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reduction in chemical potential by forming the
crystalline phase. In the second scenario, we
assume that oxygen has first adsorbed to the
LS interface, driven by the reduction in inter-
face energy (24, 28), having diffused along the
interface from the triple junction. Once oxygen
adsorbs, a critical-size nucleus (in the form of
a step) forms at the triple junction and sweeps
across the LS (0001) interface, forming a new
(0006) layer of a-Al2O3 in its wake. Oxygen then
again adsorbs to the new LS interface, supplied
from the dissolving outer rim of the nanowire.
The nucleation rate of steps is relatively low un-
der the present experimental conditions, leading
to single steps that sweep across the interface (no
defects resulting from the intersection of steps
or multiple nucleation events were detected).
Both of these reactions would be very fast; the
formation of a new (0006) layer after oxygen
diffusion has started requires only ~0.16 s. Our
experimental observations cannot distinguish
between these two scenarios.

Our in situ HRTEM observations have re-
vealed an oscillatory growth process that is not
obvious from ex situ observations of grown nano-
wires. These observations provide an explanation
for the (0001) growth mechanism and why it is
not continuous. What distinguishes this reaction
from most VLS processes is that the catalyst
droplet is not directly involved in supplying all
the necessary components for growth. Instead,
oxygen for the new (0006) layer is supplied by
transient sacrificial dissolution of the top rim of
the nanowires via facet formation. The compo-
nents of interface tensions at the triple junction
also promote formation of the facets and probably
drive the nucleation of steps of solid (0006),
which sweep across the LS (0001) interface, re-
sulting in growth of a new (0006) layer. Forma-
tion of the (0006) layer is relatively fast because
the Al atoms on the liquid side of the LS surface

are already in positions similar to those in the un-
derlying bulk sapphire. The oxygen collected
on the LV surface is used to eradicate the facets
at the outer, top rim of the nanowires once a
complete (0006) layer is formed. It is this process
that is the rate-limiting step.
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Species Selection Maintains
Self-Incompatibility
Emma E. Goldberg,1 Joshua R. Kohn,2 Russell Lande,3 Kelly A. Robertson,1
Stephen A. Smith,4 Boris Igić 1*
Identifying traits that affect rates of speciation and extinction and, hence, explain differences in
species diversity among clades is a major goal of evolutionary biology. Detecting such traits is
especially difficult when they undergo frequent transitions between states. Self-incompatibility,
the ability of hermaphrodites to enforce outcrossing, is frequently lost in flowering plants, enabling
self-fertilization. We show, however, that in the nightshade plant family (Solanaceae), species
with functional self-incompatibility diversify at a significantly higher rate than those without it.
The apparent short-term advantages of potentially self-fertilizing individuals are therefore offset
by strong species selection, which favors obligate outcrossing.

Theastonishing diversity of flowering plants
has led to numerous hypotheses linking
the propensity for diversification to mor-

phological, life history, and physiological char-

acteristics (1–4). Although it is clear that no
single character can entirely explain the variation
in plant diversity (2, 4), many traits potentially
associated with an increase in species richness

may have been overlooked because of method-
ological shortcomings (5, 6).

The overwhelming majority of flowering
plants function as both males and females, but
despite the potential for self-fertilization in her-
maphrodites, most of these plants predominantly
or exclusively mate with other individuals (out-
cross) (7, 8). Outcrossing is often enforced by
self-incompatibility (SI): the ability of individual
plants to recognize and reject their own pollen.
Each SI system characterized to date relies on
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complex genetic mechanisms (9). Their value is
primarily attributed to the avoidance of inbreed-
ing depression (10), but the short-term disad-
vantages of SI, which limits an individual plant's
ability to reproduce if outcross pollen is not avail-
able, is expected to result in frequent transitions to
self-compatibility (SC) (8). Mate limitation and
the automatic advantage of selfing (10, 11) each
favor the spread of mutants that break down SI.
Indeed, angiosperm families in which SI is found
also contain significant proportions of SC species
(12). The two states are commonly interspersed
within clades, implying frequent evolutionary tran-
sitions. Independent data, both genetic and phylo-
genetic (12, 13), suggest that the transition from
SI to SC is one of the most common evolutionary
shifts in flowering plants (14). Studies of the ge-
netic basis of SI indicate that novel SI systems
originate very rarely (9, 15). The combined evi-
dence implies that SI is frequently lost by species
and that an identical form of SI is only rarely, if
ever, regained (12).

