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Abstract

Background: The relationship between biodiversity and soil microbiome stability remains poorly understood. Here,

we investigated the impacts of bacterial phylogenetic diversity on the functional traits and the stability of the soil

microbiome. Communities differing in phylogenetic diversity were generated by inoculating serially diluted soil

suspensions into sterilized soil, and the stability of the microbiome was assessed by detecting community variations

under various pH levels. The taxonomic features and potential functional traits were detected by DNA sequencing.

Results: We found that bacterial communities with higher phylogenetic diversity tended to be more stable,

implying that microbiomes with higher biodiversity are more resistant to perturbation. Functional gene co-

occurrence network and machine learning classification analyses identified specialized metabolic functions,

especially “nitrogen metabolism” and “phosphonate and phosphinate metabolism,” as keystone functions. Further

taxonomic annotation found that keystone functions are carried out by specific bacterial taxa, including Nitrospira

and Gemmatimonas, among others.

Conclusions: This study provides new insights into our understanding of the relationships between soil

microbiome biodiversity and ecosystem stability and highlights specialized metabolic functions embedded in

keystone taxa that may be essential for soil microbiome stability.

Keywords: Soil incubation, Microbial diversity and stability, Co-occurrence network, Machine learning, Keystone

function
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Background
The terrestrial microbiome is regarded as a ubiqui-

tous and indispensable ecosystem component that

sustains functions such as organic carbon turnover,

nutrient-use efficiency, and productivity [1, 2]. Ultim-

ately, the sustainability of both the functions and ser-

vices rendered by the terrestrial ecosystem is

dependent on a relatively stable microbiome [3], de-

fined as the degree of variation or turnover rate of

the microbial community [4]. These alterations in the

microbiome in response to environmental changes fall

into the two predominant categories of deterministic

and stochastic processes [5]. Soil microbiomes en-

counter various natural environmental perturbations

such as droughts, floods, extreme temperatures, and

anthropogenic impacts like through soil contamin-

ation by antibiotics, heavy metals, and pesticides [3, 6,

7]. Although a community may respond to environ-

mental changes through variations in the composition

or dormancy of a certain microbial populations under

unfavorable conditions [8], studies have identified

microbiomes that exhibit compositional and func-

tional stability over time [9, 10], while others exhibit

properties of instability [11]. Therefore, it is import-

ant to understand the properties that underlie the sta-

bility of microbial assemblages as well as the possible

downstream functional consequences that may have

an impact on overall ecosystem function.

The stability of a microbiome has been attributed

principally to species diversity since a general consen-

sus is that biodiversity imparts positive effects on

microbiome stability [12]. Species loss generally re-

sults in impaired ecosystem function [13–15]. Within

the microbial community, there is evidence that key-

stone taxa can drive microbial community assembly

[16, 17]. These keystone taxa are highly connected

taxa that may exhibit unique and critical roles in or-

ganizing the structure of the soil microbiome, with

downstream impacts on ecosystem processes. Thus,

the removal of keystone taxa, perhaps through an en-

vironmental perturbation, may negatively impact

microbiome stability and cause a dramatic shift in

microbiome composition and function [18]. This po-

tential critical role of a keystone species has been ex-

hibited in the stability of a synthetic microbiome [19].

The microbial co-occurrence network analysis has

been shown to be particularly useful in studying the

complex relationships among the myriad of microbial

species [20]. Network metrics such as mean degree

and closeness centrality can be used to statistically

identify keystone members [18]. Recently, machine

learning has been implemented in order to provide

deeper insight into complex microbiome interactions

[21, 22], which has the potential to be used for

discovering keystone taxa associated with soil micro-

biome stability.

Previous studies, such as those focused on the devel-

opment of ecological models and the analyses of simple

microbial communities with clear genetic backgrounds,

have been undertaken in order to unravel intrinsic rela-

tionships between biodiversity and stability [23, 24].

However, soil microbiomes are inherently complex and

harbor many diverse species that interact with one an-

other [25], making natural systems vastly more compli-

cated to easily study. While keystone species have been

demonstrated to drive community assembly [16, 17], it

remains unknown whether keystone taxa (or their re-

spective functions) are indispensable for the stability of

the larger microbiome. Experimental manipulations of

soil microbiomes by the removal of putative keystone

taxa and assessment of the impacts can be used to ad-

dress this question. Novel approaches such as the isola-

tion chip [26] and microbial trap [27] have been

developed to study such taxa. These techniques can be

used to isolate and characterize the keystone taxa, but

do not allow for microbiome manipulation such as

through the specific removal of keystone taxa. Fine-scale

soil microcosms have the advantage of enabling the ma-

nipulation of microbial diversity by gradually removing

the rare taxa from a microbiome under controlled in situ

conditions [28, 29]. For instance, soil dilution has been

used to show that the function of the nitrogen (N) cycle

is significantly impaired by a reduction in microbiome

diversity [30, 31]. This dilution-to-extinction approach

can be used to explore how the function of a micro-

biome is linked to diversity and stability and to further

study the function of keystone taxa.

In our previous study [32], we investigated the impacts

of microbial α-diversity on stochastic/deterministic

microbiome assembly processes. In that study, we gener-

ated a series of bacterial communities with varying levels

of biodiversity by inoculating sterilized soils with a seri-

ally diluted soil suspension under various soil pH condi-

tions. The taxonomic features and potential functional

traits of the soil bacterial communities were assessed by

DNA sequencing. The re-assembled bacterial communi-

ties under different pH conditions indicated that sto-

chastic assembly processes were dominant in high-

diversity communities while low-diversity triggered de-

terministic microbiome assembly processes were princi-

pally due to environmental filtering. This fine-scale

experimental design was useful to evaluate the variations

of re-assembled microbiomes from the same inoculum

of different diversities under a broad range of soil pH.

The results of this prior study point to the need for fur-

ther analyses in order to address the relationship be-

tween soil microbiome diversity and stability. Therefore,

in this study, we analyzed the prior targeted 16S rRNA
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gene and shotgun metagenomic sequencing data using

network analysis and machine learning methods in order

to identify keystone taxa and their related functional

characteristics. We hypothesized that the microbial com-

munities with high phylogenetic diversity may contain

more keystone taxa and functions associated with the

maintenance of soil microbiome stability.

