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Abstract

This paper presents a study of a nonlinear reaction-diffusion popula-

tion model in fragmented environments. The model is set on R
N , with

periodic heterogeneous coefficients obtained using stochastic processes.

Using a criterion of species persistence based on the notion of principal

eigenvalue of an elliptic operator, we provided a precise numerical analysis

of the interactions between habitat fragmentation and species persistence.

The obtained results clearly indicated that species persistence strongly

tends to decrease with habitat fragmentation. Moreover, comparing two

stochastic models of landscape pattern generation, we observed that in

addition to local fragmentation, a more global effect of the position of the

habitat patches also influenced species persistence.

1 Introduction

These last 20 years, the number of species threatened by extinction has increased
significantly. Among the many causes of threat, the first one for most of the
endangered species is habitat destruction and associated fragmentation (see the
Red List of Threatened Species [3]). Mathematical models incorporating habitat
heterogeneities can be very helpful in understanding the links between the habi-
tat fragmentation and the extinction processes. Since habitat fragmentation is
in most cases the result of human activities, conservation measures derived from
the observation of these models should be taken preventively.

There is a recent but abundant literature on population models taking ac-
count of habitat heterogeneities. The category of individual based models is
represented by spatially explicit simulation models. In these models, where the
landscape pattern is taken into account and each individual interacts with its
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environment, simulations are run until a general behaviour of the population
can be observed. The advantages of these simulation models are that their im-
plementation does not require sophisticated mathematical tools, and that they
can incorporate precise information on the species behaviour. However, they
remain limited in terms of general theoretical analysis, the number of param-
eters being quite high and the results of the simulations being closely linked
to the choice of these parameters [15, 19, 23]. Conversely, diffusion models, al-
though they sometimes make oversimplifying assumptions about movement of
real organisms, provide an excellent tool for obtaining nontrivial theoretical and
qualitative results on populations dynamics, which can lead to a better under-
standing of some ecological processes (see reviews in Murray [25], Okubo and
Levin [26], Shigesada and Kawasaki [31], and Turchin [35]). In this paper, we
choose to work with this last kind of model. More precisely, we modelled the
species dynamics with a heterogeneous extension of the Kolmogorov equation,
introduced simultaneously by Fisher [13] and Kolmogorov et al. [22]:

∂u

∂t
= D∇2u + u(µ(x) − ν(x)u), t ∈ R, x ∈ R

N , (1.1)

where u = u(t,x) stands for the population density at time t and position x.
This model is a combination of the diffusion equation, describing the motion of
an important number of particles, each one following a random walk, and the
logistic equation, µ(x) corresponding to the intrinsic growth rate of the species
and ν(x) being a “susceptibility to crowding” coefficient. We placed ourselves in
the particular case of the dimension N = 2, and we assumed that the coefficients
µ(x) = µ(x1, x2) and ν(x) = ν(x1, x2) were periodic, which means that there
exist L1, L2 > 0 such that for all (x1, x2) in R

2, µ(x1 + L1, x2 + L2) = µ(x1, x2)
and ν(x1 + L1, x2 + L2) = ν(x1, x2). These “heterogeneous models” in periodic
environments were first introduced by Shigesada et al. [32], and were more
extensively studied in [5, 6, 31]. There are two major interests of considering
models in periodic environments. The first one, which will not be exploited
in this work, is that it allows the definition of some particular solutions, the
“periodic travelling waves” (see [4, 6, 31]). The second interest is that it lessens
the boundary effects, and is therefore very important when one wants to isolate
the effects of fragmentation.

