Specialization Tools and Techniques for
Systematic Optimization of System
Software

DYLAN McNAMEE, JONATHAN WALPOLE, CALTON PU, CRISPIN
COWAN, CHARLES KRASIC, ASHVIN GOEL, and PERRY WAGLE

Oregon Graduate Institute of Science & Technology

and

CHARLES CONSEL, GILLES MULLER, and RENAULD MARLET
University of Rennes/IRISA

Specialization has been recognized as a powerful technique for optimizing operating systems.
However, specialization has not been broadly applied beyond the research community because
current techniques, based on manual specialization, are time-consuming and error-prone. The
goal of the work described in this paper is to help operating system tuners perform
specialization more easily. We have built a specialization toolkit that assists the major tasks
of specializing operating systems. We demonstrate sthe effectiveness of the toolkit by applying
it to three diverse operating system components. We show that using tools to assist special-
ization enables significant performance optimizations without error-prone manual modifica-
tions. Our experience with the toolkit suggests new ways of designing systems that combine
high performance and clean structure.

Categories and Subject Descriptors: D.4.7 [Operating Systems]|: Organization and Design
General Terms: Design, Performance

Additional Key Words and Phrases: Operating system specialization, optimization, software
architecture

1. INTRODUCTION

A key dilemma for operating systems designers is to reconcile the appar-
ently conflicting requirements of correct operation across all applications
and high performance for individual applications. The conventional ap-
proach to address this dilemma is to write code that is general-purpose, but

Authors’ addresses: D. McNamee, J. Walpole, C. Pu, C. Cowan, C. Krasic, A. Goel, and P.
Wagle, Department of Computer Science and Engineering, Oregon Graduate Institute of
Science & Technology, 200000 NW Walker Road, Beaverton, OR 97006; C. Consel, G. Muller,
and R. Marlet, University of Rennes/IRISA.

Permission to make digital/hard copy of part or all of this work for personal or classroom use
is granted without fee provided that the copies are not made or distributed for profit or
commercial advantage, the copyright notice, the title of the publication, and its date appear,
and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior specific permission
and/or a fee.

© 2001 ACM 0734-2071/01/0500-0217 $5.00

ACM Transactions on Computer Systems, Vol. 19, No. 2, May 2001, Pages 217-251.

218 . D. McNamee et al.

optimized for a few anticipated common cases. However, the result is an
implementation with performance characteristics that are fixed throughout
the lifetime of the operating system. Problems arise when common cases
vary from installation to installation and grow worse when they vary
dynamically.

Much of the operating systems research in the past decade has investi-
gated alternative approaches to addressing these diverse requirements. A
promising approach is to incorporate customizability into system structure
[Bershad et al. 1995; Engler et al. 1995; Massalin and Pu 1989; Rashid et
al. 1989; Small and Seltzer 1994]. A customizable operating system can be
tuned for the currently observed common conditions. In most implementa-
tions of this approach, the ability to be customized is designed into the
operating system, but the actual customized code is written by experts and
manually injected into the system. We call such techniques explicit cus-
tomization. In addition to enabling optimizations for specific common cases,
explicit customization can be used to extend the functionality provided by
the system. The drawbacks of explicit customization are (1) that significant
burden is placed on system tuners, and (2) optimization opportunities are
reduced because customizable systems explicitly limit access to global
system state. Some optimizations require access across module boundaries,
which is often prohibited to provide safety. Furthermore, the advantages of
the approach are not provided to legacy applications or to applications that
are unwilling or unable to take on the responsibility for tuning the
operating system to their needs.

An alternate approach, inferred customization, is based on automatically
deriving optizations instead of writing them by hand. We advocate an
approach to inferred customization based on specialization. Specialization
improves the performance of generic operating system code by creating
optimized code for common cases. Specialization in this context consists of
restricting® code for improved performance, rather than extending it, as is
often the case with explicit customization.

Because specialized components are restrictions derived from the original
system, the following benefits are possible: the burden on the system tuner
is reduced, and specialized components can take advantage of any state in
the system. Furthermore, the benefits of a specialized system are transpar-
ently provided to legacy as well as new applications. However, our experi-
ences with applying specialization manually [Pu et al. 1995] have raised a
number of drawbacks which have limited its adoption as a system-building
technique. These drawbacks include that performing specialization cor-
rectly involves complex analysis of the system; hence, generating special-
ized code can be tedious and error-prone, and can result in systems which
are more complex and harder to debug and maintain than the original. This
paper introduces a toolkit we have developed that addresses these draw-
backs by reducing the amount of manual work required to specialize
operating systems.

1Using the term specialization to mean restriction has the opposite meaning when it is applied
to class inheritance in object-oriented programming.
ACM Transactions on Computer Systems, Vol. 19, No. 2, May 2001.

Systematic Optimization of System Software . 219

This paper is organized as follows. Section 2 describes the fundamentals
of specialization: specialization predicates, partial evaluation, and guards.
Section 3 describes the specialization toolkit. Section 4 presents our expe-
riences with using the toolkit to specialize three areas of system code:
signal delivery in Linux, the Berkeley packet filter interpreter, and Sun
RPC. We describe the process of specializing each system component, and
discuss the associated performance improvements. Section 5 discusses the
strengths and weaknesses of the current toolkit based on our experiences.
Section 6 presents work related to the various components of the special-
ization toolkit. Finally, Section 7 describes ongoing work on the specializa-
tion toolkit and summarizes our experiences.

2. AN OVERVIEW OF SPECIALIZATION

Specializing a system starts with a set of specialization predicates, which
are states of the system that are known in advance. For example, the fact
that two different variables, x and y, have the same value could be a
specialization predicate. Partial evaluation takes a generic source program
P,.,, plus a set of specialization predicates that apply to it. Based on the
specialization predicates the partial evaluator divides P,,,, into static and
dynamic parts. The static part is evaluated at specialization-time, and the
results are lifted to the output program. The remaining dynamic parts are
combined with the lifted static output to form the specialized program,
P, in a procedure called residualization [Consel and Danvy 1993;
Consel and Noé&l 1996; Sestoft and Zamulin 1988; Berners-Lee et al. 1996,
no. 474]. The output of partial evaluation is an optimized system that relies
only on dynamic inputs. We have identified three kinds of specialization,
based on when specialization predicates become available.

—Static specialization: When specialization predicates are known at
compile-time, partial evaluation can be applied before the system begins
execution. Section 4.1 describes our experience with applying static
specialization to Sun RPC. The benefit of static specialization is that the
costs of specialization are not incurred at run-time. The drawback is that
it cannot take advantage of specialization predicates whose values are
not established at compile-time.

—Dynamic specialization: Deferring specialization until run-time allows
the use of specialization predicates whose values are not established
until some point during system execution, but which once established
hold for the remainder of the execution. Section 4.2 describes our
experience with applying both static and dynamic specialization to the
BSD packet filter interpreter [McCanne and Jacobson 1993].

—Optimistic specialization: Optimistic specialization extends the previ-
ous techniques to optimize the system for specialization predicates that
only hold for bounded time intervals.? This kind of specialized code

2We have called these predicates quasi-invariants in previous papers.

ACM Transactions on Computer Systems, Vol. 19, No. 2, May 2001.

220 . D. McNamee et al.

optimistically assumes that the specialization predicates hold, and thus
the rest of the system must ensure they do. Section 4.3 describes our
experience with applying optimistic specialization to signal delivery in
Linux. Optimistic specialization can take advantage of either statically or
dynamically specialized code.

The main design issues related to specialization are correctness and
performance. Specialization is a correctness-preserving transformation
only if the specialization predicates hold while executing the specialized
code that relies on them. For static specialization, specialization predicates
cannot be violated once established. Dynamic and optimistic specialization
predicates may not hold until some point during execution, so the special-
ized code needs to be enabled only when the specialization predicates are
known to hold. Furthermore, optimistic specialization predicates may be
violated as the system executes. Any time a specialization predicate is
violated, executing the specialized code would result in erroneous behavior.
Therefore any system event that can modify a specialization predicate term
should disable the specialized code that relies on it. We use guards to
enable and disable specialized code when specialization predicate terms are
modified.

The time required to generate and insert the specialized code counts
against the performance benefits of executing it. Thus, specialization is a
net performance benefit only if the performance improvements of executing
the specialized code outweigh its costs. This may require multiple execu-
tions of the same specialized code. For these reasons, specialization is most
often applied to code segments that are executed a large number of times
for the same specialization predicate (e.g., reads of a large file or long
network stream).

The performance trade-offs of optimistic specialization are slightly more
complicated. Efficient optimistic specialization is a matter of moving inter-
pretation to the right place, since it requires additional checks to ensure
that specialized code can be executed only when its specialization predi-
cates hold. Thus the cost of executing those checks also counts against the
benefits of specialization. Minimizing this additional cost often means
moving the checks away from the location of the specialized code to the
locations where its specialization predicates are modified. The reasoning
behind this approach is that effective specialization usually requires the
specialized code to be frequently executed, and hence its location is a poor
choice for guard placement.

3. A TOOLKIT FOR SPECIALIZING OPERATING SYSTEMS

We have developed a toolkit and methodology for specializing operating
systems. A system tuner takes the following steps to specialize a system
using our toolkit:

(1) Identify specialization predicates: There are three substeps to iden-
tifying specialization predicates in an operating system. The first is to

ACM Transactions on Computer Systems, Vol. 19, No. 2, May 2001.

Systematic Optimization of System Software . 221

use the kernel developer’s knowledge of the system’s structure and
environment to postulate that some predicate in the system is useful for
specialization. The second is to locate code that can be optimized when
the postulated specialization predicate holds. The third is to estimate
the net performance improvement of taking advantage of the specializa-
tion predicate by comparing the specialization overheads to its benefits.

(2) Generate specialized code: Given a set of specialization predicates,
specialized code can be generated for the system components that
reference them. While this has been done by hand for small, isolated
routines, it can be automated and scaled to larger system components
using partial evaluation. In some cases, we have found it necessary to
slightly restructure the code in order to enable partial evaluation.

(8) Check when specialization predicates hold: Dynamic and optimis-

tic specialization are based on specialization predicates that do not
necessarily hold when the system starts executing. Therefore, these
systems need to detect when the specialization predicates are estab-
lished and when they are violated.
The specialization predicates used by static and dynamic specialization
are never violated once established. However, optimistically specialized
code depends on specialization predicates not changing, and will be
incorrect if any of them do change. To preserve correctness, the system
tuner must locate all the places in the system that can cause specializa-
tion predicates to change, and guard them with code that will respecial-
ize the affected components to reflect the new state of the specialization
predicates. A guarded write to a specialization predicate term first
triggers respecialization if a specialization predicate will be modified,
then performs the modification.

(4) Replace specialized code: When specialized code is enabled (e.g.,
when a dynamic specialization predicate is established), or must be
disabled (e.g., when an optimistic specialization predicate is changed),
the system must replace one version of the code with another. We call
this operation replugging. Since many operating systems are concur-
rent programs, the current version of the code may be in use when
replugging occurs. Therefore, some form of synchronization between
invoking specialized code and the replugger is required. Ideally, the
overhead of this synchronization should be incurred during replugging
and not while invoking the specialized code, since the former executes
less often than the latter. Therefore an asymmetric synchronization
mechanism for replugging is appropriate.

