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Abstract

Monitoring the distribution of marine biodiversity is a crucial step to better assess the

impacts of global changes. Arctic marine fauna is dominated by amphipods in terms of

abundance and biomass. These peracarids are an important marine order of crustaceans

but the number of species found in the different Canadian oceans is currently unknown. Fur-

thermore, most species are difficult to identify due to poor taxonomic descriptions and mor-

phological convergence. The aim of this study was to assess the species diversity of marine

amphipods in the three Canadian oceans using DNA barcoding. To do so, we produced a

database of DNA barcodes of amphipods from the three Canadian Oceans publicly avail-

able from the BOLD website to which we added 310 new sequences from the Canadian Arc-

tic Archipelago. We first delimited amphipod species based on barcode gap detection

techniques and tree based method (bPTP) and then compared the composition of amphi-

pods among the three oceans in order to assess the influence of past transarctic exchanges

on Arctic diversity. Our analysis of 2309 sequences which represent more than 250 provi-

sional species revealed a high connectivity between the Atlantic and Arctic Oceans. Our

results also suggest that a single threshold to delimitate species is not suitable for amphi-

pods. This study highlights the challenges involved in species delimitation and the need to

obtain complete barcoding inventories in marine invertebrates.

Introduction

Oceans cover most of the planet, but are still poorly known in terms of biological composition

and species richness [1–4]. As climate changes and human pressures are growing, understand-

ing the distribution of marine biodiversity is a crucial step towards an effective monitoring of

marine ecosystems [2]. Nonetheless, numerous species of marine invertebrates are still await-

ing taxonomic description [4]. The identification and estimation of species diversity based on

a single genetic locus often appears the best option available for groups for which taxonomy is

poor or inexistent [5, 6].

DNA barcoding proposed by [7] is a method for identifying unknown specimens to taxo-

nomic entities based on sequence similarity of mitochondrial DNA (mtDNA) sequences [8, 9].

PLOSONE | https://doi.org/10.1371/journal.pone.0197174 May 23, 2018 1 / 17

a1111111111
a1111111111
a1111111111
a1111111111
a1111111111

OPENACCESS

Citation: Tempestini A, Rysgaard S, Dufresne F

(2018) Species identification and connectivity of

marine amphipods in Canada’s three oceans. PLoS

ONE 13(5): e0197174. https://doi.org/10.1371/

journal.pone.0197174

Editor: Roberta Cimmaruta, Universita degli Studi

della Tuscia, ITALY

Received:October 17, 2017

Accepted: April 27, 2018

Published:May 23, 2018

Copyright: © 2018 Tempestini et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All sequences are

available from the genbank database.

Funding: This work was supported by the Natural

Sciences and Engineering Research Council of

Canada (http://www.nserc-crsng.gc.ca/index_fra.

asp), 222948, to FD. SR was supported by the

Canada Excellence Research Chair program. The

funders had no role in study design, data collection

and analysis, decision to publish, or preparation of

the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0197174
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0197174&domain=pdf&date_stamp=2018-05-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0197174&domain=pdf&date_stamp=2018-05-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0197174&domain=pdf&date_stamp=2018-05-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0197174&domain=pdf&date_stamp=2018-05-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0197174&domain=pdf&date_stamp=2018-05-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0197174&domain=pdf&date_stamp=2018-05-23
https://doi.org/10.1371/journal.pone.0197174
https://doi.org/10.1371/journal.pone.0197174
http://creativecommons.org/licenses/by/4.0/
http://www.nserc-crsng.gc.ca/index_fra.asp
http://www.nserc-crsng.gc.ca/index_fra.asp


Inexact matches are either grouped with taxa already present in the database or identified as

new based on whether they fall within a threshold of sequence similarity [8]. Therefore, delim-

iting species based on barcode requires setting a specific threshold beyond which two

sequences will belong to different putative species referred as molecular operational taxonomic

units (MOTUs). Several methods have been developed to delimitate species using single locus

data such as the barcode gap detection [5, 10, 11] or based on phylogenetic trees [12, 13].

These methods have been successfully used in the exploration of biodiversity in insects [12], in

crustaceans [10, 14, 15], in polychaetes [16], in echinoderms [17]. However, the delimitation

of species based on a single locus can be problematic due to incomplete lineage sorting, hetero-

plasmy, introgression, young species showing no variation at COI or because it relies on taxo-

nomic data [18–20]. Despite its constraints, DNA barcoding has become an important tool in

biodiversity investigation leading to an increase amount of barcode data available.

Marine crustaceans are notoriously difficult to identify to the species level by traditional

approaches due to their enormous morphological diversity and because morphological stasis

is frequent in this group [21, 22]. Despite a decade of barcoding, only 7000 crustacean species

have been barcoded out of a total of 67,000 described species so far, and it is estimated that

there could be as many as 150,000 species world-wide [23]. In crustaceans, barcode gap detec-

tion as proposed by [7] has proven to be an efficient tool to discriminate species like marine

crustaceans [22, 23], and more specifically in decapods [24] and amphipods [25, 26].

Amphipods are small crustaceans characterized by a direct development and weak active

dispersal capabilities [27]. These characteristics favor cryptic speciation and endemism, and

prevent widespread distribution as has been documented in isopods [28]. Despite their key

role in the arctic food web [29], little is known about the biodiversity of marine amphipods.

