Species-specific differences in hepatic mutant frequency and mutational spectrum among lambda/lacl transgenic rats and mice following exposure to aflatoxin B_1

M.J.Dycaico¹, G.R.Stuart², G.M.Tobal¹, J.G.de Boer², B.W.Glickman² and G.S.Provost^{1,3}

¹Stratagene, 11011 N. Torrey Pines Rd., La Jolla, CA 92037, USA and ²Centre for Environmental Health, University of Victoria, PO Box 3020, Victoria, BC, Canada, V8W 3N5

³To whom correspondence should be addressed

In vivo mutations were studied in lambda/lacI (Big Blue[®]) transgenic C57BL/6 mice and F344 rats following exposure to either AFB_1 (aflatoxin B_1) or DMSO vehicle. Fourteen days after exposure, livers were removed for DNA extraction and subsequent mutational analysis of the lacI gene. Mice injected with a single i.p. dose of AFB₁ at 2.5 mg/kg did not show a significant increase in liver mutant frequency relative to vehicle-treated controls. DNA sequence analysis of lacI mutations collected from the AFB₁-treated mice showed a pattern of mutation similar to that of the previously observed spontaneous mouse liver mutational spectrum. In contrast, rats subjected to one-tenth the mouse AFB₁ dosage responded with an approximate 20fold induction in liver mutant frequency over background. Sequencing of lac1 mutations also revealed spectral differences between vehicle- and AFB₁-treated rats. A large increase in G:C \rightarrow T:A transversions was observed among lacI mutations isolated from the AFB₁-treated rats. This work is among the first multi-species in vivo mutagenicity studies using transgenic rodents harboring the same shuttle vector. Such multi-species in vivo assays may prove to be valuable in the areas of mechanistic analysis and risk assessment.

Introduction

The study of genetic damage sustained *in vivo* in mammals has been greatly facilitated in recent years by the development of a lambda/*lac1* shuttle vector that is readily recovered from transgenic C57BL/6 mice (1). These mice, along with their B6C3F₁ hybrids, permit the study of mutation fixation in diverse tissues, and allow the observation of treatment-induced changes in mutational spectra within these tissues (2–4). While transgenic mice provide a way to study the effects of mutagens in several tissues, the recent development of an analogous transgenic F344 (Fischer 344) rat harboring the same lambda/ *lac1* shuttle vector makes it possible to perform multiplespecies mutation testing *in vivo* in rodents (5).

Aflatoxin B_1 (AFB₁*) is a classic example of a substance for which toxic and carcinogenic potential varies widely between species (6). This well-characterized mycotoxin is

*Abbreviations: CAS, Chemical Abstracts Registry; AFB₁, aflatoxin B₁; DMSO, dimethyl sulfoxide; F344, Fischer 344 rat strain; SDS, sodium dodecyl sulfate; EDTA, ethylenediaminetetra-acetic acid; X-gal, 5-bromo-4-chloro-3indolyl- β -D-galactopyranoside; pfu, plaque forming units; PCR, polymerase chain reaction; CpG site, 5'-CpG-3' dinucleotide sequence; TD₅₀, dose that produces a 50% incidence in tumors; AP, apurinic; AFB₁-FAPY, AFB₁-formamidopyrimidine. produced by the food spoilage fungus Aspergillus flavus (7) and demonstrates species-specific carcinogenicity and mutagenicity through differences in metabolic activation and detoxification (recent reviews include 8–10). AFB₁ is an effective liver carcinogen in some species, including rats and humans (7,11– 15). Numerous comparative studies using rodents have shown that rats are highly susceptible to the hepatocarcinogenic effects of AFB₁, while mice are relatively resistant (16). Rat hepatocytes have also been shown to be ~10-fold more effective than mouse hepatocytes at generating mutagenic metabolites of AFB₁ (17). The observation that AFB₁-induced mutagenicity and carcinogenicity is more pronounced in rats over mice is thought to be due mainly to the higher levels of glutathione-S-transferase activity in mice (9,18).

To examine whether species-specific differences can be observed using an *in vivo* transgenic mutation assay, mutant frequencies were measured in the livers of lambda/lac1 F344 rats and C57BL/6 mice following vehicle or AFB₁ exposure. As expected based on earlier studies, rats demonstrated high susceptibility to AFB₁-induced lac1 mutation within the liver, whereas mice were refractory to the mutagenic effects of this mycotoxin. DNA sequence analysis of lac1 mutations recovered from AFB₁-treated lambda/lac1 mouse and rat liver also revealed species-dependent differences. Rats treated with AFB₁ demonstrated a large increase in G:C \rightarrow T:A transversions compared with the vehicle-treated controls. In AFB₁-treated mice, however, the pattern of mutation in AFB₁-treated animals was very similar to the spontaneous mutational spectrum previously observed in liver.

Materials and methods

Husbandry

Hemizygous Fischer 344 rats from the transgenic lineage QX (Big Blue[®], Stratagene, La Jolla, CA), 13–19 weeks of age, were bred at Stratagene in La Jolla, CA. Hemizygous C57BL/6 mice from the transgenic lineage A1 (Big Blue), 13 weeks of age, were bred at Taconic (Germantown, NY) for Stratagene. All animals were housed at 20°C and maintained on a 12 h light cycle (5 a.m. to 5 p.m.). Diet consisted of 4% fat rodent blocks (Harlan Teklad, Madison, WI) and water, both administered *ad libitum*. All husbandry procedures were established according to the standards set within the NIH Guide for the Care and Use of Laboratory Animals.

Aflatoxin B₁ administration

AFB₁, CAS (Chemical Abstracts Registry) no. 1162-65-8, catalog no. A-6636 and DMSO (dimethyl sulfoxide), CAS no. 67-68-5, catalog no. D-8779 were obtained from Sigma Chemical Company (St Louis, MO). Each experimental group consisted of six animals. AFB₁ was dissolved in DMSO and administered in a single i.p. injection at 2.5 mg/kg in both mice and rats. After observing acute toxicity at this dosage in the AFB₁-treated rats, an additional group of male rats was administered a single dose of AFB₁ at 0.25 mg/kg. The dosing volume for both species remained constant at 1 ml/kg. The control groups for both species were given a single i.p. injection of DMSO at 1 ml/kg. An expression period of 14 days was carried out before animals were killed for tissue harvest. After quick removal, the livers were flash-frozen in liquid nitrogen and stored at -80° C until DNA isolation. Compound dosing and tissue harvesting were performed at Microbiological Associates, Inc. (Rockville, MD).

Genomic DNA isolation

For each individual, ~ 100 mg of liver was homogenized in 3 ml of dounce buffer (6.5 mM Na₂HPO₄; 137 mM NaCl; 2.7 mM KCl; 1.5 mM KH₂PO₄;

10 mM Na₂EDTA, pH 8.0) supplemented with 20 μ I/ml RNAce-ItTM ribonuclease cocktail (Stratagene, La Jolla) using a Wheaton 7 ml dounce with pestle size B. The homogenate was then gently combined with 3 ml of 2X protease solution (2 mg/ml proteinase K; 2% SDS; 100 mM Na₂EDTA, pH 7.5) and allowed to digest at 50°C for 3 h, followed by two extractions with phenol:chloroform (pH 8.0), one chloroform extraction, and ethanol precipitation. All extractions were performed gently to encourage the isolation of high molecular weight DNA. After removing the residual ethanol, all DNA precipitates were allowed to dissolve in 200–500 μ I of TE solution (10 mM Tris-HCl; 1 mM Na₂EDTA, pH 8.0) at 4°C for at least 2 days. All DNA samples were coded and randomized in order to perform a blind study.