While studying these models in dimension 1, Shigesada and Kawasaki [31]
empirically proved the key role played by the instability of the solution 0 of (1.1).
They wrote “For the invasion to be successful (...), the population must increase
when rare”. This idea was then made precise in a rigorous framework and in any
space dimension by Berestycki et al. [5]. Indeed, they proved that the instability
of the state 0 was equivalent to λ1 < 0, where λ1 in the principal eigenvalue of
a linear elliptic problem (see below for a precise definition). Furthermore, they
showed that λ1 ≥ 0 implies that the population density u(t,x) → 0 uniformly
in R

N as t → ∞, whereas u(t,x) converges to a positive and periodic stationary
state p(x) if λ1 < 0. It means that, whenever λ1 ≥ 0, the population tends to

extinction, whereas the case λ1 < 0 corresponds to persistence. It is worth not-
ing that the obtained necessary and sufficient condition for species persistence,
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λ1 < 0, is amazingly simple compared to the various underlying mechanisms
that condition survival or extinction. Moreover, this value can be numerically
computed, using finite element methods (see e.g. [12]).

In the recent literature, this eigenvalue λ1 has been shown to be linked, in
some sense, to habitat fragmentation (see [5, 17, 18, 31] and Cantrell and Cosner
[7]-[10]). In the present case of a periodic environment, the rearrangement of
the habitat described in [5] decreased the value of λ1, showing that the optimal
configuration in terms of species persistence was connected and satisfied some
symmetry properties (Figure 1). In the case of a habitat lying on a grid Roques
and Hamel [29] numerically computed these optimal configurations, which were
proved to depend on the habitat abundance and on the amplitude of the vari-
ations of the coefficient µ (for N = 2). However, we do not know if there is a
monotonic relation between λ1 and the fragmentation of the habitat. In order
to answer this question, we first had to give a precise definition of “habitat
fragmentation”, and to relate this definition with a measure of the habitat frag-
mentation. There exist several ways of defining it, and to obtain hypothetical
habitat distribution corresponding to these definitions. Neutral landscape mod-
els, originally introduced by Gardner et al. [14] to generate spatial patterns in
the absence of structuring processes, have now evolved and can include several
constraints that account for habitat fragmentation [20]. This last kind of land-
scape model is often used as an input to spatially explicit simulation models
(see e.g. [27, 36]).

In this paper, we choose to define habitat fragmentation by using models in-
spired from statistical physics. These models are also neutral landscape models
in the sense that they are stochastic models of landscape pattern, and the value
(habitat or non-habitat in this paper) assigned to a position ξ in the pattern
is a random variable [20]. Moreover, our models allow an exact control of the
habitat abundance. This is really important for our study, since we want to
isolate the effects of fragmentation.

The topology of the generated landscape patterns is controlled by the pa-
rameters of the corresponding stochastic models. Our aim was to get an insight
into the way λ1 varies with the landscape pattern topology, hence with these
parameters. Since these landscape models are stochastic, for a fixed value of the
parameters, many different patterns can be generated. Thus, another question
was whether the standard deviation of λ1, on habitats generated with the same
value of the parameters, was high or not. This standard deviation controls the
range of values taken by λ1 for a fixed degree of habitat fragmentation.

In the next section of this paper, the rigorous definition of λ1 as well as
some useful mathematical results are recalled. In section 3, models for the
generation of fragmented habitats are presented. The first landscape model only
takes account of the local interactions between the habitat patches, while the
second one incorporates more global interactions. The value of λ1 is numerically
computed on patterns generated for different values of the landscape models
parameters. The results, indicating a strong monotonic relation between λ1

and the models parameters, are presented in section 4. These results are further
discussed in section 5.
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(a) (b)

Figure 1: It was proved in [5] that, while having the same amount of habitat,
the rearranged configuration (b) has always smaller values of λ1 than the config-
uration (a). However, there was no result about the intermediate cases between
(a) and (b).

2 Mathematical background

Although the following definitions and results are still true in dimensions higher
than 2, and since our numerical computations are made in dimension 2, for the
sake of simplicity it is assumed in the sequel that N = 2.

Definition of the eigenvalue λ1

The operator ∇2 in equation (1.1) corresponds to the Laplace operator and

is defined by ∇2u = ∂2u
∂x2

1

+ ∂2u
∂x2

2

.

