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Specialized Re-Ranking: A Novel
Retrieval-Verification Framework for Cloth

Changing Person Re-Identification

Renjie Zhang, Yu Fang, Huaxin Song, Fangbin Wan, Yanwei Fu, Hirokazu Kato,
and Yang Wu

Abstract

Cloth changing person re-identification(Re-ID) can work under more complicated scenarios with higher
security than normal Re-ID and biometric techniques and is therefore extremely valuable in applications.
Meanwhile, higher flexibility in appearance always leads to more similar-looking confusing images, which
is the weakness of the widely used retrieval methods. In this work, we shed light on how to handle these
similar images. Specifically, we propose a novel retrieval-verification framework. Given an image, the retrieval
module can search for similar images quickly. Our proposed verification network will then compare the
input image and the candidate images by contrasting those local details and give a similarity score. An
innovative ranking strategy is also introduced to take a good balance between retrieval and verification
results. Comprehensive experiments are conducted to show the effectiveness of our framework and its
capability in improving the state-of-the-art methods remarkably on both synthetic and realistic datasets.

Index Terms

Cloth Changing Person Re-Identification, Verification Network, Re-Rank, Specialized Features, Part-
based Comparison
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1 INTRODUCTION

P ERSON re-identification (Re-ID) aims to find out images of the same person across multiple
images taken in different scenes. Essentially, Re-ID is a kind of unobtrusive identification. It

neither collects detailed biological traits such as fingerprints and facial appearance nor requires
the cooperation of users, which makes differences from traditional identification methods. It is
also an extremely valuable computer vision task for its use in public safety and security area
such as person localization, multi-object tracking, and video surveillance. Recently proposed
benchmarks [1, 2] and works [3, 4, 5] have greatly promoted the research in this community.
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However, these methods are limited by a strong assumption that the same people do not change
their clothes. We categorize such models as the cloth-consistent Re-ID models.

In contrast, cloth changing Re-ID models aim to recognize the person of interest under drastic
appearance changes, which is another important component of a Re-ID system. Compared with
the cloth-consistent Re-ID models, cloth changing Re-ID models can work in more complicated
scenarios for a longer time span while with a lower risk of data abuse since identification by
human eyes is also harder. These advantages make cloth changing Re-ID models more effective
and practical in various applications. On the other hand, higher appearance flexibility also
inquires models to make the correct selection from a large number of similar candidate images.
Since the person of interest is no longer limited by his/her color appearance, more candidate
images that may share similar gestures, viewpoints, or body shapes are collected in the dataset.
Distinguishing these similar images is always a tough task even by humans, not to mention a
model that is not specially designed for this. Nevertheless, we find that if we can learn how these
similar images differ, it will help the decision-making among vast similar images. Unfortunately,
many researchers have underestimated the value of this task as well as the importance of details
in this problem. Inspired by this, we try to solve this potential and challenging problem by better
analyzing those local details.

The biggest challenge in cloth changing Re-ID is that there are no features as intuitive and
decisive as color appearance. The system should pay more attention to other features like body
shapes, faces, and gestures than before. Relying too much on one specific type of features will
lead to a biased result. Generally speaking, such auxiliary features are not that representative
and can only handle some easy works[6, 7]. Following this idea, many cloth changing Re-ID
works[6, 8, 9] devotes their efforts to incorporating various auxiliary features, especially body
shape features. Unfortunately, these works fail to use these features in a correct manner. Almost
all these works take auxiliary features as a kind of general features(i.e. features given by retrieval
models). Though such design is common in cloth-consistent Re-ID, it helps little when it comes to
cloth changing Re-ID(see Table 1 and Table 2). In cloth-consistent Re-ID, candidate images usually
share similar color appearances but with remarkable differences in other aspects such as body
shape and accessories. In this case, auxiliary features can help eliminate some unwanted images
and bring a better result. In contrast, candidate images in cloth changing Re-ID datasets are
always hard to discern even by human eyes. They usually share similar global features with just
some inconspicuous distinctions in local parts. Auxiliary features are typically not representative
enough for discerning these hard samples.

To solve this problem, the key point is to re-activate auxiliary features. We notice that the
malfunction of auxiliary features is caused by the difference in data distribution. For example,
supposing auxiliary features are trained to tell whether a person is strong or not, but when ana-
lyzing the similar candidate images, we are comparing two strong people with tiny differences.
Such difference in data distribution causes the performance reduction of auxiliary features. To re-
activate auxiliary features, we should make them representative enough for distinguishing those
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hard samples. One nature idea is to learn auxiliary features that can discern similar images. To
reach this target, one should train auxiliary features to be high-granularity. On the other hand,
learning such all-mighty features with limited samples is extremely difficult. This restrictions
forces us to seek other possibilities. Alternatively, we propose verifying similar images through
auxiliary features, which mainly differs from the former method in two aspects: 1). The target is
changed to verify whether two images are from the same person. This is a more directive way
of fulfilling the responsibility of auxiliary features, i.e. eliminating unwanted images through
specific features. The verification score is adopted for inference. Compared with feature distance,
the verification score given by the network can better balance the contribution of different
auxiliary features and is thus more stable and reliable. 2). Auxiliary features are jointly decided
by two input images after adequate information exchange. Such a setting enables the model to
flexibly adjust its expression according to different combinations of the input images. In other
words, features of the same image are dynamically changing according to different images to
be compared with. We categorize this kind of features as specialized features. With the help of
specialized features, the system can actively and precisely detect the important clues in the input
image pair and produce more representative features.