Methods
The experimental setup described here is based on our

previous study [32], and the current work is a follow-up

study to address the relationship between soil micro-

biome diversity and stability.

Soil collection and microcosm incubation

The red soil was collected in August 2016 from Yingtan

(116° 94′ E, 28° 21′ N), Jiangxi Province of South China.

This soil is an example of Ferralic Cambisol according

to the FAO/UNESCO System of Soil Classification. A

fresh soil sample was obtained from the upper 20 cm of

a grassland ecosystem, and soil physicochemical proper-

ties were measured [33]. Briefly, the soil pH was deter-

mined using a pH meter (PHS-3C, Shanghai, China) in a

soil-to-water ratio of 1:5. The soil organic matter con-

tent was determined using the potassium dichromate

volumetric method. The available nitrogen was mea-

sured by the alkaline hydrolyzable diffusion method. The

available phosphorus was extracted with sodium bicar-

bonate and then determined using the molybdenum blue

method. The available potassium was extracted with am-

monium acetate and determined using flame photom-

etry. The soil was determined to have a pH of 5.3 (± 0.3,

n = 5) and with 1.6% (± 0.07%, n = 5) organic matter,

53.9 mg kg-1 (± 6.5 mg kg-1, n = 5) available nitrogen,

0.95 mg kg-1 (± 0.25 mg kg-1, n = 5) available phos-

phorus, and 61.5 mg kg-1 (± 3.5 mg kg-1, n = 5) available

potassium. The soil was sieved with a 2-mm sieve and

homogenized. A portion of the soil for inoculum prepar-

ation was temporarily stored (< 2 weeks) under room

temperature (20 °C) and constant moisture level (30% of

field capacity) in regularly aerated bags, while the rest

was sterilized using γ-irradiation (> 50 kGray) (Xiyue Ra-

diation Technology Co., Ltd., Nanjing, China) [34].

Each soil microcosm was established by placing 250 g

of γ-radiation-sterilized soil into a 500-mL bottle. These

microcosms were pre-incubated at 20 °C in the dark for

4 weeks, and sterile distilled water was added every 2

days to maintain a constant moisture level of 45% of

field capacity. During this pre-incubation period, lime

(CaO) and ferrous sulfate (FeSO4) were added along

with sterile distilled water to generate a soil pH gradient

of 4.5, 5.5, 6.5, 7.5, and 8.5. After pre-incubation, we

conducted a sterility test on agar plates and a DNA ex-

traction test using the PowerSoil DNA Isolation Kit (Mo

Bio Laboratories Inc., Carlsbad, CA, USA) to confirm

the sterility of these microcosm soils and the disruption

of the extracellular DNA during the pre-incubation

period. A 10-1 soil suspension was prepared by placing

20 g of fresh soil in 180 ml of sterile distilled water in a

blender for 5 min. This 10-1 suspension was then serially

diluted to create the 10-4, 10-7, and 10-10 suspensions.

The suspension on each dilution level was fully mixed

before inoculation. The 10-1, 10-4, 10-7, and 10-10 sus-

pensions were then inoculated into the microcosms at

each pH level (Additional file: Figure S1). Each treat-

ment was replicated six times. The untreated original

soil was incubated as a control. Therefore, a total of 126

microcosms were established [(5 pH levels × 4 dilution

levels + 1 original soil) × 6 replicates]. All microcosms

were incubated at 20 °C in the dark for 16 weeks at 45%

field capacity. Soil pH was measured every 2 weeks with

a pH meter (PHS-3C, Shanghai, China) at a soil-to-water

ratio of 1:5.

DNA extraction and sequencing

During incubation, we collected two replicate soil sam-

ples from each microcosm every 4 weeks. The total

DNA was extracted from 0.25 g of soil using the Power-

Soil DNA Isolation Kit (Mo Bio Laboratories Inc., Carls-

bad, CA, USA). Three successive DNA extractions of

each soil sample were pooled to minimize any DNA ex-

traction bias. The DNA quality was assessed using a

NanoDrop ND-2000 spectrophotometer (NanoDrop,

ND2000, Thermo Scientific, 111 Wilmington, DE, USA),

according to the 260/280-nm and 260/230-nm absorb-

ance ratios.

16S rRNA gene abundance was investigated every 4

weeks using quantitative real-time PCR with an ABI

7500 real-time PCR system (Applied Biosystems, USA).

The primers F347 (5′-GGAGGCAGCAGTRRGGAAT-

3′) and R531 (5′-CTNYGTMTTACCGCGGCTGC-3′)

[35] were used. The 16S rRNA gene copies in all micro-

cosms did not increase after 8 weeks of incubation, and

we found no significant changes among dilution levels

and soil pH levels at the end of incubation period (Add-

itional file: Figure S2).

With the consideration that 16S rRNA gene copies of

all microcosms did not increase until the last month of

the incubation period, only the DNA extractions from

the 16-week-incubated samples were used for 16S rRNA

gene amplicon sequencing and shotgun metagenomic

sequencing. The primers for the V4 hypervariable region

of the bacterial 16S rRNA gene (515F: 5′-GTGCCAGC

MGCCGCGGTAA-3′ and 806R: 5′-GGACTACHVG

GGTWTCTAAT-3′) [36] were used to assess the com-

position and diversity of the incubated bacterial commu-

nities on an Illumina MiSeq instrument (300-bp paired-

end reads). The raw sequencing data was processed
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using the UPARSE pipeline (http://drive5.com/usearch/

manual/uparse_pipeline.html) [37] with assemble paired

reads (minimum 40 bp overlap between forward and re-

verse reads with less than 2 mismatches), quality control

(quality score 30), trim length (minimum length 200 bp),

dereplication, and the removal of singletons and

chimeric sequences. The remaining sequences were clus-

tered into operational taxonomic units (OTUs) at 97%

similarity and the taxonomic assignment for each OTU

was performed using the Silva database (Release 128)

(https://www.arb-silva.de/).