The specialization toolkit helps system tuners with steps two, three, and
four. For step one, we have found no tool that can substitute for the kernel
developer’s intuition for locating feasible specialization predicates. How-
ever, system-profiling tools [Anderson and Berc 1997; McVoy and Staelin
1996; Silicon Graphics 1999; Tamches and Miller 1999; Yaghmour 1999]

ACM Transactions on Computer Systems, Vol. 19, No. 2, May 2001.

222 . D. McNamee et al.

could be used to estimate, via dynamic execution counts, the benefits of
repeated execution of the specialized code versus the overheads of perform-
ing the specialization. Our toolkit does not currently contain such a
profiler; hence, they are not discussed further in this paper. For step two,
the Tempo partial evaluator is our tool for generating specialized code. The
TypeGuard and MemGuard tools are used in step three to help system
tuners locate code which may modify specialization predicates and enable
or disable specialized code appropriately. Finally, the Replugger is our tool
for safely replacing specialized code in the face of concurrent execution in
step four. The rest of this section describes these tools in detail.

3.1 Tempo: Specialized Code Generator

Tempo is a partial evaluator for C programs [Consel and Danvy 1993; Jones
et al. 1993]. The main challenge for partial evaluation is to separate, given
a set of specialization predicates, the static parts of the program from the
dynamic parts. The analysis phase that performs this separation is called
binding-time analysis.

A significant challenge for binding-time analysis is to deal with C
language features such as pointers, structures, and functions with side-
effects. Pointers and aliases are problematic because they make it difficult
to prove that the dynamic parts of the program do not affect the static
parts. Structures and arrays are problematic because their values do not
have a textual representation, and therefore the partial evaluator has no
way of lifting them into the residualized program even if they are static.
Finally, functions that modify global (e.g., heap-allocated) state have side-
effects on any other functions that access that state. The presence of such
side-effecting functions can cause binding-time analysis to declare all
functions that access the global state to be dynamic. Each of these limita-
tions reduces the accuracy of binding-time analysis, leaving more of the
program as dynamic, and not specializable. More significantly, since dyna-
mism propagates transitively, conservative analyzers applied to such code
often declare entire programs to be dynamic, even in the presence of
specialization predicates.

Unfortunately, operating systems code makes heavy use of pointers,
arrays, structures, and side-effecting functions. Tempo was designed to
cope with the aspects of C usage that are common in operating systems.
Another challenge is that the long-lived execution of operating systems
means that predicates that may be useful for specialization for some
periods of time may be dynamic in others. Conventional approaches to
binding-time analysis do not capture, or ignore, this situation. Our use of
Tempo, particularly in the context of optimistic specialization, was specifi-
cally designed to address the long-lived nature of operating system code.

Tempo’s binding-time analysis is more accurately able to determine
which parts of a program are static than previous binding-time analyses.
This feature is important because it dramatically increases the potential
for specializing the system. Tempo has features that address the problems

ACM Transactions on Computer Systems, Vol. 19, No. 2, May 2001.

Systematic Optimization of System Software . 223

of conventional binding-time analyses when applied to operating system
code written in C [Muller et al. 2000]:

—Use sensitivity: enables an accurate treatment of nonliftable values, i.e.,
values which do not have textual representation such as pointers, struc-
tures, and arrays [Hornof et al. 1997]. Tempo’s approach to treating
nonliftable values computes a distinct binding time for each variable’s
use, depending on its context.

—Flow sensitivity: enables a single variable to be static following a static
definition and dynamic otherwise. Tempo associates a unique binding
time each assignment of a variable and dependent reads of that variable
[Hornof and Noyé 1997]. In contrast, flow-insensitive binding-time anal-
yses conservatively consider variables that are assigned to both static
and dynamic values to be dynamic.

—Context sensitivity: Interprocedural binding-time analysis is crucial for
operating systems code. More specialization opportunities can be ex-
ploited when the analysis computes a description for each calling context
(e.g., different binding-times associated to the same argument). A conser-
vative binding-time analysis considers a given function argument to be
dynamic if there exists a call to this function where this argument is
dynamic. In contrast, Tempo’s context-sensitive analysis assigns a spe-
cific binding-time description for each binding-time call context [Hornof
and Noyé 1997].

—Return sensitivity: Many functions in operating systems have dynamic
side-effects (e.g., to modify global state). Such side-effecting functions
cannot be statically evaluated. However, in some cases the return value
of a side-effecting function can be determined to be static (e.g., a
successful return status). Previous binding-time analyses make such a
function dynamic. Tempo’s return-sensitive binding-time analysis en-
ables the return value of a function to be static even when its body needs
to be residualized. Return sensitivity enables more code in the calling
function to be determined static, thus enabling more specialization to
occur.

Tempo can perform both compile-time and run-time specialization. To
optimize the performance of run-time specialization, Tempo generates, at
compile-time, a dedicated run-time specializer and object-code templates
with holes for the values of the static computations. At run-time, the
specializer performs the static computations, selects the templates repre-
senting the dynamic computations, and fills in their holes with the static
values.

3.2 Enabling and Disabling Specialized Code

By definition, specialized code can only be correct when its specialization
predicates hold. Thus the system tuner needs to ensure that specialized
code is kept consistent with the state of specialization predicates. For static

ACM Transactions on Computer Systems, Vol. 19, No. 2, May 2001.

224 . D. McNamee et al.

specialization, this step is trivial because the specialization predicates are
invariant. For dynamic and optimistic specialization, however, the system
tuner needs to ensure that specialized code is not enabled before the
specialization predicates are established. Further, with optimistic special-
ization, the specialization predicate can be violated after being established,
so the specialized code must be disabled (or the system respecialized) when
a specialization predicate term is modified.

Dynamic and optimistic specialization predicates are established by
binding phases in systems. Binding phases can be explicit or implicit.
Examples of explicit bindings are a client establishing an RPC connection
to a server and a process opening a file for reading. Examples of implicit
bindings are inferring a relationship between two processes based on
observing repeated signals sent between them and inferring sequential file
access by observing repeated read calls without intervening seeks. System
tuners need to locate the code that creates and destroys bindings related to
specialization predicates. The observation that enables automatic location
of binding and unbinding events is that both kinds of events modify
specialization predicate terms.

We have designed two tools to help system tuners locate the code that
establishes or destroys specialization predicates. The first tool, TypeGuard,
operates on the program source code and uses type information to locate
sites that should be guarded. The second, MemGuard, uses memory protec-
tion mechanisms to identify modifications to specialization predicate terms.
The two tools are discussed in detail in the following subsections.

3.2.1 TypeGuard. There are two obvious methods of ensuring that a
specialization predicate holds. One is to test it every time it is used (read).
The other is to test it every time it is modified (written). For specialization
to be efficient, the specialization predicate terms must be used more
frequently than they are modified. Based on this observation, our approach
to solving the guarding problem is to place guards at the site of modifica-
tions to specialization predicate terms.

Accurately locating modifications to specialization predicate terms is
nontrivial. Consider a simple example in which a specialization predicate
term is a global variable. A naive solution might be to simply search
through the source code for occurrences of the variable’s name using a tool
such as grep . There are two problems with this approach, however. The
first is that it may report too many sites to guard because different
variables with the same name may be locally defined within functions. The
second is that it may not report all of the sites that need guarding, due to
aliases. For example, the specialization predicate term may be passed by
reference to a function that modifies it via a different variable name.

To further complicate matters, many useful operating system specializa-
tion predicate terms are not simple scalar global variables, but are fields of
dynamically allocated structures. This characteristic not only highlights
the problem of dealing with aliases, but also introduces the need to
distinguish among instances of the same structure type. To illustrate these

ACM Transactions on Computer Systems, Vol. 19, No. 2, May 2001.

Systematic Optimization of System Software . 225

issues, consider the following example from the Linux kernel’s signal
delivery code which checks whether the signalling process is owned by the
same user as the process to be signaled. The specialization predicate

current- >uid == p- >uid

refers to the uid field of two specific instances of type task_struct . These
two pointers could be aliases for the same structure, or two different
structures. Furthermore, elsewhere in the code, different aliases could be
used to refer to these instances. The only textual representation common
among aliases to these instances is the name of the type they point to,
task_struct

To address these challenges, we use a two-phase approach for detecting
modifications to specialization predicate terms. The first phase performs a
static analysis to identify the structure types whose fields are specializa-
tion predicate terms. These types are then extended to include an addi-
tional specialization predicate ID (SPID) field. The first phase also identi-
fies all statements that update a guarded field and inserts the guarding
code that performs the second phase. The second phase involves dynami-
cally setting the SPID field when specialized code is enabled, clearing it
when specialized code is disabled, and checking it when a specialization
predicate term is modified.

This type-based approach detects modifications made to structure fields
that are specialization predicate terms as long as the modification is made
via the containing structure. The C language allows the creation of aliases
that point directly to guarded fields, which creates capabilities for special-
ization predicates to be modified without going through their containing
structures. To prevent these capabilities from allowing unguarded writes to
specialization predicate terms, we extend the first phase to flag the
operations that create them, which include

—type-casted assignment from or to the guarded type,
—attempting to guard a field that is part of a union, and

—taking the address of a field that is guarded.

When a statement causes a warning, the system tuner must either
remove the offending statement by restructuring the code, or examine
subsequent uses of the flagged value to manually assure that either the
capability does not modify the specialization predicate, or that those
modifications are guarded.

As an example of guarding, the assignment current- >uid = bar would
be written as

if (current.SPID! = NULL)
current.SPID- >update_uid(bar);
else
current- >uid = bar;

ACM Transactions on Computer Systems, Vol. 19, No. 2, May 2001.

226 . D. McNamee et al.

For specialization predicate terms, the update_uid function invokes the
replugging procedure and writes the current- >uid field , which we
describe in Section 3.3.

This guarding code identifies structure instances that are not specializa-
tion predicates with one additional memory reference and comparison
against NULL If the structure does contain specialization predicate terms,
it invokes the code necessary to evaluate the continued validity of the
specialization predicate. The guard code is not currently inserted automat-
ically, but it is sufficiently simple that it can be packaged inside a simple
macro that can be inserted by hand. However, it could easily be automated.
Our implementation of TypeGuard is based on the SUIF compiler toolkit
[Amarasinghe et al. 1995].

3.2.2 MemGuard: Testing Guard Coverage. In the absence of a type-
safe language, any type-based guarding tool cannot guarantee complete
coverage. Our approach to this problem in TypeGuard is to issue warnings
about alias-producing operations. These must currently be validated by
hand. It would be useful to automate the verification required when
TypeGuard issues warnings. In addition, there are opportunities for modi-
fying specialization predicate terms that occur in operating systems inde-
pendent of the language’s type safety, such as passing pointers to device
drivers or assembly routines. We have built a tool that can guarantee
complete guard coverage. This tool, MemGuard, uses memory protection
hardware to write-protect pages that contain specialization predicate
terms. The write-fault handler checks if the address being written is a
specialization predicate term, and if so, performs a guarded write which
triggers replugging when needed. By using hardware memory protection,
MemGuard is guaranteed to capture all writes to specialization predicate
terms.

The main drawbacks of this approach are that memory protection hard-
ware has coarse-granularity and high overheads. The granularity of protec-
tion is virtual memory pages, so modifications to any data that share a
page with a specialization predicate term will result in false hits. The cost
of false hits is high because the performance of a memory write to any
location on a guarded page is reduced by a factor of about 1,000 [Cowan et
al. 1997].