In this work, we introduce a novel retrieval-verification scheme for solving this problem.
Instead of using general features extracted by Re-ID models to directly give a rank, we utilize
these features for finding a shot list of reliable candidate images in the retrieval part of the scheme.
These candidate images typically have inconspicuous while decisive differences in various points.
Then, a specially designed verification network is proposed to learn the specialized features of
these candidate images. Different from the retrieval part, the verification network takes a pair
of candidate image and query image as its inputs and outputs a similarity score of the image
pair. Such a setting forces the verification network to automatically detect, judge, and balance the
similarity of detailed local image parts. The combination of image retrieval and verification makes
proper use of both general features and specialized features. Intuitively, general features given
by the retrieval model provide a basic sketch to the person of interest, while distinctive details in
the image are in fact the ones decisive. In contrast, specialized features are induced jointly by two
input images and can better represent the difference between the images. Therefore, we utilize
general features in the retrieval part as a high-speed and high-quality similar image filtering. To
further distinguish these similar images, we apply an image verification network to explore the
specialized features of those inconspicuous yet decisive differences in local parts.

To better contrast the candidate images with the query images, hint locating becomes the key
to a successful verification network. In this work, we incorporate human part-based segmentation
to parse the image. By parsing the image into human body parts, part-to-part matching can be
accomplished automatically. This greatly help narrow the area for hint searching and improve
the efficiency of comparison. Another biggest advantage of human part-based segmentation is its
pixel-level accuracy. This allows us to analyze the input image pairs from the viewpoint of part
shape, which is overlooked by many cloth changing Re-ID works[10, 11, 12] but is actually very
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important for hard sample identification. Furthermore, high-order features including the length
ratio of limbs and body proportions, are also extremely crucial for image verification. Fusing the
above ideas, we propose a novel verification network named Local Clues oriented Verification
Network(LCVN) for similar image verification. The structure of our LCVN is shown in Fig. 2.

We also discuss another key point for establishing a successful retrieval-verification frame-
work, which is to know when to stop. Actually, building an all-mighty image verification network
is almost impractical, as it works on an exponentially boosted input space. Without enough
data and computing power, it is impossible to compare all images for similarity calculation.
Including more ”dissimilar” images usually leads to more meaningless comparisons and drastic
performance drops. To best exert the effectiveness of our verification network, we propose a new
ranking strategy for our retrieval-verification framework, which takes a good balance between
comparing more images and reducing the risk of performance drops.

In summary, our contributions are listed as follows:
(1). We propose a novel two-step retrieval-verification strategy to use metric learning results

for candidate image filtering and another professional verification network for similar image
judgment. To the best of our knowledge, this is the first work that learning specialized features
for solving the similar images problem in cloth-changing Re-ID.

(2). A specially designed image verification network named Local Clues oriented Verification
Network(LCVN) is proposed to learn the specialized features of similar images in cloth changing
Re-ID. It takes both visual clues and inter-parts relationships for giving comprehensive compar-
isons to similar image pairs. Furthermore, we also introduce a new ranking strategy that can best
exert the potential of the verification module.

(3). Comprehensive experiments are given to verify the effectiveness of our model on both
the VC-Clothes[9] dataset and the PRCC[11] dataset. Our method improves the state-of-the-
art methods by a large margin on both datasets, showing the effectiveness of our proposed
framework.

2 RELATED WORK

Person Re-Identification Typically, person re-identification is the task of finding out images of
the same person across multiple images taken in different scenes. It was the first time when
Gheissari et al. [13] published their work, Re-ID got separated from multi-camera tracking and
become an independent computer vision task. Later on, many works [14, 15, 16] followed this
task and established the framework of the Re-ID systems. Recent Re-ID systems mainly consist of
three components: feature representation, energy function, and ranking strategy. Almost all recent
works[14, 17, 18] tried to tackle the challenges in Person Re-ID from three components that are
mentioned above. Lin et al. [19] proposed a multi-camera consistent matching constraint to obtain
a globally optimal representation in a deep learning framework. In [4] and [20], the variants
of the cross-entropy loss function, such as the sphere loss and AM softmax are investigated.
Zhong et al.[18] optimized the ranking order by automatic gallery-to-gallery similarity mining.
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Through continually improving the model from these three components, satisfying results have
been achieved in recent years. However, these works heavily rely on the color appearance for
learning universal features, which is typically unavailable under the cloth changing Re-ID setting.
Besides, performance drops are observed in [7] when applying traditional Re-ID models directly
to the cloth changing Re-ID challenge, showing the necessity of a professional model for the cloth
changing Re-ID task.

Cloth Changing Re-ID approaches There are only a few works on the cloth changing Re-ID
problem[7, 8, 9, 10, 11, 12, 21]. Most of them [6, 9, 11, 22, 23] are proposed with dataset. The
common target of these methods is to learn cloth-unrelated features from body shape [7, 10, 11]
or faces [9]. Yang et al. [11] introduced a spatial polar transformation on contour sketch to learn
shape features. In [6], key points of the human body are detected to eliminate the impact of color
appearance. In [9], face patches are segmented and analyzed separately. Hong et al.[8] shares
a similar idea of learning part shape feature for identification. These works take those cloth-
unrelated features as a part of general features while failing in checking whether those auxiliary
features are representative enough for distinguishing the candidate images in cloth changing
Re-ID. In this work, we alternatively adopt cloth-unrelated features for only similar images and
train them to be specialized features. Our proposed retrieval-verification framework intentionally
incorporates an image verification model to learn the specialized features of two similar images
and to estimate their similarity score as an index for ranking. By automatically detecting and
judging the significance of those local differences, our proposed verification network can learn
more representative auxiliary features for comparing the candidate images than other methods.

Verification Models in Re-ID Verification model is a kind of model that determines whether
the input satisfies specific requirements. In some cases, verification model will output a score rep-
resenting the confidence of the decision. In general, verification models in Re-ID can be classified
into two categories. In the early stage of the development of Re-ID research, verification models
are mainly adapted from those hand-crafted features based methods[15, 16]. Verification of this
style [24] mainly follows the flow of feature extraction, photometric and geometric transforms,
and similarity estimation. In this case, the final similarity score produced by the network is used
for final ranking. The query image has to be compared with every gallery image before the final
ranking. On the other hand, recent metric learning based methods [25] prefer to incorporate a
verification module as an additional learning target to train more discriminative features. For
example, Zheng et al. [26] included verification loss as well as identification loss to learn a
discriminative CNN embedding. In this work, we also include an image verification network. Our
proposed framework is mainly different from these works by: 1). Our image verification network
is designed only for similar image pairs. 2). Our image verification is designed to learn and
analyze specialized features, while other verification networks only work on verifying general
features.
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Fig. 1. An overview of our proposed retrieval-verification framework. In the retrieval stage, we train the retrieval model F following

the standard flow. Then we project images into the feature space and construct new similar image datasets following Section 3.1.

