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Abstract

Ants are among the most diverse, abundant and ecologically significant organisms on earth. Although their species richness
appears to be greatest in the New World tropics, global patterns of ant diversity and distribution are not well understood. We
comprehensively surveyed ant diversity in a lowland primary rainforest in Western Amazonia, Ecuador using canopy fogging,
pitfall traps, baits, hand collecting, mini-Winkler devices and subterranean probes to sample ants. A total of 489 ant species
comprising 64 genera in nine subfamilies were identified from samples collected in only 0.16 square kilometers. The most
species-rich genera were Camponotus, Pheidole, Pseudomyrmex, Pachycondyla, Brachymyrmex, and Crematogaster. Camponotus
and Pseudomyrmex were most diverse in the canopy, while Pheidole was most diverse on the ground. The three most
abundant ground-dwelling ant genera were Pheidole, Solenopsis and Pyramica. Crematogaster carinatawas the most abundant
ant species in the canopy;Wasmannia auropunctata was most abundant on the ground, and the army ant Labidus coecuswas
the most abundant subterranean species. Ant species composition among strata was significantly different: 80% of species
were found in only one stratum, 17% in two strata, and 3% in all three strata. Elevation and the number of logs and twigs
available as nest sites were significant predictors of ground-dwelling ant species richness. Canopy species richness was not
correlated with any ecological variable measured. Subterranean species richness was negatively correlated with depth in the
soil. When ant species were categorized using a functional group matrix based on diet, nest-site preference and foraging
ecology, the greatest diversity was found in Omnivorous Canopy Nesters. Our study indicates ant species richness is
exceptionally high at Tiputini. We project 647–736 ant species in this global hotspot of biodiversity. Considering the relatively
small area surveyed, this region of western Amazonia appears to support the most diverse ant fauna yet recorded.
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Introduction

Despite their abundance [1], species richness [2] and ecological

dominance [1,3–8], tropical ants have rarely been the focus of

intensive biotic inventories and global patterns of ant diversity,

including those of New World tropical forests where ants appear to

be especially prominent, are poorly described. Recent studies have

shown that Yasuni National Park, which is located directly

adjacent to the Tiputini Biodiversity Station (TBS) where we

conducted our survey, may be the most diverse region on earth,

with apparent world richness records for amphibians, reptiles,

bats, and trees and insects projected to be represented by at least

100,000 species per hectare [9]. Although no comprehensive

inventory of any insect taxa has been published for this region, a

few small-scale studies have been carried out. For example, our

previous research on subterranean ant diversity at the TBS in

Amazonian Ecuador recorded 47 species [10] and found that ant

diversity and species accumulation rates decreased with increasing

depth in the soil. The species assemblage of ants collected 12.5 cm

below the surface was significantly different from those found at

25, 37.5, and 50 cm, suggesting stratified species distribution

below ground. Another recent, small-scale comparative study of

ant diversity in primary and secondary forest at TBS identified 101

species [11], while other recent surveys identified 77 species of

twig- and litter-nesting ants, as well as 56 species in the genus

Pheidole [12,13]

Because of their importance in community dynamics and their

ecosystem significance, a better understanding of the patterns of

ant diversity would greatly enhance our knowledge of the

biogeography, organization and dynamics of tropical communities

as well as how their biodiversity would best be conserved.

Here we describe the results of collections made to compre-

hensively inventory ant diversity at TBS and determine patterns of

species distribution. We sampled ants ranging in distribution from

the canopy to 50 cm below ground, using fogging, surface baiting,

pitfall traps, hand collecting, mini-Winkler devices, and subterra-

nean baiting. We compared species composition among strata to

describe how ant diversity and abundance are associated with

environmental gradients. To examine ecological correlates of ant

distribution patterns, we created a functional group matrix based

on diet and nesting habits and thus provide a useful framework to

describe and analyze ant community structure.

Results

Ant diversity and abundance
We identified a total of 489 ant species (475 not including

reproductives) comprising 64 genera in nine subfamilies from 8601
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species occurrences in 3 strata (7740 not including reproductives;

Tables S1, S2, S3). The most species-rich genera were Camponotus

(46 species), Pheidole (45), Pseudomyrmex (30), Pachycondyla (25),

Brachymyrmex (20), and Crematogaster (19). The five most abundant

genera were Pheidole, Camponotus, Crematogaster, Solenopsis,

and Pachycondyla. The seven most abundant species overall were

Crematogaster carinata (occurring in 271 samples (69%)), Camponotus

femoratus (161 samples (41%)), Wasmannia auropunctata (147 samples

(38%)), Solenopsis SC-06 (134 samples (34%)), Megalomyrmex foreli

(120 samples (31%)), Nylanderia cf. steinheili (116 samples (30%)), and

Cr. brasiliensis (115 samples (29%)).