The same DNA extractions for amplicon sequen-

cing were used for shotgun metagenomic sequencing

on an Illumina HiSeq2000 platform (150-bp paired-

end reads). The raw sequences were quality filtered

based upon a minimum Q score of 30, assembled

using IDBA 1.1.1 [38], and then filtered using a

minimum length of 150 bp. After quality control, all

genes were predicted using MetaGeneMark v4.33

[39] and clustered at 95% similarity using CD-HIT

v4.6.2 [40]. The number of reads mapping to genes

for each sample was calculated using SOAPaligner

2.21 [40]. The Kyoto Encyclopedia of Genes and Ge-

nomes (KEGG, Version 58) database was used for

functional gene annotation, and the bacterial phylo-

genetic information extracted from Nucleotide Se-

quence Database (Version 2020-05-15) was used for

taxonomic annotation. The basic local alignment

search tool (BLAST) was used for both functional

gene annotation and taxonomic annotation. The de-

tailed sequences processing could be found in the

previous study [32].

Community stability index

Soil bacterial community stability was calculated using

the rarefied OTU table at 11,020 reads per sample,

which was created according to the minimum se-

quence number of 16S rRNA gene amplicon reads

per sample. Communities of the same dilution level

were grouped since they were re-assembled from the

same inocula, hence four sample groups were ob-

tained for dilution levels of 10-1, 10-4, 10-7, and 10-10,

respectively. Soil bacterial community stability was

evaluated by average variation degree (AVD), which is

calculated using the deviation degree from the mean

of the normally distributed OTU relative abundance

among different pH levels. Lower AVD value indicates

higher microbiome stability. The variation degree for

each OTU was calculated using the following equa-

tion (Eq. 1), in which ai is the variation degree for an

OTU, xi is the rarefied abundance of the OTU in one

sample,‾xi is the average rarefied abundance of the

OTU in one sample group, and δi is the standard

deviation of the rarefied abundances of the OTU in

one sample group.

aij j ¼
xi − xij j

δi
ð1Þ

The AVD values were calculated using the following

equation (Eq. 2), in which k is the number of samples in

one sample group, n is the number of OTUs in each

sample group.

AVD ¼

Pn
i¼1

xi − xij j

δi

k � n
ð2Þ

To verify this equation, a different rarefaction depth of

8000 reads per sample and a different normalization

method of DESeq variance stabilization were used to cal-

culate the AVD values. Furthermore, the dataset from

the bacterial consortium stability study of Niu et al. [19]

was used to test the reliability of AVD for evaluating

microbiome stability.

Machine learning classification and 10-fold cross-

validation

In order to test the importance of different microbial

functional categories in structuring ecosystem function-

ality, we implemented machine learning classification

methods. Machine learning is a serviceable technology

that has demonstrated good performance in the classifi-

cation of large datasets [22]. We used 10-fold cross-

validation to investigate which learning algorithms

should be used for functional gene classification in this

study. The 10-fold cross-validation consists of dividing

the training set into z parts, in which z-1 parts are used

as a training set and the remaining one part is used as a

validation set. This method has been extensively tested

and shown to provide an estimation of the true error

rate [41], although the accuracy (bias and variance) has

been questioned when the sample size is small [42].

In this study, the distribution of functional gene cat-

egories in all communities and their corresponding AVD

values were collected as the dataset for 10-fold cross-

validation. The relative abundances of functional gene

categories in all communities were used as independent

variables, whereas their corresponding AVD values were

used as dependent variables. A total of seven machine

learning classification methods (decision tree, boosting,

bagging, nearest neighbor algorithm, support vector ma-

chine, random forest, and artificial neural network [43–

48]) were tested (Additional file: Table S1). Average

error rates were calculated to determine which method

was capable of accounting for the complex interactions

among gene categories. The “Random forest” method
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exhibited the highest accuracy combined with the lowest

average error rate of 0.096, whereas the “Decision tree”

method exhibited the highest average error rate of 0.186

(Additional file: Figure S3). Therefore, we evaluated the

importance of individual gene categories associated with

the soil microbiome AVD value using the “Random for-

est” method. The importance of each functional category

was evaluated according to the mean decrease accuracy,

which is the decreasing degree of random forest classifi-

cation accuracy calculated by changing an independent

variable into a random value. The change in value of a

more important independent variable (functional cat-

egory) will induce a greater decreasing degree of random

forest classification accuracy. Therefore, the greater de-

cline of the accuracy, the greater importance the inde-

pendent variable is. The 10-fold cross-validation was

performed using R statistical language and environment.

The code for 10-fold cross-validation is provided in the

supplementary material (Supplementary Note 1).

Functional gene co-occurrence network analysis

The relative abundance of each functional gene category

(KEGG functional gene annotated level 3) was calculated

for co-occurrence network analysis. All of the calculated

gene categories were from broader categories (KEGG

functional gene annotated level 1) of metabolic func-

tions, genetic information processing, organismal sys-

tems, cellular processes, and environmental information

processing. Among these broad categories, the metabolic

functions were further classified as broad or specialized

metabolic functions. Previous studies have demonstrated

that the “Sulfur metabolism” function referring to the

oxidation, reduction, or disproportionation of sulfur

compounds of various oxidation states to generate en-

ergy for cellular activity and growth [49] and the “nitro-

gen metabolism” function referring to ammonia

oxidation, nitrification, or denitrification [50, 51] were

restricted to specialized microorganisms. The methano-

gen and methane oxidizing species involved in the “Me-

thane metabolism” function were narrowly distributed

for their aerobic/anaerobic requirements or through the

coupling of metabolism with nitrogen and sulfur [52,

53]. The gene clusters assigned to “Terpenoids and Poly-

ketides metabolism” often comprise a minority of Acti-

nobacteria and Bacillus in the soil microbial community

[54]. Several investigations have demonstrated that the

enzymes involved in “Xenobiotics biodegradation/me-

tabolism” exist within a small group of microorganisms

[55, 56]. Therefore, the specialized metabolic functions

comprise those related to “sulfur metabolism,” “nitrogen

metabolism,” “methane metabolism,” “terpenoids and

polyketides metabolism,” and “xenobiotics biodegrad-

ation/metabolism” which have been shown to be limited

to specialized taxa. However, other metabolic functional

gene categories, including “glycolysis/gluconeogenesis,”

“TCA cycle,” “pentose phosphate pathway,” “fructose

and Mannose metabolism,” “galactose metabolism,”

“starch and sucrose metabolism,” “pyruvate metabolism,”

“glyoxylate and dicarboxylate metabolism,” “butanoate

metabolism,” “propanoate metabolism,” “amino acid me-

tabolism,” and “lipid metabolism,” are mainly related to

intracellular metabolism of carbohydrates which are

basic metabolic functions of living microorganisms,

hence they were defined as broad metabolic functions.