In the verification stage, we train our verification network LCVN on these similar image pairs to learn specialized features as well

as their similarity scores. During inference, both the retrieval ranking and the verification ranking are balanced for the result. Green

dots and surrounding boxes denote positive samples. Red dots and surrounding boxes denote negative samples.

3 METHODOLOGY

This section will present our framework for the cloth changing Re-ID problem. As mentioned,
with large appearance variation, there are more pedestrians with similar appearance, bringing
interference to image retrieval. To discriminate these similar images without the loss of efficiency,
we propose a novel retrieval-verification framework, which consists of two modules: one retrieval
module for finding out similar image pairs and one verification module for comparing them. An
overview of the proposed framework is shown in Fig. 1.

3.1 Candidate Image Retrieval Module

A cloth changing Re-ID system usually works on five datasets T,VQ,VG,Q,G, representing
training set, validation query set, validation gallery set, query set and gallery set. Let X be one
of the five sets, i.e. X ∈ {T,VQ,VG,Q,G}. X contains NX images: {Xi}NX

i=1. Each image is
provided with corresponding labels Xy

i , X
c
i ∈ N, which are its identity label and cloth index label,

respectively.
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The main purpose of candidate image retrieval module is to find a model F such that it
can give a list of images GF

i = {GiF1
, GiF2

, · · · , GiFP
} that are visually similar to image Qi for

each i ∈ {1, 2, · · · , NQ}. Here P represents the number of candidate images we keep for each
query image. We use this model F to prepare the dataset for the second stage of training. For a
fair comparison, we evaluate the performance on the validation sets VQ and VG when choosing
retrieval model F . Once the training of the retrieval model F finishes, we build our new validation
set ValidF as follows:

ValidF = {(V Qi, V GiFk
, V alidy

iFk
), i = 1, 2, · · · , NV Q, k = 1, 2, · · · , P} (1)

where V GiFk
is the image with the k-th biggest similarity with V Qi in V G. V alidy

iFk
is a binary

label denoting whether V Qi and V GiFk
is the same person. Before establishing new datasets, we

exclude all image pairs which share the same identity and same cloth index in advance.
New test set TestF is established similarly by replacing VQ and VG with Q and G. While

for the new train set TrainF, in order to take a balance among positive samples and negative
samples, we take P most similar same-identity images and P most similar different-identity
images separately for each Ti.

3.2 Image Verification Module

The candidate image retrieval module only provides a coarse search for some potential candi-
dates. Without representative auxiliary features, current Re-ID models are prone to fail when
handling similar images. This limitation is much more obvious when there is no dominant ID-
related features as the color appearance features in cloth-consistent Re-ID. To learn representative
auxiliary features for similar images, inter-image comparisons are indispensable. Though there
are several works[14, 17, 26, 27] that try to reveal the inter-image relationship using verification
models, they are usually simple in structure. Wang et al.[14] shares a similar structure with
our verification network, but they still aim at learning general features. Their verification part
is very shallow and is designed just for comparing heterogeneous general features. Actually,
the key point of a successful verification network for hard samples is specialized features.
Specialized features are decided jointly by two images. Information exchange between two images
encourages the network to actively and adaptively extract those informative clues and produce
more representative features. To learn specialized features, we design our verification network by
fusing the features of two input images at an early stage for adequate information exchange.

To the best of our knowledge, this is the first work to include a verification network for
learning the specialized features. For a comprehensive understanding of the influence of network
structure on this task, we investigate several widely used models[3, 5, 28, 29] and establish our
verification network using the same basic layer as the recently-proposed PLR-OSNet[3] to connect
feature maps of different levels, i.e. the combination of an OSBlock[27], a Position Attention
Module[17] and a Channel Attention Module[30]. With a better fitting to the human images, we
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Fig. 2. The framework of our proposed image verification network. It consists of a global feature learning module G, a part feature

learning module P(part attention branch and part shape branch), and a high order relation learning moduleH. Module G learns the

similarity of two input RGB images directly. Working as the second learning target, it helps us learn discriminative image features

for further part feature learning. In P, part attention map and part shape features of each body part are induced from a human

parsing map. Fusing both part features and part shape features of two input images, intra-part relationships are modeled from two

viewpoints. At last, the high order relation learning module G is incorporated for revealing those inter-part clues. When inferring, we

only take the similarity scores given by G.

propose our Local Clues Oriented Verification Network, which consists of three modules, global
feature learning module, part feature learning module, and high order relation learning module.
An overview of our LCVN is shown in Fig. 2.

Part Feature Learning A verification network for similar images should be able to adaptively
search and compare decisive clues among the input images. Nevertheless, it is meaningless to
compare the features of a head with the features of feet across two images. For the convenience
of hint locating, we apply patch-wise comparison to narrow the searching area. Specifically, we
firstly parse each image into a human parsing map and 15 part parsing maps using the human
parsing model[31]. Human parsing map is a single image with each pixel a corresponding body
part label while part parsing map is a binary image showing the area of the specific body part.
To reach part-to-part matching, we learn an attention map for each body part from the human
parsing map as well as the corresponding part parsing map, as shown in Fig. 2 and Fig. 3(a). By
incorporating the human parsing map, our part attention map is pose-aware and more robust to
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Fig. 3. The structure of part feature learning module. (a). In the part attention branch, part attention maps are jointly learned from

features of human parsing maps and part parsing maps. (b). Features of part parsing maps of two images are concatenated for

learning the part shape features in the part shape branch.

occlusions. We apply these attention maps to learn the part features of the input images. At last,
following the early fusing principle, we fuse corresponding part features of two images as soon
as they are established.