Species accumulation curves (Figure 1) indicate that canopy

fogging collected species at the highest rate, while the subterranean

probe had the lowest. Accumulation curves and estimators

(Table 1) indicate that additional sampling is required to inventory

total species richness at TBS, in spite of our use of six different

methods over three strata. Of the three strata, the ground stratum

appears to have been the most well-sampled (between 68 and 78%

of species sampled), followed by the canopy (62–70%) and

subterranean (54–66%) stratum. Nonparametric estimators ICE,

Jackknife1, Jackknife2, and Chao2 suggest the actual diversity of

ants at TBS is between 647 and 736 species, suggesting we

collected approximately 66–76% of species in our survey.

Vertical stratification of ant species
A total of 282 species were identified from canopy fogging

samples, 275 from ground samples (83 from baiting, 150 from

hand collecting, 96 from pitfall traps, and 185 from Mini-

Winklers) and 48 species were collected below the soil surface to a

depth of 50 cm using a baited subterranean probe [10]. Across all

samples, 80% of species were found in only one stratum (205 in the

canopy, 180 on the ground and eight in subterranean samples),

17% in two strata (a total of 62 species in the canopy and on the

ground, a total of 18 species on the ground and in subterranean

samples, and only one species total in canopy and subterranean

samples) and 3% in all three strata.

ANOSIM comparisons indicated highly significant (p#0.0001)

differences among strata in the distribution of ant genera and species

diversity, and NMDS analysis showed clear separation between the

three strata (Figure 2). The most abundant genera in the canopy were

Crematogaster and Camponotus, while Pheidole was the most abundant

genus on the soil surface and beneath it (Figure 3). The most

abundant ant species in the canopy was Cr. carinata; Wasmannia

auropunctata was most abundant on the ground, and Labidus coecus, an

army ant, was most abundant in subterranean collections (Figure 4).

Environmental Correlates of Diversity
The relationship between species richness and environmental

variables traditionally correlated with diversity was determined

using a linear multiple regression model, which provided a

significant fit for ant species richness (F9,50=5.46, p,0.0001,

adjusted R2=0.40). Elevation was a significant predictor of ground-

dwelling ant species richness (t=5.83, p,0.0001; Figure 5), as was

the number of logs and twigs/m2 in sample plots (t=4.70, p=0.035;

Figure 6). Neither elevation (R2=20.039, p=0.951), nor the

number of twigs and logs (R2=20.003, p=0.56) showed significant

spatial dependency, The remaining seven variables (slope, litter

depth, vertical height profile, canopy cover, bare ground, number of

plants, volume of twigs and logs) were not significant predictors of

richness across all species (Table 2). Slope and number of plants

were significant predictors of Pheidole richness and canopy cover was

a significant predictor of Solenopsis richness. Elevation and slope were

significant predictors of Pyramica richness (Table 3). All of these

significant associations showed positive correlations. The nine

measured environmental variables had no significant relationship to

the species richness of ants in the canopy (F9, 20=1.91, p=0.109,

adjusted R2=0.22) or in subterranean probes (F9, 20=0.429,

p=0.904, adjusted R2=20.22).

Functional group distribution
Species of some genera (Pachycondyla, Camponotus, and Pheidole)

were distributed among several nest-type groups, while all species in

other genera (Tapinoma, Nesomyrmex, and Hylomyrma) were charac-

terized by a single nesting habit. In the latter case, this grouping was

often due to inferences made about generic similarities when

detailed information on the nesting habits of individual species in

those genera was lacking, as niche conservatism in nesting site is

assumed for less diverse ant genera (i.e. [14]).

Figure 1. Comparison of the rates of species accumulation for each of six collection methods used. Mao Tau method, 100 replicates;
EstimateS 8.0, Colwell 2005.
doi:10.1371/journal.pone.0013146.g001

Tiputini Ant Diversity
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The greatest number of species (113, 23.1%) occurred in the

Canopy Nesters/Omnivores category, followed by Canopy

Nesters/Scavengers (52, 10.6%), Ground Nesters/Omnivores

(28, 5.7%), and Above Ground+Canopy or Foliage Nesters/

Scavengers (27, 5.5%; Figure 7).