A valid co-occurrence correlation was assigned be-

tween gene categories (KEGG functional gene annotated

level 3) if the spearman’s correlation coefficient (r) was

greater than 0.75 with a P value < 0.01 (Supplementary

Note 2). The P values were adjusted by multiple testing

corrections using the Benjamini-Hochberg’s FDR (false

discovery rate) method to reduce the chance of false-

positive results [57]. Topological characteristics were

calculated to describe the complexity of gene co-

occurrence networks, including average degree (avgK,

which is a key topological property to describe how well

a node is connected to the others, higher avgK value

means a more complex network), average clustering co-

efficient (avgCC, which is used to measure the extent of

module structure present in a network), average path

distance (APD, which is the average value of the dis-

tances between every two nodes in a network, higher

APD value means a reduced coupling among nodes in a

network), modularity (M, which is calculated to measure

how well a network is able to be separated into mod-

ules), and graph density (GD, which is closely related to

the average degree). Each network was statistically com-

pared to an identically sized Erdös-Réyni random model

[58]. The topological role of each gene was determined

according to the Zi degree (how well a node is con-

nected to other nodes in the same module) and Pi de-

gree (how well a node is connected to the nodes in

other modules) [59]. According to the suggested Zi and

Pi degree thresholds [60], all genes were categorized into

four subcategories: peripherals (Zi ≤ 2.5 and 0 ≤ Pi ≤

0.62), connectors (Zi ≤ 2.5 and Pi> 0.62), module hubs

(Zi> 2.5 and Pi ≤ 0.62), and network hubs (Zi> 2.5 and

Pi> 0.62). Overall, the correlations were calculated using

the psych package (version 1.8.12) [61] in R software

(version 4.0.2). The networks were visualized, and the

topological characteristics were calculated using Gephi

software (version 0.9.2) [62].

Statistical analysis

The phylogenetic diversity index (alpha-diversity) calcu-

lation was performed based on the rarefied OTU table

using the vegan R package [63]. Phylogenetic community

dissimilarity was calculated by FastUnifrac using the
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normalized percent frequency based on the rarefied

OTU table [64].

We calculated the mean nearest taxon distance metric

using the picante R package [65] and implemented a

previously developed null modeling approach to calcu-

late the β-nearest taxon index (βNTI) to infer the com-

munity assembly processes [5]. A βNTI > 2 is considered

the result of the variable selection of deterministic pro-

cesses with significantly more phylogenetic turnover

than expected. A βNTI ≤ 2 is considered the result of

the homogeneous selection of deterministic processes

with significantly less phylogenetic turnover than ex-

pected. Values of |βNTI| less than 2 indicate that the

differences in phylogenetic composition are the result of

stochastic processes [5]. The R code for calculating

βNTI metrics is provided in the supplementary material

(Supplementary Note 3).

For the metagenomic DNA sequencing data, the per-

cent frequency of one functional category was defined as

the number of sequences affiliated with that category di-

vided by the total number of sequences per sample. This

normalized metagenomic data was utilized for the heat-

maps in order to visualize the functional genes that were

enriched or depleted within each functional category.

Data were normalized by subtracting the mean and div-

iding by the standard deviation. Duncan’s multiple com-

parisons tests were used to calculate significant

differences among samples while Tukey’s HSD tests

were used to calculate the significance between two sam-

ples. All correlations were calculated using Spearman

correlations. All statistical analyses were performed

using R software (version 4.0.2; https://www.r-project.

org/).

Results
Dilution reduces the alpha-diversity and stability of soil

bacterial community

Taxonomic abundance-based Weighted UniFrac com-

munity dissimilarity between bacterial communities of

different dilution levels and the un-diluted initial soil

showed significantly larger variances with increased dilu-

tion (Additional file: Figure S4). However, the dissimilar-

ity between the 10-1 diluted samples and the undiluted

initial soil samples exhibited no significant changes in

dissimilarity within the undiluted initial soil samples.

Considering that manipulation of the soil pH was not

performed to the undiluted initial soil sample along with

the finding of no significant differences with the re-

assembled 10-1 diluted bacterial communities, we only

analyzed the diluted and re-assembled communities in

this study.

Dilution imposed significant effects on soil bacterial

alpha-diversity (Fig. 1a). Phylogenetic diversity was high-

est in the least diluted soils and was significantly reduced

(P value < 0.01 based on Tukey’s HSD test) with in-

creased dilution. We identified significant positive corre-

lations between βNTI values and differences in pH

(Spearman’s correlation coefficient R2
≥ 0.35, P value <

0.001, two-sided tests) at each dilution level (Additional

file: Figure S5A and Supplementary dataset 1). When all

dilutions were combined, the relationship between βNTI

and differences in soil pH remained significant (Spear-

man’s correlation coefficient R2 = 0.23, P value < 0.001,

two-sided tests, Additional file: Figure S5B). Under the

same differences in soil pH, dilution levels were posi-

tively correlated with βNTI (Spearman’s correlation co-

efficient R2
≥ 0.59, P value < 0.001, two-sided tests, Fig.

1b).

The AVD values increased with increasing dilution

level regardless of sample depth (11,020 or 8000 reads

per sample, Additional file: Supplementary datasets 2

and 3) or when a different normalization method of

DESeq variance stabilization was used (Additional file:

Figure S6 to S8). In order to verify the reliability and ap-

plication of the AVD index as an indicator of micro-

biome stability, we calculated the AVD values of

different bacterial consortia from the study of Niu et al.