Amphipods dominate the arctic marine fauna in terms of abundance and biomass [30].

Despite the fact that Arctic regions are already impacted by global warming, the Arctic Ocean

is one of the less understood region in the world and its marine biodiversity is one of the least

characterized [30–33]. Arctic marine biodiversity has been shaped by the complex history and

environment of this region. At least six openings of the Bering Strait since 5.5 million years

ago have allowed trans-Arctic exchanges and invasions of the North Atlantic region by the

North Pacific species [34–36]. Moreover, Quaternary glaciations have pushed some taxa out of

the Arctic and recolonisation of the Arctic occurred from neighboring oceans during intergla-

cial periods [17]. Several studies have documented these transarctic exchanges in molluscs [34,

37], in algae [38], in fishes [39, 40] and in polychaetes [16]. So, over millions of years, marine

species have dispersed through the Arctic several times leading to a complex pattern of biodi-

versity [17].

In this study, we investigated the species delimitation of amphipods and the biodiversity of

marine arctic amphipods using publicly available DNA barcodes to which we added new

sequences for amphipods from the Canadian Arctic Archipelago. Our aims were 1) to test spe-

cies delimitation using both distance-based and coalescent methods and 2) to assess large-scale

connectivity of marine amphipods across the three Canadian oceans.

Materials andmethods

Sampling and DNA amplification

Samples of Arctic amphipods were collected in 2011 in the Canadian Arctic Archipelago dur-

ing the NCGS Amundsen expedition using vertical and/or horizontal nets with 200, 500 and

750 μmmesh size. Samples from Greenland were provided by the Greenlandic Institute of

Natural Resources. Specimens from the southeastern Bering Sea were collected in 2012 during

the Bering-Aleutian Salmon International Survey with a 500 μmmesh bongo net [41].

Tri-OCEANIC connectivity of marine amphipods
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Specimens from Prince William Sound in the Gulf of Alaska were collected in 2013 with a

500 μmmesh ring net. All individuals were preserved in 95% ethanol. Samples were identified

to the species level with appropriate taxonomic keys [42, 43] when possible. Description of

samples with geographic cordinates can be found under the “CAAB” (Canadian Arctic

Amphipods Barcodes) project available in BOLD (www.boldsystem.org).

The DNA of 374 samples was extracted using the E.Z.N.A tissue extraction kit (Omega-bio-

tek), or the QuickExtract kit (Omegabiotek) following the manufacturer’s protocols. Individu-

als with a body size> 10 mm were extracted using one or two pereopods. Individuals with a

size< 10 mm were used whole for the extraction. A 658 base pair (bp) fragment of the mito-

chondrial cytochrome c oxidase subunit I gene was amplified using the primer pair LCO1490/

HCO2198 [44]. Polymerase chain reaction (PCR) was conducted as described in [45]: the reac-

tion mix contained 1X PCR buffer, 2.2 mMMgCl2, 0.5 mM dNTPs, 0.4 μM of each primer, 1.5

U of Taq DNA polymerase (Life Technologies, Mississauga, ON, Canada), DNA template

(around 40–80 ng), and water for a final volume of 25 μl. PCR were performed with an initial

denaturation step of 3 min at 94 ˚C, followed by 5 cycles of 45 s at 94 ˚C, 45s at 46 ˚C, 45 s at

72 ˚C and 35 cycles of 45 s at 94 ˚C, 40 s at 51˚C, 45s at 72 ˚C, and a final elongation step of 5

min at 72 ˚C. All PCR products were verified on a 1.5% agarose gel and direct-sequenced by

Genome Quebec (McGill University, Montreal, Canada). Over the 374 individuals used, 310

individuals were successfully sequenced and their chromatograms were manually checked on

MEGA7 [46].The presence of pseudogenes was assessed by translating sequences into amino

acids. All sequences were deposited in the the project “CAAB” (“Canadian Arctic Amphipod

Barcodes”) available in BOLD and in GenBank database under the accession numbers

MH330696—MH331009.

Dataset and molecular operational taxonomic units construction

Sequences found after searching in December 2017 for “Amphipoda” from Canada, Greenland

and United States in the public data portal of BOLD conducted were combined to our data. All

sequences were aligned using MUSCLE [47] available in the BOLD sequence analysis tools.

The final dataset contained 2309 sequences from the three canadian oceans (S1 Table). As reli-

able MOTU depends on the accuracy of the MOTU retrieved with different methods [48, 49],

we chose to used several gap discovery methods (Barcode Index Number, MOTHUR, ABGD)

and coalescent process (bPTP) to find the number of MOTU present in our dataset.

Barcode Index Number (BIN). The Barcode index number was constructed by first using

a 2.2% p-distance threshold for clustering sequences and then each cluster was refined by the

examination of the genetic divergence among neighbors [50]. Each cluster was described with

a unique and specific identifier (e.g. Barcode Index Number or BIN), already available or

newly created if the sequences are clustered in an unknown BIN [50]. Sequences were aligned

using Kimura-2 parameters (K2P) [51], with MUSCLE [47]. All analyses were conducted in

BOLD with sequence analysis tools.

