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Abstract.—Several methods have recently been developed to infer multilocus phylogenies by incorporating information
from topological incongruence of the individual genes. In this study, we investigate 2 such methods, Bayesian concor-
dance analysis and Bayesian estimation of species trees. Our test data are a collection of genes from cultivated rice (genus
Oryza) and the most closely related wild species, generated using a high-throughput sequencing protocol and bioinformat-
ics pipeline. Trees inferred from independent genes display levels of topological incongruence that far exceed that seen
in previous data sets analyzed with these species tree methods. We identify differences in phylogenetic results between
inference methods that incorporate gene tree incongruence. Finally, we discuss the challenges of scaling these analyses for
data sets with thousands of gene trees and extensive levels of missing data. [Bayesian MCMC; gene tree incongruence;
multilocus analysis; phylogenetic inference; rice.]

A species tree is the underlying framework used in
many studies of comparative and evolutionary biology.
In the absence of full genome sequences, trees built
from 1 or more genes have been used as a proxy for
the species trees. However, the knowledge that trees in-
ferred from different genes can conflict with each other
has fueled much debate on how and when data sets
from different sources can be combined in a phyloge-
netic analysis (Doyle 1992; Bull et al. 1993; de Queiroz
et al. 1995; Wiens 1998). Given the increasing avail-
ability of genome-scale data, phylogenetic analysis can
now span hundreds or thousands of genes (e.g., Rokas
et al. 2003; Pollard et al. 2006; Ebersberger et al. 2007).
Studies at this scale have reinforced the finding that
gene tree incongruence is commonplace in many taxa
and widespread throughout the genome.

Gene trees may differ in their evolutionary history
for a number of biological reasons. One is coalescent
stochasticity, which can result in the persistence of lin-
eages beyond the speciation boundary (Pamilo and Nei
1988; Takahata 1989). In this case, the order of lineage
coalescence events (the gene tree) can differ from spe-
ciation events in the species tree. A second reason for
incongruence is movement of genes between species,
whether by hybridization and introgression (Rieseberg
et al. 2000) or horizontal gene transfer (Doolittle 1999).
A third is failure to correctly infer orthology due to
gene duplication and subsequent gene loss or incom-
plete sampling of gene copies, so that paralogous gene
copies are inferred to be orthologs (Page 1994; Page
and Charleston 1997). The case of incomplete lineage
sorting has been shown to be particularly challenging,
as some combinations of tree shape and branch lengths
in a species trees can cause the most biologically likely

gene tree to differ from the species tree (Degnan and
Rosenberg 2006).

The fact that trees built from different genes can vary
has been recognized for some time. The first method for
constructing species tree from incongruent gene trees
was published nearly 30 years ago (gene tree parsi-
mony; Goodman et al. 1979). Inference of species trees
from gene trees then received relatively little attention
except for important developments in the gene tree
parsimony approach reconciling gene duplications and
losses (Page and Charleston 1997; Page 1998). Reasons
for this may include a dearth of data sets with large
numbers of genes and also lack of computational power
to implement complex high-dimensional models of
gene duplication and coalescent stochasticity. The focus
shifted to the development of sophisticated models of
nucleotide substitution and application of these models
to likelihood and Bayesian inference of individual data
sets. Also important was the hope that concatenation of
many genes would solve the problem; that with enough
sequence data, a predominant signal would emerge and
this signal would be equal to the species tree (the “su-
permatrix” approach; de Queiroz and Gatesy 2007). The
landmark phylogenomics paper of (Rokas et al., 2003)
described the inference of a fully resolved and perfectly
supported phylogeny of yeast using a supermatrix ap-
proach, despite incongruence between the 106 individ-
ual genes trees. This was followed by many studies of
the yeast alignment and other data sets, showing that
the simple concatenation of genome-scale data could
mislead the inference of species phylogenies due to the
effects of so called “nonphylogenetic” signal (Phillips
et al. 2004; Jeffroy et al. 2006) or presence of incomplete
lineage sorting (Kubatko and Degnan 2007).
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The increase in availability of genome-scale data
for phylogenomics, combined with better methods
and models for inferring gene trees, has triggered re-
newed interest in gene tree incongruence. Rather than
approaching species tree inference as a problem of sep-
arating signal (a species tree) from noise (gene tree
variability), the availability of many genes across many
species permits the use of information contained in the
distribution of gene trees as part of the inference proce-
dure. Following this approach, promising methods for
inferring species trees using the incongruence in gene
trees have recently been developed (Arvestad et al. 2003;
Maddison and Knowles 2006; Ané et al. 2007; Edwards
et al. 2007; Liu and Pearl 2007).