[19], in which a seven-strain synthetic community [En-

terobacter cloacae (Ecl), Stenotrophomonas maltophilia

(Sma), Ochrobactrum pituitosum (Opi), Herbaspirillum

frisingense (Hfr), Pseudomonas putida (Ppu), Curtobac-

terium pusillum (Cpu), and Chryseobacterium indolo-

genes (Cin)] was constructed and the community

stability was assessed by the detection of community

composition after the removal of one species within the

original community (Additional file: Supplementary

dataEx1). Niu et al. [19] found that E. cloacae (Ecl) was

critical in maintaining the stability of this synthetic bac-

terial community. We found that the AVD value was the

highest when E. cloacae was removed from the commu-

nity (Additional file: Figure S9). This suggested that

AVD was suitable to indicate microbiome stability.

When these datasets were divided according to soil

pH within each dilution level, low-AVD values were

identified in soils that were close to neutral pH (Add-

itional file: Figure S6, S7 and S10). To evaluate the con-

tribution of species richness to the stability of the

bacterial community, we examined the relationship be-

tween AVD values (in 11,020 reads per sample of rar-

efaction depth) and bacterial species richness. The AVD

values were found to be negatively correlated with spe-

cies richness (Spearman’s correlation coefficient R2 =

0.47, P value = 0.0009, Fig. 1c).

To elucidate the relationship between functional genes

and microbiome stability, evaluation of the importance

of gene categories associated with AVD values was con-

ducted by the “random forest” method (Additional file:

Supplementary dataEx2). The importance of a
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proportion of specialized metabolic functions were

higher (mean decrease accuracy values > 0.6) than those

of other functional categories (Fig. 1d). Among these,

“nitrogen metabolism” (mean decrease accuracy values =

0.736) and “phosphonate and phosphinate metabolism”

(mean decrease accuracy values = 0.749) were deemed

the most important functions. Therefore, the change in

relative abundance of the overall specialized metabolic

functions may induce a greater decline of mean decrease

accuracy value. This suggests that lower AVD values are

associated with a higher abundance of specialized meta-

bolic functions, followed by functional categories of

broad metabolic functions, environmental information

processing, and finally, cellular processes.

Dilution simplifies the functional gene co-occurrence

network

We sought to determine functional gene co-occurrence

patterns using network analyses based on strong and sig-

nificant correlations (Spearman’s correlation coefficient r

> 0.75, P value < 0.01, two-sided tests) at each dilution

level. Modularity indices decreased from 0.680 to 0.579

with dilution (Table 1). Despite the impact of dilution

on the overall functional gene co-occurrence patterns

(Fig. 2), the individual networks could be divided into

two main gene aggregates. This was especially true in

the less diluted networks. We defined one gene aggre-

gate as “metabolic processes” which was primarily com-

prised of genes encoding broad and specialized

metabolic functions. The other gene aggregate was de-

fined as “environmental signal responses” that contained

genes related to cellular processes and environmental in-

formation processing. The remaining functional categor-

ies, genetic information processing, and organismal

systems were not specifically present in either gene ag-

gregate. It should be noted that there was only one gene

aggregate in the 10-10 diluted network.

For all networks, the average clustering coefficient,

average path distance, and modularity indices in the em-

pirical networks were larger than those of their respect-

ive identically sized random networks (Table 1). Dilution

exhibited a strong impact with a reduction in the total

nodes (functional genes) and links (positive or negative

correlations). The average degree, average clustering

Fig. 1 Diversity and variations of the re-assembled bacterial communities. a The variances of bacterial phylogenetic diversity indices across soil

pH and dilution gradients. b The relationship between βNTI and dilution level. ΔpH is the differences in soil pH. c The relationship between

bacterial OTU richness and average variation degree (AVD) of re-assembled bacterial communities. Asterisks indicate significance: **P value < 0.01

based on two-sided tests. Lg(Dil): Lg transformed dilution level. d The importance of functional categories based on random forest method (mtry

= 9, ntree = 660) with a OOB (out-of-bag) estimate of error rate of 8.75%. Different letters indicate significant differences (P value < 0.05) between

functional categories according to Duncan’s multiple comparison. The top two points of specialized metabolic functions labeled by blue outer

rings indicate the functions of “nitrogen metabolism” (mean decrease accuracy values = 0.736) and “phosphonate and phosphinate metabolism”

(mean decrease accuracy values = 0.749)
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coefficient, modularity, and graph density indices were

lower in the more diluted networks, indicating that dilu-

tion reduced the complexity of the re-assembled soil

microbiome. These indices also exhibited a slight in-

crease in the 10-4 diluted network, compared to the 10-1

diluted network. In addition, the average path distance

followed an opposite trend. In summary, dilution re-

duced the complexity of gene co-occurrence networks.

For the gene aggregate “metabolic processes,” although the

number of positive and negative correlations both decreased

with increasing dilution, we observed that the number of

positive correlations was nearly identical to that of negative

correlations at every dilution level (Table 1). Notably, special-

ized metabolic functional genes were dominant in the less di-

luted networks, whereas broad metabolic functional genes

became dominant in the more diluted networks (Fig. 2). The

majority of negative correlations were identified to be be-

tween the broad metabolic functional and the specialized

metabolic functional genes, while most of the positive corre-

lations were detected between genes within either the broad

or specialized metabolic functions. Furthermore, the gene ag-

gregate of “environmental signal responses,” in which most

of the co-occurred genes were positively correlated (Table 1),

gradually became less complex with increasing dilution.

Lastly, the gene aggregations of “metabolic processes” and

“environmental signal responses” were not observed in the

most diluted network (Fig. 2d).

Keystone microorganisms devoted to specific functions

facilitate the stability of soil microbiome

According to the connection degree of individual

node within (Zi degree) and among (Pi degree)

modules, we evaluated the topological roles of all

functional categories and defined the keystone func-

tions within each network (Additional file: Table S2).

All of these keystone functional categories were also

detected as module hubs. In the less diluted networks

(10-1 and 10-4), the nodes of “nitrogen metabolism”

and “phosphonate and phosphinate metabolism” in

specialized metabolic functions were keystone func-

tions within the “metabolic processes” gene aggregate.