The positive stationary solutions p(x) of (1.1) (i.e. the solutions that do not
depend on the time variable t) are solutions of the following problem:

{

−D∇2p − p(µ(x) − ν(x)p) = 0, x ∈ R
2,

p > 0.
(2.2)

The functions µ(x) and ν(x) are assumed to be periodic with the same period,
as explained in the introduction. We say that these functions are L-periodic.
Moreover, it is assumed that µ, ν ∈ L∞

(

R
2
)

. Under these conditions, the
principal eigenvalue λ1 of the linearized problem at 0, associated with (2.2) is
defined as the unique real number such that there exists a positive function Φ
with







−D∇2Φ − µ(x)Φ = λ1Φ in R
2,

Φ is L-periodic,
Φ > 0 and ‖Φ‖∞ = 1.

(2.3)

Existence and uniqueness of λ1, as well as uniqueness of the function Φ satisfying
these conditions follow from Krein-Rutman theory (see e.g. [2]). Moreover, since
the elliptic operator of equation (2.3) is self-adjoint, λ1 satisfies the following
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formula:

λ1 = min
Ψ∈H1

per, Ψ 6≡0

∫

C

D|∇Ψ|2 − µ(x)Ψ2

∫

C

Ψ2
, (2.4)

where H1
per is defined by H1

per =
{

Ψ ∈ H1
loc(R

2) such that Ψ is L-periodic
}

(Ψ ∈ H1
loc(R

2) means that for all compact subset K of R
2, Ψ in L2(K), and

the weak derivative of Ψ is also in L2(K); see e.g. [1]).

Necessary and sufficient condition of species persistence

The condition λ1 < 0 is necessary and sufficient for the existence of a
bounded solution p of (2.2). Moreover, when this solution exists, it is unique
and L-periodic; these results are proved in [5]. Besides, as we said in the in-
troduction of this paper, λ1 < 0 is also a necessary and sufficient condition for
the persistence of the modelled species, in the following sense: given an initial
distribution of the species u0(x) at t = 0 (being continuous nonnegative and
bounded), if λ1 ≥ 0 then the solution u(t,x) of the model (1.1) converges uni-
formly in R

2 to 0. Thus the species tends to extinction. However, if λ1 < 0,
u(t, x) → p(x) uniformly on all compact set of R

2. Since p > 0, this can be con-
sidered as persistence (these results are demonstrated in [5]). Note that λ1 does
not depend on the function ν (it is in accordance with the previously mentioned
citation of Shigesada and Kawasaki).

Moreover, as a consequence of the above uniqueness result, for all real α, we
have the following equation, which emphasizes the usefulness of minimizing λ1

with respect to different arrangements of the function µ,

λ1[µ(x) − α] = λ1[µ(x)] + α. (2.5)

Indeed, formula (2.5) implies that the modelled species is all the more robust to
a change in its growth rate as λ1[µ] is small (other links between robustness to
external perturbations and λ1[µ] are discussed in [11]). Furthermore, it follows
from (2.5) that λ1[µ] being known, survival can easily be assessed for the whole
family of growth rate functions {µ(x) − α}α∈R.

3 Stochastic models for habitat fragmentation

The landscape models presented in this section to generate binary landscapes
are described using Gibbs measures [34].

Here, we set L1 = L2 = 1, thus C = [0, 1] × [0, 1]. Let C =
⋃nC

i=1 Ci be
a finite partition of C, with Ci equally sized disjoint square cells, and nC the
number of cells. Let Ξ be the lattice made of the centroids ξi of the cells Ci,
equipped with a neighbouring system Vξ. Let µ+ and µ− be two real numbers
with µ+ > µ−. Now, consider the random field ω defined on the lattice Ξ. This
random field assigns each site ωξ (ξ ∈ Ξ) either the value µ+ or µ−, while the
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Figure 2: The 4-neighbourhood system: an element ξ of Ξ and its four neigh-
bours ξi, i = 1..4.

number n+ = card{ωξ = µ+, ξ ∈ Ξ}, takes a pre-fixed value. Under these
assumptions let Ω be the corresponding state space.