Big blue color-screening assay

All assay reagents were obtained from Stratagene (La Jolla, CA). Mutant frequency was evaluated for each DNA sample in a blind study using a block analysis of vehicle- and AFB1-treated individuals. Mutant frequencies were measured according to the standardized Big Blue color-screening assay protocol (Stratagene, La Jolla, 19,20). Briefly, shuttle vector was recovered from the genomic DNA using Transpack® in vitro packaging extract. In each packaging reaction, 8 µl of genomic DNA was combined with 10 µl of Transpack and incubated at 30°C for 3 h, with the addition of another 10 µl of Transpack midway through the reaction period. Approximately 1 ml of SM medium was added to each packaging reaction. If multiple packaging reactions were performed for a particular DNA sample, each sample's reactions were pooled together. After addition of chloroform (50 µl per ml) to each packaged phage solution, the phage suspensions were gently vortexed and stored at 4°C. The initial titer of each phage solution was estimated by infecting 200 μl of Escherichia coli SCS-8 host bacteria [recA1, endA1, mcrA, Δ (mcrBChsdRMS-mrr), $\Delta(argF-lac)U169$, ϕ 80dlacZ Δ M15, Tn10(tet¹)] at 0.5 OD_{600am} with 1 µl of packaged phage and plating on 100 mm NZY agar plates, in duplicate. The initial titers were used to ensure that phage were plated onto 25 cm² Big Blue assay trays at plating densities of ~15 000-20 000 pfu (plaque forming units) per tray. For mutant screening, packaged phage were first adsorbed to E.coli SCS-8 host cells at 0.5 OD_{600nm} for 15 min at 37°C. After removing a small aliquot for dilution titering (see below), the hostadsorbed phage were plated onto NZY assay trays using 35 ml top agarose containing 1.5 mg/ml X-gal (5-bromo-4-chloro-3-indolyl-B-D-galactopyranoside). After an appropriate venting period required to remove excess moisture introduced by the top agarose, all assay and titer trays were incubated at 37°C for 16 h. The total number of pfu plated was determined by counting two dilution titer trays per sample. Mutations in the lacI gene were scored over white fluorescent light boxes using a red Big Blue plaque reading enhancer screen. Mutant frequency was determined as the ratio of the number of blue plaques to the total number of pfu plated. Statistical tests of differences in mutant frequency between animal groups were performed with a two-tailed Student's t-test using the analysis tools in Microsoft[®] Excel software.

Recovery and analysis of lacl mutants

Mutant plaques were recovered according to the standardized Big Blue colorscreening assay protocol (19,20), and were purified and sequenced as described by de Boer et al. (21). Briefly, mutant plaques were confirmed and purified by infecting E.coli SCS-8 cells with the mutant phage and replating on medium containing X-gal. The lacl gene and flanking regions were amplified by PCR (polymerase chain reaction), and the products were purified on WizardTM PCR Prep DNA purification columns (Promega, Madison, WI). Thermal cycle sequencing of the lacl gene was performed using A.L.F. automated DNA sequencers (Pharmacia, Piscataway, NJ). DNA sequence data were managed and analyzed using custom software (22) To ensure that independent mutational events were scored, the data were corrected for possible clonal expansions (21, de Boer et al., in preparation) by counting only one mutation for those which were recovered more than once from a single animal. Statistical tests of differences between mutational spectra were done using the Monte Carlo method (with 2500 iterations) of Adams and Skopek (23), using a computer program provided by the authors.

Results

Four groups of six animals each were subjected to a single i.p. injection of either AFB₁ at 2.5 mg/kg or DMSO vehicle. While all six of the AFB₁-treated mice survived through day 14, five out of the six AFB₁-treated rats died by the second day. (The liver of the surviving rat was harvested on the 14th day, post-injection, and stored at -80° C but not subjected to either mutant frequency or spectral analysis.) Approximately 1 month later, another group of six rats was dosed with AFB₁ at 0.25 mg/kg, resulting in 100% survival through day 14. The vehicle-treated rats from the first set of injections were used as the control group for rats in this study. Consequently, the vehicle-treated rats were ~6 weeks older than their AFB_1 -treated counterparts.

The mutant frequency data collected using a block analysis treatment of vehicle- and AFB₁-treated samples are summarized in Table I. Transgenic C57BL/6 mice subjected to a single dose of AFB₁ at 2.5 mg/kg showed no induction in mutant frequency over the vehicle-treated mouse group (P = 0.25). Transgenic F344 rats subjected to one-tenth the mouse dosage, however, were highly susceptible to the mutagenic effects of AFB₁. At a mean mutant frequency of 49×10^{-5} for the AFB₁-treated group, induction in rat liver was nearly 20-fold over background (P = 0.001).

Table II summarizes the *lac1* sequence data for liver mutations induced by AFB_1 in lambda/*lac1* mice and rats (a list of all sequenced mutants is included in the Appendix). The vehicle-treated rat liver *lac1* data from this study are also presented, as well as historical data from untreated C57BL/6 mouse liver (*lac1* database; 22). All mutation data were corrected for possible clonal expansions (21, de Boer *et al.*, in preparation), resulting in the elimination of seven out of 84 mutants from the historical dataset for untreated mice, five out of 47 mutants from AFB_1 -treated mice, five out of 48 mutants from AFB_1 -treated rats.

In 45 (corrected) mutants from AFB₁-treated rats, 78% of the mutations were G:C \rightarrow T:A transversions [71% of these transversions occurring at CpG sites (5'-CpG-3' dinucleotide sequences)], followed by 11% G:C \rightarrow C:G transversions (80% at CpG sites) and only 4% G:C \rightarrow A:T transitions (50% at CpG sites). In 44 (corrected) mutants from vehicle-treated rat liver, we observed 27% transversion (11% as G:C \rightarrow T:A) and 48% G:C \rightarrow A:T transition mutations (76% at CpG sites). In the mouse, sequence analysis of 42 (corrected) mutants from AFB₁-treated animals revealed 19% G:C \rightarrow T:A transversions (38% at CpG sites) and 57% G:C \rightarrow A:T transitions (71% at CpG sites). This spectrum is similar to the C57BL/6 spontaneous liver mutational spectrum.

Discussion

The transgenic A1 mouse and QX rat lineages used in this study are currently commercially available as the Big Blue mouse and rat, respectively. They each harbor the lambda-based shuttle vector transgene (λ LIZ), which employs the *lac1* gene from *E.coli* as a mutational target (1–5). The copy number of the lambda/*lac1* shuttle vector in the hemizygous Big Blue mouse is ~40 per cell, while that of the hemizygous Big Blue rat is approximately 15–20 per cell. Although homozygous versions of Big Blue animals are available, all animals used in this study were hemizygous.

The existence of a multi-species mutation assay using transgenic rodents that share the same target gene/shuttle vector should afford the opportunity to perform tissue-specific, inter-species mutagenesis testing in mammals. The study described here was designed to test the ability of a transgenic-based assay to show an *in vivo* species-specific differential response to mutagen exposure.

 AFB_1 was chosen for this study because its biological effects are relatively well-characterized (24). The observation that AFB_1 was highly mutagenic in the livers of transgenic F344

Species	Age at tissue harvest (weeks)	Treatment ^a	Expression period ^b	Animal ID	Mutant pfu ^c	Total pfu ^d	Mutant frequency ^e	Mean \pm SD ^f
C57 mouse	13	vehicle-treated	14	26	8	311 376	2.6	3.1 ± 0.88 (28%)
				27	7	323 722	2.2	
				28	21	668 417	3.1	
				29	16	340 720	4.7	
				30	8	279 856	2.9	
				31	14	407 728	3.4	
C57 mouse	13	2.5 mg/kg AFB ₁	14	32	11	331 038	3.3	$4.1 \pm 1.6 (39\%)$
				33	21	342 696	6.1	
				34	10	330 634	3.0	
				35	9	326 598	2.8	
				36	30	495 288	6.1	
				37	10	331 049	3.0	
F344 rat	19	vehicle-treated	14	76	7	272 840	2.6	$2.7 \pm 0.69 (26\%)$
				77	12	401 720	3.0	
				78	11	372 020	3.0	
				79	5	326 918	1.5	
				80	11	304 980	3.6	
				81	8	313 901	2.5	
F344 rat	13	0.25 mg/kg AFB ₁	14	166	100	283 506	35.3	49 ± 17 (35%)
				167	195	304 594	64.0	
				168	234	363 240	64.4	
				169	144	296 272	48.6	
				170	201	356 520	56.4	
				171	72	317 232	22.7	

Table I. lacl mutation data from the livers of male lambda/lacl mice and rats exposed to AFB1

*Single dose, i.p. injection, DMSO solvent, 1 ml/kg dosing volume.