In this study, we focus on 2 such methods, Bayesian
concordance analysis (BCA), as implemented in the
software BUCKy (Bayesian Untangling of Concorance
Knots) (Larget 2006; Ané et al. 2007) and Bayesian
estimation of species trees, implemented in the soft-
ware BEST (Liu and Pearl 2007; Liu 2008). BCA infers
concordance factors (CFs), defined as the proportion
of genes, or of the whole genome, that agree with a
given bipartition. The calculation of CFs is a 2-stage
process. The first stage is independent Bayesian anal-
yses of the gene trees to produce a posterior density
of phylogenies for each gene. The second stage in-
fers a mapping of genes to tree topologies using both
the independently inferred posterior samples and a
prior distribution that describes the expected discor-
dance between the genes. The result from this sec-
ond stage is a set of sample-wide and genome-wide
CFs for all bipartitions in the gene trees as well as an
overall concordance tree. The model does not assume
any specific biological process underlying the gene tree
incongruence.

In contrast, the BEST method estimates a species tree
by assuming that all incongruence between the gene
trees is due to coalescent stochasticity. A coalescent-
based prior describes the relationship between the genes
trees and the common underlying species tree. Rather
than inferring gene trees independently and then infer-
ring a species tree, the method infers the gene trees and
species tree jointly, starting from the gene alignments.
Models and model parameters can vary between genes
similar to a partitioned Bayesian analysis (Nylander
et al. 2004). Using a full coalescent approach means that
BEST estimates not only a species tree topology but
also branch lengths in terms of divergence time and
population size.

Both these methods use a Bayesian Markov chain
Monte Carlo (BMCMC) framework, inferring a species-
level tree over a distribution of gene trees and model
parameters. This framework incorporates uncertainty in
the gene and species tree reconstruction, which allows
for more information about gene tree incongruence than
simple point estimates of the gene trees. The inference
of species trees from gene trees adds many additional
parameters when compared with independent gene tree
analysis or analysis of a concatenated data set, which
may subsequently increase the length of analysis and

sophistication of algorithms required for convergence
of the underlying MCMC chains.

We are most interested in the application of these and
comparable species tree methods to large phylogenomic
data sets expected to play an increasingly important role
in phylogenetic research as low-cost genome-scale se-
quencing technologies come online. One such example
is the deep bacterial artificial chromosome (BACt)-end
sequence (BES) libraries of the Oryza Map Alignment
Project (OMAP) (Wing et al. 2005; Kim et al. 2008).
OMAP has constructed BES libraries and physical maps
of 12 wild and 1 cultivated Oryza species. These se-
quences were obtained from a high-throughput and
low-coverage sequencing protocol designed to develop
genome resources for species closely related to a fully
sequenced model organism, in this case cultivated rice,
Oryza sativa. The volume of data generated by OMAP
is quite large, amounting at present to more than
1.5 million sequences for potential phylogenetic analysis
(see http://www.omap.org).

Our test data set is a collection of 1700 genes in rice
(Oryza), curated from approximately 450,000 BESs. The
key features are a large number of genes over a rela-
tively small number of species, with a matrix that is
incomplete—not all genes are present in all species.
This type of phylogenomic data set shares properties
with those compiled using expressed sequence tag
libraries, which are already having an impact on phy-
logenetic research programs (Sanderson and McMahon
2007; Hartmann and Vision 2008; Kullberg et al. 2008).

Biological factors also make rice an interesting test
case. Phylogenetic analysis between closely related
species such as rice or Drosophila (Pollard et al. 2006)
lie at the intersection of phylogenetic and population
genetic theory, where the effects of coalescent stochastic-
ity result in very high levels of gene tree incongruence
(Pamilo and Nei 1988; Maddison and Knowles 2006).
The oft-analyzed yeast species (Rokas et al. 2003) repre-
sent a fairly deep divergence (at least 250 million years;
Douzery et al. 2004), whereas estimates for divergence
of Oryza are 8–14 million years for the whole genus and
2 million years for the AA-genome clade studied here
(Vaughan et al. 2008). The species in this study are all
members of the closely related AA-genome group in
Oryza and their history includes 2 domestication events
as well as evidence of hybridization/introgression
(Sang and Ge 2007). Gene flow in rice has been detected
in both wild and domesticated species (Semon et al.
2005; Caicedo et al. 2007; Zhou et al. 2008). The presence
of gene flow may complicate the phylogenetic analysis,
causing gene tree incongruence in some regions of the
genome that cannot be explained by coalescent-based
models.