Even though these high overheads make it inappropriate for production
use, MemGuard can be used as an effective tool for debugging software
guard placement. Performance of executing guarded writes is greatly
improved by extending the software guard code to disable the hardware
memory protection as it modifies the specialization predicate term. In this
case, the only memory protection traps caught by MemGuard would be
caused by either false hits or code which should have a software guard.
False hits could be eliminated, at the cost of memory consumption, by
laying out guarded structures on two adjacent pages, with the guarded
fields on one page, and the unguarded fields on another. Running a system
with MemGuard through a set of kernel test suites would be an effective

ACM Transactions on Computer Systems, Vol. 19, No. 2, May 2001.

Systematic Optimization of System Software . 227

way of automatically ensuring software guards are placed everywhere a
specialization predicate can be modified.

3.3 Replugger: Dynamic Function Replacement

When a dynamic specialization predicate is established or an optimistic
specialization predicate is violated, the system must replace the current
code with code that is consistent with the new state of the specialization
predicate. This replacement operation is called replugging. In our ap-
proach, replugging is performed at the granularity of C functions, and
refunctions are invoked via indirect function pointers.

Maintaining correctness during replugging is nontrivial because the
current version of the function may be in-use when the replugging opera-
tion occurs. An obvious way to preserve correctness in the face of concur-
rent replugging is to use locks to synchronize function invocation and
replugging. However, this approach may add unacceptable performance
overheads to the invocation of specialized functions. For this reason, we
desire an asymmetric synchronization mechanism in which the overhead of
invocation is as low as possible, at the potential expense of additional
overhead for replugging, since specialized code is usually invoked more
often than it is replaced.

Two factors affect the design of a correct replugging mechanism:

(1) Whether concurrent invocation of the same repluggable function is
possible.

(2) Whether there can be concurrency between replugging and invocation.

The first factor, concurrent invocation, is affected by the scope of replug-
gable functions. A designer can avoid concurrent invocation by associating
repluggable functions with threads. Doing this makes replugging simpler
because there can be only one invoking thread at a time, and enables
specialization predicates associated with thread state. Sharing repluggable
functions among multiple threads may save code space, but it also makes
replugging more complex. One reason for this additional complexity is that
concurrent invoking threads should not execute different versions of the
same function.

The second factor, concurrency between replugging and invocation, can
occur on either uniprocessors or multiprocessors. On a uniprocessor, it can
happen if an invoking thread can block inside a repluggable function, thus
allowing a replugger to execute. On a multiprocessor, replugging threads
can run concurrently with invoking threads. Another way that replugging
and invocation can be concurrent is for an interrupt-level event to invali-
date a specialization predicate. Since the replugging operation must wait
for any pending invocation to complete, handling interrupt-level repluggers
correctly is complex, and we have avoided this possibility by not using
specialization predicates that are modified at interrupt-level.

In the case without concurrency among either invocation or replugging,
no special mechanism is required—it is correct for the replugger to simply

ACM Transactions on Computer Systems, Vol. 19, No. 2, May 2001.

228 . D. McNamee et al.

Table I. Overhead for Synchronizing Invocation and Replugging (cycles)

Reader-Writer

Spinlocks Counting Replugger Boolean Replugger
Invocation overhead 48 60 4
Replugging overhead 50 340 340

update the function pointer. For the cases with concurrency, the replugger
must not install a new function until all threads executing in the previous
one have exited. In order to detect whether threads are executing a
repluggable function, a counter is incremented on invocation and decre-
mented on return. Once replugging has begun, new threads must not be
able to invoke any version of the function being replugged. To achieve this
goal, the replugger replaces the previous version of the function by a stub
function, called holding_tank . The replugging thread blocks if any
threads are actively invoking the previous version of the function. When a
thread enters holding_tank it blocks on a condition variable until replug-
ging has completed. As the last thread exits the previous version of the
function, it decrements the count to zero and signals the replugging thread.
Replugging completes when the replugging thread wakes up, replaces the
holding_tank function pointer with the new function, and signals the
threads in the holding_tank to start executing the replugged function.

This version of the replugger, which accommodates both concurrent
replugging and invocation, is called the counting replugger. In the case
without concurrent invocation (e.g., specialized code is bound to threads),
we have simplified the counting replugger’s counter to a boolean flag. Using
a flag significantly reduces the overhead of invocation by replacing bus-
locked arithmetic on the counter with atomic memory reads and writes.

Table I compares the performance of our counting and boolean repluggers
to a standard reader-writer spinlock on a two-processor 450MHz Pentium
IT running Linux 2.2.14. The measured times, in cycles, demonstrate the
desired asymmetric performance characteristics, particularly of the boolean
version of the replugger, in which only four cycles are added to the
invocation path. The four cycles consist of setting the flag, clearing the flag,
and a branch not taken to wake up a waiting replugger.

Further details about the operation and implementation of an HP/UX
version of the replugger are described in Cowan et al. [1996], and the code
for the Linux version of the replugger is available at www.cse.ogi.edu/
sysl/projects/synthetix

4. EXPERIMENTS

In order to evaluate the effectiveness of our specialization toolkit, we
applied it to a wide range of operating system components. This section
describes our experiences with using the tools to specialize three disparate
system components: marshaling in Sun RPC [Sun Microsystems 1988b],
interpreting Berkeley Packet Filter (BPF) programs [McCanne and Jacob-
son 1993], and the Linux signal delivery mechanism.

ACM Transactions on Computer Systems, Vol. 19, No. 2, May 2001.

Systematic Optimization of System Software . 229

4.1 Specializing Remote Procedure Calls

Remote procedure call (RPC) is the basis for NFS [Sun Microsystems
1988a], NIS [Ramsey 1994; Sun Microsystems 1999], and other Internet
services. At the heart of Sun RPC is the eXternal Data Representation
(XDR) standard which is a machine-independent format for passing RPC
parameters. The process of translating into and out of XDR is called
marshaling. Marshaling is a key source of overhead in RPC. Marshaling is
performed by stubs, which are generated automatically from an Interface
Definition Language (IDL) specification. The rpcgen program takes as
input the IDL specification, and produces stubs and header files which are
compiled and linked into programs that use RPC. When a client makes an
RPC call, the stub for that call marshals the data into a message buffer and
sends the message to the server. The server-side stub demarshals the data
and invokes the server routine called by the client. The results of invoking
the routine are marshaled and sent back to the client. The client stub
completes the process by demarshaling the results and returning from the
remote call.

The RPC stubs are composed of a set of microlayers, each devoted to a
small task. For example, there are layers to read and write data during
marshaling and to manage the exchange of XDR-encoded messages through
the network. This section reports our experience applying Tempo to the
marshaling stubs, the output of which was compiled and linked into the
RPC client and server [Muller et al. 1997; 1998]. The specialization
predicates we used in this experiment are available when the stubs are
generated, and are never violated. Thus, this is an example of static
specialization.

4.1.1 Specialization Opportunities in Sun RPC. Sun RPC’s marshaling
code uses data structures to hold state associated with the binding between
an RPC client and server. Some fields of those structures have values that
are known at stub generation time, and the computations that depend only
on these values can be performed statically. The resulting specialized
marshaling code consists of only the computations that depend on the
dynamic values. In contrast, the generic marshaling code repeatedly inter-
prets and propagates the values of both static and dynamic fields through
the layers.

The following sections illustrate some specific specializations in Sun
RPC’s marshaling stubs using code excerpts that are annotated to show the
static and dynamic computations derived by Tempo’s binding-time analy-
sis. In the following figures, dynamic computations are printed in bold;
static computations are printed in roman.

Eliminating encoding/decoding dispatch. Sun RPC’s dispatch of encod-
ing and decoding uses a form of interpretation that is amenable to special-
ization. The generic function xdr_long (see Figure 1) is capable of both
encoding and decoding long integers. It selects the appropriate operation to
perform based on the field x_op of its argument xdrs . For encoding, x_op

ACM Transactions on Computer Systems, Vol. 19, No. 2, May 2001.

230 . D. McNamee et al.

bool_t xdr_long(xdrs,Ip) /I Encode or decode a long integer
XDR *xdrs; /I XDR operation handle
long *Ip; /I pointer to data to be read or written

if (xdrs->x_op == XDR_ENCODE) // If in encoding mode

return XDR_PUTLONG(xdrs,Ip); /I Write a long int into buffer
if (xdrs->x_op == XDR_DECODE) // If in decoding mode

return XDR_GETLONG(xdrs,Ip); /I Read a long int from buffer
if (xdrs->x_op == XDR_FREE) // If in “free memory” mode

return TRUE; /I Nothing to be done for long int
return FALSE; /I Return failure if nothing matched

Fig. 1. Reading or writing a long integer: xdr_long()

== XDR_ENCODEFor decoding, x_ op == XDR_DECODEThese are the
specialization predicates.

Specialization reduces the function xdr_long to three different func-
tions®>—one per static value of x_op —each of which consists of a single
return statement which is inlined, removing the function call altogether.

Eliminating buffer overflow checking. Another form of interpretation
appears when buffers are checked for overflow. This situation applies to the
function xdrmem_putlong , shown in Figure 2. As parameter marshaling
proceeds, the remaining space in the buffer is maintained in the field
x_handy . The marshaling code initializes x_handy to the initial buffer size,
which is a constant determined by the stub generator. Each call to
xdrmem_putlong decrements x_handy by sizeof(long) and tests it for
negative value (corresponding to buffer overflow). Tempo is able to stati-
cally determine whether x_handy ’s value ever falls below zero because the
initial value (BUFSIZE) and the decrement value (sizeof(long)) are
both specialization predicates, and because it can statically count the total
number of calls. Thus, the specialized function consists of either the buffer
copy or a statically generated exception if an overflow is discovered at
specialization time.

Propagating exit status. The third example extends the optimizations
enabled by the specialization predicates used in the previous examples. The
return value of the procedure xdr_pair , shown in Figure 3, depends on the
return value of xdr_int , which in turn depends on the return value of
xdr_putlong . After specialization, both xdr_int and xdr_putlong have
static return values.* Thus the return value of xdr_pair is known at
specialization-time. Tempo propagates this known return value to the
caller of xdr_pair (i.e., cIntudp_call , not shown here), so xdr_pair no
longer needs to return a value, and its return type becomes void. The
specialized function, with the specialized calls to xdr_int and xdr_put-
long independently, is shown in Figure 4. Tempo has determined that the

3There is an additional value of x_op and associated function for “free memory” mode.
“Note, that despite its static return value, the function xdr_pair has side-effects, and thus is
not static.

ACM Transactions on Computer Systems, Vol. 19, No. 2, May 2001.