For each element ω ∈ Ω the growth rate function µ on C is defined by
µ(x) = ωξ whenever x belongs to Cξ. This function is extended by periodicity
to R

2. The regions where µ(x) = µ+ are interpreted as “habitat” whereas the
regions where µ(x) = µ− correspond to “non-habitat”. Thus, in the sequel, we
shall talk of ω and the associated function µ as a landscape pattern.

In the following, we specify the neighbourhood system and the probability
distribution of the defined random field. Our aim was to obtain models that
simulate the landscape pattern, while its fragmentation was controlled by the
models parameters.

Let Vξ be the 4-neighbourhood system as shown in Figure 2. In order to
take account of the periodicity of the environment, the domain is considered
wrapped on a torus.

For each ω in Ω, we set s(ω) =
1

2

∑

η,ξ∈Ξ, η∈Vξ

11{ωξ = ωη}, the number of pairs

of neighbours ξ, η ∈ Ξ such that ωξ = ωη (11{·} is the indicator function). The
statistic of the model, s(ω), is directly linked to the habitat fragmentation: a
landscape pattern is all the more aggregated as s(ω) is high, and all the more
fragmented as s(ω) is small.

Landscape model 1

A first model for landscape generation, that we call landscape model 1, is
defined by the Gibbs measure P , defined over Ω by

P (X = ω) =
1

Z
e−U(ω), (3.6)

with the partition function Z =
∑

ω∈Ω

e−U(ω) and the energy function U : Ω → R,

U(ω) = −βs(ω), (3.7)
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with β > 0; thus, the probability density becomes

P (X = ω) =
1

Z
eβs(ω). (3.8)

The proposed landscape model favours the pairs of neighbours with the same
value, while β increases. Hence, β directly controls the topology of the landscape
patterns.

This probability distribution was simulated with a Metropolis-Hastings al-
gorithm [16, 24]. The landscape samples were picked-up after running the
Metropolis-Hastings dynamic a sufficient time, so that the stationarity of the
Markov chain can be considered reached. It is worth noting that β is the only
“entry” parameter. Some samples are presented in Figure 3. As expected, we
obtained all the more “aggregated” (as opposed to “fragmented”) landscapes
as the value of β was high. This justifies the use of this model for the analysis
of the variations of λ1 with respect to the fragmentation of the landscape pat-
tern. Another reason to vote for it is its simplicity because there is only one
parameter, β.

For our numerical computation, fixed nC = 502 and the habitat abundance
was set to 20%, corresponding to n+ = 0.2 × 502.

Remark 3.1 The reader may note a similarity of the proposed landscape pat-
tern model with the binary Ising model, since it uses “habitat” and “non-
habitat” states for the cells. However, in our case, there is an additional condi-
tion on the number of habitat cells.

Remark 3.2 Under landscape model 1 assumptions, the Gibbs energy of the
two landscapes of Figure 4 is the same, while, from a more realistic point of
view (see e.g. [30]), we would like to differentiate between these two situations.
The diffusive nature of the Laplace operator ∇2 also suggests that more global
interactions between the landscape patches have to be taken into account in
the definition of fragmentation. Intuitively, this should reduce the standard
deviation of λ1 for a fixed value of β.

Landscape model 2

As a consequence of Remark 3.2, we considered a second model, landscape
model 2. A random point κ is first chosen uniformly in the period cell C.
Conditionally on κ, the Gibbs measure of the random field is

P (X = ω|κ) =
1

Zκ

e−Uκ(ω), (3.9)

with Zκ =
∑

ω∈Ω

e−Uκ(ω) and

Uκ(ω) = −βs(ω) +
1

σ2
τκ(ω), (3.10)
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(a) β = 0.1
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(b) β = 0.6
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1

(c) β = 1
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(d) β = 1.2
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1

(e) β = 1.8
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(f) β = 3

Figure 3: Landscape model 1: obtained habitat patterns with different values
of the parameter β. Habitat abundance has been set to 20%.