A key question for analysis of these types of se-
quences is whether the BMCMC methods for species
tree inference can scale to hundreds or thousands of
gene trees across a range of phylogenetic depths. The
largest data set yet tested with these species tree meth-
ods is yeast, with 106 loci in 8 species (Ané et al. 2007;
Edwards et al. 2007). Phylogenetic analysis at lower
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taxonomic levels, where incongruence due to coalescent
stochasticity is expected to be greater, have had far fewer
loci, for example, 30 loci in 4 species of finches (Liu and
Pearl 2007), 4 loci in 19 species of macaques (Liu and
Pearl 2007), 7 loci in 8 species of gophers (Belfiore et al.
2008), 3 loci in 19 species (1–4 individuals per species) of
sawflies (Linnen and Farrell 2008), and 5 loci in 5 species
(20 individuals) of Mannakins (Brumfield et al. 2008).
In this analysis, we investigate the phylogenetic results
from these methods as well as their computational ef-
ficiency using a large number of loci from a set of very
closely related species.

METHODS

Species Included in the Study
This study includes 6 diploid species of rice, genus

Oryza. We used the cultivated rice species O. sativa ssp.
japonica and Oryza glaberrima as well as the wild species
Oryza rufipogon, Oryza nivara, and Oryza barthii and, as
an outgroup, the wild species Oryza punctata. See Table 1
for genome types and geographic location.

Curation of Gene Alignments
We obtained a starting pool of BESs for 5 Oryza species

from the GenBank GSS Division and sequences from
O. barthii not yet submitted to Genbank directly from the
OMAP group. We then aligned these BES to the coding
sequences (CDS) from the O. sativa IRGSP V3 gene
models using blastall (Altschul et al. 1990) (options: -p
BLASTn, -w 7, -e 1e-10). We aligned overlapping BES
from the same species using ClustalW (Thompson et al.
1994), with default parameters, to create a consensus
exon sequence. To remove paralogous sequences, we
performed an all-versus-all BLAST search of the con-
sensus sequences for each of the wild rice species and
the CDS sequences from O. sativa. If an exon had mul-
tiple hits to its own genome or that of another species,
we removed that exon from the analysis. We then fil-
tered these remaining single-copy exons to ensure 70%
coverage between sequences and assembled them into
clusters of orthologs via a single linkage clustering algo-
rithm (where inclusion of a gene into a cluster requires
only a single link via BLAST to any other gene), keep-
ing only clusters with sequences from all 5 AA-genome
species plus the outgroup.

We then aligned orthologous exons with the gene se-
quence from O. sativa using T-Coffee (Notredame et al.

TABLE 1. The diploid rice species used in this study, along with
geographic location and genome type. The 2 species in bold are the
cultivated rice species

Species Genome type Geographic location
Oryza sativa AA Southeast Asia
Oryza rufipogon AA Southeast Asia
Oryza nivara AA Southeast Asia
Oryza glaberrima AA West Africa
Oryza barthii AA Africa
Oryza punctata BB Africa

2000); options: matrix = BLOSUM, ktuple = 2, tg mode
= 0, gapopen = −10. A small percentage of these align-
ments were found to be misaligned and to contain large
gaps in the alignment. We filtered the data a second
time to keep only the sequences in the alignment that
had both 70% identity with the O. sativa gene sequence
and 70% coverage. Visual inspection of a randomly se-
lected subset of genes indicated that the alignments
were of high quality, which was expected given the low
sequence divergence. We also examined the alignments
using GBlocks (Castresana 2000), which is designed to
identify regions of poor alignment quality.