^bNumber of days between injection and euthanasia/tissue collection.

Number of blue pfu.

^dTotal number of pfu screened.

^eMutant frequency is expressed as the number of blue (*lac1* mutated) plaques per 100 000 pfu screened.

^fNumbers in parentheses are standard deviations expressed as a percentage of the mean.

		57BL/6 Mouse pontaneous ^b						F344 Rat vehicle-treated			F344 Rat 0.25 mg/kg AFB ₁		
	No.	%	% @ CpG	No.	96	% @ CpG	No.	%	% @ CpG	No.	96	% @ CpG	
Transitions													
G:C→A:T A:T→G:C	37 3	48.0 3.9	75.7	24 0	57.1 0	70.8	21 1	47.7 2.3	76	2 0	4.4 0	50	
Transversions													
G:C→T:A	17	22.1	23.5	8	19.0	37.5	5	11.4	100	35	77.8	71	
G:C→C:G	3	3.9	33.3	1	2.4	100	4	9.1	50	5	11.1	80	
A:T→T:A	2	2.6		1	2.4		2	4.5		1	2.2		
A:T→C:G	4	5.2		1	2.4		1	2.3		0	0		
Other mutations													
+1 Frameshifts	3	3.9		0	0		0	0		0	0		
-1 Frameshifts	4	5.2		1	2.4		2	4.5		0	0		
Deletions	1	1.3		2	4.8		3	6.8		0	0		
Insertions	0	0		1	2.4		2	4.5		0	0		
Complex changes	1	1.3		1	2.4		3	6.8		1	2.2		
Double mutants	2	2.6		2	4.8		0	0		1	2.2		
Total others	11	14.3		7	16.7		10	22.8		2	4.4		
Totals	77	100		42	100.1°		44	99.9		45	99.9		

Table II. Speater of approximations and AED, induced mutations in the local game in male CS7DI /6 means and E244 ant lived

These data were automatically corrected for clonal expansions, using the lacl database software (22).

^bThe C57BL/6 mouse spontaneous (untreated) liver mutational spectrum is virtually indistinguishable ($P = 0.72 \pm 0.02$) from that observed in a larger dataset (205 mutants) of B₆C₃F₁ mouse spontaneous liver mutants (lacl database; 22). There were no statistically significant differences between the mutational spectra from untreated and AFB₁-treated C57BL/6 mice ($P = 0.74 \pm 0.02$), or between untreated C57BL/6 mice and vehicle-treated F344 rats $(P = 0.14 \pm 0.01)$. The vehicle-treated and AFB₁-treated F344 rat mutational spectra were significantly different (P < 0.001). 'Totals may not be 100%, due to rounding errors.

rats and not in those of transgenic C57BL/6 mice is consistent with what is presently known about the metabolism of the toxin in rodents. AFB₁ is converted by cytochrome P450 pathways into the highly reactive AFB₁-8,9-epoxide, which reacts with DNA mainly forming an adduct at the N7-position of guanine (9,12,25-27). A major pathway for the detoxification of the epoxide is through conjugation with glutathione (18,28-30). The balance between activation and detoxification is believed to influence the reaction of AFB₁ with genomic DNA in different species (31). The fact that rats are more efficient than mice in bioactivation of AFB₁ into the mutagenic AFB₁-8,9-epoxide, and less efficient in the conjugation of this active form is reflected by the high sensitivity of rats to the mutagenic effects of AFB₁ while mice that were given ten times the rat dose showed no increase in mutant frequency in this study.

To a lesser extent than species-specific factors, the effects of sex and strain are likely to have had an influence on the results of this study. Sex- and strain-specific differences in carcinogenicity induced by AFB₁ have previously been reported (32). AFB₁-induced TD₅₀ values for rat strains range from 1.3 µg/kg per day for male Fischer rats to 12.5 µg/kg per day for female Porton rats (TD_{50} defined as the dose that produces a 50% incidence in tumors). Those for mouse strains range from >70 μ g/kg per day for male C3H and C57BL mice to $>5300 \,\mu$ g/kg per day for male Swiss mice. This study was performed on male F344 rats and C57BL/6 mice, which are among the more AFB_1 -sensitive inbred representatives reported for each species.

Another factor that could conceivably contribute to the differential response between AFB₁-treated rats and mice observed in this study is the effect of transgene integration site. It is possible that the QX rat lineage harbors its 15-20 copies of *lacI* in a region of the genome more accessible to mutagen exposure. Previous studies measuring spontaneous mutant frequencies among different transgenic mouse and rat lineages have supported the assumption that transgene insertion site in the QX rat and A1 mouse lineages has little effect on the outcome of the mutagenicity assay (5). Nevertheless, there is evidence that factors such as DNA conformation and chromatin structure can influence intragenomic localization of carcinogen-DNA binding and repair (32). Thus any mutagenicity assay utilizing a transgenic target is potentially influenced by the integration site of a particular transgenic lineage. A study wherein the response to a known mouse-specific mutagen is measured in both the A1 and QX lineages may help to further address this issue with respect to the lambda/ lacl rodent assay that was used in our experiments.

It is unlikely that the 6-weeks difference in age between the AFB₁-treated rats and the older vehicle-treated control rats in this study had a significant effect on the increase in mutant frequency measured in the livers of AFB₁-exposed rats. Previous work in lambda/lacl mice has shown that spontaneous mutant frequency increases approximately four-fold during the first 24 months of life (33) suggesting that age might have a similar effect on mutant frequency in the rat. Regardless, 6 weeks is a relatively small percentage of the average rat lifespan of 2.5-3 years (34) and is probably not large enough to result in a significant increase in mutant frequency in the control rats relative to the nearly 20-fold induction by AFB₁. Age-related sensitivity to AFB₁ is also not suspected to be a significant factor in this study. Sensitivity to AFB₁ toxicity in F344 rats increases during the first weeks of post-natal development and reaches a plateau at ~65 days of age (35). The AFB₁-treated and vehicle-treated rats used in this study were ~ 80 and 117 days old, respectively, at the time of i.p. injection.

The spectrum of mutations in the lacl gene in the liver of AFB1-treated lambda/lacI mice and rats differed considerably (Table II), probably due to species differences in the metabolic activation and detoxification of AFB_1 (17). In the rat, the mutational spectrum induced by AFB₁ was clearly different (P < 0.001) from that observed for vehicle-treated controls, where a large proportion of the mutations are $G:C \rightarrow A:T$ transitions at CpG sites (this study; de Boer et al., in preparation). After treatment of rats with AFB₁, a dramatic increase was seen in the proportion of $G:C \rightarrow T:A$ transversions that then accounts for 78% of all mutations compared to only 11% in the vehicle-treated spectrum. This was accompanied by a large decrease in the proportion of $G:C \rightarrow A:T$ transitions, from 48% to only 4%.

The recovery of a high proportion of AFB₁-induced mutations as G:C \rightarrow T:A transversions in our study is largely in accordance with the reported mutational specificity of AFB1 in other systems. For example, in the endogenous lacl gene in E.coli, metabolically activated AFB₁ predominantly (93%) induced the formation of G:C \rightarrow T:A transversion mutations (36). In addition, a study of the mutational properties of the primary AFB₁-N7-DNA adduct inserted into bacteriophage M13 DNA by site-directed mutagenesis and replicated in E.coli, found that 75% of all mutations were $G \rightarrow T$ transversions (27), similar to our determination of 78% G:C \rightarrow T:A transversions in AFB₁-treated rat liver. However, it should be noted that several other studies have found somewhat lower contributions of G:C \rightarrow T:A transversion mutations, with a higher fraction of other base substitution mutations. For example, in a study in which shuttle vector DNA was treated in vitro with AFB1 and replicated in human cells, 90% of the recovered mutations were base substitutions, but only about one-half of these were G:C \rightarrow T:A transversions (37). Transfection of *in vitro*-modified phage M13 DNA into DNA repair-deficient E. coli cells resulted in approximately equal numbers of $G \rightarrow T$ transversion and $G \rightarrow A$ transition mutations (38,39).