Discussion

Ant diversity and abundance at TBS
Our study of ant species richness in primary forest at TBS

represents the first inventory of ants in all above-ground strata

and beneath the soil surface in lowland rainforest in Ecuadorian

western Amazonia. Of the most species-rich genera, Camponotus

(41 species) and Pseudomyrmex (30 species) were most diverse in

canopy samples. Pheidole was most diverse on the ground (37

species), and Solenopsis (10 species) and Pheidole (7 species) were the

most diverse subterranean genera. Eighteen genera were

represented in our collection by only one species, and three

genera by a single specimen each. Species accumulation curves

and estimators indicate that actual species diversity of this

tropical rainforest hotspot is far greater than the 489 ant species

identified in our study, in spite of our intensive and diverse

collection methods. We estimate actual diversity at 647–736

species.

Surveys of the ant faunas of other Neotropical regions include

Cuzco-Amazonico, Peru – 365 species [15], Urubamba River

Valley, Peru – 124 species [16], Panguana, Peru – 520 species

[17], Brazilian Amazon – 156 species [14]; 143 species [18],

Brazilian Atlantic forest – 124 species [19], tropical Brazilian

forests – 206 species [20]; 74 species [21], secondary growth

Table 1. Estimated proportion of the potential species richness sampled by each collection method within each of the three
strata.

Collection Method/Strata Estimated richness Sampled richness Estimated proportion of potential species sampled

Winkler 282–321 185 58–66%

Pitfall 115–134 96 64–75%

Baiting 94–125 83 66–88%

Hand-collecting 192–247 150 61–78%

Ground strata: 347–395 269 68–78%

Canopy fogging 405–457 282 62–70%

Canopy strata: 405–457 282 62–70%

Probes 73–89 48 54–66%

Subterranean strata: 73–89 48 54–66%

Overall: 647–736 489 66–76%

doi:10.1371/journal.pone.0013146.t001

Figure 2. Non-metric multidimensional scaling (Raup-Crick distance measure) differentiating canopy (green), ground (brown), and
subterranean (yellow) species. Each symbol represents a single collection sample. Rare species (singletons) were removed prior to analysis,
leaving 194 species remaining.
doi:10.1371/journal.pone.0013146.g002

Tiputini Ant Diversity
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Brazilian tropical forest – 124 species [22], and lowland rainforest

in Costa Rica – 437 species [23]. At Yasuni, adjacent to TBS, a

pilot study of ant species richness found 109 species (M. Kaspari,

personal communication). Worldwide, the only other studies of

comparable breadth were carried out in Borneo – 524

morphospecies [24] and Madagascar – 381 species [25]. These

studies vary widely in purpose, effort, collection methods, area

covered, and identification levels, rendering meaningful compar-

isons difficult. Majer et al. [26] sampled ants using unit-time hand

collecting (day and night), sweeping, beating, baiting and Winkler

sacks to compare the ant communities of annually inundated and

terra firme forests. In contrast, Silva et al. [19] used only Mini-

Winklers and baits to examine ant diversity along a habitat

regeneration gradient in the southern Brazilian Atlantic Forest.

Using a broad array of methods to sample across strata, our study

identified 489 ant species within only 16 hectares, an area less than

2% the size of other studies with comparable richness. For

example, Verhaagh et al. [17] found 520 species in 1000 hectares

surveyed and Longino et al. [23] collected 437 species in

1500 hectares. Although direct comparisons of species richness

between sites can not be definitive, it is nevertheless clear that the

ant fauna of TBS is among the most diverse yet recorded.

Figure 3. Abundance of individuals by genus. Top 7 genera in each stratum showed, in terms of abundance ( = number of occurrences).
doi:10.1371/journal.pone.0013146.g003

Tiputini Ant Diversity
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Figure 4. Abundance of individuals by species. Top 10 species in each stratum showed, in terms of abundance ( = number of occurrences).
doi:10.1371/journal.pone.0013146.g004

Figure 5. Effect of elevation on ground-dwelling ant species richness. R2= 0.56, n = 60, p,0.0001.
doi:10.1371/journal.pone.0013146.g005

Tiputini Ant Diversity
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Our results agree with previous studies [27] that identified

Pheidole, Camponotus, and Crematogaster as the most prevalent ant

genera globally. Ant abundance, however, differed according to

strata in our study. In the canopy, Camponotus and Crematogaster

were the most abundant genera, occurring in 35% of all canopy

samples, Cr. carinata and Cr. brasiliensis comprising 12% of the total.