Part Shape Feature Learning Except for the body part features, the shape features are another
crucial clues for discerning similar images. Though there are some recent works[7, 10, 11] that
learn body shape features for cloth changing Re-ID, these researches only work on the whole body
silhouette, which is inadequate for similar images verification. In contrast, we involve part parsing
maps in our model, which gives quick access to fine-grained part shape features comparison.
To learn part shape features, we further extend our part feature branch by another part shape
branch that compares the shape features of each body part in two input images (see Fig. 3(b)).
Concatenating both the part features and the part shape features, our LCVN compares two similar
images with well-designed features on a patch level.

High Order Relation Learning Although we have the features of different body parts,
image verification is still challenging due to the similarity between the input images. Thus, it
is necessary to exploit all possible features. To identify a person, the best choice is to rely on those
unchangeable features. Just as one can change his/her color appearance by changing clothes,
body/part shape can also be intentionally feigned by wearing loose clothes. We find that the
ratio of limbs is another kind of unchangeable feature. Unfortunately, there are few reliable three-
dimension human pose estimation models. As an alternative, we turn to the graph convolutional
network (GCN) methods [32] to model the high-order information. To learn these inter-part
features, we view each body part as a node and pass part features between these nodes using two
adaptive directed graph convolutional(ADGC) layers. ADGC layer is proposed by Wang et al.[14]
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for modeling the high-level information in occluded human images, which suits our case well.
Restricted by pages, we do not show more details of the ADGC layer, please refer to the paper[14].
We add a maximum pooling layer and a fully connected layer with batch normalization after the
final ADGC layer so that the network can focus on the most decisive clues.

Global Feature Learning When training on similar image pairs, the model is prune to become
over-fitting. To overcome this problem, a global feature learning module is included in our
LCVN for multi-target learning. We establish our global module with the same structure as
PLR-OSNet[3] to verify two input images. Different from the part feature based main branch, our
global module makes decisions only relying on two input images, which provides discriminating
and reliable features for further part feature learning.

3.3 Energy Function and Inference

Though the target of the verification module is to know whether two input images are from
the same person, during the inference stage, we care more about the relative similarities of the
candidate images. Therefore, instead of using cross-entropy loss which targets at classification,
triplet loss is adopted in this work because it sets loose restrictions on the output. For the same
query image, we aim to learn relative similarity scores such that, positive candidate images are
higher than positive candidate images, i.e.

Lg =

NT∑
i=1

P∑
j=1

P∑
k=1

[simG(Ti, T
p

iFj
)− simG(Ti, T

n
iFk
)−m]+, [z]+ = max(z, 0) (2)

Lp =

NT∑
i=1

P∑
j=1

P∑
k=1

[simS(Ti, T
p

iFj
)− simS(Ti, T

n
iFk
)−m]+, [z]+ = max(z, 0) (3)

L = Lg + Lp (4)

Here, m is the margin between positive samples and negative samples. simG(·, ·) and simS(·, ·)
are the similarity scores given by the global module and the high order relation learning module
respectively. T·

iF·
is the similar image list of image Ti given by the model F . T p

iFj
is the j-th positive

image in the similar image list of Ti. T n
iFk

is the k-th negative image in the similar image list of Ti.
When inferring, we only take the score given by the high-order relationship learning module

for similarity sorting. We adopt a novel ranking strategy that considers both the retrieval ranking
result and the verification result. Each turn we only compare L images according to the retrieval
ranking. We left other images as substitutions for these L images. Once the image with the
highest similarity is taken, we fill the L images set from substitution images according to their
initial ranking. We keep doing like this until we take all Q images. By selecting a proper L, our
novel ranking strategy succeeds in controlling the risk of including too many dissimilar images.
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4 EXPERIMENTS

4.1 Dataset

Training and testing of the proposed architectures are conducted on publicly available VC-Clothes
dataset[9] and PRCC dataset[11].

VC-Clothes dataset is a synthetic dataset rendered by the video game engine Grand Theft
Auto V with high Definition and realistic image effect. It is composed of 19,060 images of 512
identities. The dataset intentionally includes images from viewpoints where human faces can
not be easily observed so it is imperative to identify persons by intrinsic clues like body shape
and walking stance. Each identity appears in 4 scenes with 1 ∼ 3 suits of clothes. Suits are kept
unchanged when captured in the same scene. We equally split the dataset by identities: 9449
images of 256 identities for training and 9611 images of the rest 256 identities for testing. A
training set T with 202 identities and 7448 images is selected from the training segment. For the
rest images in the training segment, 244 of them form the validation query set VQ and 1777 others
form the validation gallery set VG. Within the testing segment, 1020 images are used as queries
Q and 8591 others form the gallery G. We conduct experiments in the following two ways:

• Full Setting All query images and gallery images are included for inference. However,
since there are some images in the query set that do not have corresponding images with
different clothes, we refine the number of images in the validation query set VQ to 162
and the number of images in the query set Q to 759.

• Partial Setting For the convenience of comparison, we also test our methods following the
setting in [9]. In this setting, only the query images from Cam-3 and the gallery images
from Cam-4 are considered, which leads to a query set Q of 182 images and a gallery set
G of 2258 images. Since this setting greatly limits the number of images in the query set
and the gallery set, we still valid the model on the same dataset as in the full setting.