The variation observed in AFB₁-induced mutational spectra in various studies likely reflects unique characteristics of the test systems, including whether the DNA was reacted with activated AFB₁ in vitro or in vivo. Conceivably, differences in mutational spectra might reflect differences in the relative formation and repair of the three principal AFB₁-DNA adducts: AFB₁-N7-guanine, the AP (apurinic) site formed by depurination of this principal N7-adduct, and the AFB₁-FAPY (AFB₁formamidopyrimidine) adduct formed by scission of the imidazole ring of AFB₁-N7-guanine (27,40). Bailey et al. (27) have shown that the AFB₁-N7-guanine adduct and not the AP site best explains mutations in AFB1-treated cells. However, in studies where formation of the AP adduct is enhanced, changes in the AFB₁ mutational spectrum might be expected depending on repair of the AP site or the preference for nucleotide insertion opposite unrepaired AP sites during DNA replication (41,42). It should be noted that the AFB₁-FAPY adduct is believed to block DNA replication, and is thus primarily a lethal lesion unless repaired (40).

In our study, AFB_1 -induced $G \rightarrow T$ transversion events (i.e. $G:C \rightarrow T:A$) in rat liver occurred at guanine residues that were flanked 97% of the time (34 of 35 events) on the 5'-side by a guanine or a cytosine, and 57% of the time (20 of 35 events) on the 3'-side by a cytosine (Table III). Forty percent (14 of Table III. Sequence analysis of $G:C \rightarrow T:A$ transversion mutations observed in the *lac1* gene from liver tissue of AFB1-treated male lambda/*lac1* transgenic mice and rats (corrected for clonal expansions)

Species	5'-Sequence	Mutated nucleotide ^a	3'-Sequence	Mutation position ^b	Strand	CpG site ^c	Occurrences
C57BL/6	CACCG	G	CATAC	66	non-coding	_	1
(Mouse)	TGGCG	G	AGCTG	158	coding	-	1
	ACGCG	G	TTGGG	178	non-coding	-	1
	TGAAT	G	AGGGC	731	coding	-	1
	GGCGC	G	CATTG	791	non-coding	+	3
	CATGA	G	CTGTC	865	non-coding	_	1
-344	CACCG	G	CATAC	66	non-coding	-	1
(Rat)	TGCCG	G	TGTCT	69	coding	-	1
	GATAA	G	AGACA	75	non-coding	-	1
	CACGC	G	GGAAA	92	non-coding	+*	2
	TTCCC	G	CGTGG	93	coding	+*	3
	GCCAC	G	TTTCT	116	coding	+	1
	CGCGG	G	AAAAA	134	coding	-	1
	TGGCG	G	AGCTG	158	coding	_	1
	CACGC	G	GTTGG	179	non-coding	+*	1
	TGCCC	G	CCAGT	198	non-coding	+*	2
	GATTG	G	CGTTG	222	coding	-	1
	TCGCC	G	CGACA	270	non-coding	+*	1
	TAATC	G	CCGCG	273	non-coding	+	1
	CGCTG	G	CACCC	303	non-coding	-	1
	GCACC	G	CCGCT	357	non-coding	+*	2
	GACGC	G	TTGCG	380	non-coding	+	1
	ACAGC	G	CGATT	576	non-coding	+	1
	GCGCC	G	AGACA	606	non-coding	+	3
	ACATG	G	CACTC	693	non-coding	-	2
	GCATC	G	CAGTG	750	non-coding	+	1
	TTACC	G	AGTCC	803	coding	+	1
	TCGTC	G	TATCC	847	non-coding	+	1
	ATACC	G	AAGAC	857	coding	+	1
	AGCAG	G	CGAAA	910	non-coding	-	1
	TCCAC	G	CTGGT	928	non-coding	+	3

^aSequenced C \rightarrow A transversion mutations were interpreted as originating from G \rightarrow T mutations in the non-coding strand, and are presented as such in the table.

^bNucleotide positions are numbered as described by Farabaugh (51).

 ^{c}A (+) sign indicates the mutation occurred at a CpG site; a (-) sign indicates that the mutation did not occur at a CpG site. An asterisk (*) indicates that a G:C \rightarrow T:A transversion occurred at a CpG site within the sequence 5'-GCGG-3' or its complement.

35) of these mutations occurred at the sequence 5'-CGC-3' (underlining denotes the mutated nucleotide throughout this discussion). Noting that it is difficult to identify simple rules that predict AFB₁ reactivity toward a particular guanine (43), our data agree reasonably well with the specificity of AFB₁ adduct formation in DNA described by Benasutti *et al.* (44), who determined that guanines and cytosines on the 5'-side and guanines and thymines on the 3'-side are the most influential in determining guanine reactivity with AFB₁. The differences between their data and our data might reflect the *in vitro* versus the *in vivo* nature of the experiments, respectively. Our data also agree well with that of Misra *et al.* (45), who found that guanines flanked by A:T sequences were poor targets for AFB₁-induced lesions.

Seventy-one percent (25 of 35) of the G:C \rightarrow T:A transversion mutations recovered from AFB₁-treated rats occurred at CpG sites. This is substantially higher than the ~30% that is expected statistically (21). Inspection of the flanking DNA sequences revealed that 44% of G \rightarrow T transversions at CpG sites (11 of 25) occurred at the sequences 5'-GC<u>G</u>G-3' or 5'-CC<u>G</u>C-3' (Table III).

Since 5'-GCGG-3' and 5'-CCGC-3' are complementary, it appeared that CpG sites flanked by G:C basepairs (specifically, 5'-GCGG-3'/5'-CCGC-3' sequences) might be hotspots for AFB₁-induced mutation. While there are 95 CpG sites per strand in lacl, only 39 are known to generate a mutant phenotype when mutated by a G:C \rightarrow T:A transversion (lacl database, 22). Of these 39 CpG sites, five occur at 5'-GCGG-3'/5'-CCGC-3' sequences and 34 occur at other CpG sites. If the 25 recovered G:C \rightarrow T:A mutations at CpG sites (from AFB₁-treated rats) were distributed randomly among the 39 recoverable mutable sites, we would expect to recover 3.2 mutations at 5'-GCGG-3'/5'-CCGC-3' sequences and 21.8 mutations at other CpG sites. However, we observed 11 such mutations at 5'-GCGG-3'/5'-CCGC-3' sequences, and 14 mutations at other CpG sites. Therefore, AFB_1 -induced $G \rightarrow T$ mutations at 5'-GCGG-3' or 5'-CCGC-3' occurred significantly more frequently (P < 0.0076, Fisher exact test) than at other CpG sites, suggesting that these sequences are indeed hotspots for mutation induced by AFB₁. It may be noted that 100% of the recoverable $G \rightarrow T$ mutations at 5'-GCGG-3' or 5'-CCGC-3' were observed (with 11/5 or 2.2-fold 'saturation'), whereas only 41% (14 of 34) of recoverable $G \rightarrow T$ mutations at other CpG sites were observed.

The five 5'-GCGG-3'/5'-CCGC-3' regions in *lac1* containing CpG sites at which G \rightarrow T transversions are recoverable were also examined to determine if a strand bias existed for such mutations induced by AFB₁ in rat liver. Eight of the 11 recovered G \rightarrow T transversions at 5'-GCGG-3' or 5'-CCGC-3' occurred in the non-coding strand (Table III). However, such

transversions are known to generate a mutant phenotype at all of the five above mentioned regions when occurring in the non-coding strand but only at two of these five regions when occurring in the coding strand. The ratio of observed coding:non-coding strand mutations (3:8, Table III) is very close to the ratio of recoverable coding:non-coding strand mutations (2:5), suggesting that there is no strand bias for AFB₁-induced G \rightarrow T mutation at 5'-GC<u>G</u>G-3'/5'-CC<u>G</u>C-3' sequences in the *lac1* gene.