Systematic Optimization of System Software

bool_t xdrmem_putlong(xdrs,Ip)
XDR *xdrs;
long *Ip;

if((xdrs->x_handy -= sizeof(long)) < 0)
return FALSE;

*(xdrs->x_private) = htonl(*Ip);

xdrs->x_private += sizeof(long);

return TRUE;

/I Copy long int into output buffer
/I XDR operation handle
/I pointer to data to be written

/I Decrement space left in buffer

/I Return failure on overflow

/I Copy to buffer

/I Point to next copy location in buffer
/I Return success

Fig. 2. Writing a long integer: xdrmem_putlong()

bool_t xdr_pair(xdrs, objp)
if (Ixdr_int(xdrs, &objp->intl)
return (FALSE);
if (Ixdr_int(xdrs, &objp->int2)
return (FALSE);
return (TRUE);

{ /I Encode arguments of rmin
) Il Encode first argument
/I Possibly propagate failure
) I/ Encode second argument
/I Possibly propagate failure
/I Return success status

231

}
Fig. 3. Encoding function xdr_pair()

/I Encode arguments of rmin
/I Overflow checking eliminated
/I Inlined specialized call
/I for writing the first argument
/' Inlined specialized call
/1 for writing the second argument
/I Return code eliminated

void xdr_pair(xdrs,objp) {

*(xdrs->x_private) = objp->int1;
xdrs->x_private += 4u;
*(xdrs->x_private) = objp->int2;
xdrs->x_private += 4u;

Fig. 4. Specialized encoding function xdr_pair()

Xdr_vector(XDR *xdrs, char *basep, u_int nelem, u_int elemsize) {
register u_int i;
register char *elptr;

elptr = basep;
for (i =0; i < nelem; i++) {
if (! Xdr_int(xdrs, (int *) elptr)) {
return(FALSE);
}

elptr += elemsize;

}
return(TRUE);

Fig. 5. Marshaling an array: xdr_pair()

return value is always TRUEindependently of the dynamic objp argument.
Propagating this return value to the body of the caller eliminated another
comparison, not shown here.

Marshaling loop unrolling. When an RPC argument is an array, the
marshaling code iterates over the array, marshaling each element in turn.
Often, the length of a marshaled array is known in advance, and can be
used as a specialization predicate term. Figure 5 shows the code for
marshaling an array. In this code, the number of elements, nelems , and

ACM Transactions on Computer Systems, Vol. 19, No. 2, May 2001.

232 . D. McNamee et al.

4 -

h Unspecialized

1 —e— PClLinux

1 —=— IPX/Sunos
Specialized

—e— PC/Linux

—=a— IPX/Sunos

N w
A |

Client Marshalling Time in ms
~

T T T |
20100 250 500 1000 2000
Array Size (4-Byte Integers)

Fig. 6. Client marshaling overhead comparison. The gray lines are unspecialized client
marshaling overheads; the dark lines are the corresponding specialized overheads.

the size of each element, elemsize , are both specialization predicate terms.
This enables Tempo to automatically unroll the for loop in Xdr vector ,
which eliminates nelem additions, comparisons, and branches.

4.1.2 Performance Results. We analyze the performance improvements
of specialization by evaluating its impact on marshaling overhead alone, as
well as the overall round-trip RPC times. Two experimental platforms were
used to gather measurements. The first consisted of two Sun IPX 4/50
workstations with 64KB of cache running SunOS 4.1.4, with a 100Mbit/sec
ATM network connection. The second consisted of two 166MHz Pentium
PCs with 512KB of unified L2 cache running Linux, with a 100Mbit/sec
ethernet connection.

Marshaling overhead improvements. Figure 6 illustrates the impact of
specialization on marshaling latency. For most message sizes, specializa-
tion reduces latency by more than a factor of two. On the PC, this speedup
increases linearly with the amount of data marshaled. This behavior is
expected because the number of instructions eliminated by specialization is
linear with the message size. However, we found that on the Sun IPX the
speedup decreases as the amount of marshaled data increases. The reason
for this unexpected behavior is that on this platform execution time is
dominated by memory accesses, not instruction execution. As the data to be
marshaled grow, a larger portion of the marshaling time is spent copying
the data into the output buffer. While specialization decreases the number
of instructions used to marshal data, the number of memory accesses
remains constant. Therefore the savings due to specialization become less
significant as the message size grows.

ACM Transactions on Computer Systems, Vol. 19, No. 2, May 2001.

Systematic Optimization of System Software . 233

o5 Unspecialized

—=e&— PC/Linux - Ethernet 100Mbits
—m— |PX/Sunos - ATM 100Mbits

Specialized
—e— PC/Linux - Ethernet 100Mbit:
—a— |PX/Sunos - ATM 100Mbit

= B N
o 3] o
| I R

RPC Round Trip Time in ms

(&2}
P R

0 TT T T T 1
20100 250 500 1000 2000
Array Size (4-Byte Integers)
Fig. 7. RPC round-trip comparison. The gray lines are unspecialized RPC latencies; the dark
lines are the corresponding specialized latencies.

Table II. Size of the SunOS Binaries (in bytes)

Message Size

Client Code 20 100 500 1000 2000
Generic 20004
Specialized 24340 27540 33540 63540 111348

Round-trip RPC improvements. In order to evaluate the effect of im-
proved marshaling latency on overall RPC performance, we measured
average round-trip RPC latencies for arguments that consist of various
sized arrays. Figure 7 shows a 55% improvement in round-trip time on the
Sun/IPX platform and a 35% improvement on the PC/Linux platform. One
reason these improvements are less than for marshaling alone is because of
the cost for initializing message buffers on both client and server sides.
This cost, combined with network access latency, reduces the net perfor-
mance improvements. However, even with these mitigating factors, special-
ization has a significant positive impact on round-trip RPC performance.

4.1.3 Code Size. Table II shows the effects of specialization on code size.
Because of loop unrolling, the size of the specialized RPC marshaling code
grows with message size, and can greatly exceed that of the generic code.
This increase in code size can affect cache performance, although in our
experiments (shown in Figures 5 and 6), any degradation of cache perfor-
mance was dominated by the improvements of specialization. We per-
formed an additional experiment on the PC to evaluate the cache perfor-
mance impacts of loop unrolling. Table III shows the performance of two
versions of the specialized code. The first version fully unrolls loops; the
second version limits unrolling to 250 iterations, which we found fits in the

ACM Transactions on Computer Systems, Vol. 19, No. 2, May 2001.

234 . D. McNamee et al.

Table III. Specialization with Loops of 250-Unrolled Integers (time in ms)

PC/Linux
Message
Size Original Specialized Speedup 250-Unrolled Speedup
500 0.29 0.11 165% 0.108 170%
1000 0.51 0.17 200% 0.15 240%
2000 0.97 0.29 235% 0.25 290%

PC’s level two cache. The times shown were derived by dividing elapsed
time by the total number of round-trip iterations. The results show that
limiting loop unrolling improves the performance of the specialized code by
approximately 10%. Further investigation of the cache impact of specializa-
tion, while interesting, is beyond the scope of this paper.

4.2 Specializing Packet Filters

The BSD Packet Filter (BPF) [McCanne and Jacobson 1993] provides a
programmable interface for selecting packets from a network interface. The
interface allows user applications to download packet filter programs
written in a bytecode into a kernel- or library-resident packet filter
interpreter. The bytecode programs decide when a packet matches the
user’s criteria. Matching packets are forwarded to the application. The
tcpdump application prints network packets that match a user-defined
predicate. This predicate is provided on the command line, and tcpdump
translates it into a BPF program. The TCP packets that match the
predicate are returned to tcpdump , where they are printed. The Linux
kernel used in this experiment implements packet filters in the libpcap
library. Other kernels, such as NetBSD, implement packet filters within
the kernel.

4.2.1 Specialization Opportunities in Packet Filter Interpretation. Since
a single BPF program is likely to be executed many times to examine many
thousands of packets, it is an ideal candidate for specialization. In this
case, the code being specialized is the packet filter interpreter, and the
specialization predicates are derived from a particular packet filter pro-
gram. Specializing an interpreter with respect to a particular program
effectively compiles that program [Jones et al. 1985]. This is a case of either
static or dynamic specialization, since the specialization predicate is never
modified, once established. We measured two cases. First, in the static
specialization case, the packet filter program is available well in advance of
its execution. An example of this case is the static packet filter program
used by rarpd , which selects RARP packets from network streams. Second,
we considered dynamic specialization, in which the packet filter program is
presented immediately before execution, and thus the overheads of special-
ization are included in the overall run-time. The tcpdump program is an
example of this case, since the packet filter programs are generated from
command-line input.

ACM Transactions on Computer Systems, Vol. 19, No. 2, May 2001.

Systematic Optimization of System Software . 235

while(true) {
switch (pc->opcode) {
case LD:
/I do load instruction
case JGT:
if (accumulator > index_register)
pc = pc->target_true
else
pc = pc->target_false
I/ etc...
case RET:
/I return instruction
result =...
break;

}

pc++

}
Fig. 8. Basic loop for BPF interpreter.

A session begins when an application hands the packet filter bytecodes to
libpcap by calling pcap_setfilter . The application initiates filtering by
calling pcap_loop . In the filter-loop, a packet is read and filtered by
calling the bpf_filter function:

u_int bpf_filter(struct bpf_insn *pc, u_char *c,
u_int wirelen, u_int buflen);

The parameters are the packet filter program, a packet, the length of the
original packet, and the amount of the packet’s data present. Of these
parameters, the packet filter program is always the same during a session,
so we derive specialization predicates from it. The buflen argument could
also be used as a specialization predicate term, but in our experiments it
was not because we wanted to focus on the benefits of eliminating interpre-
tation.

The basic structure of the BPF interpreter is shown in Figure 8. The
interpreter consists of an infinite loop, each iteration of which fetches the
instruction pointed to by pc, uses a case statement to decode and execute
the instruction, and finally increments pc. In addition, the interpretation of
some instructions, such as jumps, modifies pc within the loop. When
interpreting conditional jump instructions, such as JGT, the value assigned
to pc depends on dynamic interpreter state. This approach to structuring
the interpreter, as a case statement within an infinite loop, is problematic
because it propagates the dynamism of pc throughout, making the inter-
preter unspecializable.

An alternate approach to building an interpreter, which is amenable to
specialization, is to use recursion. In this approach, the while loop is
replaced by a tail-recursive function which gets called for each new value of
pc, as shown in Figure 9. We manually restructured the BPF interpreter
using recursion in order to perform the experiments described below.

4.2.2 Performance Results. To evaluate the impact of specialization on
the performance of interpreting packet filter programs, we specialized the

ACM Transactions on Computer Systems, Vol. 19, No. 2, May 2001.

236 . D. McNamee et al.

case JGT:
if (accumulator > index_register)
return(bpf_filter(pc->target_true, c, wirelen, buflen))
else
return(bpf_filter(pc->target_false, c, wirelen, buflen))

Fig. 9. Using recursion to make pc static.

Table IV. Specialized BPF Performance (time in seconds)

Program Run Time Run Time—Null Filter
Nill 2.60 NA
Original, unspecialized 4.34 1.74
Statically specialized 2.84 0.24
Dynamically specialized 3.35 0.75

interpreter for a simple packet filter program which counts packets. We
compared this specialized program to the unspecialized interpreter on the
same packet filter program. We wanted to isolate the benefits of specializa-
tion from the unavoidable overheads of the packet filter mechanism. We did
this by constructing a null packet filter, which incurs the unspecializable
overheads of the packet filter mechanism, but without performing any
packet filter interpretation.

Table IV presents the execution times to filter 10 megabytes of ethernet
packets. We measured the null packet filter and three versions of the
counting packet filter: the original unmodified version, a statically special-
ized version, and a dynamically specialized version. The dynamically
specialized version includes the overhead of executing the run-time special-
izer to generate the specialized code. In addition, the statically specialized
code is more efficient than the dynamically generated template-based
specialized code. The right column isolates the packet filter interpretation
cost by subtracting the execution time of the null filter. In both the static
and dynamic cases, specialization yields significant performance improve-
ments.