Person Re-ID under moderate Clothing Change (PRCC)[11] dataset is a realistic dataset taken
in an experimental setting with 3 cameras. PRCC dataset consists of 33698 images from 221
identities. Each person in Cameras A and B is wearing the same clothes, but the images are
captured in different rooms. For Camera C, the person wears different clothes. The images in
the PRCC dataset include not only clothing changes for the same person across different camera
views but also other variations, such as changes in illumination, occlusion, pose, and viewpoint.
PRCC datasets are split into three segments by identities: 18938 images of 124 identities as the
training set T, 3960 images of 26 identities for validation, and 10800 images of 71 identities for
testing. All gallery images are included when inducing in the multi-shot setting. We treat images
from camera A as the query set and images from camera C as the gallery set, which leads to a
validation query set VQ of 1381 images, a validation gallery set VG of 1376 images, a query set
Q of 3384 images and a gallery set G of 3543 images.
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4.2 Implementation Details

In the training phase, two networks are trained in sequence. Images are first fed into a candidate
image retrieval network. SPRe-ID[4], PCB[5], PLR-OSNet[3], ABD-Net [17], and FlipReID [33]
are employed as the candidate image retrieval model F for VC-Clothes dataset[9] and PRCC
dataset[11], with the default parameters and energy function. We form our new similar image
sets with P = 20 candidate images for each query image.

In the second stage, our image verification model works on the new datasets for verifying
similar image pairs. Images are padded and resized into 256 × 128 for the VC-Clothes dataset
and 336 × 112 for the PRCC dataset. These images are further normalized and augmented
with random horizontal flipping before entering the image verification network. Besides, we
use CDCL[31] for parsing images in both datasets. We pre-process the human parsing results in
the same way as the RGB input images. To have our model work on the PRCC dataset, we insert a
fully connected layer at the beginning of the first ADGC layer in the high-order relation learning
module.

The batch size is set to 16 with 8 images per person for the VC-Clothes dataset and 12 with 6
images per person for the PRCC dataset. During the training stage, all three modules are jointly
trained end-to-end for at most 80 epochs with the initialized learning rate 3.5e-4 and decaying to
its 10% at 30 and 60 epochs.

For evaluation, we adopt the mean average precision (mAP) and rank-k accuracy(CMC).
Unlike other works[10, 11], which use single-shot matching by randomly choosing one image of
each identity to form the gallery set G, we work on the full gallery set and follow the standard
Re-ID evaluation. When inferring the final results, we take two sets of L and Q for partial setting
(L = 5, Q = 10) and full setting VC-Clothes (L = 10, Q = 20) respectively. We also test the
effectiveness of our framework on PRCC dataset with two sets of L and Q (i.e. L = 10, Q = 20 and
L = 20, Q = 30). The influence of these parameters are analyzed in Section 4.3 and 4.4. Generally
speaking, they are decided by the number of similar images in the dataset. The computation
efficiency of our algorithm is O(NQ) for inference. NQ is the number of images in the query set
Q. As for the time consumption, the average training time is about 50 hours for both VC-Clothes
dataset and PRCC dataset with one NVIDIA GTX 1080 Ti GPU. It takes 0.33 seconds on average
for processing each query image.

4.3 Experimental Results

We evaluate our proposed framework on two cloth changing datasets, i.e. VC-Clothes[9] and
PRCC[11]. Since the main target of this work is to research the effectiveness of specialized features
in processing similar candidate images, we test our framework on several representative retrieval
models.

Result on VC-Clothes We compared our method with several representative state-of-the-
art methods including hand-crafted feature based methods[15, 16], global features based Re-ID
methods[17, 29, 33, 34, 35, 36, 37], part features based Re-ID[3, 5, 8, 14], and re-rank methods[18].
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TABLE 1
Quantitative results on VC-Clothes dataset. Four large rows show the results of hand-crafted features approaches, global

features based method, part features base models, and re-rank methods, respectively. “R-k” denotes rank-k accuracy (%). “mAP”
denotes mean average precision (%). “-” denotes not reported.

Methods Partial Setting L = 5, Q = 10 Full Setting L = 10, Q = 20
R-1 R-5 R-10 mAP R-1 R-5 R-10 mAP

LOMO+XQDA[15] 34.5 44.2 49.7 30.9 - - - -
GOG[16]+XQDA[15] 35.7 48.3 54.2 31.3 - - - -
MDLA[34] 59.2 67.3 73.5 60.8 - - - -
Dense-Net[29] - - - - 73.1 79.3 82.7 -
NAS[35] - - - - 77.4 84.1 87.1 -
MHO[36] - - - - 57.1 61.6 64.2 52.5
DG-Net[37] 75.8 80.8 83.5 70.3 80.5 86.2 90.1 73.0
FlipReID[33](baseline1) 82.4 90.7 94.0 85.5 86.2 90.7 93.1 81.2
ABD-Net[17](baseline2) 83.0 88.5 90.7 84.0 87.0 91.2 94.2 81.1
SPReID[4](baseline3) 40.7 54.4 62.1 33.8 42.7 54.8 62.7 29.4
FSAM[8] 78.6 - - 78.9 - - - -
HOReID[14] - - - - 80.4 88.0 91.0 73.6
PCB[5](baseline4) 64.3 75.8 81.3 63.2 66.4 77.9 83.7 56.9
PLR-OSNet[3](baseline5) 82.4 89.6 92.3 81.8 84.1 89.5 92.5 76.0
FlipReID(baseline1) 82.4 90.7 94.0 85.5 86.2 90.7 93.1 81.2
+ Re-Rank[18] 82.4 90.7 94.0 85.5 86.2 90.7 93.1 81.2
+ LCVN 85.7 91.8 94.0 85.7 89.3 92.2 93.8 81.3
+ Re-Rank + LCVN 85.7 91.8 94.0 85.7 89.3 92.2 93.8 81.3
ABD-Net(baseline2) 83.0 88.5 90.7 84.0 87.0 91.2 94.2 81.1
+ Re-Rank 85.7 89.6 91.7 86.7 87.3 91.6 93.7 84.0
+ LCVN 84.6 90.1 90.7 84.0 90.7 94.2 95.4 81.9
+ Re-Rank + LCVN 87.9 91.2 91.7 86.6 91.7 94.2 95.5 84.3
SPReID(baseline3) 40.7 54.4 62.1 33.8 42.7 54.8 62.7 29.4
+ Re-Rank 47.8 53.8 62.1 48.9 52.3 56.9 61.9 44.3
+ LCVN 46.7 58.2 62.1 35.9 56.5 66.3 71.3 33.0
+ Re-Rank + LCVN 51.6 58.2 62.1 49.3 58.7 67.1 70.7 45.5
PCB(baseline4) 64.3 75.8 81.3 63.2 66.4 77.9 83.7 56.9
+ Re-Rank 65.4 74.7 81.3 66.7 70.4 76.7 83.1 63.8
+ LCVN 67.6 78.6 81.3 63.7 75.0 83.9 87.7 58.6
+ Re-Rank + LCVN 69.2 77.5 81.3 66.7 77.5 83.8 87.7 64.4
PLR-OSNet(baseline5) 82.4 89.6 92.3 81.8 84.1 89.5 92.5 76.0
+ Re-Rank 82.4 90.1 94.0 84.3 85.0 89.3 92.8 79.2
+ LCVN 84.6 91.8 92.3 81.9 87.7 91.8 93.5 76.6
+ Re-Rank + LCVN 85.2 92.3 94.0 84.6 87.7 92.9 93.7 79.1