Activated AFB₁ is known to react almost exclusively with guanines, at the N7-position (25). It has previously been suggested that AFB₁ may preferentially induce mutations at certain sites, including 5'-GpG-3', 5'-CpC-3' and 5'-CpG-3' sequences (45). In a bacterial forward mutagenesis assay using a lacZ segment in M13, the sequence 5'-TGGCG-3' was found to be an AFB₁ hotspot, with the underlined guanine having the most mutations (38). Other AFB₁-induced hotspots have been reported. For example, in the human hprt gene, activated AFB₁ produced a G:C \rightarrow T:A transversion at basepair 209 in exon 3 in 10-17% of all mutants (46). This hotspot occurs in a GGGGGG sequence. These observations, and our data (5'-GCGG-3'/5'-CCGC-3' hotspot), correlate reasonably well with data from a study that indicated that 5'-(G/C)G(G/T)-3' sequences in DNA react preferentially with activated AFB₁ (44).

The induction of G:C \rightarrow T:A transversions by AFB₁, particularly at 5'-GpG-3' dinucleotide sequences, is of particular relevance in regard to activation of oncogenes. In AFB₁-induced hepatocarcinomas in rats and trout, mutations at codons 12 and 13 of the *ras* gene, a 5'-GpG-3' target, were primarily (83%) G:C \rightarrow T:A transversions (47,48). In addition, G:C \rightarrow T:A transversions are frequently found (77%) at 5'-AGG-3' in codon 249 of the *p53* gene in human hepatocellular carcinomas from humans exposed to dietary aflatoxins (49,50).

In contrast to the dramatic changes in the pattern of mutation observed in the rat, the liver mutational spectrum of AFB₁treated mice was very similar to the pattern of spontaneous mutations, except that G:C \rightarrow T:A transversions occurred at CpG sites almost twice as frequently in AFB₁-treated mice as in untreated mice (Table II). In addition, there was a modest increase in the proportion of G:C \rightarrow A:T transitions (from 48 to 57%) in treated mice. It was determined that there was no significant difference ($P = 0.74 \pm 0.02$) in the mutational spectra between AFB₁-treated and untreated mice.

An intriguing observation in the mouse AFB_1 data was the recovery of a G:C \rightarrow T:A transversion at position 791, which was found once in each of three animals. Mutation at this position has previously been observed only twice among more than 5800 sequenced *lac1* mutations (unpublished: *lac1* database, de Boer *et al.*, 1995). The rarity of the mutation, and the sequence at which this mutation occurs (5'-TG<u>C</u>GC-3') tends to support the idea that this mutation was induced by AFB₁. Position 791 may thus be an AFB₁ hotspot in the mouse liver environment, although this event was not recovered in the rat collection.

In this study, the lambda/lac1 transgenic mutagenesis assay was used to demonstrate a species-specific *in vivo* response to the mycotoxin AFB₁. The results described here are in general concordance with what is known about AFB₁ and its mechanism of action on rodent liver DNA *in vivo*. The sensitivity of the F344 rat to the mutagenic effects of AFB₁ in the liver was evidenced by an increase in *lac1* mutant frequency and a shift in mutational spectrum to predominantly G:C \rightarrow T:A

transversions. The C57BL/6 mouse was relatively resistant to AFB_1 -induced liver mutations. This work illustrates the utility of having the same shuttle vector system in both mice and rats for comparative mutation testing. The lambda/lacl assay confers the potential to measure species-specific differences in mutant frequency and mutational spectra in essentially any tissue. Moreover, the lambda/lacl transgenic assay uses the same model species that have been established for the 2-year rodent bioassay. Thus, carcinogenicity studies can be augmented by transgenic mutational studies, providing detailed sequence-level analysis of *in vivo* mutational events. The information that is now achievable from the two-species lambda/lacl transgenic assay may have beneficial applications in many fields, including mechanistic analysis and risk assessment.

Acknowledgements

The authors thank Dr Jay Short and Dr Joe Sorge for valuable technical advice and administrative resources. We also thank Dr Robert Young and Dr Donald Putman at Microbiological Associates, Inc. for animal dosing regimen and necropsy services. This work was supported in part by NIH grant number 5 R44 CA57066-04 and NIEHS contract number N01-ES-35365.

References

- Kohler, S.W., Provost, G.S. Fieck, A., Kretz, P.L., Bullock, W.O., Putman, D.L., Sorge, J.A. and Short, J.M. (1991a) Analysis of spontaneous and induced mutations in transgenic mice using a lambda ZAP/lacl shuttle vector. *Environ. Mol. Mutagen.*, 18, 316–321.
- Kohler, S.W., Provost, G.S., Fieck, A., Kretz, P.L., Bullock, W.O., Sorge, J.A., Putman, D.L. and Short, J.M. (1991b) Spectra of spontaneous and mutageninduced mutations in the *lac1* gene in transgenic mice. *Proc. Natl Acad. Sci. USA*, 88, 7958–7962.
- Provost,G.S., Kretz,P.L., Hamner,R.T., Matthews,C.D., Rogers,B.J., Lundberg,K.S., Dycaico,M.J. and Short,J.M. (1993) Transgenic systems for *in vivo* mutation analysis. *Mutat. Res.*, 288, 133-149.
- Gorelick, NJ. (1995) Overview of mutation assays in transgenic mice for routine testing. Environ. Mol. Mutagen., 25, 218-230.
- 5. Dycaico, MJ, Provost, G.S., Kretz, P.L., Ransom, S.L., Moores, J.C. and Short, J.M. (1994) The use of shuttle vectors for mutation analysis in transgenic mice and rats. *Mutat. Res.*, **307**, 461–478.
- 6. Newberne, P.M. and Butler, W.H. (1969) Acute and chronic effects of aflatoxin on the liver of domestic and laboratory animals: A review. *Cancer Res.*, **29**, 236–250.
- 7. Wogan, G.N. (1973) Aflatoxin carcinogenesis. In Busch, H. (ed.), *Methods in cancer research*. Academic Press, New York, vol. 7, pp. 309–344.
- Eaton, D.L. and Groopman, J.D. (1994) The Toxicology of Aflatoxins: Human Health, Veterinary and Agricultural Significance. Academic Press, Inc., San Diego, CA.
- 9. Eaton, D.L. and Gallagher, E.P. (1994) Mechanisms of aflatoxin carcinogenesis. Annu. Rev. Pharmacol. Toxicol., 34, 135-172.
- Massey, T.E., Stewart, R.K., Daniels, J.M. and Liu, L. (1995) Biochemical and molecular aspects of mammalian susceptibility to aflatoxin B₁ carcinogenicity. Proc. Soc. Exp. Biol. Med., 208, 213-227.
- Ross, R.K., Yuan, J.M., Yu, M.C., Wogan, G.N., Qian, G.S., Tu, J.T., Groopman, J.D., Gao, Y.T. and Henderson, B.E. (1992) Urinary aflatoxin biomarkers and risk of hepatocellular carcinoma. *Lancet*, 339, 943–946.
- World Health Organization (1993) IARC Monographs on the Evaluation of the Carcinogenic Risks to Humans. Some Naturally Occurring Substances: Food Items and Constituents, Heterocyclic Amines and Mycotoxins. IARC Scientific Publications, Lyon, France, vol. 56, pp. 245–395.
- Coursaget, P., Depril, N., Chabaud, M., Nandi, R., Mayelo, V., LeCann, P. and Yvonnet, B. (1993) High prevalence of mutations at codon 249 of the *p53* gene in hepatocellular carcinomas from Senegal. Br. J. Cancer, 67, 1395–1397.
- 14. Aguilar, F., Harris, C.C., Sun, T., Hollstein, M. and Cerutti, P. (1994) Geographic variation of p53 mutational profile in nonmalignant human liver. Science, 264, 1317-1319.
- 15. NTP (National Toxicology Program) (1994) 7th Annual Report on Carcinogens. Research Triangle Park, NC.