MOTHUR. We used MOTHUR [52] to cluster our sequences into provisional species

(referred as MOTU). In the literature, several thresholds are reported for delimiting species: a

3% threshold commonly used to define species [53], a 4% threshold proposed by [25], a 16%

threshold for amphipods species proposed by [10]. Uncorrected pairwise distances were first

computed for each threshold values and sequences were clustered into MOTU using the near-

est neighbor method considering each gap. Briefly, this method allows the clustering of

sequences in the same MOTU if they are at most X% distant from the most similar sequence

in the MOTU.

Tri-OCEANIC connectivity of marine amphipods
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In order to associate taxonomy to MOTUs, we created a molecular taxonomic database

containing all amphipods identified to the species level and its barcode sequence. To do so, we

selected all amphipod sequences from BOLD with the following criteria: taxonomic identifica-

tion at least to the genus level and a COI sequence longer than 500 bp. All sequences were

aligned with MAFFT version 7 web server [54] and trimmed to 501 bp. After the construction

step, each MOTU was aligned to the reference database with a confidence threshold of 90%. In

order to assess the accuracy of our molecular identification, we aligned 305 sequences of 43

taxonomic identified species to our taxonomic database. As no discrepancy was observed, we

confirmed the validity for MOTU identification. All analyses were performed with MOTHUR

[52].

Automatic Barcode Gap Discovery (ABGD)

Since intra-specific divergences are smaller than inter-specific ones [55], a gap in the distribu-

tion of all pairwise distances can be identified using the Automatic Barcode Gap Discovery

method available at www.abi.snv.jussieu.fr/public/abgd. This method is described in detail in

[5]. Briefly, the data was first partitioned into a number of groups (i.e. species) such that the

distance between two sequences taken from distinct groups was always larger than a given

threshold distance and then appply recursively this procedure to get a better partitioning of

the data into putative species [5]. We used the default value of 0.001 for the minimum intraspe-

cific distance and 0.3 for the maximum intraspecific distance, with 10 steps and K2P distance.

We explored the relative gap width (X) for X = 0.5 and X = 1. After the barcode gap discovery,

sequences were clustered into MOTU based on the estimated threshold.

Coalescent approach. Poisson Tree Process is a model for delimiting species based on a

rooted tree with branching events representing the number of substitutions [13]. As a large

dataset is computer challenging, we selected unique sequences to reconstruct the tree and then

performed the analysis. To reconstruct the tree, we rooted it with Pandalus borealis (Krøyer,

1838) (accession: KY018893.1). We selected the evolutionary model using the Bayesian Infor-

mation Criterion (BIC) available at W-IQ-TREE [56]. We generated a phylogeny under the

General Time Reversible model with empirical frequency, invariable site and under gamma

rate (GTR+F+I+G4) using Bayesian inferences in MrBayes 3.2.6 [57] available at www.phylo.

org, using two runs for 10,000,000 generations until convergence was observed. Trees were

sampled every 10,000 generations and the first 25% of sampled tree were discarded as burn-in.

The posterior probabilities (PP) were calculated with the 50% majority-rule consensus tree.

We used the web version of bPTP (http://species.h-its.org/ptp/) to generate the species delimi-

tation under a coalescent process. Analysis was conducted with 500,000 iterations of MCMC

and 25% burn-in. We also removed the outgroup to improve the delimitation.

Diversity among the three canadian oceans. To provide an overview of the similarity in

the MOTU composition among the three oceans, a Venn diagram was obtained for each

threshold.

Species threshold identification

As the thresholds proposed by [10] or by [25] were based on a single family of amphipods, we

used the same method to identify a species threshold for all Amphipoda. To do so, we collected

all amphipod sequences from BOLD (January, 2016). Among the 15516 records, all sequences

without a taxonomic identification to the species level, with less than 500 bp or associated with

pseudogenes were discarded. A total of 8471 sequences corresponding to 89 families were

examined further. Families with less than 30 sequences or containing less than 3 species were

also discarded from this dataset. The diversity assessments for the amphipods and for the most

Tri-OCEANIC connectivity of marine amphipods
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represented families were analysed from the data set with 3879 sequences from 272 species, 70

genera, and 10 families. After performing a first alignment with MAFFT [54], all sequences

were trimmed to the same length of 501 bp. After this step, Kimura 2 parameters pairwise dis-

tances were computed at each taxonomic level intrafamily (F), intragenus (G) and intraspecies

(S) in MEGA7 [46] and plotted by family using the boxplot representation available in R and

described in [10]. Based on the ABGD, we estimated a general threshold to 7%. Three ranges

of thresholds (3%, 7% and 16%) were plotted to see which one best discriminated the different

amphipod species.

Results

Nucleotide diversity

Out of a total of 310 sequences obtained, 5 sequences contained stop codon and were removed

from the analysis. All sequences were clustered into 28 MOTUs representing 26 BIN of which

3 were uniques. The mean GC content was 32.9%. Intraspecific K2P distance ranged from 0.6

to 18.07% and interspecific distance ranged from 1.3 to 27.3%.

The complete dataset consisted in 2309 sequences that were trimmed to the same length of

400 bp. Within the final alignement, 94 conserved sites and 277 parsimony informative sites

were detected. The mean GC content was high (GC = 38.01%). Intraspecific K2P distance ran-

ged from zero to 33.33% and interspecific distance ranged from 0.17 to 32.14%. There were

418 sequences from locations within the Pacific Ocean, 998 sequences from the Arctic region

and 892 from the Atlantic (Fig 1).