In Solanaceae species with SI, strong negative
frequency-dependent selection maintains dozens
of alleles at the locus controlling self-recognition
(S-locus), where it has preserved ancestral poly-
morphism over 40 million years (13, 16, 17). After
pollination, if the haploid pollen allele matches
either allele of the diploid female reproductive
organ, fertilization is prevented. Individuals with
common alleles therefore have fewer potential
mates, and those with rare alleles more, so that
alleles ordinarily lost by drift are instead main-
tained over long time scales (16). The outcome is
a pattern of ancestral polymorphism shared not
only across species boundaries but among distant-
ly related genera. Randomly sampled alleles from
different SI species of Solanaceae are often more
closely related than those within species (16, 17).
This provides strong evidence that a polymorphic
and therefore functional S-locus was present in
the common ancestor and passed on to descend-
ent SI species in the family (17).

Although the SI mechanism has been fre-
quently lost and not regained within Solanaceae
(13), it occurs at an intermediate frequency. The
proportion of SI species is declining with each
transition to SC, so SI may be destined for ex-
tinction. But the SI mechanism of Solanaceae is
~90 million years old, nearly as old as eudicots
(15), and SI may instead persist if the diversifi-
cation rate of SI lineages exceeds that of SC
lineages by at least the SI-to-SC transition rate
(17). In this scenario, the loss of SI may be count-
ered by a greater difference between speciation
and extinction rates associated with the presence
of SI relative to SC. A strong association between
SI and increased diversification would provide
unusually compelling evidence for a causal re-
lationship, because frequent character changes to
SC uncouple the evolution of the focal character
from others and reduce the chance that an inferred
connection is spurious (18).

We examined the effect of SI on diversifi-
cation in Solanaceae. The nightshades contain

many agriculturally important species (such as
tomato, potato, chile, and tobacco), so phyloge-
netic and breeding system data are extensive.
Among the estimated 2700 species in the fam-
ily, approximately 57% are SC, 41% are SI, and
less than 2% have separate male and female
plants (19).

We constructed a phylogeny through an ini-
tial alignment matrix of 998 species and eight
genes, and we assigned character states (SI or SC)
for 616 species (19). Subsequent analyses con-
centrated on a monophyletic clade termed “x =
12” for its uniform base chromosome number,
containing approximately 2300 species, including
the subfamilies Solanoideae and Nicotianoideae
(20) [we also conducted analyses on the whole
family (19)]. Both character states and phylo-
genetic data are better sampled in this clade than
in the rest of the family, yielding 356 species
present in the tree andwith knownmating systems

(Fig. 1). This sample did not statistically differ in
SI frequency from the total available data set of
616 species (P > 0.3), and our analyses accounted
for sampling incompleteness (21).

Irreversible loss of SI in Solanaceae will
cause the frequency of SI to decline to zero if rI ≤
rC + qIC, where rI and rC are net diversification
rates (the difference between speciation and
extinction rates) for SI and SC lineages, respec-
tively, and qIC is the per-lineage rate of transition
from SI to SC. Alternatively, the loss of SI may
be offset by more rapid diversification of SI
lineages when rI > rC + qIC. In this latter case,
the equilibrium proportion of SI species, pSI, is
positive and equal to 1 − qIC/(rI − rC) (17).

We analyzed character evolution and diversi-
fication on the maximum likelihood tree (Fig. 1)
and also on 100 bootstrap trees to assess robust-
ness to phylogenetic uncertainty (19). Rates of
speciation (lI and lC; the subscripts denote SI

Fig. 1. Maximum likelihood tree of phylogenetic relationships among 356 species of Solanaceae.
Higher ranks are indicated around the perimeter of the tree. Purple and turquoise tip colors denote SI
and SC extant species, respectively. The root age is 36 million years. Inset panels display posterior
probability distributions and 95% credibility intervals of reconstructed rates of character evolution (the
time unit is millions of years). (A) BiSSE estimates of transition, speciation, and extinction parameters
(qIC << mI < lI << lC < mC). (B) Net diversification rate—the difference between speciation and
extinction rates—associated with each state. (C) Schematic summary of estimated rate parameters. For
methods, species names, character states, and further results, see (19).
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and SC states, respectively), extinction (mI and mC),
and loss of SI (qIC) were estimated with Markov
chain Monte Carlo analyses under the binary-
state speciation and extinction (BiSSE) model
(19, 22), which explicitly incorporates differing
speciation and extinction rates associated with
the two states of a binary character. Because SI
has apparently not been regained in this clade
(13), we fixed the rate of transitions from SC to
SI, qCI, to be zero in our main analyses [although
we also considered bidirectional transitions (19)].