- 16. Busby, W.F. and Wogan, G.N. (1984) Aflatoxins. In Searle, C.E. (ed.), Chemical Carcinogens, 2nd Edn, vol. 2, ACS Monograph 182, American Chemical Society, Washington DC, Chapter 16, pp. 945-1136.
- 17. Hsu,I.C., Harris,C.C., Lipsky,M.M., Snyder,S. and Trump,B.F. (1987) Cell and species differences in metabolic activation of chemical carcinogens. Mutat. Res., 177, 1-7.
- 18. Van Ness, K.P., Buetler, T.M. and Eaton, D.L. (1994) Enzymatic characteristics of chimeric mYc/rYc1 glutathione S-transferases. Cancer Res., 54, 4573-4575.
- 19. Rogers, B.J., Provost, G S., Young, R.R., Putman, D.L. and Short, J.M. (1995) Intralaboratory optimization and standardization of mutant screening conditions used for a lambda/lacl transgenic mouse mutagenesis assay (I). Mutat. Res., 327, 57-66.
- 20. Young, R.R., Rogers, B.J., Provost, G.S., Short, J.M. and Putman, D.L. (1995) Interlaboratory comparison: Liver spontaneous mutant frequency from lambda/lacl transgenic mice (Big Blue[®]) (II). Mutat. Res., 327, 67-73.
- 21. de Boer, J.G., Erfle, H., Holcroft, J., Walsh, D., Dycarco, M., Provost, S., Short, J. and Glickman, B.W. (1996). Spontaneous mutants recovered from liver and germ cell tissue of low copy number lacl transgenic rats. Mutat. Res., 352, 73-78.
- 22. de Boer, J.G. (1995) Software package for the management of sequencing projects using lacI transgenic animals. Environ. Mol. Mutagen., 25, 256-262
- 23. Adams, W.T. and Skopek, T.R. (1987) Statistical test for the comparison of samples from mutational spectra. J. Mol. Biol., 194, 391-396.
- 24. McLean, M. and Dutton, M.F. (1995) Cellular interactions and metabolism of aflatoxin: An update. Pharmacol. Ther, 65, 163-192.
- 25. Essigmann, J.M., Croy, R.G., Nadzan, A.M., Busby, W.F.Jr, Reinhold, V.N., Buchi,G. and Wogan,G.N. (1977) Structural identification of the major DNA adduct formed by aflatoxin B1 in vitro. Proc. Natl Acad. Sci. USA, 74, 1870-1874.
- 26. Raney, V.M., Harris, T.M. and Stone, M.P (1993) DNA conformation mediates aflatoxin B1-DNA binding and the formation of guanine N7 adducts by aflatoxin B1 8,9-exo-epoxide. Chem. Res. Toxicol, 6, 64-68.
- 27. Bailey, E.A., Iyer, R.S., Stone, M.P., Harris, T.M. and Essigmann, J.M. (1996) Mutational properties of the primary aflatoxin B1-DNA adduct Proc. Natl Acad. Sci. USA, 93, 1535-1539.
- 28. Hayes, J.D., Judah, D.J., McLellan, L.I. and Neal, G.E. (1991) Contribution of the glutathione S-transferases to the mechanisms of resistance to aflatoxin B₁. Pharmacol. Ther., 50, 443-472.
- 29. Buetler, T.M., Slone, D. and Eaton, D L. (1992) Comparison of the aflatoxin B₁-8,9-epoxide conjugating activities of two bacterially expressed alpha class glutathione S-transferase isozymes from mouse and rat. Biochem. Biophys. Res. Commun., 188, 597-603.
- 30. Hayes, J.D., Nguyen, T., Judah, D.J., Petersson, D.G. and Neal, G.E. (1994) Cloning of cDNAs from fetal rat liver encoding glutathione S-transferase Yc polypeptides. The Yc2 subunit is expressed in adult rat liver resistant to the hepatocarcinogen aflatoxin B₁. J. Biol. Chem., 269, 20707-20717.
- 31. Gorelick, N.J. (1990) Risk assessment for aflatoxin: I. Metabolism of aflatoxin B1 by different species. Risk Analysis, 10, 539-559.
- 32. Wogan, G.N. (1992) Aflatoxin carcinogenesis: Interspecies potency differences and relevance for human risk assessment. Prog. Clin. Biol. Res., 374, 123-137.
- 33. Lee, A.T., DeSimone, C., Cerami, A. and Bucala, R. (1994) Comparative analysis of DNA mutations in lacl transgenic mice with age. FASEB J., 8. 545-550.
- 34. Baker, H.J. Lindsey, J.R. and Weisbroth, S.H. (1979) Appendix 1: Selected

Appendix. List of mutants

Table AT AED 1otod normative data. In Baker, HJ, Lindsey, J.R. and Weisbroth, S.H. (eds), The Laboratory Rat. Academic Press, Inc., San Diego, CA, vol. I. p. 411.

- 35. Croy, R.G. and Wogan, G.N. (1981) Quantitative comparison of covalent aflatoxin-DNA adducts formed in rat and mouse livers and kidneys. J. Natl Cancer Inst., 66, 761-768.
- 36. Foster, P.L., Eisenstadt, E. and Miller, J.H. (1983) Base substitution mutations induced by metabolically activated aflatoxin B1. Proc. Natl Acad. Sci. USA, 80, 2695-2698.
- 37. Levy, D.D., Groopman, J.D., Sim, S.E., Seidman, M.M. and Kraemer, K.H. (1992) Sequence specificity of aflatoxin B1-induced mutations in a plasmid replicated in xeroderma pigmentosum and DNA repair proficient human cells. Cancer Res., 52, 5668-5673.
- 38. Sambamurti, K., Callahan, J., Luo, X., Perkins, C.P., Jacobson, J.S. and Humayun, M.Z. (1988) Mechanisms of mutagenesis by a bulky DNA lesion at the guanine N7 position. Genetics, 120, 863-873.
- 39. Sahasrabudhe, S., Sambamurti, K. and Humayun, M.Z. (1989) Mutagenesis by aflatoxin in M13 DNA: Base-substitution mechanisms and the origin of strand bias. Mol. Gen. Genet., 217, 20-25.
- 40. Tudek, B., Boiteux, S. and Laval, J. (1992) Biological properties of imidazole ring-opened N7-methylguanine in M13mp18 phage DNA. Nucleic. Acids Res., 20, 3079-3084
- 41. Sagher, D. and Strauss, B. (1983) Insertion of nucleotides opposite apurinic/ apyrimidinic sites in deoxyribonucleic acid during in vitro synthesis: Uniqueness of adenine nucleotides. Biochemistry, 22, 4518-4526.
- 42. Neto, J.B., Gentil, A., Cabral, R.E. and Sarasin, A. (1992) Mutation spectrum of heat-induced abasic sites on a single-stranded shuttle vector replicated in mammalian cells. J. Biol. Chem., 267, 19718-19723.
- 43. Marien, K., Moyer, R., Loveland, P., Van Holde, K. and Bailey, G. (1987) Comparative binding and sequence interaction specificities of aflatoxin B1, aflatoxicol, aflatoxin M1, and aflatoxicol M1 with purified DNA. J. Biol Chem., 262, 7455-7462.
- 44. Benasutti, M., Ejadi, S., Whitlow, M.D. and Loechler, E.L. (1988) Mapping the binding site of aflatoxin B1 in DNA: Systematic analysis of the reactivity of aflatoxin B1 with guanines in different DNA sequences. Biochemistry, 27, 472-481.
- 45. Misra, R.P., Muench, K.F and Humayun, M.Z. (1983) Covalent and noncovalent interactions of aflatoxin with defined deoxyribonucleic acid sequences. Biochemistry, 22, 3351-3359.
- 46. Cariello, N.F., Cui, L. and Skopek, T.R (1994) In vitro mutational spectrum of aflatoxin B1 in the human hypoxanthine guanine phosphoribosyltransferase gene. Cancer Res., 54, 4436-4441
- 47. McMahon, G., Davis, E.F., Huber, L.J., Kim, Y. and Wogan, G.N. (1990) Characterization of c-Ki-ras and N-ras oncogenes in aflatoxin B1-induced rat liver tumors. Proc. Natl Acad. Sci. USA, 87, 1104-1108.
- 48. Chang, Y.J., Mathews, C., Mangold, K., Marien, K., Hendricks, J. and Bailey,G. (1991) Analysis of ras gene mutations in rainbow trout liver tumors initiated by aflatoxin B₁. Mol Carcinogenesis, 4, 112-119.
- 49. Hsu, I.C., Metcalf, R.A., Sun, T., Welsh, J.A., Wang, N.J. and Harris, C.C. (1991) Mutational hotspot in the p53 gene in human hepatocellular carcinomas Nature (Lond.), 350, 427-428.
- 50. Bressac, B., Kew, M., Wands, J. and Ozturk, M. (1991) Selective G to T mutations of p53 gene in hepatocellular carcinoma from southern Africa. Nature (Lond.), 350, 429-431.
- 51. Farabaugh, P.J. (1978) Sequence of the lacl gene. Nature, 274, 765-769.
- Received on February 12, 1996; revised on July 10, 1996; accepted on July 24 1996