The most abundant Camponotus species in the canopy were C.

atriceps and C. excisus. The genus Pheidole was overwhelming on the

ground, comprising 26% of all ground samples. Wasmannia

auropunctata, Pheidole astur, and Megalomyrmex foreli were the most

abundant species on the ground, although each occurred in only

,3% of all ground samples. Pheidole was most abundant below

ground as well, occurring in 18% of all subterranean samples,

although Labidus coecus was the most abundant species found

below-ground (16% of all subterranean samples). We found more

species of Camponotus than Pheidole overall, but the species richness

of Pheidole was potentially under-sampled, as many minor workers

could not be definitively identified to species or morphospecies

because major workers were not collected. In fact, 67 species of

Pheidole have been collected at TBS [12].

Vertical stratification of ant species
Vertical stratification of ants in canopy, ground, and subterra-

nean habitats was striking: 80% of species were found in only one

stratum and only 3% of species were found in all three strata. Non-

metric multidimensional scaling showed a clear differentiation of

ant species among strata. The vertical distribution of the most

abundant species showed that while some species were found

predominantly in one strata (i.e. Crematogaster carinata in the canopy

and Megalomyrmex foreli on the ground), other species (i.e.

Camponotus femoratus) were more evenly distributed among the

three strata. The three most common genera (Pheidole, Camponotus,

and Crematogaster) clearly showed vertical partitioning, with

Camponotus and Crematogaster dominating in the canopy, and Pheidole

dominant on the ground. The relatively large body size and

number of Camponotus, in addition to its aggressiveness and

territoriality may contribute to their dominance in the canopy.

Recent work has also focused on the relationship between

members of the tribe Camponotini (which includes Camponotus)

and their endosymbiotic Blochmannia bacteria, which may have

allowed them to have a nutritionally unbalanced diet (honeydew)

unavailable to other ants [28]. Crematogaster, although smaller in

Figure 6. Effect of number of twigs and logs on ground-dwelling ant species richness. R2=0.27, n = 60, p = 0.035.
doi:10.1371/journal.pone.0013146.g006

Table 2. Environmental variation and ant species richness.

Variable Mean (SD) Range p

Elevation (m) 214.7 (5.0) 206–224 ,0.0001

Slope (u) 12.2 (7.4) 2–39 0.061

Litter depth (cm) 5.9 (1.9) 1.4–11.1 0.373

Vertical height profile 0.5 (0.2) 0.1–0.9 0.097

Canopy cover (%) 92.1 (2.8) 85.2–95.6 0.376

Bare ground (%) 3.5 (11.4) 0–55 0.977

Number of plants/m2 13.1 (9.4) 0–39 0.513

Number of twigs and logs/m2 87.6 (56) 8–244 0.035

Volume of twigs and logs/m2

(cm3)
3,508.2 (12,070) 33–90,919 0.598

Mean (standard deviation) and range for 60 transect sample sites are shown. p
values reflect the significance of each variable as a predictor of ground-dwelling
ant species richness. Analysis by a linear multiple regression model. Significant
predictors are shown in bold type.
doi:10.1371/journal.pone.0013146.t002

Table 3. Environmental variation and species richness for the
three most abundant ground-dwelling ant genera.

Variable Pheidole Solenopsis Pyramica

Elevation (m) 0.477 0.074 0.027

Slope (u) 0.012 0.651 0.013

Litter depth (cm) 0.726 0.473 0.838

Vertical height profile 0.743 0.734 0.130

Canopy cover (%) 0.074 0.040 0.915

Bare ground (%) 0.586 0.724 0.659

Number of plants/m2 0.020 0.620 0.533

Number of twigs and logs/m2 0.507 0.287 0.205

Volume of twigs and logs/m2 (cm3) 0.154 0.598 0.567

p values reflect the significance of each variable as a predictor of species
richness for each genus. Significant predictors shown in bold type.
doi:10.1371/journal.pone.0013146.t003

Tiputini Ant Diversity
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size and less aggressive, may benefit from their parabiotic

association with Camponotus (seen most frequently between

members of the Crematogaster limata complex, including Cr. carinata

and Cr. brasiliensis, and among Camponotus, most often Ca. femoratus)

[29–32]. Conversely, small body size and colony size in Pheidole

may have been an important adaptation for nesting in the leaf

litter, contributing to their ground-dwelling dominance and

diversification [33].