Gap distance based methods

BOLD. All 2309 sequences were grouped into 285 MOTUs and 263 BINs, of which 83

BINs were unique (Table 1, S2 and S3 Tables). Among these 285 MOTUs, 113 were from the

Arctic, 91 were from the Atlantic and 105 were from the Pacific. Nineteen MOTUs were

shared between the Arctic and the Atlantic, three were shared between the Pacific and the

Atlantic, and three were shared between the Pacific and the Arctic. A single MOTU was shared

among the three oceans (Fig 2A).

Barcode gap detection with ABGD

The distribution of K2P genetic distances displayed two modes separated by a gap (‘barcode

gap’) between 0.04 and 0.8. The ABGDmethod split 2309 sequences into 242 groups over a

wide range of prior maximum divergence (P = 0.046416—P = 0.100000) after 20 partitions for

X = 1 and after 23 partitions for X = 0.5 (Table 1, S1 Fig). All analyses produced a single group

when P = 0.11. Among the 242 groups, 94 were from the Arctic, 84 from the Atlantic, and 88

from the Pacific (Fig 2B). One MOTU was shared between the Arctic and the Pacific, two

between the Atlantic and the Pacific, and one among the three oceans. Nineteen MOTUs were

shared between the Atlantic and the Arctic.

MOTHUR

The 3% threshold allowed the identification of 261 MOTUs (Table 1), for which 100 were

from the Arctic, 86 from the Atlantic, and 97 from the Pacific (Fig 2C). Eighteen MOTUs were

shared between the Arctic and the Atlantic. In contrast, three MOTUs were shared between

the Arctic and the Pacific and two between the Atlantic and the Pacific, of which one MOTU

was common among the three oceans and identified as Themisto libellula (Lichtenstein in

Mandt, 1822) (Fig 2C). A large proportion of MOTUs belonged to the Gammaridae,

Tri-OCEANIC connectivity of marine amphipods
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Ischyroceridae, Hyalidae and Aoridae families (Fig 3A). We were unable to identify 6 MOTUs

to taxonomic level. At the species level, several species were found in the three oceans: Ampe-

lisca spinipes (Boeck, 1861), Aora gracialis (Spence Bate, 1857), Parhyale hawaiensis (Dana,

1853),Microphasma agassizi (Woltereck, 1909), Pontogeneia inermis (Krøyer, 1838), Tiron bio-

cellata (Barnard, 1962),Weyprechtia pinguis (Krøyer, 1838). As only one shared MOTU was

detected between the three oceans, it suggests that these species consist of distinct MOTUs

(Table 2).

Under the 4% threshold, 251 MOTUs were found for which 97 were in the Arctic, 84 in the

Atlantic and 94 in the Pacific (Table 1, Fig 2D). Twenty MOTUs were shared between the Arc-

tic and the Atlantic. Three MOTUs were shared between the Arctic and the Pacific, and two

MOTUs between the Atlantic and the Pacific among which one MOTU is shared among the

three oceans. Six MOTUs were shared among the three oceans and identified as Ampelisca spi-

nipes (Boeck, 1861), Aora gracilis (Spence Bate, 1857),Microphasma agassizi (Woltereck,

1909), Pontogeneia inermis (Krøyer, 1838), Parhyale hawaiensis (Dana, 1853), Themisto

Fig 1. Map of the sampling location of each sequence used in this study.

https://doi.org/10.1371/journal.pone.0197174.g001

Table 1. Number of MOTUs found according to the method used.

Method Threshold Number of MOTUs

BOLD BIN 263

MOTU 285

ABGD X = 0.5 242

X = 1 242

MOTHUR 3% 261

4% 251

16% 173

bPTP 265–287

https://doi.org/10.1371/journal.pone.0197174.t001
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libellula (Lichtenstein in Mandt, 1822),Weyprechtia pinguis (Krøyer, 1838), Tiron biocellata

(Barnard, 1962) respectively (Table 2). Most MOTUs belong to the Gammaridae, Hyalidae

and Ischyroceridae families (Fig 3B). Six MOTUs were not assigned to a taxonomic level.

Under the 16% threshold, 173 MOTUs were found, for which 59 were in the Arctic, 70 in

the Atlantic and 75 in the Pacific (Table 1, Fig 2E). Twenty-one MOTUs were shared between

the Arctic and the Atlantic. Three MOTUs were shared between the Arctic and the Pacific and

nine MOTUs were shared between the Atlantic and the Pacific. Six MOTUs were shared

Fig 2. Venn diagram of shared MOTUs among the three oceans: Arctic (pink), Atlantic (green) and Pacific (blue).
The number of MOTUs in each group and shared between groups is indicated. A: MOTUs were defined with a 3%
threshold. B: MOTUs were defined with a 16% threshold. C: MOTUs were defined with a 4% threshold.

https://doi.org/10.1371/journal.pone.0197174.g002

Fig 3. Distribution of MOTUs by family and ocean. MOTUs are defined based on a threshold of A) 3%, B) 4%, C)
16%. Atlantic MOTUs are represented in green, Pacific MOTUs in blue and Arctic MOTUs are in pink.

https://doi.org/10.1371/journal.pone.0197174.g003
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among the three oceans and identified as Ampelisca spinipes (Boeck, 1861), Aora gracilis

(Spence Bate, 1857), Anonyx nugax (Phipps, 1774), Ischyrocerus anguipes (Krøyer, 1838),

Microphasma agassizi (Woltereck, 1909), Pontogeneia inermis (Krøyer, 1838), Themisto libel-

lula (Lichtenstein in Mandt, 1822), respectively (Table 2). Most MOTUs belong to the Gam-

maridae family and the Aoridae family (Fig 3C). Only 11 MOTUs were not assigned to a

taxonomic level.