4.2.3 Code Size. Partial evaluation unrolls the fetch, decode, execute
loop of the BPF interpreter, thus raising the possibility of impact on code
size. Common packet filters are between five and 15 instructions. The
unspecialized interpreter has 550 lines. The interpreter specialized for a
six-instruction filter is 366 lines. For a 10-instruction filter, the specialized
version is 576 lines. These results show the code size impact is small for
common-size packet filter programs.

4.3 Specializing Signals
UNIX signals are a mechanism for communicating events between pro-
cesses. The statement:
ret = kil (pid, n);
causes process pid to suspend its current activity and run a procedure

designated as the handler for signal n. Figure 10 shows the structure of the
kil system call in Linux. The function sys_Kkill is the kernel-side entry

ACM Transactions on Computer Systems, Vol. 19, No. 2, May 2001.

Systematic Optimization of System Software . 237

| sys._kill(int pid, int sig) |
|

’ kill_proc(int pid, int sig, int priv) ‘

’send_sig(int sig, task_struct * p, int priv) ‘

'

’ generate(int sig, task_struct * p) ‘

Fig. 10. Linux kill system call architecture.

point of the kill system call. The function kill_proc searches the process
table for the task struct of the process being signaled which is specified
by pid . The function send_sig checks for errors and valid permissions.
The function generate interprets the signal number, and delivers the signal
to the destination process by setting state in task struct , and calls
wake_up_process if needed. The source code for these functions in the
unspecialized Linux kernel (version 2.0.27) is shown in Figure 11.

When a process repeatedly sends the same signal to the same destination
process, it is likely that the fields of both processes’ task_structs are
unchanged. This observation presents an opportunity for optimistic special-
ization: these fields can be guarded, and used as specialization predicate
terms for the generation of specialized signal delivery code.

The difficulty in applying specialization in this way is that the relation-
ship between the communicating processes is not represented explicitly in
the code, and hence must be inferred through observations. For example, if
a process sends the same signal to the same target twice, we might infer an
ongoing communication relationship. The problem with applying this ap-
proach to the signal code in Linux is that no history is maintained between
invocations. Therefore, to allow specialization we added a field,
last_sig_to , to each process’ task_struct to cache information about
the last signal it sent.

The rewritten version of the sys_Kill function compares the values of
sig and pid to those in last_sig_to to verify that the signal is indeed a
repeat. If it is, sys_Kkill invokes signal delivery code that is specialized to
send this particular signal between this pair of processes. Our rewritten
versions of send_sig and generate cache the signal number and the
identities of the source and destination of the signal for subsequent
executions to be able to detect repeated signals.

The specialized code for delivering the signal SIGUSR1in Figure 12 was
generated by Tempo, based on the following specialization predicates
(current is a pointer to the task_struct of the signal source, and p is a
pointer to the task_struct of the signal destination):

current- >last_sig_to ==0p
last_sig_to- >uid == p->uid
last_sig_to- >session == p- >session
last_sig_to- >euid == p- >euid

ACM Transactions on Computer Systems, Vol. 19, No. 2, May 2001.

238 . D. McNamee et al.

static inline void generate(unsigned long sig, struct task_struct * p)

unsigned long mask = 1 << (sig-1);
struct sigaction * sa = sig + p->sig->action - 1;

/*

* Optimize away the signal, if it's a signal that can

* be handled immediately (ie non-blocked and untraced)
* and that is ignored (either explicitly or by default)

*

if (!(mask & p->blocked) && !(p->flags & PF_PTRACED)) {
/* don't bother with ignored signals (but SIGCHLD is special) */
if (sa->sa_handler == SIG_IGN && sig != SIGCHLD)
return;
/* some signals are ignored by default.. (but SIGCONT already did its deed) */
if (sa->sa_handler == SIG_DFL) &&
(sig == SIGCONT || sig == SIGCHLD || sig == SIGWINCH || sig == SIGURG))
return;

p->signal |= mask;
If (p->state == TASK_INTERRUPTIBLE && (p->signal & ~p->blocked)) {
wake_up_process(p);

if (lcurrent) return;
if (‘current->pid) return;
if (intr_count) return;

switch (sig) {
case SIGUSR1:

sdl_replug_start(current->sp_kill_proc); I*

current->last_sig_to = p; * Guarded write to specialization
current->last_sig = sig; * predicate terms
p->last_sig_from = current; */

sdl_replug_end(current->sp_kill_proc, kp_usr1);
break;
default:
sdl_replug_start(current->sp_Kkill_proc);
p->last_sig_from = current->last_sig_to = current->last_sig = NULL;
sdl_replug_end(current->sp_kill_proc, yelp);

int send_sig(unsigned long sig,struct task_struct * p,int priv)

if (Ip || sig > 32)
return -EINVAL;
if (priv && ((sig !'= SIGCONT) || (current->session != p->session)) &&
(current->euid " p->suid) && (current->euid * p->uid) &&
(current->uid ~ p->suid) && (current->uid ~ p->uid) &&
Isuser())
return -EPERM;
if (Isig)
return 0;
/*

* Forget it if the process is already zombie'd.
*

if (Ip->sig) {
sdl_replug_start(current->sp_kill_proc); I*
current->last_sig_to = p; * Guarded write to specialization
current->last_sig = sig; * predicate terms
p->last_sig_from = current; */
sdl_replug_end(current->sp_kill_proc, kp_usrl);
return 0;

}
if ((sig == SIGKILL) || (sig == SIGCONT)) {
if (p->state == TASK_STOPPED)
wake_up_process(p);
p->exit_code = 0;
p->signal &= ~((1<<(SIGSTOP-1)) | (1<<(SIGTSTP-1)) |
(1<<(SIGTTIN-1)) | (1<<(SIGTTOU-1)));

}

if (sig == SIGSTOP || sig == SIGTSTP || sig == SIGTTIN || sig == SIGTTOU)
p->signal &= ~(1<<(SIGCONT-1));

/* Actually generate the signal */

generate(sig,p);
return 0;

Fig. 11. Unspecialized Linux kil system call source code.

These specialization predicates allow Tempo to eliminate most of the
comparisons and conditionals in the signal delivery code, and directly do
the work for delivering a signal in the body of generate

ACM Transactions on Computer Systems, Vol. 19, No. 2, May 2001.

Systematic Optimization of System Software . 239

int kill_proc(int pid, int sig, int priv)
struct task_struct *p;

if (sig<O0 || sig>32)
return -EINVAL;
for_each_task(p) {
if (p && p->pid == pid)
return send_sig(sig,p,priv);

) leturn(—ESRCH);

asmlinkage int sys_kill(int pid,int sig)
int err, retval = 0, count = 0;
if (pid) return(kill_pg(current->pgrp,sig,0));

if (current->last_sig_to && current->last_sig_to->pid == pid &&
current->last_sig == sig && current->sp_kill_proc) {
retval = (* sdl_executor(current->sp_kill_proc))();
sdl_executor_end(current->sp_kill_proc); /* Invoke specialized kill_proc */
return retval;

if (pid == -1) {
struct task_struct * p;
for_each_task(p) {
if (p->pid > 1 && p != current) {

++count;
if ((err = send_sig(sig,p,0)) != -EPERM)
retval = err;

) }
return(count ? retval : -ESRCH);

}

if (pid < 0)
return(kill_pg(-pid,sig,0));

/* Normal kill */

return(kill_proc(pid,sig,0));

Fig. 11. Continued.

int kp_usrl ()
{

struct task_struct *p;

if (((*(*current).last_sig_to).sig != (void *) 0) == 0) {
send_sig_SSSDDDStr_sigaction_DDDSSSS_flat2 = 0; /* This is a Tempo-declared global integer */
goto pprocfin0;

struct sigaction *sa;
unsigned int *suif_tmp2;

sa = (struct sigaction *) ((char *)
(*(*(*current).last_sig_to).sig).action + 160) - 1;
suif_tmp2 = &(*(*current).last_sig_to).signal;
*suif_tmp2 = *suif_tmp2 | 512;
if ((*(*current).last_sig_to).state == 1 &&
((*(*current).last_sig_to).signal &
~(*(*current).last_sig_to).blocked) != Ou)
wake_up_process ((*current).last_sig_to);

}
send_sig_SSSDDDStr_sigaction_DDDSSSS_flat2 = 0;
pprocfinQ: ;

}
return send_sig_SSSDDDStr_sigaction_DDDSSSS_flat2;

}

Fig. 12. Specialized kill ~ system call source code: kill_proc , send_sig , and generate
folded and specialized.

This specialization is optimistic because if any of the specialization
predicate terms are modified between signals, the specialized code is
invalid and must be replugged. For example, if the destination process exits

ACM Transactions on Computer Systems, Vol. 19, No. 2, May 2001.

240 . D. McNamee et al.

(thus invalidating the last_sig_to pointer), or if the euid or uid of the
source or destination process is modified, the specialized version of the kill
system call could either crash the machine by indirecting through an
invalid task_struct pointer, or could produce incorrect results by sending
a signal without permission

We used TypeGuard to identify locations that require guarding. Given
the set of specialization predicate terms, TypeGuard produced a list of
program statements that could modify those terms. TypeGuard includes in
this list all of the program statements (such as typecasts) that could allow
the specialization predicate term to be modified elsewhere. We manually
inspected the locations identified by TypeGuard and when we determined
they could modify specialization predicate terms, we placed a guard that
replugged to the unspecialized function before performing the modification.
Since Linux kernel threads are nonpreemptive, and these experiments
were conducted on a uniprocessor, we used the boolean version of the
replugger.

4.3.1 Performance Results. The latency of delivering a signal consists of
a number of components. These components are: looking up the
task_struct in the process table, updating the signaled process’ state,
saving the signaled process’ context, entering and exiting the kernel, and
the unpredictable scheduling delay incurred between making a process
runnable and the time it starts executing the signal handler. Figure 13
shows these components for the specialized and unspecialized versions of
signal delivery, but without the unpredictable scheduling delay. This
scheduling delay was eliminated by measuring the latency of a process
sending the signal SIGUSR1to itself, which causes the signal handler to be
directly invoked upon return from the system call. For this experiment, one
user was logged in, running an X11 server and three xterm programs, and
a few other X11 applications, for a total of 62 processes, resulting in a table
lookup time of 26.5 u-seconds. With a more intensive workload, the table
lookup would take even more time. The specialized version of the system
call avoids this lookup, thus eliminating its overhead. The work required to
update the signaled process’ state was reduced from 14.5 w-seconds to 12
w-seconds. Overall, the specialized system reduces the latency to send a
signal by 65%. The size of the process table clearly has a major impact on
the cost of the kil system call, but even in a situation without the table
lookup overhead, specialization reduces execution time by 15%.

4.3.2 Application-Level Impact. The application-level impact of improv-
ing the performance of delivering signals depends on how applications use
them. Signals are often used to signal exceptional information between
processes, such as SIGKILL from a shell to halt the currently executing
process. However, signals are also used to implement more general ser-
vices. For example, Leroy’s POSIX threads implementation for Linux
[Leroy 1996] uses Linux’s variable-weight processes with shared address
spaces. This threads package uses signals to communicate between
threads, e.g., to wake up blocked threads when a mutex is released.

ACM Transactions on Computer Systems, Vol. 19, No. 2, May 2001.

Systematic Optimization of System Software . 241

50
45 1
40

Btable lookup —
B update state

35 Osave context

0 30 O kernel crossing —
S

S 251

3

o]

® 20

3

151
10 1
5 |
0

Unspecialized Specialized

Fig. 13. Components of signal delivery latency: unspecialized vs. specialized.