Our results agree with those of prior studies describing strong

vertical stratification in tropical ant communities [24,34–36].

Similar patterns have been found among other Neotropical taxa,

including collembolans [37], termites [38], birds [39], bats [40]

and other small mammals [41]. Multiple hypotheses have been

suggested to explain this pattern [42]. The determinants of most

arthropod stratification tend to include abiotic factors, forest

structure, resource availability, and species-typical behavior [43].

We do not have sufficient data to fully examine the causes of

stratification in the ant fauna of TBS; however, we did find

evidence of differing effects of environmental factors and variation

in diet and foraging ecology among species occupying different

strata, as discussed below.

Environmental Correlates of Diversity
Despite modest differences (205–225 m), it was surprising that

elevation was significantly correlated with the richness of ground-

dwelling ants. Some studies have shown elevation is a significant

determinant of ant diversity, although most indicate lower

diversity at higher elevations [44–46] or a peak in diversity at

mid-elevations [25,45,47–49]. However, these studies have

generally examined a much wider elevational range (300–1650m

[49]; 250–1750m [48], and 785 to 1650m [45]) whereas our study

gradient was microtopographic. Soil type and drainage may also

be important: small differences in elevation could result in

significant differences in the degree of soil drainage and aeration,

which may in turn affect the microinvertebrate community that

many ants rely upon for food. However, this would predict a

decrease in subterranean ant diversity at lower elevations, a

hypothesis that was not supported. Variation in the availability of

prey species or other food resources could also be associated with

elevational changes [49]; perhaps this relationship also occurs at

our more narrow scale In this regard, we found a significant

correlation between ant diversity and termite diversity at TBS

(Ryder Wilkie et al., in prep). Termites are a common, and often

preferred, prey of many ant species.

The number of twigs and logs was also significantly correlated

with ant species richness. Many ant species, including Camponotus

WM-010, Ca. planatus, Leptogenys imperatrix, and Lachnomyrmex

scrobiculatus in our study, nest exclusively in twigs or logs. At least

77 ant species are known to inhabit twig nests at TBS [13]. The

availability of these nest sites could limit ant diversity. Increased

twig variation has been show to increase ant diversity [50], but

because we did not measure variation in twig availability, further

research is required to determine its impact on ground-foraging

ant ecology at our study site. Considering the three most abundant

Figure 7. Functional group distribution.
doi:10.1371/journal.pone.0013146.g007

Tiputini Ant Diversity
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ground-dwelling genera separately, significant distributional cor-

relations were found for Pheidole (slope and number of plants),

Solenopsis (canopy cover), and Pyramica (elevation and slope).

Tropical Pheidole are known to interact ecologically with plants

[51,52], perhaps explaining the relationship between their

diversity and plant abundance. However, the remaining results

are not as intuitively understood. Both Pheidole and Pyramica

contain a high proportion of litter-nesting species, and depth of

litter could be affected by slope. The lack of significant correlation

between diversity in these genera and either twig abundance or

litter depth, however, makes this explanation unlikely. Similarly,

degree of canopy cover could affect ground temperature and

therefore ant foraging [53], but we do not sufficiently understand

the foraging behavior of ground-dwelling genera to predict why

only Solenopsis showed this pattern. Overall, our results indicate

that the diversity and distribution patterns of individual taxa are

influenced by a mosaic of factors, each potentially affecting species

distribution separately or in combination.

None of the environmental factors we measured had a

significant effect on ant diversity in the canopy or below ground.

This is not particularly surprising for canopy diversity, as

measurements were made on the ground and in the understory,

although factors such as elevation and canopy cover could still

affect the canopy environment. More surprising is the lack of

significant association between elevation and the diversity of the

subterranean ant fauna, a result which provides additional support

for the strong separation of ground-dwelling and subterranean ant

communities and the abiotic factors influencing ant diversity above

and below ground.

Ant Functional Groups at TBS: Diet, Foraging ecology,
Nesting Habits and Species Distribution
Several attempts to analyze community dynamics have been

made to categorize ants according to diet, nesting habits and

competitive interactions. Andersen introduced a functional group

classification for the desert ants of Australia, a system later used to

compare the Australian and North America faunas [54], South

African species [55], and rainforest ants globally [56]. This

classification system, however, may have limited utility when

applied to Neotropical ants because ant functional groups in South

America do not consistently correlate with those of Australia.