The experiment results on the VC-Clothes dataset are shown in Table 1. As one can see, there
is a big performance gap between hand-crafted feature based methods and deep-learning based
methods. While within deep-learning based methods, vanilla global feature based methods[17, 33]
and part feature based deep learning methods[3] achieve similar performance. FSAM[8] is a
method specially designed for the cloth changing Re-ID problem. The biggest difference between
FSAM and our work is that we take local clues as specialized features while they treat them as
general features. One can find that FSAM performs even worse than some vanilla Re-ID models.
These experiment results imply the effectiveness of the existing Re-ID methods on general feature
extraction as well as the potential of local clues as specialized features.
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TABLE 2
Quantitative results on the PRCC dataset.[11] Four large rows show the results of hand-crafted approaches, global features

based methods, part features based methods, and re-rank methods respectively. ∗ means that the result is achieved on a smaller
gallery set.

Methods R-1 R-10 R-20 mAP
LOMO+XQDA[15] 14.5∗ - - -
HOG[16]+XQDA[15] 22.1∗ - - -
Alexnet[38] 16.3∗ - - -
VGG16[39] 18.2∗ - - -
Res-Net50[28] 19.4∗ - - -
HA-CNN[40] 21.8∗ - - -
MHO[36] 20.9 35.6 41.7 19.5
CASE-Net[7] 39.5∗ - - -
DG-Net[37] 47.9 54.9 58.9 46.9
ABD-Net[17](baseline1) 49.3 58.7 62.4 44.8
RCSANet[21] 50.2∗ - - 48.9∗

LAST[12] 57.5∗ - - 54.7∗

FlipReID[33](baseline2) 62.2 69.8 72.5 62.3
SPReID[4](baseline3) 21.1 31.6 35.7 19.8
STN[41] 27.5∗ - - -
SPT + ASE[11] 34.4∗ - - -
PCB[5](baseline4) 39.6 47.8 49.3 37.8
PLR-OSNet[3](baseline5) 49.6 59.4 64.1 48.5
HOReID[14] 43.8 54.1 56.5 43.8
FSAM[8] 54.5∗ - - -
ABD-Net(baseline1) 49.3 58.7 62.4 44.8
+ Re-rank([18]) L = 10, Q = 20 49.3 58.7 62.4 44.8
+ LCVN L = 10, Q = 20 51.7 60.8 62.4 44.8
+ Re-rank + LCVN L = 10, Q = 20 51.7 60.8 62.4 44.8
+ LCVN L = 20, Q = 30 50.6 63.2 64.1 45.0
+ Re-rank + LCVN L = 20, Q = 30 50.6 63.2 64.1 45.0
FlipReID(baseline2) 62.2 69.8 72.5 62.3
+ Re-rank 62.2 69.8 72.5 62.3
+ LCVN L = 10, Q = 20 64.4 70.8 72.5 62.6
+ Re-rank + LCVN L = 10, Q = 20 64.4 70.8 72.5 62.6
+ LCVN L = 20, Q = 30 64.2 71.6 73.5 62.6
+ Re-rank + LCVN L = 20, Q = 30 64.2 71.6 73.5 62.6
SPReID(baseline3) 21.1 31.6 35.7 19.8
+ Re-rank 21.1 31.6 35.7 19.9
+ LCVN L = 10, Q = 20 26.2 33.6 35.7 20.3
+ Re-rank + LCVN L = 10, Q = 20 26.3 33.6 35.7 20.3
+ LCVN L = 20, Q = 30 27.8 34.9 37.0 20.6
+ Re-rank + LCVN L = 20, Q = 30 27.8 35.0 37.0 20.7
PCB(baseline4) 39.6 47.8 50.8 42.0
+ Re-rank([18]) 40.0 48.3 50.8 40.4
+ LCVN L = 10, Q = 20 43.6 49.1 52.1 42.7
+ Re-rank + LCVN L = 10, Q = 20 43.8 50.1 52.1 40.8
+ LCVN L = 20, Q = 30 44.9 50.2 52.5 42.8
+ Re-rank + LCVN L = 20, Q = 30 45.0 51.7 53.9 40.9
PLR-OSNet(baseline5) 49.6 59.4 64.1 48.5
+ Re-rank 49.5 60.1 64.5 49.6
+ LCVN L = 10, Q = 20 52.2 61.6 64.1 48.6
+ Re-rank + LCVN L = 10, Q = 20 53.6 62.1 64.5 49.8
+ LCVN L = 20, Q = 30 53.3 63.0 65.3 48.6
+ Re-rank + LCVN L = 20, Q = 30 54.3 63.2 65.5 49.8
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We also compare our method with other re-rank method[18]. Strictly speaking, our verification
network can be viewed as a kind of re-rank strategy. Compared with [18], our method achieves
more improvements on the CMC metrics but fewer improvements on the mAP metrics. This is
because our method is designed for handling similar images in cloth changing Re-ID datasets
and can consequently affect only a few similar images. On the contrary, re-ranking all images
according to the sample-wise feature distances can help find more other potential images, but it
can hardly affect those similar images because they usually have similar general features. From
this viewpoint, two re-rank strategies are complementary to each other. The experiment results
also reflect this point. Combining two re-rank methods, impressive improvement can be achieved
on all evaluation metrics.

