,;, W is surjective. Hence 4 anni-
hilates T, ;) W. Therefore 4 = C(W).

Now suppose that f is a proper morphism from X to Y. We assume that Y'is
a subscheme of a nonsingular variety N, and that X is a subscheme of M x N,
with M nonsingular and f the restriction of the projection p of M x N onto N.
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The total space p* TV N is naturally contained in TY(M x N), and there is
a natural morphism from TV(M x N) to TV N covering p. If A is a conical
Lagrangian cycle over X, we can obtain a conical Lagrangian cycle over Y by
intersecting A and p* TV N, then pushing forward to TY N by the natural
morphism. In this fashion we obtain a homomorphism from ZX to £Y,in [3,
Sec. 2] it is shown that such homomorphisms make % into a covariant functor.

Again suppose that X is embedded in M. The space T M carries a tauto-
logical bundle of rank m — 1 whose fiber over a point x € M is a hyperplane in
T.M; we denote this bundle “taut”. If W is a closed subvariety of X, its Chern-
Mather class is the element of 4, X defined by

éW) = (="~ m¥ =L i x (c(taut) 0 [C(W]),

where k: C(W) — W is the projection. We define a homomorphism from £ X to
A, X by sending C(W) to (— 1)%™¥ &W). It is shown in [3, Sec. 4] that these
definitions are independent of the choice of M, and that the homomorphisms give
a natural transformation from % to A4,,.

The multiplicity of é¢(W) at xe€ X is the constructible function uy given by

pw(x) = (= 1"~ 4m¥ =1 deg(c(taut) N sk~ x, C(W)),

where s denotes the Segre class [2, Chap. 4]. We define a homomorphism from
ZX to X by sending C(W) to (—1)*™¥ . Observe that py(x)=0 if
x ¢ Wand that uy(x) = 1if x is a nonsingular point of W; therefore X — €X is
an isomorphism. Now .Z is a functor; hence by transport of structure we can
define an isomorphic functor €, and automatically will have a natural transform-
ation ¢, from € to A,.. We call ¢, the Chern-MacPherson natural transformation.

2. Specialization.

Suppose that f: X — S is a morphism to a nonsingular curve, and that s is
a nonsingular point of S. Let X denote the fiber over s. We wish to define
a homomorphism from £ X to £ Xj.

We assume that X is a closed subscheme of M x S, where M is nonsingular
and f is the restriction of the projection of M x S onto S. Let us identify M with
the fiber of M x S over s. Then there is a specialization homomorphism from the
cycles on TV (M x S) to those on TV (M x S)|,. (The hypothesis dim S = 1 is
essential here; otherwise one obtains a specialization homomorphism only on the
level of rational equivalence. See [2, p. 76].)

The specialization of an element A of #X is obtained by applying this
specialization homomorphism, pushing the resulting cycle forward via the natu-
ral projectionfrom T (M x S)|,,to TV M, and changing the sign. The cycle thus
obtained is a conical Lagrangian cycle over Xj.

The specialization apparatus of intersection theory shows that specialization is
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compatible with pushforward, i.e., that for a morphism f: X — Y over S we have
a commutative diagram

X — & PX,

ZY

Y,

It likewise shows that specialization in % is compatible with specializationin A4,
via the natural transformation, i.e., that there are commutative diagrams

X — X,

AX —— AX,

(The relevant facts from [2] are summarized in Proposition 10.1(a).)
Specialization of constructible functions is defined by transport of structure
from . Explicitly, if W is a subvariety of X and C(W) specializes to ¥ m, C(V),
then py specializes to Y my, py. In [5] Sabbah shows that in case k = C this
specialization agrees with the specialization defined by Verdier [6].

THEOREM. 1) Specialization of constructible functions is compatible with push-
forward.

2) Specialization of constructible functions is compatible with specialization in
A, via the Chern-MacPherson natural transformation.

ProoF. These statements follow automatically from the corresponding state-
ments for 2.

NoTE. We have assumed throughout that each scheme X is embedded as
a closed subscheme of a nonsingular variety. Such an embedding serves merely to
present the sheaf of differentials on X as the quotient of a locally free sheaf. If X is
divisorial then by [1, Theorem 3.3] every coherent sheaf on X is a quotient of
a locally free sheaf. Using this fact one can systematically extend the theory of
MacPherson’s Chern classes to divisorial schemes.
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