Mutant ID no.	Mutation type	CpG site	Mutated base no. 1	Mutated base no. 2	Amino acid chang e	Mutagen	Animal ID no.	Other changes, comments
31C361	substitution	yes	C 42 T	none	Thr 5 Met	AFB1	35	
31A014	substitution	yes	C 42 T	none	Thr 5 Met	AFB1	36	
31E008	substitution	yes	G 56 A	none	Ala 10 Thr	AFB1	34	
31F001	substitution	yes	G 56 A	none	Ala 10 Thr	AFB1	34	clonal
31A006	substitution	yes	G 56 A	none	Ala 10 Thr	AFB1	36	
31C320	substitution	по	C 66 A	none	Ala 13 Asp	AFB1	35	
31G011	substitution	yes	С 92 Т	none	Arg 22 Cys	AFB1	32	
31G006	substitution	yes	G 93 A	none	Arg 22 His	AFB1	32	
31G009	substitution	yes	G 93 A	none	Arg 22 His	AFB1	32	clonal

Table AI. Continued

Mutant ID no.	Mutation type	CpG site	Mutated base no. 1	Mutated base no. 2	Amino acid change	Mutagen	Animal ID no.	Other changes, comments
31F003	substitution	yes	G 93 A	none	Arg 22 His	AFB1		
31C270	substitution	yes	G 95 A	none	Val 23 Met	AFB1	33	
31A013	substitution	no	G 158 T	none	Glu 44 amber	AFB1	36	
31G019	substitution	no	C 178 A	none	Asn 50 Lys	AFB1	37	
31A009	substitution	yes	C 179 T	none	Arg 51 Cys	AFB1	36	
31C268	substitution	yes	G 180 A	none	Arg 51 His	AFB1	33	
31C269	substitution	yes	G 180 A	none	Arg 51 His	AFB1	33	clonal
31E001	multiple	no	G 184 T	C 186 T	Val 52 Val	AFB1	34	also Ala(53) \rightarrow Val
31C264	substitution	yes	C 198 T	none	Ala 57 Val	AFB1	33	
31C267	substitution	yes	C 198 T	none	Ala 57 Val	AFB1	33	clonal
31E003	substitution	yes	C 198 T	none	Ala 57 Val	AFB1	34	elonar
31G005	substitution	no	C 206 T	none	Gln 60 amber	AFB1	32	
31E002	substitution	по	G 222 A	none	Gly 65 Asp	AFB1	34	
31C323	substitution	no	G 222 A	none	Gly 65 Asp	AFB1	35	
31G015	insertion	no	620	none	Ciy 05 Asp	AFB1	37	+ TGGC @ 620/631
31G016	complex	по	T 246 A	none		AFB1	37	also - 9bp @ 234/242
31C326	substitution	no	C 260 T	none	Gln 78 ochre	AFB1	35	also - 50p @ 25-72-2
31C266	substitution	yes	G 269 A	none	Ala 81 Thr	AFB1	33	
31G017	substitution	yes	G 269 A	none	Ala 81 Thr	AFB1	37	
31F002	substitution	yes	C 270 T	none	Ala 81 Val	AFB1	34	
31G002	substitution	yes	C 329 T	none	Arg 101 opal	AFB1	32	
31G020	substitution	yes	C 329 T	none	Arg 101 opal	AFB1	36	
31A008	substitution	no	T 369 G	none	Leu 114 Arg	AFB1	36	
31D005	-1 frameshift	no	429	none	Det III IIIg	AFB1	35	- T @ 429/430
31G014	substitution	no	C 513 T	none	Ser 162 Phe	AFB1	37	1 8 42/1450
31C325	deletion	no	637	none	5ei 102 me	AFB1	35	deletion @ 637/638
31G007	multiple	no	A 689 T	G 690 A		AFB1	32	$AGT(Ser) \rightarrow TAT(Tyr)$
31A011	substitution	no	C 719 T	none	Gln 231 ochre	AFB1	36	$AOI(OC) \rightarrow IAI(IJI)$
31G001	substitution	no	G 731 T	none	Glu 235 amber	AFB1	32	
31G004	substitution	по	G 731 T	none	Glu 235 amber	AFB1	32	clonal
31H001	deletion	no	777	none	Giù 255 uniber	AFB1	37	8bp deletion @ 777-784
31G012	substitution	yes	C 791 A	none	Arg 255 Ser	AFB1	32	
31C265	substitution	yes	C 791 A	none	Arg 255 Ser	AFB1	33	
31C360	substitution	yes	C 791 A	попе	Arg 255 Ser	AFB1	35	
31C324	substitution	yes	G 794 C	none	Ala 256 Pro	AFB1	35	
31G010	substitution	no	C 865 A	none	Ser 279 Arg	AFB1	32	
31A012	substitution	no	C 944 T	none	Gln 306 ochre	AFB1	36	
31A010	substitution	no	A1004 T	none	Arg 326 opal	AFB1	36	

Table AII. Vehicle-treated control rat liver mutants, uncorrected

Mutant ID no.	Mutation type	CpG site	Mutated base no. 1	Mutated base no. 2	Amino acid change	Mutagen	Animal ID no.	Other changes, comments
31J002	complex	no	none	none		none	77	$T(704) \rightarrow A; C(762) \rightarrow A$
31C365	complex	по	none	none		none	79	$AC(1010/1011) \rightarrow G$
31E051	complex	no	none	none		none	81	30-43 replaced with GT
31E050	substitution	yes	G 29 T	none	Val 30 Phe	none	81	
31G134	-1 frameshift	no	61	none		none	80	- G @ 61
31B001	substitution	по	T 64 G	none	Tyr 12 amber	none	78	
31E164	deletion	no	68	none		none	77	GGTGCTCTTA del @ 68/78
31E006	substitution	по	A 81 T	none	Gln 18 Leu	none	77	
31B003	substitution	yes	C 92 T	none	Arg 22 Cys	none	78	
31G130	substitution	no	C 104 T	none	Gln 26 amber	none	80	
31E043	substitution	no	G 140 A	none	Val 38 Met	none	81	
31B007	substitution	no	C 174 G	none	Pro 49 Arg	none	78	
31B004	substitution	yes	G 180 A	none	Arg 51 His	none	78	
31C362	substitution	no	G 185 A	none	Ala 53 Thr	none	79	
31E166	substitution	no	T 195 C	none	Leu 56 Pro	none	77	
31B005	substitution	yes	C 198 A	none	Ala 57 Glu	none	78	
31B006	substitution	yes	C 198 A	none	Ala 57 Glu	none	78	clonal
31H008	substitution	yes	C 198 T	none	Ala 57 Val	none	76	
31A004	substitution	yes	C 198 T	none	Ala 57 Val	none	78	
31D002	substitution	yes	C 198 T	none	Ala 57 Val	none	7 9	
31E049	substitution	yes	C 198 T	none	Ala 57 Val	none	81	