0 1

1

(a)

0

1

1

(b)

Figure 4: Two landscape patterns made of two identical components. In (a),
the components are closer than in (b). The same energy is given by model 1 to
both landscape patterns.

8



0 1

1

(a) β = 0.1
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(b) β = 0.6
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(d) β = 1

0 1

1

(e) β = 1.5

0 1

1

(f) β = 3

Figure 5: Landscape model 2: generated habitat patterns with different values
of the parameter β, with σ = 0.4 and habitat abundance equal to 20%.

with σ > 0 and
τκ(ω) =

∑

η∈Ξ, ωη=µ+

d(η, κ)2. (3.11)

The function d : C × C → R is the distance over the “torus” C defined by
d(x,y) = min

z=(i,j), −1≤i,j≤1
||z − x + y||, ∀ x,y ∈ C2.

The additional term, 1
σ2 τκ(ω), compared to landscape model 1, acts as an

external field. This field has the shape of a 2-dimensional truncated Gaussian
centered in κ and with variance σ2. We know that in our case, with a habitat
abundance of 20%, the optimal configuration of the environment is disc-shaped
(at least when the amplitude |µ+ − µ−| is not too small [29]). This was one of
our motivations for the choice of such a “Gaussian” term. Samples of this new
model are shown in Figure 5. The same values that in landscape model 1 were
given to nC and n+ for the numerical computations.

4 Simulation results

This section is dedicated to the analysis of the variations of λ1 with respect to
the parameters of the two landscape models defined in the previous section.
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Figure 6: Landscape model 1: (a) dependency of λ1 with respect to β, (b)
scatter plot of the couples (λ1, s) for each generated landscape sample.

The growth rate function was defined at the beginning of section 3. For our
computations we set µ+ = 7.8 and µ− = −2.2 so that λ1 can be positive or
negative, depending on β. After several trials, the σ value of landscape model
2 was set to 0.4 (indeed, if σ is set to very low values the landscape patterns
are too aggregated, independently of β; if σ has too large values, the obtained
model is equivalent to landscape model 1). Moreover, the diffusion coefficient
was set to D = 1.

For each element β in the set {k × 0.01, k = 0..3000}, we generated 10
samples of each landscape model. The value of λ1, satisfying equation (2.3) was
computed on each sample using a finite element method (see e.g. [12]). The
statistic s of each sample, defined in section 3, was also computed.

The results of the computations of λ1, for landscape model 1, are presented
in Figure 6. A visual examination of the scatter plot of Figure 6 (a) reveals a
monotonic tendency of the relationship between λ1 and β. This tendency can
be assessed by computing the Spearman correlation coefficient ρ. Whenever ρ is
−1, this indicates a purely monotonic decreasing relationship (see Appendix A).
However, since the landscape pattern used in the computation of λ1 is a random
variable, so is λ1. This reason together with Remark 3.2 induce variability of λ1

for fixed values of β. Therefore, what we expected from ρ were rather negative
values or in the best case values that were close to −1. Such values were used
to assess a monotonic behaviour of λ1 with respect to β. An analysis over
the entire range β ∈ [0, 3] gave ρ = −0.93. This indicates a highly decreasing
behaviour of λ1 with respect to β.

Figure 6 (a) suggests a deeper analysis by decomposing the β domain. For
β ∈ [0, 0.6], while the overall tendency is towards the aggregation, as assessed by
the mean value of s (Figure 7 (b)), the observed decreasing of λ1 is slow. This is
also indicated by ρ = −0.28. For β ∈ [1.8, 3], the fragmentation of the landscape
varies very slowly, the obtained patterns being almost “aggregated” (Figure 7
(b)). This may explain the slow decreasing of λ1 that can be noticed in Figure
6 (a), and indicated by ρ = −0.31. The case with β ∈ [0.6, 1.8] is the transition
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Figure 7: Landscape model 1: standard deviation (scatter plots) and mean value
(solid lines) of the series of 10 computed values of (a) λ1, in function of β; (b)
s, in function of β.
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Figure 8: Landscape model 2: (a) dependency of λ1 with respect to β, (b)
scatter plot of the couples (λ1, s) for each generated landscape sample.

between the two situations described previously. As indicated by the mean
value of s, the fragmentation of the landscape pattern varies strongly, between
fragmented to aggregated patterns. This strong variation is also observed for
the values of λ1, and reflected by the corresponding ρ = −0.97.