Keystone nodes corresponding to “adherens junction”

in cellular processes and “ion channels” in environ-

mental information processing were observed in the

“environmental signal responses” gene aggregate. In

contrast, in more diluted networks (10-7 and 10-10),

the keystone nodes of “citrate cycle,” “glycolysis/glu-

coneogenesis,” and “starch and sucrose metabolism”

in broad metabolic functions and “bacterial chemo-

taxis” in cellular processes were identified.

Since the specialized metabolic functions of “nitro-

gen metabolism” and “phosphonate and phosphinate

metabolism” were defined as the most important

functions by the random forest classification method

and by the identification of keystone nodes in the

functional gene co-occurrence network analysis that

are both associated with microbiome stability, we

then performed taxonomical annotation to identify

the related taxa. A total of 8 genera for “nitrogen me-

tabolism” and 44 genera for “phosphonate and phos-

phinate metabolism” were identified (Fig. 3

and Additional file: Supplementary dataset 4). All

these genera were more abundant in less diluted sam-

ples with a higher impact imparted by dilution than

Table 1 The topological properties of the functional gene co-occurrence networks on four dilution levels and their respective

identically sized random networks

Network indexes Dilution

Dil = 10-1 Dil = 10-4 Dil = 10-7 Dil = 10-10

Empirical Networks

Total nodes 231 205 184 183

Total links 1844 1993 736 603

Metabolic process (positive-negative) 718–712 532–394 269–276 293–277

Environmental signal responses (positive-negative) 368–4 893–8 188–1 –

Average degree (avgK) 17.67 18.39 8.01 7.59

Average clustering coefficient (avgCC) 0.647 0.662 0.586 0.538

Average path distance (APD) 4.22 3.39 4.64 4.71

Modularity (M) 0.679 0.680 0.625 0.579

Graph density (GD) 0.168 0.171 0.088 0.072

Random Networks

Average clustering coefficient (avgCC) 0.202 ± 0.008 0.198 ± 0.007 0.113 ± 0.007 0.153 ± 0.014

Average path distance (APD) 2.499 ± 0.025 2.365 ± 0.021 2.602 ± 0.021 2.729 ± 0.023

Modularity (M) 0.265 ± 0.004 0.258 ± 0.005 0.232 ± 0.006 0.223 ± 0.005
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Fig. 2 Functional gene co-occurrence networks at every dilution level. Valid co-occurrence of functional genes with strong (Spearman’s

correlation coefficient r > 0.75) and significant (P value < 0.01) correlations at 10-1 (a), 10-4 (b), 10-7 (c), and 10-10 (d) dilution levels. Color points

(nodes) are gene categories (KEGG functional gene annotated level 3). The size of each point is the node degree (proportional to the number of

connections). A blue connection (edge) between two nodes indicates a negative correlation, while a red edge indicates a positive correlation.

The capitals inside the nodes are module hubs in the individual network. Dotted line frames encompass the gene aggregates. The left frame

shows the gene aggregate of “metabolic processes,” and the right frame shows the gene aggregate of “environmental signal responses” for each

network (only one gene aggregate was observed in the 10-10 diluted network). The nodes labeled by letters (A to H) are keystone genes, and the

details for these keystone genes are listed in Table S2
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pH (Fig. 3a). Nitrospira was the most frequently de-

tected genus contributing to soil nitrogen metabolism,

followed by Rhizobacter, Mesorhizobium, Steroidobac-

ter, and Burkholderia affiliated with the Proteobacteria

(Fig. 3b). In addition, Gemmatimonas, affiliated with

the Gemmatimonadetes, was the most abundant genus

involved in phosphonate and phosphinate metabolism,

followed by Solirubrobacter within Actinobacteria, and

Brevundimonas and Rhizomicrobium within Proteobac-

teria. In comparison, although some of the above

identified genera were not detected by amplicon se-

quencing (Additional file: Figure S11), we found the

abundant genera in functional gene annotation, such

as the genera Nitrospira, Rhizobacter, and Burkhol-

deria associated with soil nitrogen metabolism and

the genera Gemmatimonas and Brevundimonas

Fig. 3 Taxonomic annotation of the two keystone functions. a Relative abundances of the 8 genera for “nitrogen metabolism” and 44 genera for

“phosphonate and phosphinate metabolism” across soil pH and dilution levels, based on shotgun metagenomic data. The relative abundances of

genera at each row were normalized by removing the mean and dividing by the standard deviation. The color from green to white represents a

relative abundance of each genus from high to low. Five columns at each dilution level within the heatmap indicate the soil pH range of 4.5

(left) to 8.5 (right). The genera are colored by phylum on the left side. b The relative abundances of the corresponding genera based on shotgun

metagenomic data. Error bars represent standard deviations (SD, n = 60)
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associated with phosphonate and phosphinate metab-

olism, were also detected in high frequencies. This

supports a general consistency of these two datasets

for the identification of keystone microbes.

Discussion
The relationship of biodiversity and ecosystem stability

in microbial ecosystems has been debated for many

years within the field of theoretical ecology by using

interaction models [25] or artificially cultivated simpli-

fied systems consisting of only a few species [66]. Due to

the high complexity, high species diversity, and intract-

ability of the soil microbiome, appropriate experiments

that address this ecological theory in soil microbial eco-

systems remain less explored. In general, the soil micro-

biome is characterized by functional redundancy,

suggesting a moderate reduction in the abundance of

any taxa will likely result in a marginal impact on the

overall function of the soil microbiome since other bac-

teria can also perform an identical function [67]. How-

ever, an intensive diversity loss will induce impaired

ecosystem functioning [30, 31].

Dilution reduced the bacterial phylogenetic diversity in

the inocula. Consequently, this reduced diversity should

significantly impact the soil microbial assembly pro-

cesses [32]. The identified relationships between βNTI

and dilution level and difference in soil pH indicated

that there is a transition in the process of soil micro-

biome assembly from significantly less than expected

phylogenetic turnover to significantly more than ex-

pected phylogenetic turnover as the dilution level or dif-

ference in soil pH increases [5]. Therefore, this result

revealed that variations in the soil microbiome among

different pH levels were greater at higher dilution levels.