Tree based method

The tree-based bPTP analysis estimated the number of species between 265 and 287 with a

mean of 275 species (S2 Fig, S4 Table) with high posterior probablilities (>0.5).

Canadian Arctic diversity

The family identification showed that not all the locations and the families were well sampled

across the three Canadian oceans (Fig 3C). Eight families (Bathyporeiidae, Gammaracanthi-

dae, Iphimedidae, Pallaseidae, Photidae, Pleustidae, Pseudocrangonyctidae, and Urothidae)

were represented by a single MOTU in one location. The Gammaridae family had the highest

number of MOTUs (Fig 4).

Table 2. Species found in the three oceans.

3% 4% 16%

Arctic Atlantic Pacific Arctic Atlantic Pacific Arctic Atlantic Pacific

Ampelisca spinipes (Boeck, 1861) 1 1 2 1 1 2 1 1 1

Anonyx nugax (Phipps, 1774) 0 0 0 0 0 0 1 1 1

Aora gracilis (Spence Bate, 1857) 1 1 7 1 1 6 1 1 3

Microphasma agassizi (Woltereck, 1909) 2 1 1 2 1 1 1 1 1

Parhyale hawaiensis (Dana, 1853) 1 2 1 2 2 1 0 0 0

Parhyale sp. DP0017 2 2 2 2 2 2 0 0 0

Pontogeneia inermis (Krøyer, 1838) 1 1 1 1 1 1 2 1 1

Themisto libellula (Lichtenstein in Mandt, 1822) 1 1 1 1 1 1 1 1 1

Tiron biocellata (Barnard, 1962) 4 3 3 4 3 3 1 1 1

Weyprechtia pinguis (Krøyer, 1838) 1 1 1 1 1 1 0 0 0

Numbers represent the number of MOTUs from each ocean identified to the species level. MOTUs are defined with a 3%, 4% and 16% threshold respectively.

https://doi.org/10.1371/journal.pone.0197174.t002

Fig 4. Number of MOTUs identified to the family level according to the species threshold used (3% light grey; 4%
grey and 16% dark).

https://doi.org/10.1371/journal.pone.0197174.g004
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As expected, the number of MOTUs decreased with an increase of the threshold value used

for all families (Fig 4). Six families were equally recovered (Bathyporeiidae, Corophidae, Iphi-

mediidae, Pallaseidae, Pleustidae, Pseudocrangonyctidae) regardless of the threshold.

Species threshold

Divergences were estimated for the validated dataset from 3879 sequences representing 272

species, 79 genera, and 10 families. As expected, genetic divergence increased with taxonomic

rank: a higher divergence was observed at the family level (K2P from 0 to 0.9), than at the

genus level (K2P from 0 to 0.7), and the species level (K2P from 0 to 0.3). However, the thresh-

old used to delimit species varied among families (Fig 5). The threshold proposed by [10] (0.16

substitution/site) discriminated well the Gammaridae species but not the other amphipods

species from different genera. The lowest species divergence was observed in the Melitidae

(0.001), the lowest genus and family divergences were observed in the Hyperiidae (0.26). The

highest species (0.3) and genus (0.7) divergence was observed within the Gammaridae and the

highest family divergence (0.9) was observed within the Melitidae.

Discussion

Inventories of marine biodiversity are much needed in the context of global changes. A decade

of DNA barcoding has resulted in the acceleration of species discovery and has helped to

Fig 5. Boxplot distribution of the COI K2P distances for the 10 selected families representative of the Amphipoda
order at the intraspecies (S–light blue), intragenus (G–blue) and intrafamily (S–dark blue) levels.Median (central
bar), position of the upper and lower quartiles (central box) and extremes of the data (dots) are represented. Black lines
represent different thresholds used for discriminating species: long dash = 0.16 substitution/site [10]; dashed line = 7%
of divergence (this study) and solid line = 3% of divergence [53].

https://doi.org/10.1371/journal.pone.0197174.g005
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provide partial or complete inventories lists for selected taxa [23, 58]. The ability to assign spe-

cies identities to DNA sequences depends on the availability of comprehensive DNA reference

libraries such as BOLD [59]. The generation of these libraries represents an important task, in

particular in some difficult acessible region such as the poles or the abyss where our knowledge

on their biodiversity is still lacking [23]. With the increasing use of metabarcoding approach,

the need for complete library references will become essential to allow an easier investigation

of species richness and to monitor the faith of the biodiversity in an area undergoing global

changes such as the Arctic ocean [14].