Fungus-growing ants (Tribe Attini), for example, have no

Australian equivalent, yet attine ants appear to play a major role

in Amazonian community ecology. In other cases, analogous

faunas exist in Australia, but differ in prominence, such as the less

prevalent Dominant Dolichoderinae or more dominant Subordi-

nate Camponotini [57]. We therefore created a functional group

matrix based on diet, foraging ecology and nesting habit that is

more suitable to Neotropical ants. In our survey, more canopy

species were found than species in any other habitat, and among

dietary preferences, omnivorous species were the most numerous.

Omnivorous Canopy Nesters, comprised of the majority of Azteca

(the only genus of the dominant Dolichoderinae group),

Pseudomyrmex, Procryptocerus, and Cephalotes, as well as other species,
thus had the highest species diversity of any of our functional

groups, Scavenger Canopy Nesters (including many Camponotus,

Crematogaster, and Dolichoderus), and Omnivorous Ground Nesters

(mostly Camponotus; Figure 7) also showed high species diversity

compared to other functional groups. Ants are known to be

particularly dominant and abundant in the canopy; this may be

due to their omnivory, including the ability to scavenge and utilize

homopteran and extrafloral nectary secretions [58,59]. Recent

work [60] suggests that bacterial gut symbionts may have

influenced the diversification of omnivorous ants in tropical

canopies. It is important to note, however, that canopy fogging

was the most intensive mode of sampling in our study (100 sites,

each repeated 9 times, compared to our combined ground-

sampling methodologies of 60 sites, no repetition). Therefore, ants

in ground-dwelling functional groups may be underrepresented.

Explanations for the high diversity of ant species in the tropics

have often focused on habitat specialization and niche partition-

ing. Our results support the findings of Tobin [61] and

Vasconcelos and Vilhena [35], which suggest that habitat

specialization is an important factor in the organization and

exceptional diversity of tropical rainforest ant communities. High

niche diversity in the Neotropics is thus thought to drive

specialization and support high species diversity.

Species in genera for which detailed dietary and nesting

information are known were distributed widely within the

functional group matrix (for example, Pachycondyla species spanned

10 categories). In genera for which little or no information is

available, species were placed in one functional group. For

example, all species of Hylomyrma were categorized as Scavengers/

Soil and Leaf Litter Nesters, whereas all species of Nesomyrmex were

categorized as Unknown Canopy Nesters, but if more detailed

dietary and nesting information was known, individual species

within these genera might more appropriately be placed into

different functional groups. The lack of behavioral and ecological

information regarding the majority of Neotropical ant species

limits more detailed analysis. Further studies examining dietary

preferences in ants [7,58] will contribute to better delineating

patterns of ant distribution, abundance and diversity.

Conclusion
Our comprehensive survey of the ant fauna at TBS suggests

western Amazonia holds the most diverse ant fauna described to

date. Our study provides a model for future surveys and

comparative analysis of Neotropical ant diversity and abundance

and establishes a foundation for continuing research in the

Ecuadorian Amazon, a region that has global conservation

significance. By sampling the subterranean fauna to capture the

full spectrum of ant habitats and ecology, our data represent a

broader inventory of ant species diversity and distribution than has

hitherto been described. Although more detailed ecological

characterization of the diverse fauna of western Amazonia will

be required to fully understand the patterns underscoring its

remarkable diversity, we were able to identify a number of key

factors, including the increase in ground-dwelling ant diversity

with increasing elevation and litter abundance, the dominance of

Camponotus and Crematogaster in the canopy and Pheidole on the

ground, the clear stratification of ant communities between the

canopy, ground and subterranean habitats, and the prevalence of

omnivorous, canopy nesting ant species. By improving our

understanding of the diversity of Neotropical ants, a keystone

ecological group, we can advance our knowledge of the causes that

maintain biodiversity in exceptionally rich Neotropical habitats.