A scatter plot of the couples (λ1, s) computed on each generated sample is
also presented in Figure 6 (b), confirming the decreasing tendency of λ1 as the
aggregation of the habitat increases (ρ = −0.94).

The dependency of λ1 with respect to β for landscape model 2 was analyzed
for a fixed value of σ. The computation of Spearman’s ρ for the whole range
β ∈ [0, 3] gave ρ = −0.94. The obtained results that are shown in Figure 8 (a)
suggest an analysis on the two intervals [0, 1.5] and [1.5, 3]. The corresponding
Spearman’s ρ values are ρ = −0.99 and ρ = −0.48 respectively. As for landscape
model 1, a scatter plot of the couples (λ1, s) (Figure 8 (b)) obtained on each
sample confirms the decreasing tendency of λ1, as the landscape becomes more
aggregated, with ρ = −0.94.
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Figure 9: Landscape model 2: standard deviation (scatter plots) and mean value
(solid lines) of (a) λ1; (b) s.

The standard deviation of each series of 10 values of λ1 for landscape model 1
is presented in Figure 7 and in Figure 9 for landscape model 2, together with the
standard deviation of the corresponding series of the statistic s, for each β. For
both models, the maximal standard deviation of λ1 is encountered for the values
of β allowing a maximum variability of s. This maximal standard deviation is
around 0.035 for landscape model 1, and around 0.018 for landscape model
2. It remains quite small compared to the whole range of values taken by λ1,
(−0.10, 0.20) for landscape model 1 and (−0.10, 0.18) for model 2, as β varies.
This means that, while for a fixed value of β, the topology of the generated
landscape varies greatly, the computed values of λ1 remains “stable”. Moreover,
it is also worth noting that although the standard deviations of the series of s are
comparable in landscape models 1 and 2, the corresponding maximal standard
deviation of λ1 for landscape model 2 is almost two times smaller. The Spearman
coefficients, closer to −1 in landscape model 2 compared to landscape model 1,
may be the reflect of this lower standard deviation of λ1. This lower standard
deviation of λ1 also supports the arguments of Remark 3.2.

Remark 4.1 In all the above situations, the obtained p-values were smaller
than 10−10.

Remark 4.2 Note that some variations could also be caused by the numerical
method used for computing λ1. We used a sufficiently refined mesh to ensure
that these variations remain small (of order 10−4). Besides, some variations in
the dependency of λ1 with respect to β could also be the consequence of the way
the landscape patterns were simulated, using a Metropolis-Hastings algorithm,
for which convergence speed is not known [28].

5 Discussion and conclusions

Using a necessary and sufficient condition of species persistence in periodic het-
erogeneous environments, proved in [5], we analyzed the survival tendency (per-
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sistence or extinction) of species whose dynamics are modelled by the reaction-
diffusion equation (1.1), in function of the habitat fragmentation.

Working in an infinite periodic environment allowed us to remove most of
the boundary effects which are encountered with Dirichlet (lethal) or Neumann
(no flux) boundary conditions. To our knowledge, such an approach is not
possible with simulation models, for which the domain has to be finite. We
were therefore able to focus on the sole effect of habitat fragmentation.