We find a higher rate of speciation for SC
than SI lineages, but this apparent advantage is
erased by an SC extinction rate that exceeds that
of SI lineages and even the SC speciation rate
[mI < lI < lC < mC, with posterior probability 0.99
(Fig. 1A)]. SI lineages consequently show a
substantially higher rate of net diversification
than do SC lineages [rI > rC, with posterior prob-
ability 1.0 (Fig. 1B)]. Furthermore, this diversi-
fication difference is large enough to counter the
irreversible loss of SI [rI > rC + qIC, with posterior
probability 1.0 (Fig. 2A)]. The equilibrium fre-
quency of SI is therefore positive [pSI > 0.25,
with posterior probability 0.99 (Fig. 2B)], demon-
strating that the macroevolutionary advantage of
SI is enough for it to persist indefinitely, despite
its loss through transitions to SC. These results
are robust to phylogenetic uncertainty and against
the assumption that SI is not regained (19).

The higher rate of diversification associated
with SI means that selection is acting among
species, which can produce trends that are not
predictable from studies of selection among in-
dividuals within species. Natural selection can act
onmany levels of evolutionary hierarchy (includ-
ing genes, individuals, populations, and species),
with the potential for cascading effects of se-
lection from any level to those above and below
(18, 23–26). Species, as units, may vary in her-
itable traits associated with different rates of mul-
tiplication. A higher form of selection may thus
be manifested as a trait-dependent net diversifica-
tion rate. There is wide acceptance of the existence
of higher-order selection (18, 25, 26) but rela-
tively sparse data on its importance (25, 26).

Our results point to a strong role for species
selection in determining the evolutionary dynam-
ics and distribution of mating systems among
species. Both theoretical and empirical studies on
the shape of outcrossing rate distributions have
overlooked the possibility that species selection
may produce an arbitrary proportion of selfing,
mixed-mating, and outcrossing species (8, 27).

It remains unknown why strict avoidance of
self-fertilization yields such strong long-term evo-
lutionary advantages. Outcrossing plants, which
generallymaintain high effective population sizes
and recombination rates, may have increased poly-
morphism, lower linkage disequilibrium, more
efficient response to purifying selection, more
extensive geographic distribution of genetic di-
versity, and lower rates of extinction (28–31).
Various mechanisms other than SI, such as the
physical and temporal separation of sexes within
hermaphrodite flowers, or single-sex individuals,
can effect outcrossing in the absence of SI (3).
Moreover, although SI may be a relatively ef-
ficient mechanism for obligate outcrossing (32),
delayed selfing ability and plastic sex expression
afforded by other breeding systems may addi-
tionally provide reproductive assurance (7).

At short time scales, the expression of inbreed-
ing depression can oppose the spread of muta-
tions that break down SI, but many ecological
factors favor their rapid and frequent fixation (7).
This is problematic because natural selection
cannot maintain features slated for future use
(18). We find that SC is associated with a macro-
evolutionary disadvantage from high extinction
rates, despite its high speciation rates relative to
SI. Both theoretical and empirical evidence link
inbreeding with an increased probability of ex-
tinction (27,29,31). Self-fertilization and increased
inbreeding are also closely tied to higher among-
population differentiation (30), which may in turn
lead to escalating speciation rates.

We conclude that species selection opposes
the short-term advantages provided by the ability
of flowering plants to self-fertilize, and that vol-
atile dynamics underlie the scattered phyloge-
netic distribution of SC plant species. A strong

relationship between traits, includingSI, and specia-
tion and extinction may result in the uneven
patterns of diversification rates observed among
clades of flowering plants (2, 4), especially when
coupled with time heterogeneity and historical
contingency. These results provide evidence that
the evolutionary origin and maintenance of SI
may play an important role in shaping the immense
extant diversity of flowering plants (18, 33).
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Fig. 2. Further analyses of the posterior rate distributions in Fig. 1. (A) The diversification rate of SI is
sufficiently higher than that of SC for it to persist deterministically (shown by positive values here) despite
frequent and irreversible loss. (B) The equilibrium frequency of SI is consequently always positive.
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