Using this threads package, we wrote a test program that made extensive
use of signals by synchronizing frequently. The test program is an imple-
mentation of the classic producer-consumer problem, using thread mutex’s
for synchronization. The test does 100,000 producer-consumer iterations
with a buffer size of four items. Four executions of the test program on the
unspecialized kernel had an average run-time of 11.9 seconds, with a
standard deviation of 3.7 seconds. Four executions of the same program on
the specialized kernel had an average run-time of 5.6 seconds, with a
standard deviation of 0.7 seconds. The large variation in performance in
the unspecialized code is caused by the random position of the target task
in the process descriptor list. In the specialized code, the process table
lookups are only performed the first time a signal is sent to a process; the
subsequent lookups are specialized away. The remaining variability in the
specialized code is due to nonscheduling behavior.

4.3.3 Code Size. The unspecialized signal delivery code, shown in Fig-
ure 11, has 59 lines of nonwhitespace code among four functions. Specializ-
ing this code eliminated the error checking on specialization predicate
terms and folded the four functions into one. The resulting function,
kp_usrl , shown in Figure 12, has 18 lines. The code required to guard the
specialization predicate terms added a total of 60 lines among 11 functions
in four files.

5. DISCUSSION AND EXPERIENCES

5.1 Results and Experiences with the Toolkit

The experiences reported in this paper represent examples of all three types of
specialization: static, dynamic, and optimistic. We applied specialization to
a range of system components, and reduced execution time by between 15%
and 93%.

ACM Transactions on Computer Systems, Vol. 19, No. 2, May 2001.

242 . D. McNamee et al.

The experiments exercised our specialization toolkit across a wide range
of system component types, each of which presented differing degrees of
complexity. The remote procedure call experiment was the easiest to
perform, since it was an instance of static specialization; hence, it required
no dynamic enabling or disabling of specialized code. In addition the
binding stages are clearly defined in the RPC protocol, thus making the
specialization predicates easy to identify. This experiment demonstrated
that Tempo can specialize complex machine-generated code, and achieve
significant speedups.

The packet filter experiment was more difficult to perform, since the
interpreter was written in a style that prevents specialization. Once the
systematic modifications to the interpreter were made, this experiment
showed that static specialization reduces interpretation time by a factor of
seven. In addition, dynamic specialization, in which the overhead of gener-
ating the specialized code is counted against the benefits, reduces interpre-
tation time by a factor of two. This experiment demonstrated Tempo’s
ability to specialize an entire domain-specific language interpreter, with a
complex specialization predicate (an entire packet filter program).

The signal experiment was the most difficult of the three, since optimistic
specialization includes guarding and replugging. In addition, the lack of
explicit specialization predicates required that we modify the code to reify
the state of the previous signal in order to detect repeated signals. This
experiment exercised our guard placement tools as well as Tempo. We used
TypeGuard to locate the kernel statements that potentially modify each of
the specialization predicate terms. TypeGuard produced a large number of
false positive reports,” mostly relating to allocating new structure in-
stances, which do indeed modify specializapredicate terms, but do not
violate specialization predicates, since newly allocated memory cannot
contain specialization predicate terms. In contrast, the free operation
applied to a specialization predicate term does need to be guarded, since
after that operation the specialization predicate term no longer exists. We
had to manually examine each of TypeGuard’s reports to determine
whether it required guarding. In addition to our guarding experiences, we
found that optimistic specialization poses additional challenges to Tempo.
The complication is that optimistic specialization predicate terms are
actually modified by parts of the system. If those parts are given to Tempo,
binding-time analysis will (accurately) determine the specialization predi-
cates to be dynamic, and thus unspecializable. In order to account for the
fact that the specialization predicates were guarded, we had to selectively
omit parts of the code before presenting them to Tempo. Having done this,
Tempo effectively specialized the signal delivery code, resulting in applica-
tion-level performance improvements of a factor of two.

5For example, running TypeGuard on the Linux kernel looking for modifications to
task_struct_t.pid resulted in 219 reports, yet only 44 of them were modifications to a
specialization predicate term.

ACM Transactions on Computer Systems, Vol. 19, No. 2, May 2001.

Systematic Optimization of System Software . 243

5.2 Lessons for System Tuners

As with any optimization, specialization is best applied to the common
paths of an operating system. With these common paths identified, we
found two kinds of system constructs that lend themselves to specializa-
tion.

The first construct to look for is session-oriented operations, such as file
open/close, socket open/close, RPC binding, etc. In these situations, the
binding stages are explicit, which eases the task of identifying specializa-
tion predicates. For example, the file open call establishes a binding
between a file and a process. The specialization predicates resulting from
this binding are related to the user’s file permissions, the layout of the file
on disk, whether the file is shared or not, etc. In addition, these explicit
binding events directly trigger enabling and disabling code, which simpli-
fies the task of placing guards.

The second important construct is domain-specific language interpreters
or compilers used by a system. The execution behavior of language-based
components is described by the domain-specific program. Examples of such
constructs include using Java to extend web servers or clients [Gosling et
al. 1996], active networks [Tennenhouse et al. 1997], and other mobile code
systems [Adobe Systems 1984; White 1994; Woolridge and Jennings 1995].
When the same program is used repeatedly, it can be a useful specializa-
tion predicate. With the exception of self-modifying code, program-based
specialization predicates are never modified, making them useful for static
or dynamic specialization, and avoiding the overheads related to optimistic
specialization.

5.3 Lessons for System Designers

The lessons for software architects designing a system from scratch are to
employ the constructs that are amenable to specialization.

The first lesson is to make relationships between components explicit,
rather than implicit, whenever possible. This encourages explicit sessions
in place of implicit relationships. The evolution of the HTTP protocol
[Berners-Lee et al. 1996; Fielding et al. 1999] exemplifies this trend: HTTP
1.0 created a short-lived TCP connection for each data request from a client
to a server, while HTTP 1.1 utilizes persistent TCP connections between
clients and servers. The latter approach is more likely to yield useful
specialization predicates.

When explicit sessions are not appropriate, the next lesson is to be able
to recognize imconnections from repeated patterns of actions. Recognizing
patterns often requires additional state to be maintained across interac-
tions. We found this to be useful in the signal example, where state was
used to detect repeated signals between two processes, which allowed us to
derive a specialization predicate.

Finally, using domain-specific languages, interpreters, and stub compil-
ers is a powerful technique, not only because they raise the level of
abstraction of system components, but also because they naturally give rise

ACM Transactions on Computer Systems, Vol. 19, No. 2, May 2001.

244 . D. McNamee et al.

to useful specialization predicates. We have begun investigating ap-
proaches to building software systems as layers of virtual machines and
interpreters in this manner [Consel and Marlet 1998].

The main implication of our methodology is on system complexity and
ease of maintenance. Making optimizations automatic and based on the
source code allows the source code base to be left generic and easily
understandable, modular, and maintainable.

6. RELATED WORK

6.1 Related Specialization Research

Our specialization-based approach to operating systems implementation is
an instance of a programming methodology called multistage programming
[Taha and Sheard 1997]. Multistage programming refers to programs that
generate other programs, usually with the goal of improving performance.
The program that generates or analyzes programs in a staged program-
ming system is called a metaprogram, and the result is the generated-
program. Staged programming techniques can be distinguished along a
number of axes, including [Taha 1999]:

—Automatic vs. manual annotation: Whether the static and dynamic
portions of the input program are identified by an analysis (e.g., binding-
time analysis) or via manual annotations (e.g., pragmas written by the
system tuner).

—Homogeneous vs. heterogeneous: Whether or not the generator (the
metaprogram) is written in the same language as the generated program.

—Static vs. run-time generation: Whether generated code is produced
before run-time (static generation), or during run-time (run-time genera-
tion).

—Two-stage vs. many-stage: If the output program is itself a metapro-
gram, the process can be applied recursively. Most such systems are also
homogeneous, because it allows the transformations applied at each
stage uniformly, which makes building them simpler, but excludes legacy
code.

By this categorization, Tempo is an automatic tool, since its binding-time
analysis automatically derives the dynamic and static labelings of program
components. Tempo is a heterogeneous system, because its input is C-
language programs, and its output is C and object code. Furthermore, its
analysis core is written in ML. Tempo supports both static and run-time
code generation. Tempo can be a two- or three-stage system. When perform-
ing static specialization, Tempo is two-stage. Tempo’s dynamic specializa-
tion is three-stage, since it produces a generator that produces specialized
code [Marlet et al. 1999].

C-Mix [Andersen 1993] is another partial evaluator for C programs that
fits in the same staged programming categorization as Tempo. Like Tempo,

ACM Transactions on Computer Systems, Vol. 19, No. 2, May 2001.

Systematic Optimization of System Software . 245

C-Mix can partially evaluate C programs, do interprocedural analysis, and
deal with complex data structures and side-effects. However, it was not
specifically designed to deal with systems code, and its analysis is not as
precise as Tempo’s. In particular, C-Mix is flow-insensitive, which means
that a variable is considered dynamic as soon as it is dynamic in any part of
the program, including exception handling. C-Mix also consumes more code
space, because it eagerly replicates code to avoid problems in binding-time
analysis. In contrast to Tempo and C-Mix, which operate on ANSI C
programs, DyC [Grant et al. 1999] and ‘C [Engler et al. 1986] are C-based
languages that incorporate annotations to assist binding-time analysis to
enable partial evaluation. DyC caches compiled code to improve the perfor-
mance of dynamic specialization.

Other staged programming research projects use functional program-
ming languages, such as ML. The MetaML language is a manual system
that uses “staging annotations” instead of automatic analysis in order to
make the resulting output more predictable [Sheard et al. 1999; Shields et
al. 1998; Taha 1999; Taha and Sheard 1997]. Since MetaML input and
output programs are in the same language as the staged programming
system, MetaML is homogeneous, which enables it to support n-level
staged programming. MetaML also supports both static and dynamic
program generation.

In addition to the staged programming aspects of our work, there is work
related to the other tools in the specialization toolkit. Lackwit [Callahan
and Jackson 1997] is a program-understanding tool for C based on type
inference. Unlike TypeGuard, which is based on C’s types, Lackwit discards
C’s weak type system, and instead infers its own strong dynamic types for
values based on the set of operations each value participates in, derived
from a conservative data flow analysis of the program. Thus Lackwit can
construct very specific types, e.g., the type of “pointers that are allocated
and freed,” as distinct from the type of “pointers that are allocated but not
freed.” This kind of analysis could be useful in placing guards for special-
ization predicates in system code, similar to TypeGuard. Lackwit performs
more precise analysis than TypeGuard, but at the expense of using an
algorithm that is exponentially complex in the worst case, which does not
scale to the size of most systems code.

Tempo’s binding-time analysis has similarities to the analyses used in
program-slicing tools [Tip 1994]. Forward-slicing techniques propagate
information from variable definitions to their uses, and have been used to
define binding-time analyses for imperative programs [Das et al. 1995].
The analysis used by these tools is similar to the part of Tempo’s binding-
time analysis that propagates the state of variables from definitions to
their uses. However, nonliftable values are not addressed by forward-
slicing tools, and nor can they address values used in different contexts.
Backward-slicing techniques propagate information from variable uses to
their definitions. This is similar to the part of Tempo’s binding-time
analysis that computes the binding-time definitions of variables. The way
Tempo computes the binding time of definitions is similar to backward

ACM Transactions on Computer Systems, Vol. 19, No. 2, May 2001.