We considered two models for landscape generation. In both cases, the
habitat abundance was fixed and the fragmentation was controlled via a common
parameter, β. In the first landscape model, the generation of the patterns only
took account of the number of pairs of similar neighbours, whereas in the second
one, the proximity of habitat patches, even if they were not neighbours, was also
taken into account. The stochastic nature of these models enabled us to explore
a wide range of landscape patterns, allowing to obtain more general results
than if we had analyzed a particular type of deterministic environment. Indeed,
for a fixed value of the parameter β, the standard deviation of λ1 remained
low, with an advantage for landscape model 2. This indicates that, to each
degree of fragmentation corresponds a narrow range of values λ1. Thus, the
fragmentation level being fixed by the parameter of our landscape models, the
chances of persistence do not vary greatly with the topology of the landscape
pattern.

Moreover, for both models, a strongly monotonic relation was found between
their parameter β, and λ1, while the habitat fragmentation was also strongly
correlated to β. Among all the possible configurations of µ, the more fragmented
ones, obtained with landscape model 1 and β close to 0, were the worst in terms
of species survival. Indeed, for small values of β, landscape model 1 gave values
of λ1 very close to 0.2 (0.18 for landscape model 2), while 0.2 is precisely an
upper bound of λ1[µ]. Indeed, from (2.4), since the constant function Ψ ≡ 1
belongs to H1

per, we have λ1 ≤ − 1
|C|

∫

C
µ(x)dx, thus, with a habitat abundance

of 20%, C = [0, 1]2, µ+ = 7.8 and µ− = −2.2, we get λ1 ≤ −0.2×7.8+0.8×2.2 =
0.2. On the contrary, the chances of persistence increase as the parameter β

and the associated aggregation of the habitat increase. These results support
the idea of creating large reserves rather than small reserves in terms of species
conservation.

In the landscape model 1 case, the relation between the number of pairs of
similar neighbours s and the value of λ1 was clearly nonlinear (Figure 6 (b)).
The decreasing tendency of λ1 was low for small values of s and became more
straightforward for higher values of s. From the biological conservation view-
point, this means that a slight increase of the habitat aggregation has almost
no effect on species persistence in the case of very fragmented landscapes. How-
ever, the persistence is improved by such a change in the case of more aggregated
landscapes. For landscape model 2, the relation between λ1 and s was much
closer to linear (Figure 8 (b)). Moreover, when the number of similar neigh-
bours s was low, the decreasing tendency of λ1 with s was faster than with
landscape model 1. This means that, in environments that are very fragmented

13



(with low value of s) but when the habitat patches are close to each other, even
if not neighbours, a small increase of the aggregation has a greater incidence on
species survival.

The lower variability of λ1 in landscape model 2, for a fixed value of β,
also suggests that λ1 not only depends on the fragmentation as defined by s,
the number of similar neighbours. This is again confirmed by the comparison
between Figures 6 (b) and 8 (b). The persistence threshold for landscapes
generated by model 1 was reached for values of s around 4600 whereas it was
reached around 4450 for the second landscape model. Comparing these two
models, our interpretation is that λ1, and thus species survival, also depends on
a more “global” idea of fragmentation than that defined by s.

The reader may note that our results were obtained for particular values of
µ+ and µ−. However, as emphasized at the end of section 2 the survival can
easily be assessed for the whole family of growth rate functions {µ(x)−α}α∈R,
since from formula (2.5), λ1[µ(x) − α] = λ1[µ(x)] + α. The above formula also
underlines the interest of having values of λ1 as low as possible. Indeed, µ+ and
µ− being fixed, when subtracting α to the growth rate, the chances of species
persistence are all the more important as λ1[µ] was low before the change. Such
a modification in the growth rate function could for instance occur as a result of
a climate change. Thus, living in an aggregated habitat, and having a strongly
negative value of λ1, not only ensures the species survival but also gives to the
modelled species more robustness to this kind of external perturbations.