Methods

Ants were collected at the TBS in the western Amazonian

rainforest of Ecuador (Orellana Province, Ecuador, S 00u379.550

and W 076u089390, annual rainfall<3000 mm), bordering Yasunı́

National Park. The study site comprises a 16 hectare area with an

elevational range from 206m to 224m. The study site is

predominantly primary lowland rainforest, which has a diverse

tree community dominated by the palm Iriartea deltoidea [62]. The

area has been identified as a major tropical wilderness of

exceptional richness and is one of 25 global biodiversity hotspots
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[9,63]. All samples other than canopy and subterranean samples

were collected between 10 February and 3 March, 2003. Canopy

samples were collected by Dr. Terry Erwin between January, 1994

and July, 2002 [64]. Subterranean samples were collected 8–26

August, 2004. A total of ,113,000 ants were collected, the

majority from the canopy.

In order to sample ants from our three strata of interest (ground,

canopy and subterranean), we used a variation of the Ants of the

Leaf Litter (ALL) protocol [65], which is commonly used in studies

of tropical ant diversity. Three 200 m transects were established

(Transects A, B, and C; Figure 8), each divided into 20 collection

sites, each 10 m apart. At each collection site, the following

methods were used to sample ground-dwelling ants (ants that nest

or forage on or in the leaf litter): 1) A Mini-Winkler device [25]

was used to extract ants from one square meter of leaf litter at each

collection site. Sacks filled with sifted litter were suspended for

48 hours before ants were removed. 2) Pitfall traps made of plastic

containers (diameter = 9 cm, volume=400 ml) were filled with

approximately 130 ml of 96% isopropanol. After 48 hours,

contents were collected and stored for future study. 3) Tuna,

peanut butter, cookie, and quinoa baits, each roughly 1–2 cm3,

were set out at each collection site. Baits were placed on a

3.5 mm63 mm index card, and ants occupying baits were

collected after 30 minutes. 4) Hand collecting was accomplished

during 15 minutes at each collection site by carefully examining

twigs, logs, litter, the soil surface, and tree branches and trunks in a

10 m62 m area. In addition, ant diversity and abundance in the

canopy and underground were sampled using the following

methods: 1) Five 200 m transects (the three transects used in

ground collection samples (A, B, and C) and two additional

transects (D and E; Figure 8) were sampled using a subterranean

probe [10] and 2) the canopy was fogged multiple times between

1994 and 2002 with pyrethrin along ten 100 m transects

(Transects A through J; see Erwin et al. [64] for details).

To ecologically map patterns of ant distribution, the following

environmental gradients were measured at each collection site

(instrumentation/methodology noted in parentheses): elevation

(altimeter), slope and aspect (clinometer and compass), canopy

cover (crown illumination ellipses index) [66]. Leaf litter depth

(average of 10 measurements), bare ground percentage, number of

plants/m2, number of twigs and logs/m2, and volume of twigs and

logs/m2 were also collected in a 1 m2 area at each collection site

(separate from the 1m2 used for Mini-Winklers)

Specimens were identified to species using keys [33,67–78] or were

identified by experts (Stefan Cover - Solenopsis; Shawn T. Dash -

Hypoponera; Stephanie Johnson - Azteca; John Longino - Crematogaster,

Wasmannia; WilliamMackay - Camponotus, Pachycondyla; Ted Schultz –

Apterostigma, Cyphomyrmex, Mycocepurus, Sericomyrmex, Trachymyrmex;

Jeffery Sosa-Calvo -Myrmicocrypta, Pyramica, Strumigenys; James Trager

– Nylanderia). Whenever possible, ants were compared to specimens in

the collection of the Harvard Museum of Comparative Zoology

(MCZ), where vouchers have been deposited.

EstimateS [79] was used to generate species accumulation curves

(Sobs, Mau Tau), which were fit to a logarithmic model. Estimated

species richness was calculated using four estimators (ICE,

Jackknife1, Jackknife2, and Chao2) recommended by Hortal et al.

[80] as the most accurate for our data. For this analysis, all collection

methods were combined and total species richness at each site was

used as a sample. Analyses of similarity (ANOSIM) [81]

comparisons were made using the one-way ANOSIM function in

the PAST software package [82] to detect differences in the ant

diversity of different strata. ANOSIMwas calculated using the Bray-

Curtis Similarity Index, a widely used and well-tested index for

incidence data [83,84]. We also evaluated the relative abundance of

each ant genera (overall, by sampling method, and within our three

strata of interest) based on their number of occurrences in samples.

Although such estimators may either underestimate [23] or over

estimate actual species richness, particularly in samples with high

numbers of rate species [85], they are still useful for comparing

between sampling methods and strata.