Table AII. Continued

Mutant ID no.	Mutation type	CpG site	Mutated base no. 1	Mutated base no. 2	Amino acid change	Mutagen	Animal ID no.	Other changes, comments
31B008	substitution	no	T 209 A	none	Ser 61 Thr	none	78	
31E160 🖕	substitution	yes	G 269 A	none	Ala 81 Thr	none	77	
31E044	substitution	yes	G 269 A	none	Ala 81 Thr	none	81	
31E165	substitution	yes	C 329 T	none	Arg 101 opal	none	77	
31A001	substitution	yes	C 329 T	none	Arg 101 opal	none	78	
31G131	substitution	yes	C 329 T	none	Arg 101 opal	none	80	
31G137	substitution	yes	C 329 T	none	Arg 101 opal	none	80	clonal
31G138	substitution	yes	C 329 T	none	Arg 101 opal	none	80	clonal
31H006	substitution	yes	C 380 A	none	Arg 118 Ser	none	76	
31A003	substitution	yes	G 381 A	none	Arg 118 His	none	78	
31G129	substitution	yes	G 381 A	none	Arg 118 His	none	80	
31E046	substitution	yes	G 381 A	none	Arg 118 His	none	81	
31E162	substitution	yes	G 383 T	none	Val 119 Phe	none	77	
31G141	substitution	yes	C 530 T	none	Arg 168 opal	none	80	
31G142	substitution	yes	C 530 T	none	Arg 168 opal	none	80	clonal
31H007	substitution	yes	G 575 C	none	Ala 183 Pro	none	76	
31G139	substitution	yes	G 575 C	none	Ala 183 Pro	none	80	
31E045	deletion	no	620	none		none	81	- TGGC @ 620
31H005	insertion	no	620	none		none	76	+ TGGC @ 620/632
31E158	insertion	no	620	none		none	77	+ CTGG @ 620
31E163	insertion	no	620	none		none	77	+ TGGC @ 620; clonal
31J001	substitution	no	G 687 A	none	Trp 220 amber	none	77	
31G132	substitution	yes	G 803 A	none	Glu 259 Lys	none	80	
31E159	substitution	yes	C 834 A	none	Ser 269 amber	none	77	
31D001	substitution	no	С 953 Т	none	Gln 309 amber	none	79	
31E007	substitution	no	G 962 C	none	Ala 312 Pro	none	77	
31A002	deletion	no	96	none		none	78	17 bp del. @ 996-1012
31C363	-1 frameshift	no	1010	none		none	79	- G @ 778

Table AIII. AFB_1 -treated rat liver mutants, uncorrected

Mutant ID no.	Mutation type	CpG site	Mutated base no. 1	Mutated base no. 2	Amino acid change	Mutagen	Animal ID no.	Other changes, comments
31A056	substitution	no	G 31 C	none	Val 1 Val	AFB1	171	Initiation codon
31A041	substitution	yes	C 42 T	none	Thr 5 Met	AFB1	171	
31H125	substitution	yes	G 56 C	none	Ala 10 Pro	AFB1	166	
31A040	substitution	no	T 64 A	none	Tyr 12 ochre	AFB1	171	
31H122	substitution	no	C 66 A	none	Ala 13 Asp	AFB1	166	
31C037	substitution	no	G 69 T	none	Gly 14 Val	AFB1	170	
31H123	substitution	no	C 75 A	none	Ser 16 Tyr	AFB1	166	
31E059	substitution	no	C 80 T	none	Gln 18 amber	AFB1	168	
31H130	substitution	yes	C 92 A	none	Arg 22 Ser	AFB1	166	
31C002	substitution	yes	C 92 A	none	Arg 22 Ser	AFB1	169	
31C003	substitution	yes	C 92 A	none	Arg 22 Ser	AFB1	169	clonal
31G021	substitution	yes	G 93 T	none	Arg 22 Leu	AFB1	167	
31E053	substitution	yes	G 93 T	none	Arg 22 Leu	AFB1	168	
31E054	substitution	yes	G 93 T	none	Arg 22 Leu	AFB1	168	clonal
31C010	substitution	yes	G 93 T	none	Arg 22 Leu	AFB1	169	
31A036	substitution	yes	G 116 T	none	Val 30 Phe	AFB1	171	
31C007	substitution	yes	G 132 C	none	Arg 35 Pro	AFB1	169	
31H127	substitution	no	G 134 T	none	Glu 36 ochre	AFB1	166	
31C038	substitution	по	G 158 T	none	Glu 44 amber	AFB1	170	
31G026	substitution	yes	C 179 A	none	Arg 51 Ser	AFB1	167	
31G028	substitution	yes	G 180 C	none	Arg 51 Pro	AFB1	167	
31C034	substitution	yes	C 198 A	none	Ala 57 Glu	AFB1	170	
31A038	substitution	yes	C 198 A	none	Ala 57 Glu	AFB1	171	
31C008	substitution	no	G 222 T	none	Gly 65 Val	AFB1	169	
31E060	multiple	no	C 270 A	C 273 A	Ala 81 Glu	AFB1	168	also Ala(82) → Glu
31C035	substitution	yes	C 270 A	none	Ala 81 Glu	AFB1	170	• •
31C040	substitution	yes	C 270 A	none	Ala 81 Glu	AFB1	170	clonal
31E052	substitution	yes	C 273 A	none	Ala 82 Glu	AFB1	168	
31H121	substitution	no	C 303 A	none	Ala 92 Asp	AFB1	166	
31G024	substitution	yes	C 357 A	none	Ala 110 Glu	AFB1	167	

Table AIII. Continued

Mutant ID no.	Mutation type	CpG site	Mutated base no. 1	Mutated base no. 2	Amino acid change	Mutagen	Animal ID no.	Other changes, comments
31E055	substitution	yes	C 357 A	none	Ala 110 Glu	AFB1	168	
31A039	substitution	yes	C 380 A	none	Arg 118 Ser	AFBI	171	
31A043	substitution	yes	C 576 A	none	Ala 183 Glu	AFB1	171	
31H124	substitution	yes	C 606 A	none	Ser 193 amber	AFB1	166	
31G025	substitution	yes	C 606 A	none	Ser 193 amber	AFB1	167	
31C001	substitution	yes	C 606 A	none	Ser 193 amber	AFB1	169	
31G023	substitution	no	C 693 A	none	Ala 222 Asp	AFB1	167	
31A037	substitution	no	C 693 A	none	Ala 222 Asp	AFB1	171	
31G027	substitution	yes	C 750 A	none	Ala 241 Glu	AFB1	167	
31C041	complex	yes	C 750 A	none		AFB1	170	also + T @ 703/706
31H128	substitution	yes	G 785 C	none	Ala 253 Pro	AFB1	166	
31H126	substitution	yes	G 803 T	none	Glu 259 amber	AFB1	166	
31E057	substitution	yes	C 847 A	none	Tyr 273 ochre	AFB1	168	
31A042	substitution	yes	G 857 T	none	Glu 277 ochre	AFB1	171	
31C006	substitution	no	C 910 A	none	Arg 294 Arg	AFB1	169	
31H129	substitution	yes	C 928 A	none	Ser 300 Arg	AFBI	166	
31E056	substitution	yes	C 928 A	none	Ser 300 Arg	AFB1	168	
31C036	substitution	yes	C 928 A	none	Ser 300 Arg	AFBI	170	

i