Our study provides a useful example of how one can retrieve information from BOLD data-

base to produce an exhaustive first step inventory of specific animal groups or specific regions

that are otherwise lost among the different publicly available projects. We showed that wide-

spread species are in fact composed of different MOTUs, suggesting the presence of cryptic

species. This implies that a careful look at the taxonomic keys is needed for amphipods. More-

over, we found that using a single threshold for species delimitation for different families of

amphipods is not always accurate.

MOTU delimitation

The number of MOTU retrieved varied between 173 (MOTHUR-16% threshold) and 285

(BOLD). Excluding the highest threshold used in MOTHUR, ABGD retrieved the lowest num-

ber of MOTUs. Some discripancy have been noticed among methods. For example, da Silva

et al. [60] noticed that ABGD and PTP produce lower estimates of snapper species diversity

(based on the COI) than other methods. The relative performance of species delimitation

methods has been examined in other studies [61]. The results produced by AGBD vary accord-

ing to the metrics used and with the number of individuals per species and might be useless in

the exploration of species diversity in poorly known groups [10, 61, 62]. Several authors

emphasize the importance of combining several methods in species delimitation [6]. Defining

species based on genetic data alone might be limiting and additional characters such as life his-

tory traits and geographic ditribution are also of interest for species description [6, 63].

Delimiting species based on a single mitochondrial fragment can introduce some bias.

First, the DNA barcoding protocol has different steps that can introduce some errors that can

lead to misidentification of the specimen [22]. Second, incomplete lineage sorting or homo-

plasy can contribute to an overlap between the intra- and interspecific distances leading to dif-

ficulties in the identification of the barcode gap [19]. “COI like” sequences can contribute to

increase the threshold estimate as it has been investigated in crustacean [64].

We also conducted our species clustering analyses using a tree-based method. We found

around 270 species which is less than the number of MOTUs found with BOLD (285) and less

than the number of MOTUs found with ABGD (242). It is well known that tree based methods

like GMYC or PTP are sensitive to the genealogy of a particular locus, wich can be discordant

with the true species tree [65, 66]. Moreover, singletons can also represent difficulties [67, 68].

Species threshold

Delimiting species relies on a threshold over which species belong to the same or to two differ-

ent species. The 3% of divergence [53] is a commonly used threshold in the literature. Other

studies report that a 16% threshold was more suitable for delimiting amphipod species like

Gammaridae or Niphargidae [10, 69, 70, 71]. On the contrary, lower value for threshold has

been also reported in other family of amphipods like in Talitridae (8% -17%) [71] or in Hyalle-

lidae (4%) [72]. By including ten amphipod families, we have showed that the use of 16% is

appropriate for the discrimination of Gammaridaea species but is too high to discriminate
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species from other families. Based on the interspecific distance distribution among amphipod

families, we found that this threshold can discriminate most amphipod species but is not

always suitable.

Based on the automatic barcode gap detection, we estimated a threshold of 7% for discrimi-

nating amphipod species, which is intermediate between the previous thresholds proposed.

This threshold seems appropriate for the majority of amphipod species but again, based on

diverse family distances distribution, this threshold will underestimate the number of Gam-

maridae or Talitridae species. Instead, we found that for discriminating amphipod species, a

threshold specific to each family will be more appropriate. However, we should emphasize that

not all amphipod families are equally studied and less than 10 sequences are not enough to

estimate intraspecific distances [19, 67]. For example, Gammaridae is one of the best studied

amphipod family for which a large amount of molecular data is available but other amphipod

families such as Hyperiidae have not received the same attention. Here, we focused on 10

amphipod families that represent less than a quarter of all amphipod families [43]. Neverthe-

less our analysis provides the first molecular attempt to determine species threshold in amphi-

pods. Additional barcoding data is needed on the other amphipod families for helping to

refine our species threshold and to determine factors (e.g. benthic vs pelagic lifestyle, life his-

tory traits, speciation rates, effective population size, etc. . .) responsible for the large variation

in sequence divergence among different crustacean families.

Arctic diversity

Our study, based on the analysis of more than 2300 sequences distributed throughout the

three Canadian oceans, indicates the presence of at least 250 provisional amphipod species.

We found 100 putative Arctic species representing circa 85% of the known amphipods inven-

tory in the Arctic (from the Chukchi Sea) [73]. We recovered more putative species in the

Atlantic and less in the Pacific. Marine Arctic fauna is mostly derived from recent and repeated

colonisations from both Pacific and Atlantic species after Pleistocene glaciation events or mul-

tiple Bering Strait openings [reviewed in 17 and 34]. Most studies on trans-arctic interchanges

have reported a Pacific origin of the invasion [34, 38, 39, 74–78]. Regarless of the threshold

used, our results indicate a higher similarity between Arctic and Atlantic oceans (>15 MOTUs

shared) than between the Arctic and the Pacific (one MOTU shared). Similarity between Arc-

tic and North Atlantic fauna has also been reported in polychaetes [16] or in bryozoans [79],

suggesting that the Atlantic Ocean contributed significantly to the recolonization of the Arctic.