Result on PRCC We also execute a comprehensive experiment to evaluate the performance
of our proposed model on the realistic cloth changing Re-ID dataset, PRCC. Due to the difference
in the problem definition, i.e. a smaller gallery set is selected for evaluation in the original paper
of PRCC[11], we only keep the Rank-1 result for the model tested in [11]. We further include
some other Re-ID methods to evaluate the effectiveness of our framework on the realistic cloth
changing dataset. The results are shown in Table 2.

Our proposed method achieves the best Rank-1 accuracy up to 64.4% among other compared
methods, including hand-crafted features methods[15, 16], global features based methods[7, 12,
17, 21, 28, 33, 36, 37, 38, 39, 40], part features based models[3, 4, 5, 8, 11, 14, 41] and re-rank
methods[18]. The performance on the PRCC dataset indicates its difficulty. Some of these Re-ID
models[3, 17, 36] achieve more than 95% Rank-1 accuracy on the cloth-consistent dataset[2], but
only achieve less than 50% Rank-1 accuracy in the cross clothes matching test.

The performance of the tested methods shares a similar trend with the result on VC-Clothes.
Both part feature based methods and cloth changing Re-ID models achieve competitive results
on the PRCC dataset. On the other hand, LAST[12] and FlipReID[33] learn general features
without the help of part feature learning and outperform other methods by a large margin.
This phenomenon can also be observed when testing on the VC-Clothes dataset, suggesting that
the part features are not necessary to be general features in the cloth changing Re-ID case.

Re-rank method[18] is also compared in this experiment. However, in some cases, no sig-
nificant changes in evaluation metrics can be observed after applying re-ranking. We check the
calculation of the re-ranked feature distance matrix and find that almost all neighbor images are
reciprocal in these methods. This means the Jaccard distance is 1 for almost every pair of images.
Adding the same number on the feature distance matrix makes no change to the final Re-ID
result. The occurrence of this phenomenon is affected by many factors, including the whole data
distribution, the similarity between images in the dataset, the selection of retrieval model, etc.
From this viewpoint, our retrieval-verification framework is a more robust and stable re-rank
strategy.
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TABLE 3
Analysis of global feature learning module G, part feature learning module P and high-order relation learning module H on

VC-Clothes dataset and PRCC dataset.

VC-Clothes PRCC
G P H R-1 R-5 R-10 R-1 R-5 R-10
X 90.9 93.5 94.8 62.5 67.3 69.8
X X 91.2 93.8 95.3 63.4 67.9 70.3
X X X 91.7 94.2 95.5 64.4 68.9 70.8

4.4 Ablation Study

To analyze the influence of different components in our framework, we include the results of
comprehensive ablative experiments in this section. All experiments in this section are conducted
on both the full setting VC-Clothes dataset and the PRCC dataset. The experiments on dataset VC-
Clothes and PRCC are done using retrieval model ABD-Net[17] and FlipReID[33] respectively,
for their competitive performances on the corresponding dataset. We set parameters L = 10 and
Q = 20.

Ablation Study on Model Design In our LCVN, three modules are incorporated, i.e. the
global feature learning module G, the part feature learning module P , and the high order relation
learning module H. The results are shown in Table 3. Comprehensive ablation experiments are
conducted to analyze the effectiveness of each module. Firstly, we remove all other modules and
only keep a global module as our basic model. We gradually add part feature learning module
and high-order relation learning module to our model. 0.9% and 1.9% performance boosts are
observed on the VC-Clothes and PRCC datasets respectively. The experiment results show how
auxiliary features help the verification model to discern similar images. Compared with other part
feature based methods, learning specialized auxiliary features can better activate their potential
on verifying unwanted images.

TABLE 4
Analysis of different loss functions on VC-Clothes dataset and PRCC dataset.

VC-Clothes PRCC
R-1 R-5 R-10 R-1 R-5 R-10

Cross Entropy 91.2 93.7 95.1 63.6 68.0 70.1
Cross Entropy + Circle Loss 90.6 93.6 94.8 63.2 67.8 69.9
Cross Entropy + Triplet Loss 90.9 93.8 95.0 63.0 67.9 70.0

Cross Entropy + Cosine Face Loss 90.4 93.5 94.7 62.7 67.4 70.0
Cross Entropy + Sphere Face Loss[4] 90.1 93.3 95.3 62.6 67.2 70.2

Triplet Loss 91.7 94.2 95.5 64.4 68.9 70.8

Ablation Study on Loss Function To deal with the image verification problem, one can
treat it as a classification problem or a regression problem, depending on the selection of loss
function. The main difference is whether we should set the same learning target for all same
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identity image pairs. If we take it as a classification problem, the output of our verification
network is a confidence score representing whether two images are from the same person. In this
case, the outputs of all same identity image pairs are supposed to be same. If we understand
it as a regression problem, the labels will only work as an indicator of relative similarity. The
responsibility of the verification network will also be changed to judge the relative similarity of
the input images. This will allow the same identity image pairs of different query images have
different learning targets. Therefore, it is a relatively loose setting.

In this experiment, we test how different loss functions affect the performance of our model.
The results are shown in Table 4. We treat this problem as a regression problem when testing with
triplet loss and treat it as a classification problem with other loss functions. This is decided by the
property of the loss functions because only triplet loss can work without setting a fixed similarity
score learning target for the input image pairs. The experiment results suggest that it is more
suitable to treat the verification problem as a regression problem. Besides, a restrict setting of
margin between all positive samples and negative samples does not lead to better performances
in this problem. This may be because similarities of positive image pairs are be different for
different identities. Higher flexibility of the output spaces can better fit the real distributions of
image-wise similarity.