In this paper, the habitat abundance was set to a = 20%. For other values
of the habitat abundance a, it would be natural to expect comparable results.
However, some differences may appear since, for higher habitat abundance, and
also depending on the value of the amplitude |µ+−µ−|, the optimal configuration
can no longer be disc-shaped, but can for instance take the form of a stripe
[29]. A slight modification of the function τκ in landscape model 2 would allow
to converge to such configurations as β increase. The analysis of the relative
influence of habitat fragmentation and habitat abundance on species persistence
is also an interesting issue. For instance, from formula 2.4 we know that −µ−−

a
100 (µ+ −µ−) is an upper bound of λ1. Thus, for a = 23%, and with our values
of µ+, µ− and C, we get λ1 ≤ −0.1. This means that the most fragmented
habitat configurations, with an abundance of 23%, are equivalent to the most
aggregated ones with a habitat abundance of 20% in terms of species persistence.
This relative influence of fragmentation and abundance depends on the values
of D, µ+ and µ−. Further work is needed to fully understand it.

Appendix A. Derivation of the Spearman’s ρ

For the readers that are not familiar with this notion, we recall here the defini-
tion of the Spearman’s ρ coefficient (see e.g. [33]).

Let β1, ..., βnc be the values of β for which computations were performed
(with repetitions), and λ1,1, ..., λ1,nc the corresponding values of λ1. Let us de-
fine a vector V1 in the following way: for each integer i in [1, nc], set pi =

14



{number of k|βk < βi}, and ri = {number of k|βk = βi}. We set V1,i =
(pi+1)+(pi+ri)

2 . This corresponds to the rank of βi with medium value when
βi is repeated. Similarly, we define a vector V2 corresponding to the rank of λi.
Let us define D by Di = V2,i − V1,i for i = 1, ..., nc. Then Spearman’s ρs is
given by the following formula

ρs = 1 −
6D · D

nc(nc2 − 1)
. (5.12)
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Moskowskogo Gos. Univ.), Série internationale A 1, 1–26 (1937)

[23] Marsh, L.M., Jones, R.E.: The form and consequences of random walk
movement models. J. Theor. Biol. 133, 113-131 (1988)

[24] Metropolis, N., Rosenbluth, A.W., Rosenbluth, N.M., Teller, A.H., Teller,
E.: Equation of state calculations for fast computing machines. J. Chem.
Phys. 21, 1087–1092 (1953)

16



[25] Murray, J.D.: Mathematical Biology. Second corrected edition, Springer
Verlag, New York, 1993

[26] Okubo A., Levin, S.A.: Diffusion and Ecological Problems - Modern Per-
spectives. Second edition, Springer-Verlag, New-York, 2002

[27] Palmer, M.W.: The coexistence of species in fractal landscapes. Am. Nat.
139, 375–397 (1992)

[28] Robert, C.P., Casella, G.: Monte Carlo statistical methods. Springer-
Verlag, New York, 1999

[29] Roques, L., Hamel, F.: On optimal habitat configurations for species per-
sistence. Preprint 2006

[30] Saunders, D.A., Hobbs, R.J., Margules, C.R.: Biological consequences of
ecosystem fragmentation: a review. Conserv. Biol. 51, 18–32 (1991)

[31] Shigesada N., Kawasaki K.: Biological invasions: theory and practice. Ox-
ford Series in Ecology and Evolution, Oxford: Oxford University Press,
1997

[32] Shigesada, N., Kawasaki, K., Teramoto, E.: Traveling periodic waves in
heterogeneous environments. Theor. Popul. Biol. 30, 143–160 (1986)

[33] Sprent, P.: Applied Nonparametric Statistical Methods. Second edition.
Chapman and Hall, London, 1993

[34] Stoyan, D., Kendall, W.S., Mecke, J.: Stochastic Geometry and its Ap-
plications. Second edition, Wiley Series in Probability and Statistics, John
Wiley & Sons, Chichester, 1995

[35] Turchin, P.: Quantitative Analysis of Movement: Measuring and Model-
ing Population Redistribution in Animals and Plants. Sinauer Associates,
Sunderland, MA, 1998

[36] With, K.A., King, A.W.: Extinction thresholds for species in fractal land-
scapes. Conserv. Biol. 13, 314–326 (1999)

17