246 . D. McNamee et al.

slicing which computes the commands that are needed in a slice. Unlike the
two-point domain provided by slicing analysis (needed, not needed), Tem-
po’s binding-time analysis is performed with a four-point domain (static,
dynamic, static and dynamic, and {}), since some definitions may need to be
both evaluated and residualized.

The Utah Flex project developed OMOS [Orr 1992], an object/metaobject
server that supports the dynamic linking of executable modules. OMOS
wraps dynamically instantiated execution modules in an object-oriented
package, even if they were not written in an object-oriented language.
OMOS provides considerably more functionality than our replugger, includ-
ing the ability to specify which module should be loaded using certain code
properties, such as whether it is in memory, or has been linked to sit at a
particular address range. Thus OMOS encompasses some of the functional-
ity of our specialization predicate guards, but does the checking only at
load time.

6.2 Other Approaches to Operating System Customization

Aspect-oriented programming [Kiczales et al. 1997] provides a useful
vocabulary for comparing approaches to system customization. An aspect of
a system is a property which necessarily spans system components, and
which is usefully considered independently. In this vocabulary, our meth-
odology uses specialization to optimize the performance aspect of a system,
and the guarding tools help ensure correctness when access to specializa-
tion predicate terms spans system components.

Aspect-oriented programming can be implemented using language tools
built specifically to support it [Lopes and Kiczales 1998], or using a more
general technique called open implementations, in which the implementa-
tion of a software module is tailorable by clients of that module [Kiczales
1996].

An open implementation of an operating system can be used to improve
performance without altering functionality, or to implement additional
functionality in an existing system. Building customizable operating sys-
tems using open implementations has been an active area of research in
the last decade. Examples of such customizable operating systems include
SPIN [Bershad et al. 1995], Exokernel [Engler et al. 1995], the Flux OSKit
[Ford et al. 1997], Vino [Small and Seltzer 1994], SLIC [Ghormley et al.
1998], Choices [Campbell et al. 1992], and Apertos [Yokote et al. 1989].

In customizable operating systems correctness depends on extensions not
being able to affect parts of the system beyond the extension’s scope. SPIN
provides such protection through the use of a type-safe programming
language combined with a dispatcher which enforces constraints described
by the service-writer [Pardyak and Bershad 1996]. For example, the
dispatcher might enforce the constraint that a particular virtual memory
extension can only handle faults for the process that installed it. SPIN also
includes a hierarchical name-space that limits the scope of customized
modules to only those tasks that specifically ask to use the customized

ACM Transactions on Computer Systems, Vol. 19, No. 2, May 2001.

Systematic Optimization of System Software . 247

components. The responsibility of ensuring that customizations do not
conflict with each other is left to extension-writers and the authors of
built-in services.

Exokernel represents another approach to operating system customiza-
tion. Exokernel pushes system services outside the kernel where they can
be more easily and safely extended. As with SPIN, the responsibility of
ensuring that customizations will not interfere with each other is left to the
authors of the user-level system services and the developers of subsequent
customizations.

The Utah Flux project has constructed a software architecture that
supports replacement of operating system components, particularly nesting
of operating system components [Ford et al. 1996; Ford and Susarla 1996]
using the recursive virtual machine concept. Each virtual machine level
can be customized for specific needs, and is protected from other virtual
machines at the same level. The layers of indirection implicit in this
structure come at some cost. However, specialization may be able to
minimize these costs. The replaceable software components are large and
complex, and the relationships between them will provide many specializa-
tion predicates because the components are not replaced frequently. We
believe the modular structure of a system built with Flux could be particu-
larly amenable to specialization, which would be one way to construct
high-performance, highly structured systems.

Other researchers have used specialization in conjunction with specially
designed system components to optimize a specific operating system ser-
vice. For example, the Ensemble system uses specialization of network
stacks written in ML in order to achieve high performance from modular
components [Liu et al. 1999]. The Scout operating system achieves high
performance by flattening network stacks automatically based on a new
abstraction, paths, which are defined by programmers [Montz et al. 1995].
Scout uses domain-specific language compilers to produce optimized code
from the path specifications.

7. CONCLUSIONS AND FUTURE WORK

This paper introduced concepts, tools, and a methodology for specializing
operating systems code. We detailed the operation of tools for the special-
ization, guarding, and replugging phases of specialization. We evaluated
the effectiveness of static, dynamic, and optimistic specialization by apply-
ing them in experiments that included more than one operating system
(both Linux and Solaris), and a range of styles of code, ranging from
regular system code (delivering signals), kernel-resident interpreters (in-
terpreting packet filter programs), and a stub compiler (for RPC). These
experiments demonstrated substantial performance improvements, compa-
rable with those that are possible through hand-coded optimizations.
Finally, we discussed the lessons we learned from these experiences and
implications for future software engineering practices for system building.

ACM Transactions on Computer Systems, Vol. 19, No. 2, May 2001.

248 . D. McNamee et al.

The tools presented in this paper aid in the production of specialized code
paths and in guarding them when they are used optimistically. Another
important problem is how to identify good opportunities for specialization.
In all our experiments to date, we have identified specialization opportuni-
ties by hand, using expert knowledge and heuristics to determine whether
they would benefit from specialization. It would be useful to have tools to
identify hot spots in operating systems, distill specialization predicates of
such hot spots, and evaluate the feasibility of a given specialization
strategy. There are many difficult specialization policy issues to solve such
as whether a particular specialization is worthwhile given a particular
guarding strategy and execution context, which specialized versions to
generate ahead of time, which ones to cache, and what policies to use for
managing such a cache.

One promising approach to addressing the complex trade-offs involved
with the overheads and benefits of specialization is to dynamically monitor
the run-time behavior of a system and analyze the net benefits of special-
izing individual system components given observed execution frequencies,
and use feedback control to enable or disable specialization of each compo-
nent in the system. We plan to use the microfeedback toolkit developed at
OGI [Cen 1998; Goel et al. 1998] to develop controllers that achieve this
kind of dynamic adaptivity of specialization policy in a way that is
predictable, stable, responsive, and composable.

ACKNOWLEDGMENTS

We would like to thank Julia Lawall for her insightful comments on
multiple versions of this paper. We would also like to thank the TOCS
reviewers for their careful critiques, which improved many aspects of our
presentation. The authors were partially supported by DARPA/ITO under
the Information Technology Expeditions, Ubiquitous Computing, Quorum,
and PCES programs, and by grants from the Intel Research Council.

REFERENCES

ADOBE SYSTEMS. 1984. The PostScript Language Reference Manual. 1st ed. Addison-Wesley,
Reading, MA.

AMARASINGHE, S. P., ANDERSON, J. M., Lam, M. S., AND TSENG, C. W. 1995. The SUIF compiler
for scalable parallel machines. In Proceedings of the 7th SIAM Conference on Parallel
Processing for Scientific Computing (San Francisco, Feb.). SIAM, Philadelphia, PA.

ANDERSEN, L. O. 1993. Binding-time analysis and the taming of C pointers. In Proceedings of
the ACM SIGPLAN symposium on Partial Evaluation and Semantics-Based Program
Manipulation (PEPM ’93, Copenhagen, Denmark, June 14-16), D. Schmidt, Chair. ACM
Press, New York, NY, 47-58.

ANDERSON, J. M. aND Berc, L. M. 1997. Continous profiling: Where have all the cycles
gone?. In Proceedings of the 16th ACM Symposium on Operating Systems Principles (SOSP
97, Saint-Malo, France, Oct. 5-8), W. M. Waite, Ed. ACM Press, New York, NY.

BERNERS-LEE, T., FIELDING, R., AND FrySsTYK, H. 1996. Hypertext transfer protocol—
HTTP/1.0. RFC 1945. ftp:/ ftp.isi.edu/in-notes/rfc1945.txt.

BERSHAD, B., SAVAGE, S., PARDYAK, P., SIRER, E., Fiuczynski, M., BECKER, D., CHAMBERS, C.,
AND EGGERS, S. 1995. Extensibility, safety, and performance in the SPIN operating

ACM Transactions on Computer Systems, Vol. 19, No. 2, May 2001.

Systematic Optimization of System Software . 249

system. In Proceedings of the 15th ACM Symposium on Operating Systems Principles
(Copper Mountain Resort, CO, Dec.). ACM Press, New York, NY, 267-284.

CaMPBELL, R. H., IsLAM, N., AND MADANY, P. 1992. Choices, frameworks and refinement.
Comput. Syst. 5, 3, 217-2517.

CEN, S. 1998. A software feedback toolkit and its application in adaptive multimedia
systems. Ph.D. Dissertation. Oregon Graduate Institute of Science & Technology, Beaver-
ton, OR.

CoNSEL, C. AND DaNvy, O. 1993. Tutorial notes on partial evaluation. In Proceedings of the
20th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL ’93, Charleston, SC, Jan. 10-13), S. L. Graham, Ed. ACM Press, New York, NY,
493-501.

ConsEL, C. AND MARLET, R. 1998. Architecturing software using a methodology for language
development. In Proceedings of the International Symposium on Programming Language
Implementation, Logics and Programs (PLILP, Pisa, Italy). ACM, New York, NY.

CoNseEL, C. AND No#iL, F. 1996. A general approach for run-time specialization and its
application to C. In Proceedings of the 23rd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL 96, St. Petersburg Beach, FL, Jan. 21-24),
H.-J. Boehm and G. Steel, Chairs. ACM Press, New York, NY, 145-156.

CowaN, C. AND McNAMEE, D. 1987. A toolkit for specializing production operating system
code. CSE-97-004. Oregon Graduate Institute of Science & Technology, Beaverton, OR.
Cowan, C., AUTrey, T., Pu, C., AND WALPOLE, J. 1996. Fast concurrent dynamic linking for an
adaptive operating system. In Proceedings of the International Conference on Configurable

Distributed Systems (ICCDS ’96, Annapolis, MD).

Das, M., REps, T., AND VAN HENTENRYCK, P. 1995. Semantic foundations of binding-time
analysis for imperative programs. In Proceedings of the ACM SIGPLAN Symposium on
Partial Evaluation and Semantics-Based Program Manipulation (PEPM 95, La Jolla, CA,
June 21-23), N. Jones, Chair. ACM Press, New York, NY, 100-110.

ENGLER, D. R., HsieH, W. C., AND KAASHOEK, M. F. 1996. ’C: A language for high-level,
efficient, and machine-independent dynamic code generation. In Proceedings of the 23rd
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’96,
St. Petersburg Beach, FL, Jan. 21-24), H.-J. Boehm and G. Steel, Chairs. ACM Press, New
York, NY, 131-144.

ENGLER, D., KAASHOEK, M., AND O'TOOLE, J. 1995. Exokernel: An operating system architec-
ture for application-level resource management. In Proceedings of the 15th ACM Sympo-
sium on Operating Systems Principles (SIGOPS '95, Copper Mountain Resort, CO, Dec. 3-6),
M. B. Jones, Ed. ACM Press, New York, NY, 251-266.

FIELDING, R., GETTYS, J., MOGUL, J., FRYSTYK, H., MASINTER, L., LEACH, P., AND BERNERS-LEE, T.
1999. Hypertext Transfer Protocol—HTTP/1.1. RFC 2616. ftp:/ftp.isi.edu/in-notes/rfc2616.txt.

ForD, B. AND SusarLA, S. 1996. CPU inheritance scheduling. ACM SIGOPS Oper. Syst. Rev.
30, Winter, 91-105.