Microbiome stability can be described by the resilience

(the community recovery process to an alternative stable

state) or the resistance (the community remains un-

changed in response to a disturbance) of a community

[68]. Thus, microbiome stability may be evaluated by

comparing variations in microbiome composition/func-

tion facing when challenged with different environmen-

tal conditions, e.g., temperature, soil pH [69]. If a

community is sufficiently stable, there will not be large

compositional or functional variations under sustained

environmental perturbation. Here, we developed a new

strategy to study the stability of the soil microbiome by

calculating AVD values based on our experimental de-

sign. This strategy is not limited by the number of sam-

ples and has advantages in evaluating the community

stability over other methods, such as calculating fold

changes [70] and community distances [19], which can

only be used to compare two samples at a time. As ex-

pected, in this study, lower AVD values exhibited lower

variation in the less diluted samples that harbored higher

bacterial phylogenetic diversity. Moreover, higher phylo-

genetic diversity often occurred near neutral pH and

corresponded to lower AVD values. As such, smaller

variations were associated with higher microbial phylo-

genetic diversity in the microbiome, indicating the posi-

tive relationship between the stability and biodiversity of

soil microbiome.

Network analysis can provide comprehensive insights

into the microbiome and disentangle co-occurrence pat-

terns on both the phylogenetic and functional levels

[71]. We observed that the functional gene co-

occurrence networks were scale-free and matched the

behavior of a small-world with intrinsic modular archi-

tecture due to a larger average clustering coefficient,

average path distance, and modularity indices as com-

pared to identically sized random networks [59]. Dilu-

tion exerted a remarkable effect on soil functional gene

co-occurrence networks in terms of average degree,

average path distance, and modularity. Lower average

degree, graph density, and average clustering coefficient

values coupled with increased average path distance in

the more diluted networks illustrated the reduced coup-

ling among the dominant functional nodes. The 10-4 di-

luted network was unique in that the number of total

nodes was lower but there were slightly higher values of

average degree, graph density, and average clustering co-

efficient, compared to the 10-1 diluted network. This

suggests that a moderate diversity loss may increase the

metabolic efficiency of the soil microbiome despite a de-

cline in microbial diversity [25, 70]. As higher modular-

ity has been suggested as being essential for increasing

the stability of a network and promoting the stability of

a microbiome [72], the diluted soil microbiome that ex-

hibited low modularity indicated an unstable commu-

nity. This is coupled with higher AVD values that were

associated with lower bacterial phylogenetic diversity.

Our previous study [32] demonstrated that dilution re-

duced the functional diversity of both the specialized

and broad functions synchronously, with a decrease in

the relative abundance of specialized metabolic func-

tional genes and an increase in that of broad metabolic

functional genes. Here, the majority of negative correla-

tions were observed between the specialized and broad

metabolic functional genes, which are likely due to the

opposite trends in relative abundances of these two types

of genes with serial dilution. A recent study [73] sug-

gested that soil microbiome diversity and the associated

microbial network complexity are positively related to

ecosystem multifunctionality because the functional re-

dundancy decreased when microbial diversity was low,

especially for the functions that were only supported by

few taxa. Broad metabolic functions are usually associ-

ated with intracellular metabolism that can be accom-

plished within a single cell. However, specialized
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metabolic functions may involve multiple steps by a

series of functionally or taxonomically specific microbial

species that require environmental informational sensing

and cell membrane transport [74, 75]. Consequently, di-

lution decreased the microbial diversity and reduced the

occurrences of specialized metabolic functional genes

which appear to have negative impacts on ecosystem

multifunctionality and microbiome stability.

We analyzed the metagenomic dataset with diverse

classification methods and found that the random forest

classification method, which is widely used in soil micro-

bial ecology [76, 77], was the most accurate in identify-

ing the importance of all functional categories. In

addition, the highly connected members are keystone

members in co-occurrence network [78]. Interestingly,

both the random forest classification and functional gene

co-occurrence network analyses demonstrated that the

specialized metabolic functions of “nitrogen metabolism”

and “phosphonate and phosphinate metabolism” were

the keystone functions associated with the AVD values

and likely contributed to microbiome stability.

Taxonomic annotation of the keystone functions of

“nitrogen metabolism” and “phosphonate and phosphi-

nate metabolism” demonstrated that a group of bacterial

genera could possibly be keystone species associated

with microbiome stability. The majority of these bacteria

were identified within the phyla Actinobacteria and Pro-

teobacteria. Previous studies based on phylogenetic net-

work analysis of 16S rRNA gene amplicon sequencing

data have also found that the majority of bacterial key-

stone taxa were members of the Proteobacteria and Acti-

nobacteria [79, 80]. Therefore, the keystone taxa

identified by the functional gene co-occurrence networks

and machine learning analyses based on shotgun meta-

genomic sequencing data were consistent with those

identified from amplicon sequencing data.

Not surprisingly, the function of “nitrogen metabol-

ism” was detected to be a keystone function contain-

ing the potential keystone genera of Nitrospira,

Rhizobacter, Mesorhizobium, Steroidobacter, and Bur-

kholderia. Nitrospira are ammonia- and nitrite-

oxidizing bacteria [81, 82], whereas Rhizobacter,

Mesorhizobium, and Burkholderia comprise nitrogen-

fixers [83, 84]. Additionally, Steroidobacter is known

to be related with denitrification processes [85]. Inter-

estingly, numerous studies have revealed that nitrogen

cycling taxa are consistently identified as keystone

taxa across diverse ecosystems [80, 86, 87]. In con-

trast, the function of “phosphonate and phosphinate

metabolism” is less well documented. However, the

most abundant Gemmatimonas genus is one of the

dominant groups identified in agricultural ecosystems

[16]. Other genera such as Solirubrobacter, Brevundi-

monas, and Rhizomicrobium have also been identified

as keystone taxa [86, 88, 89], many of which contain

broad metabolic functions relating to soil organic car-

bon turnover [16]. However, there is no evidence

concerning the specialized metabolic functions of

these keystone taxa.