Model Selection
For all analysis described, we employed a HKY+Γ

model of sequence evolution, using empirical base fre-
quencies and an estimated alpha parameter for a Γ
distribution with 10 categories. Although there was
more than enough data in the concatenated alignment
to use a more highly parameterized model, we chose
HKY based on results from ModelTest (Posada and
Crandall 1998) for a random sample of the gene-level
alignments as well as results from phylogenetic analysis
of the larger alignment. This kept the model consistent
across the analysis of the large concatenated alignment
and the independent genes as well as the joint inference
of gene and species trees and also helped to reduce the
number of parameters for the complex coalescent-based
approach.

Concatenated Analysis
For analysis of the full data set, we concatenated the

final set of genes with data for all 6 species into a sin-
gle alignment. We then inferred a species tree using a
BMCMC approach as implemented in MrBayes v. 3.1.2
(Huelsenbeck and Ronquist 2001; nruns = 3, ngen =
5,000,000, samplefreq = 500). We repeated the analysis
twice, once with a single partition across the genes and
once splitting the alignments into a separate partition
for each gene, allowing for different values of the model
parameters across the genes. To ensure that the anal-
yses had converged to the stationary distribution, we
examined log likelihood plots for stationarity, ensured
that potential scale reduction factor (PSRF) values for
tree length, transition–transversion ratio (kappa), and
alpha parameter for the rates-across-sites model were
less than the generally accepted value of 1.20. We also
calculated effective sample sizes for these parameters
using Tracer (Rambaut and Drummond 2005) and then
finally examined the mean standard deviation of the
partition probabilities across the chains.

Before beginningthe analyses,we recompiled MrBayes
with the following changes to the file mb.h to increase al-
lowable number of character sets (the upper limit before
these changes was 150):

#define MAX NUM DIVS 310
#define MAX NUM CHARSETS 310
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#define MAX NUM TREES 310
#define MAX NUM DIV BITS 310.

Independent Bayesian Analysis
As a first stage for the BCA analysis, and to quantitate

the overall level of incongruence between the genes, we
inferred a posterior distribution for each gene tree in-
dependently using MrBayes. These analyses consisted
of 3 separate MCMC chains per gene alignment, each
of 2 million iterations. We used the same measures of
convergence as for the concatenated analysis, although
we limited graphical examination of log likelihood plots
and effective sample sizes to a random sample of the to-
tal number of genes.

We summarized the independent gene tree analyses
using the posterior distributions and point estimates for
the trees. We also used the genealogical sorting index,
gsi (Cummings et al. 2008), to summarize the incongru-
ence between independently inferred gene trees. The gsi
index provides a measure of the relative degree of exclu-
sive ancestry of a group of species. It can be calculated
for a single tree or a collection of trees (the ensemble
gsi, or egsi) and statistical significance assessed using
a permutation test. Using the implementation in R
(R Development Core Team 2009), we calculated the egsi
across the set of maximum a posteriori (MAP) gene trees
for the Asian group (O. sativa, O. nivara, O. rufipogon)
and the African group (O. glaberrima, O. barthii), with
5000 replications for the permutation test.

Bayesian Concordance Analysis
We performed BCA using the program BUCKy (Ané

et al. 2007). Running BUCKy is a 2-step process. First, we
summarized the MrBayes results for the independently
inferred gene trees using the mbsum command included
with BUCKy, combining the 3 MCMC chains into a sin-
gle output file after removing 500 samples from each
chain as burn-in. We then performed the BCA using the
following BUCKy command: bucky -n 1,000,000 -a 0.1.
The single adjustable parameter in BUCKy is α, which
controls the a priori level of gene tree incongruence. We
tested wide range of this parameter using α values of
0.01, 0.1, 0.5, 1.0, 5.0, 10.0, and 100.0. A larger value of
α corresponds to greater gene tree incongruence—the
probability that 2 genes share the same topology is ap-
proximately 1/(1 + α). We also tested robustness of the
method to inclusion of less informative genes using both
all the genes with 6 species and also a smaller subset of
“informative” genes (those that did produce a flat pos-
terior distribution of topologies and the star topology as
the majority rile consensus tree).

BEST Analysis
Finally, we jointly inferred posterior densities of the

gene trees and species tree using BEST 2.2 (Edwards
et al. 2007; Liu and Pearl 2007). Version 2.2 did not
require the changes to the file mb.h as described for
MrBayes, above, but we did need to compile as 32 bit

(-m32 flag with the GCC compiler) to run BEST on
a 64-bit version on Linux. Due to memory allocation
errors in our initial tests with all 6-species genes and
concerns about slow convergence, we performed the
analyses with the smaller set of informative genes
described above for BCA. We ran 3 independent anal-
yses of 1.6 billion iterations, 2 MCMCMC chains and
sampling every 50,000 iterations.