Multiple regression was used to determine the effect of

environmental variation on ground-dwelling ant richness at our

60 principal sites (20 sites each along transects A, B and C).

Species richness of ground-dwelling ants was measured for each of

the 60 principal sites based on the incidence of species in pitfall

traps, baiting stations and Mini-Winkler samples. Richness was

regressed against nine environment variables: elevation (m),

ground slope (0–90u), leaf litter depth (cm), vertical height profile,

canopy cover (%), amount of bare ground (%), number of plants/

m2, number of twigs and logs/m2 and the total volume of twigs

and logs/m2. An exploratory correlation coefficient matrix of these

nine variables showed that all were at most weakly associated

(R2
#0.41), supporting the independence of variables, and enabling

multiple regression (least squares method). Slope, number of twigs

and logs, and total volume of twigs and logs were log-transformed

prior to regression to improve normality. Canopy cover, percent

bare ground and number of plants could not be normalized

through transformation. However, a linear model provided a good

fit to the data based on plots showing no correlation between

residuals and fitted values (F,0.001, p.0.05 for all regressions),

Figure 8. Map of sampling transects. Black lines indicate canopy
fogging sample transects of Dr. T. Erwin; red lines indicate transects
(ground and subterranean) of present study.
doi:10.1371/journal.pone.0013146.g008

Tiputini Ant Diversity

PLoS ONE | www.plosone.org 9 October 2010 | Volume 5 | Issue 10 | e13146



and normally distributed residuals. Separate regressions were run

for total ant species richness, as well as the richness of the three

most abundant ground-dwelling ant genera, Pheidole, Solenopsis and

Pyramica. Species collected in canopy fogging and subterranean

probes were not included in measurements of ground-dwelling

species richness; however, we also conducted separate multiple

regressions for each of these two collection methods. Regression

was performed using JMP version 5.0.1 (SAS Institute Inc., Cary,

NC, 1989–2002). We used the Mantel test to determine the

potential impact of spatial auto-correlation on all significant

predictive variables, based on Raup-Crick distance measures. The

Mantel test was performed in the PAST software package [82].

Non-metric multidimensional scaling analysis (NMDS) was

performed on canopy, ground (pitfall, baiting, Winkler, and hand-

collecting combined) and subterranean samples using the PAST

software package [82] to visualize differences in distribution patterns

among strata based on Raup-Crick distance measures The analysis

was run without the inclusion of rare species, to avoid potential bias.

‘‘Rare’’ species were defined as those species found in only one sample,

based on visual inspection of a histogram of species abundances.

Information regarding diet and nesting habits were used to create a

functional group matrix to reveal patterns of community structure.

Species were placed into functional groups based on personal

observations of foraging behavior and food choice, nesting ecology,

and natural history descriptions taken from available literature. To

facilitate ecological comparisons, all ant species collected at TBS were

assigned a position in a functional groupmatrix consisting of seven diet

groups (which included elements of foraging behavior) and 11 nest-

type groups (Table S4). The seven diet groups were: 1) GroupHunters

(cooperatively capture live prey that are large relative to individual

worker body size); 2) Solitary Foragers of Live Prey (hunt prey that are

small relative to worker body size); 3) Scavengers (collect mostly dead

or moribund prey or other food items and infrequently collect live

prey); 4) Fungus Growers; 5) Army Ants; 6) Homopteran Tenders;

and 7) Omnivores (scavenge for dead prey, capture live prey, collect

seeds and plant parts, and visit extrafloral nectaries). If diet could not

be determined, species were placed in the category ‘‘Unknown.’’

The 11 nest-type groups were: 1) Subterranean/Soil Nesters; 2)

Leaf -Litter Nesters; 3) Inquilines; 4) Soil- and Leaf-Litter Nesters

(i.e., nest in both soil and leaf litter); 5) Ground Nesters (nest in soil,

leaf litter, twigs and logs); 6) Above-Ground Nesters (nest in leaf

litter, twigs, and logs, but not soil or canopy); 7) Twig Nesters; 8)

Above-Ground and Canopy or Foliage Nesters (nest in leaf litter,

twigs, logs, and canopy, but not soil); 9) Log Nesters; 10) Canopy

Nesters; and 11) Ubiquitous Nesters (species whose nests are found

in all habitat groups). Species whose nesting habits have not been

described or observed in the present study were categorized as

‘‘Unknown.’’
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