It has been proposed that the importance of key-

stone taxa may be related to the broadness of a

process, referring to how many steps or diverse mi-

crobial groups are involved [18]. In this study, dilu-

tion reduced the overall bacterial phylogenetic

diversity and the relative abundance of the keystone

functions and taxa. This was coupled with a gradual

reduction in co-occurrence network complexity and

decreased microbiome stability. A previous study has

suggested that a decline in soil microbial diversity

does not influence the stability of soil key microbial

functional groups [9]. However, in that study, the

functional groups were not so narrowly distribute,

and the dilution level was not so intensive such that

the redundancy of the soil functions was likely not

depleted. Compared to the broad processes, such as

carbohydrate metabolism within the dominant taxa,

the specialized metabolic functions consisting of nar-

row processes (for instance, nitrogen fixation, or am-

monia oxidation that only consisting of a single step)

devoted to a small group of specific microorganisms

will be more pronounced when the keystone taxa are

interfered with [30]. Therefore, the narrowly distrib-

uted keystone components of a complex community

are associated with different types of ecosystem func-

tions [90]. We speculate that the abundant bacterial

genera that include Nitrospira, Rhizobacter, and Bur-

kholderia referring to the keystone functions of “ni-

trogen metabolism” and the abundant genera that

include Gemmatimonas and Brevundimonas referring

to the keystone functions of “phosphonate and phos-

phinate metabolism” are pivotal taxa that may con-

tribute to soil microbiome stability.

Conclusions
Our results indicated that dilution significantly reduced

phylogenetic diversity, simplified the modularity of func-

tional gene co-occurrence networks, and decreased the

soil microbiome stability. We highlighted that the spe-

cialized metabolic functions of “nitrogen metabolism”

and “phosphonate and phosphinate metabolism” devoted

to the abundant specific bacterial keystone taxa like

Nitrospira and Gemmatimonas were associated with soil

microbiome stability. Such keystone functions and taxa

may provide further insight into the prediction of micro-

bial community shifts and increase the possibility of ma-

nipulating the function of the microbiome. The possible

contribution of keystone taxa to microbiome stability

could then be harnessed to improve ecosystem services.
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Additional file 1: Figure S1. (A) Schematic diagram of soil microcosm

establishment. (B) Soil incubation experimental design. Figure S2. The Lg

transformed 16S rRNA gene copies in all microcosms at the end of

incubation period (sixteen weeks) by quantitative real-time PCR. Error bars

represent standard deviations (SD, n = 12). Dil: Dilution level. No statisti-

cally significant differences were found among different dilutions and pH

levels. Figure S3. The average error rate of 10-fold cross validation based

on seven machine learning classification methods. Error bars represent

standard deviations (SD, n = 12). Different letters above bars indicate sig-

nificant differences (P-value < 0.05) between machine learning methods

according to Duncan’s multiple comparison. Figure S4. Weighted Unifrac

distances between bacterial communities from different dilution levels

and the untreated initial soil (CK). Lg(Dil) indicates the Lg transformed di-

lution level. Lg(Dil) = 0 represents the untreated soil. Asterisks indicate

significance: **, P-value < 0.01 based on Tukey’s HSD test. n.s.: Not signifi-

cant. Boxplot: median, 25%/75% percentiles, and the highest, lowest and

extremely values are shown. Figure S5. The relationship between βNTI

and differences in soil pH on each dilution level (A) and across all sam-

ples (B). Figure S6. The average variation degree (AVD) of all OTUs on

each dilution level. Horizontal axis represents different OTUs and vertical

axis represents the absolute AVD value of each OTU. Figure S7. The aver-

age variation degree (AVD) values under different rarefaction depths of

11,020 reads and 8,000 reads per sample. Figure S8. The average vari-

ation degree (AVD) values under the normalization method of DESeq

variance stabilization. Figure S9. The average variation degree (AVD)

values of a community stability test (ref [19] of the main text) by detect-

ing the dynamics of community composition with one of the species re-

moved from the original seven-strain synthetic community. The seven

strains are E. cloacae (Ecl), S. maltophilia (Sma), O. pituitosum (Opi), H. fri-

singense (Hfr), P. putida (Ppu), C. pusillum (Cpu), and C. indologenes (Cin).

C7, all seven strains; -Cpu, remove C. pusillum from seven strains; -Cin, re-

move C. indologenes from seven strains; -Opi, remove O. pituitosum from

seven strains; -Hfr, remove H. frisingense from seven strains; -Ecl, remove

E. cloacae from seven strains; -Ppu, remove P. putida from seven strains;

-Sma, remove S. maltophilia from seven strains. Figure S10. The average

variation degree (AVD) of all OTUs on each pH level for 10-1 (A), 10-4 (B),

10-7 (C) and 10-10 (D) diluted samples. Horizontal axis represents different

OTUs and vertical axis represents the absolute AVD value of each OTU.

Figure S11. The relative abundance of the same bacterial genera in Fig.

3 detected by 16S rRNA gene amplicon sequencing. The genera with red

text were not detected in amplicon sequencing. Error bars represent

standard deviations (SD, n = 240). Table S1. The packages and functions

of machine learning classification methods. Table S2. The nodes identi-

fied as module hubs in the functional gene co-occurrence networks on

four dilution levels. Supplementary Note 1. R codes for 10-fold cross

validation using seven machine learning classification methods. Supple-

mentary Note 2. R codes for calculating spearman’s correlation between

gene categories. Supplementary Note 3. R codes for calculating βNTI

metrics.

Additional file 2: Supplementary dataset 1. Results of null modeling

analysis. Supplementary dataset 2. The relative abundance and

variation degree of each OTU in every treatment. Supplementary

dataset 3. The average variation degree (AVD) valves on different

rarefaction depths of sequencing reads. Supplementary dataset 4. The

relative abundance of every functional group by taxonomic annotation of

the shotgun metagenomic sequencing data.

Additional file 3: Supplementary dataEx1. The community

composition and the corresponding AVD values of different bacterial

consortia from the study of Niu et al. [19].

Additional file 4: Supplementary dataEx2. An example dataset for

calculating the functional importance using random forest classification

method.

Additional file 5:. The example data files and R codes for calculating

βNTI metrics.
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