Forp, B., BACK, G., BENSON, G., LEPREAU, J., LIN, A., AND SHIVERS, O. 1997. The Flux OSKit:
A substrate for kernel and language research. ACM SIGOPS Oper. Syst. Rev. 31, 5, 38-51.

Forp, B., HIBLER, M., LEPREAU, J., TULLMANN, P., BACK, G., AND CLAWSON, S. 1996.
Microkernels meet recursive virtual machines. ACM SIGOPS Oper. Syst. Rev. 30, Winter,
137-151.

GHORMLEY, D. P., PETROU, D., ANDERSON, T. E., AND RODRIGUES, S. H. 1998. SLIC: An
extensibility system for commodity operating systems. In Proceedings of the 1998 USENIX
Annual Technical Conference (New Orleans, LA, June). USENIX Assoc., Berkeley, CA, 39-52.

GOEL, A., STEERE, D., Pu, C., AND WALPOLE, J. 1998. SWiFT: A feedback control and dynamic
reconfiguration toolkit. Oregon Graduate Institute of Science & Technology, Beaverton, OR.

GRANT, B., PHILIPOSE, M., MocCK, M., CHAMBERS, C., AND EGGERS, S. J. 1999. An evaluation of
staged run-time optimizations in DyC. In Proceedings of the ACM SIGPLAN Conference on
Programming Language and Design and Implementation (PLDI ’99, Atlanta, GA). ACM,
New York, NY.

HorNoOF, L. AND NoOYE, J. 1997. Accurate binding-time analysis for imperative languages:
Flow, context, and return sensitivity. SIGPLAN Not. 32, 12, 63-73.

ACM Transactions on Computer Systems, Vol. 19, No. 2, May 2001.

250 . D. McNamee et al.

Hornor, L., CoNsEL, C., AND NOYE, J. 1997. Effective specialization of realistic programs via
use sensitivity. In Proceedings of the 4th International Symposium on Static Analysis (SAS
’97, Paris, France, Sept.). Springer-Verlag, Vienna, Austria.

GosLING, dJ., Joy, B., AND STEELE, G. 1996. The Java Language Specification.
Addison-Wesley, Reading, MA.

JoNEs, N. D., GomarD, C. K., AND SESTOFT, P. 1993. Partial Evaluation and Automatic
Program Generation. Prentice-Hall International Series in Computer Science.
Prentice-Hall, Inc., Upper Saddle River, NJ.

JoNES, N. D., SESTOFT, P., AND SONDERGAARD, H. 1985. An experiment in partial evaluation:
The generation of a compiler generator. In Proc. of the first international conference on
Rewriting techniques and applications (Dijon, France, May 20-22), J.-P. Jouannaud,
Ed. Springer Lecture Notes in Computer Science. Springer-Verlag, New York, NY,
124-140.

KiczALES, G. 1996. Beyond the black box: Open implementation. IEEE Software 13, 1 (Jan.),
6-11.

KiczaLES, G., LAMPING, J., MENDHEKAR, A., MAEDA, C., LopEs, C. V., LOINGTIER, J.-M., AND
IrwIN, J. 1997. Aspect-oriented programming. In Proceedings of the European Conference
on Object-Oriented Programming (ECOOP ’97). Springer-Verlag, New York, NY. Lecture
Notes in Computer Science, vol. 1241.

LErOY, X. 1996. The LinuxThreads library. http://pauillac.inria.fr/xleroy/linuxthreads/.

Liu, X., KREITZ, C., VAN RENESSE, R., HICKEY, J., HAYDEN, M., BIRMAN, K., AND CONSTABLE, R.
1997. Building reliable, high-performance communication systems from components. In
Proceedings of the 16th ACM Symposium on Operating Systems Principles (SOSP 97,
Saint-Malo, France, Oct. 5—-8), W. M. Waite, Ed. ACM Press, New York, NY.

LorEs, C. V. AND KiczALES, G. 1998. Recent developments inm Aspectd. In Proceedings of the
European Conference on Object-Oriented Programming (ECOOP’98). Springer-Verlag, New
York, NY. Lecture Notes in Computer Science, vol. 1445.

MARLET, R., CONSEL, C., AND BoiNoT, P. 1999. Efficient incremental run-time specialization
for free. In Proceedings of the ACM SIGPLAN Conference on Programming Language and
Design and Implementation (PLDI ’99, Atlanta, GA). ACM, New York, NY.

MassaniN, H. anD Pu, C. 1989. Threads and input/output in the Synthesis kernel. In
Proceedings of the 12th ACM Symposium on Operating Systems Principles (Litchfield Park,
AZ, Dec. 3-6), G. Andrews, Chair. ACM Press, New York, NY.

MCcCANNE, S. AND JACOBSON, V. 1993. The BSD packet filter: A new architecture for user-level
packet capture. In Proceedings of the Winter Usenix Conference (Jan.). USENIX Assoc.,
Berkeley, CA, 259-269.

McVoy, L. AND STAELIN, C. 1996. Imbench: Portable tools fo performance analysis. In
Proceedings of the USENIX Technical Conference. USENIX Assoc., Berkeley, CA.

MonTz, A., MOSBERGER, D., O'MALLEY, S., PETERSON, L., PROEBSTING, T., AND HARTMAN, J.
1994. Scout: A communications-oriented operating system. In Proceedings of the 1st
USENIX Symposium on Operating Systems Design and Implementation (OSDI ’94,
Monterey, CA, Nov.). USENIX Assoc., Berkeley, CA.

MULLER, G., MARLET, R., AND VoraANscHI, E. N. 2000. Accurate program analyses for
successful specialization of legacy system software. Theor. Comput. Sci. 248, 1-2.

MULLER, G., MARLET, R., VorLaNnscHI, E. N., ConseL, C., Pu, C., AND GOEL, A. 1998. Fast,
optimized Sun RPC using automatic program specialization. In Proceedings of the 18th
IEEE International Conference on Distributed Computing Systems (ICDCS 98, Amsterdam,
The Netherlands, May). IEEE Computer Society Press, Los Alamitos, CA.

MULLER, G., VorLANsCHI, E.-N., AND MARLET, R. 1997. Scaling up partial evaluation for
optimizing the Sun commercial RPC protocol. SIGPLAN Not. 32, 12, 116-126.

O’CALLAHAN, R. AND JACKSON, D. 1997. Lackwit: A program understanding tool based on type
inference. In Proceedings of the 1997 International Conference on Software Engineering
(ICSE ’97, Boston, MA, May 17-23), W. R. Adrion, Chair. ACM Press, New York, NY,
338-348.

Orr, D. 1992. OMOS—An object server for program execution. In Proceedings of the
International Workshop on Object-Oriented Operating Systems.

ACM Transactions on Computer Systems, Vol. 19, No. 2, May 2001.

Systematic Optimization of System Software . 251

ParDYAK, P. AND BErsHAD, B. N. 1996. Dynamic binding for an extensible system. In
Proceedings of the 2nd USENIX Symposium on Operating Systems Design and Implementa-
tion (OSDI 96, Seattle, WA, Oct. 28-31), K. Petersen and W. Zwaenepoel, Chairs. ACM
Press, New York, NY, 201-212.

Pu, C., AutrEy, T., BLACK, A., CONSEL, C., CowaN, C., INOUYE, J., KETHANA, L., WALPOLE, J.,
AND ZHANG, K. 1995. Optimistic incremental specialization. In Proceedings of the 15th
ACM Symposium on Operating Systems Principles (SIGOPS 95, Copper Mountain Resort,
CO, Dec. 3-6), M. B. Jones, Ed. ACM Press, New York, NY, 314-324.

RAMSEY, R. 1994. All About Administering NIS+. 2nd ed. Prentice-Hall, New York, NY.

RasHID, R. AND BARON, R. 1989. Mach: A foundation for open systems. In Proceedings of the
2nd IEEE Workshop on Workstation Operating Systems. IEEE Press, Piscataway, NdJ.

SESTOFT, P. AND ZAMULIN, A. V. 1988. Annotated bibliography on partial evaluation and
mixed computation. In Partial Evaluation and Mixed Computation. North-Holland Pub-
lishing Co., Amsterdam, The Netherlands.

SHEARD, T., BENAISSA, Z., AND PaAsaric, E. 1999. DSL implementation using staging and
monads. In Proceedings of the 2nd USENIX Conference on Domain-Specific Languages
(DSL ’99, Austin, TX). USENIX Assoc., Berkeley, CA.

SHIELDS, M., SHEARD, T., AND PEYTON JONES, S. 1998. Dynamic typing as staged type
inference. In Proceedings of the 25th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL 98, San Diego, CA, Jan. 19-21), D. B. MacQueen and L.
Cardelli, Chairs. ACM Press, New York, NY, 289-302.

SiLiIcON GrAPHICS. 1999. Lockmeter: Kernel spinlock metering for Linux IA32. Silicon
Graphics, Inc., Mountain View, CA.

SMmALL, C. AND SELTZER, M. 1994. VINO: An integrated platform for operating system and
database research. Tech. Rep. TR-30-94. Department of Electrical Engineering and
Computer Science, Harvard Univ., Cambridge, MA.

SUN MICROSYSTEMS. 1998a. NFS: Network File System protocol specification. Sun Microsys-
tems, Inc., Mountain View, CA.

SUN MICROSYSTEMS. 1998b. RPC: Remote Procedure Call protocol specification, version 2.
Sun Microsystems, Inc., Mountain View, CA.

SUN MICROSYSTEMS. 1999. Solaris Naming Administration Guide. Sun Microsystems, Inc.,
Mountain View, CA.

TaHA, W. 1999. Multistage programming: Its theory and applications. Oregon Graduate
Institute of Science & Technology, Beaverton, OR.

TaHA, W. AND SHEARD, T. 1997. Multi-stage programming with explicit annotations.
SIGPLAN Not. 32, 12, 203-217.

TAMCHES, A. AND MILLER, B. P. 1999. Fine-grained dynamic instrumentation of commodity
operating system kernels. In Proceedings of the 3rd USENIX Symposium on Operating
Systems Design and Implementation (OSDI ’99, New Orleans, LA., Feb.). USENIX Assoc.,
Berkeley, CA, 117-130.

TENNENHOUSE, D., SMITH, J., SINCOSKIE, D., WETHERALL, D., AND MINDEN, G. 1997. A survey of
active network research. IEEE Commun. Mag. 35, 1, 80—86.

Tip, F. 1994. A survey of program slicing techniques. Tech. Rep. CS-R9438. Centrum voor
Wiskunde en Informatica, Amsterdam, The Netherlands.

WHITE, J. E. 1994. Telescript technology: The foundation for the electronic marketplace.
General Magic, Inc., Mountain View, CA.

WOOLRIDGE, M. AND JENNINGS, N. 1995. Intelligent agents: Theory and practice. Knowl. Eng.
Rev. 10, 2.

YAGHMOUR, K. 1999. Linux trace toolkit. http:/www.info.polymtl.ca/home/karym/www/trace/.

YOKOTE, Y., TERAOKA, F., AND TOKORO, M. 1989. A reflective architecture for an object-
oriented distributed operating system. In Proceedings of the 1989 European Conference on
Object-Oriented Programming (ECOOP ’89, Nottingham, UK).

Received: March 2000; revised: January 2001; accepted: January 2001

ACM Transactions on Computer Systems, Vol. 19, No. 2, May 2001.