In addition, the Pacific harbors the highest number of MOTUs compared to the number of

sequences available (418), corroborating a higher diversity of this ocean compared to others

[16, 34]. The limited number of shared MOTUs between the Arctic and Pacific oceans suggests

the presence of a barrier restricting exchanges between these oceans. Moreover, the fact that

the retrieved Pacific MOTUs were not found elsewhere confirms the isolation of Pacific taxa

from colder Arctic waters. In copepods [80, 81] and in amphipods [82], isolation between

Pacific and Arctic populations has been documented. The cold temperature of the Arctic

waters has likely impeded the survival and reproduction of North Pacific species. Global

warming induced changes in the Arctic ocean leading to less inhospitable barriers for Pacific

species and promoting interchanges between Pacific and Atlantic oceans as suggested by

recent models [83]. Therefore, further sampling of the Pacific region is needed to confirm this

isolation as our results might be biased by differential sampling efforts between the Pacific and

the Atlantic oceans.

We found a relatively higher proportion of benthic species belonging to the intertidal or

infralittoral family of Gammaridae, Hyalidae and Ischyroceridae [84, 85] than pelagic species.

Tri-OCEANIC connectivity of marine amphipods
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In the unique pelagic amphipod family (e.g. Hyperiidae), we recovered 12 MOTUs of which

the majority (8 MOTUs) were Arctic. In the Eurasian arctic waters inventory, the presence of

eight Hyperiidae species were recorded [73]. This result suggests that pelagic diversity is not

well known maybe due to sampling difficulties; further efforts are needed to better character-

ized ocean diversity. As sampling in the Arctic is quite challenging, it is most likely that rare

taxa were not included in our analyses (S3 Fig–S5 Fig). Although, our study does not include

depth information, it will also be interesting to investigate the diversity of MOTUs among

oceans according to depth to get a more precise picture of the marine biodiversity.

However we were not able to identify all MOTUs to the species level. Several explanations

can be considered. First, during the taxonomic reference creation, we discarded more than

half of the sequences due to pseudogenes or short sequences. Secondly, the 15 516 sequences

of amphipods available in BOLD correspond to 1 514 species which is under the number of

amphipods estimates [4]. Despite these constraints, barcoding techniques have provided useful

information on the amphipod biodiversity in the three Canadian oceans. This approach can

benefit the study of oceanic Arctic region which is one of the least studied [3, 23, 33]. More-

over, we also showed that widespread marine amphipods species are composed of different

MOTUs, suggesting an underestimated diversity. A large number of studies have revealed the

presence of cryptic species complex in marine invertebrates[16, 55, 86–88], suggesting the util-

ity of combining different types of data (e.g. molecular and morphological) to identify species.

Conclusions

Our analyses have contributed to the assessment of marine arctic amphipod biodiversity in

revealing potential cryptic species, in showing the sharing of MOTUs between the Arctic and

the Atlantic amphipods and in the isolation of Arctic amphipods from those of the Pacific.

Moreover, thanks to the increasing barcode data available in amphipods, we were able to show

that threshold value for species identification in amphipods needs to be estimated for each

family. It has become evident that species definition should not be restricted to a COI sequence

but should include additional information such as ecological niche. Pursuing arctic amphipods

studies with DNA barcodes will ultimately lead to a better understanding of marine biodiver-

sity and the mechanisms of speciation in marine environments. With arctic waters already

showing the presence of temperate invaders [89], there is an urgency to complete this task.
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31. Wassmann P, Duarte CM, AgustÍ S, Sejr MK. Footprints of climate change in the Arctic marine ecosys-
tem. Glob Change Biol. 2010; 17(2):1235–1249.

32. Bluhm B, Gebruk A, Gradinger R, Hopcroft R, Huettmann F, Kosobokova K, et al. Arctic Marine Biodi-
versity: An Update of Species Richness and Examples of Biodiversity Change. Oceanography. 2011;
24(3):232–248.

33. Wassmann P, Kosobokova KN, Slagstad D, Drinkwater KF, Hopcroft RR, Moore SE, et al. The contigu-
ous domains of Arctic Ocean advection: Trails of life and death. Prog Oceanogr. 2015; 139:42–65.

34. Vermeij GJ. Anatomy of an Invasion: The Trans-Arctic Interchange. Paleobiology. 1991; 17(03):281–
307.

35. Gladenkov AY, Oleinik AE, Marincovich L, Barinov KB. A refined age for the earliest opening of Bering
Strait. Palaeogeogr, Palaeoclimatol, Palaeoecol. 2002; 183(3–4):321–328.

36. Heads M. Towards a panbiogeography of the seas. Biol J Linnean Soc. 2005; 84(4): 675–723.

37. Layton KKS, Martel AL, Hebert PDN. Patterns of DNA Barcode Variation in Canadian Marine Molluscs.
PLoS ONE. 2014; 9(4):e95003. https://doi.org/10.1371/journal.pone.0095003 PMID: 24743320

38. Coyer JA, Hoarau G, Van Schaik J, Luijckx P, Olsen JL. Trans-Pacific and trans-Arctic pathways of the
intertidal macroalga Fucus distichus L. reveal multiple glacial refugia and colonizations from the North
Pacific to the North Atlantic. J Biogeogr. 2010; 38(4):756–771.

39. Dodson JJ, Tremblay S, Colombani F, Carscadden JE, Lecomte F. Trans-Arctic dispersals and the evo-
lution of a circumpolar marine fish species complex, the capelin (Mallotus villosus). Mol Ecol. 2007; 16
(23):5030–5043. https://doi.org/10.1111/j.1365-294X.2007.03559.x PMID: 17944848

40. Pálsson S, Källman T, Paulsen J, Árnason E. An assessment of mitochondrial variation in Arctic
gadoids. Polar Biol. 2008; 32(3):471–479.