Fig. 4. Comparison on ranking strategy. Ranking results using our ranking strategy and direct re-rank strategy are compared on full

setting VC-Clothes(a) and PRCC dataset(b).

Ablation Study on Ranking Strategy As explained in chapter 4.3, we adopt a novel ranking
strategy that considers both the retrieval ranking results and the verification ranking results when
inferring. In this experiment, we evaluate our proposed ranking strategy by comparing the CMC
curves given by our ranking strategy and traditional methods which directly sort the scores of
top-5, 10, 15, and 20 images, as shown in Fig. 4. In this experiment, L is set as default, i.e. L = 10.
As an intuitive comparison, our ranking strategy outperforms other ranking strategies by a large
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margin in almost all Rank-k metrics. We can also learn how the balance between considering
more images and reducing the risk affects the verification result from this figure. Our ranking
strategy takes a good balance on these points and achieves the biggest Area Under Curve(AUC)
among these methods.

Fig. 5. (a,b). The influence of L on Rank-1 and Rank-10 metrics on VC-Clothes[9] dataset. (c,d). The influence of L on Rank-1 and

Rank-10 metrics on PRCC[11] dataset.

We also conduct experiments to analyze the influence of the selection of L, as shown in Fig.
5. We evaluate the performance of our model under different settings of L on both datasets. Fig.
5(a,c) shows the influence of L on the Rank-1 metric results when testing on the VC-Clothes
dataset[9] and PRCC dataset[11]. As one can easily see, an increase in L will include more images
for comparison, so that the wanted image will have a higher possibility to be included and found.
On the other hand, it is also accompanied by many unrelated images. Therefore, when working
on the Rank-1 metrics, the ability to find the most potential image is evaluated. Instead, the Rank-
10 metrics can better reflect the ability to eliminate dissimilar images. The verification network
must find L most dissimilar images among L + 10 candidate images to get a satisfying Rank-10
result. However, since we only compare top Q = 20 gallery images for each query image, the
increase in L does not affect the Rank-10 results when L is over 10.(see Fig. 5(b,d)). Experiment
results on both datasets suggest that setting L around 10 can reach the best performance. Even
though, the ”optimal” L is greatly affected by the property and the scale of the dataset and is still
underresearched.
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Fig. 6. The visualization of new ranking results by our proposed verification model on VC-Clothes and PRCC datasets. The first

column consists of query images. For each query image, 10 most similar gallery images before and after the verification module are

illustrated. Person surrounded by green box denotes the same person as the query image. Person surrounded by red box denotes

the different person as the query image.

4.5 Further Analysis

Visualized Verification Results To give an intuitive evaluation of our framework, we visualize
the candidate images before and after verification. Qualitative results of our model on the VC-
Clothes dataset and PRCC dataset are shown in Fig. 6. Images in the first column are the
query images from the query set Q. For each query image, two rows with 10 images per row
are included, representing the 10 most similar images before and after the image verification
module. Just as suggested in the quantitative tests, our verification model is able to give a better
ranking result through pair-wise image comparison. In most cases, the new ranking given by our
verification network outperforms the result of the vanilla ReID model. Moreover, the qualitative
testing results on both datasets suggest the importance of the lighting condition and the image
resolution. We find that in most failed cases, query images are taken in bad lighting conditions
or with low image quality. These factors will greatly affect the result of human parsing as well as
the ID-related stable feature extraction.

How verification network views similar images To understand how our verification network
makes decisions, we extract the high-order part features produced by module H and calculate
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Fig. 7. The visualization of the contribution of different part features to the final similarity score. Green color indicates positive

contributions and gray color indicates negative contributions. The left part is the results from VC-Clothes dataset. The left part is

the results from PRCC dataset.
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their contributions to the final score. The results are visualized in Fig. 7. The left part of the
figure is the results from VC-Clothes dataset and the right part is the results from PRCC dataset.
The color of each block represents the contribution of each part features to the final score.
Green color indicates positive contributions and gray color indicates negative contributions. Since
our verification network only works for inferring the relative similarity between images, the
visualization result also just indicates the relative contribution of each body part instead of the
absolute similarity. From the figure, we can learn that our verification network is able to flexibly
arrange its attention according to the input image pair. For example, when comparing the query
image with the first candidate image in PRCC, our LCVN pays more attention to the upper part
of the image because the height of the shoulder may be decisive in this pair of comparisons. When
comparing the query image with the last candidate image in PRCC, the bottom part of the image
becomes more important because the leg strength in the two images seems different. Since we
inserted a maximum pooling layer in the module H, only the most decisive clues are considered.
Even though, there are still many candidate images that we can not clearly tell how they are
different from the query image(e.g. the third candidate image in PRCC). For these images, the
best method is to find the most similar image among them. Our LCVN also handles this job well.
The result of the second pair of comparisons in PRCC outperforms the third pair of comparisons
in almost all body parts, suggesting the effectiveness of our methods.

5 CONCLUSION

In this paper, we focus on a challenging yet significant person re-identification task that has
been long ignored in the past. We point out that the flexibility on color appearance introduces
more similar images and details play a more crucial role in this task than before. Therefore,
we treat the cloth changing person re-identification problem as the combination of an image
retrieval task and a pair-wise image verification network. We present a novel Local Clues oriented
Verification Network(LCVN) that works on similar samples in the dataset. Besides, in this work,
we introduce a novel ranking strategy that takes a good balance between the initial retrieval
results and new image similarity scores. By conducting extensive experiments, we demonstrate
that the effectiveness of the two-step retrieval-verification framework as well as the proposed
image verification model. In general, this paper tries to tackle the cloth changing person re-
identification problem from the viewpoint of pair-wise image verification, which is rare in the
recent Re-ID community. We believe this work will propel the development of the research of
cloth changing Re-ID.
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