41. Eisner LB, Napp JM, Mier KL, Pinchuk AI, Andrews AG. Climate-mediated changes in zooplankton
community structure for the eastern Bering Sea. Deep Sea Res Part II: Top Stud Oceanogr, 2014; 109:
157–171.

42. Vinogradov ME, Causey D, Semenova TN, Volko AF.Hyperiid amphipods (Amphipoda,Hyperiidea) of
the world oceans. Smithsonian Institution, Washington, DC. 1996

43. Martin JW, Davis GE. An updated classification of the recent Crustacea. Sci Series, 2001; 39: 1–124.

44. Folmer O, HoehW, Black M, Vrijenhoek R. Conserved primers for PCR amplification of mitochondrial
DNA from different invertebrate phyla. Mol Mar Biol Biotechnol. 1994; 3:294–299. PMID: 7881515

45. Dionne K, Vergilino R, Dufresne F, Charles F, Nozais C. No Evidence for Temporal Variation in a Cryp-
tic Species Community of Freshwater Amphipods of theHyalella azteca Species Complex. Diversity.
2011; 3(4):390–404.

46. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for big-
ger datasets. Mol Biol Evol 2016; 33(7): 1870–1874. https://doi.org/10.1093/molbev/msw054 PMID:
27004904

47. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic
acids res. 2004; 32 (5): 1792–1797. https://doi.org/10.1093/nar/gkh340 PMID: 15034147

48. Blaxter M, Floyd R. Molecular taxonomics for biodiversity surveys: already a reality. Trends Ecol Evol.
2003; 18(6): 268–269

49. Blaxter M, Mann J, Chapman T, Thomas F, Whitton C, Floyd R, Abebe E. (2005). Defining operational
taxonomic units using DNA barcode data. Philos Trans R Soc B: Biol Sci. 2005; 360(1462): 1935–1943

50. Ratnasingham S, Hebert PDN. A DNA-based registry for all animal species: the Barcode Index Number
(BIN) system. PloS ONE. 2013; 8(7): e66213. https://doi.org/10.1371/journal.pone.0066213 PMID:
23861743

51. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative
studies of nucleotide sequences. J Mol Evol. 1980; 16:111–120. PMID: 7463489

Tri-OCEANIC connectivity of marine amphipods

PLOSONE | https://doi.org/10.1371/journal.pone.0197174 May 23, 2018 15 / 17

https://doi.org/10.1371/journal.pone.0095003
http://www.ncbi.nlm.nih.gov/pubmed/24743320
https://doi.org/10.1111/j.1365-294X.2007.03559.x
http://www.ncbi.nlm.nih.gov/pubmed/17944848
http://www.ncbi.nlm.nih.gov/pubmed/7881515
https://doi.org/10.1093/molbev/msw054
http://www.ncbi.nlm.nih.gov/pubmed/27004904
https://doi.org/10.1093/nar/gkh340
http://www.ncbi.nlm.nih.gov/pubmed/15034147
https://doi.org/10.1371/journal.pone.0066213
http://www.ncbi.nlm.nih.gov/pubmed/23861743
http://www.ncbi.nlm.nih.gov/pubmed/7463489
https://doi.org/10.1371/journal.pone.0197174


52. Schloss PD,Westcott SL, Ryabin T, Hall JR, HartmannM, Hollister EB, et al. Introducing mothur:
Open-Source, Platform-Independent, Community-Supported Software for Describing and Comparing
Microbial Communities. Appl Environ Microbiol. 2009; 75(23):7537–7541. https://doi.org/10.1128/
AEM.01541-09 PMID: 19801464

53. Hebert PDN, Ratnasingham S, deWaard JR. Barcoding animal life: cytochrome c oxidase subunit 1
divergences among closely related species. Proc R Soc B: Biol Sci. 2003b; 270(Suppl_1):S96–S9.

54. Katoh K, Standley DM. MAFFTMultiple Sequence Alignment Software Version 7: Improvements in Per-
formance and Usability. Mol Biol Evol. 2013; 30(4):772–780. https://doi.org/10.1093/molbev/mst010
PMID: 23329690

55. Havermans C, Sonet G, d’Udekem d’Acoz C, Nagy ZT, Martin P, Brix S, et al. Genetic and Morphologi-
cal Divergences in the Cosmopolitan Deep-Sea Amphipod Eurythenes gryllusReveal a Diverse Abyss
and a Bipolar Species. PLoS ONE. 2013; 8(9):e74218. https://doi.org/10.1371/journal.pone.0074218
PMID: 24086322

56. Trifinopoulos J, Nguyen LT, von Haeseler A, Minh BQ.W-IQ-TREE: a fast online phylogenetic tool for
maximum likelihood analysis. Nucleic acids res. 2016; 44(W1): W232–W235. https://doi.org/10.1093/
nar/gkw256 PMID: 27084950

57. Ronquist F, Teslenko M, van der Mark P, Ayres DL, Höhna S, Larget B, Liu L, Suchard MA, Huelsen-
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