We also examined the performance of BEST with sub-
sets of the total number of genes. We randomly selected
sets of 10, 20, 30, and 40 genes, with 10 replicates each,
for 40 subsampled data sets in total. Finally, we concate-
nated the longest gene alignments (the genes with more
than 1000 nucleotides each). For all subsampled anal-
ysis, model parameters were the same as the 162-gene
data set, but we ran the chains for 200 million iterations,
sampling every 10,000.

Computer Hardware
For the concatenated and independent Bayesian anal-

yses as well as BEST analyses, we used a Linux com-
puter cluster comprised 12 servers and 96 cores with
processor speeds ranging from 2.33 to 3.16 GHz and
8–16 GB of memory per server. We performed the gsi
and second phase of the BCA analyses on a MacPro
quad-core desktop machine with CPU speed of 2.66
GHz and 3 GB memory.

RESULTS

Curation of Gene Tree Alignments
We started with 310,538 BESs over all 6 Oryza species.

The mean read length of these sequences is 644 bp and
the minimum and maximum length is 101 and 1012, re-
spectively. BLASTing these sequences against the IRGSP
V3 gene models yielded 31.9% coverage of the total CDS
sequence from O. sativa (44,492,676 bp), representing
22,544 of the 37,544 total genes in rice. Creating a con-
sensus sequence of 2 or more overlapping BES gene hits
from within a single species generated a pool of exons
across the 6 species having 8.9% exon coverage to
O. rufipogon, 12% to O. nivara, 8.7% to O. glaberrima,
and 7.8% to O. punctata representing 18 094 total genes.
The all-against-all BLAST procedure aimed at excluding
duplications reduced the pool of exon sequences to or-
thologs representing 7306 genes of O. sativa. Finally, af-
ter removing any clusters with fewer than 4 sequences,
we were left with 1720 genes. All 6 species are present
in 307 of these alignment, 5 species in 546 alignments,
and 4 in the final 867 alignments. The alignments range
in length from 99 to 2076 with a mean length of 350
nucleotides. There were 26 genes with more than 1000
nucleotides. The concatenated alignment of the 307
six-species genes contains 136,684 nucleotides, and the
smaller set of 162 informative genes contained 87,619
nucleotides (see results from independent Bayesian
analysis, below).

Visual inspection of a randomly selected subset of
genes indicated that the alignments were of high quality,
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which was expected given the low sequence divergence.
Examination of the concatenated alignments using
GBlocks did highlight some large blocks for removal,
but further investigation revealed that the basis for re-
moval was generally a high amount of missing data
in a given region rather than poor alignment per se.
Therefore, we used the T-Coffee alignments without ad-
ditional editing for subsequent phylogenetic analysis.
(See supplementary material online for Nexus files con-
taining these sequence data, Supplementary Material
Online).

Concatenated Bayesian Analysis
The BMCMC analyses of the large concatenated align-

ment converged very quickly to a stationary distribu-
tion. For both the partitioned and the nonpartitioned
analyses, the estimated burn-in based on log likelihood
plots was 1000 samples (100,000 generations) per chain,
leaving 9000 samples per chain (18,000 total) for infer-
ence. PSRF values of all model parameters were less
than 1.20. Effective sample sizes of all parameters were
at least 300, and most were greater than 1000.

The majority rule consensus tree topology, shown
in the top left of Figure 1, was the same from both
the partitioned and the nonpartitioned analysis and

was also the MAP tree for both analyses. The posterior
probability of this topology was 1.00 in the partitioned
analysis and 0.914 in the nonpartitioned analysis. The
only clade with posterior probability less than 1.00
was the (O. sativa, O. nivara, O. rufipogon) group in
the nonpartitioned analysis, which had a probability
of 0.914.

Independent Bayesian Analysis
The independent analyses converged very quickly.

Examination of the log likelihood plots for a sample of
30 genes indicated that the chains had reached station-
arity within the first few thousand iterations (data not
shown). Based on these tests, we removed 500 samples
(50,000 MCMC iterations) as burn-in for all genes be-
fore summarizing trees or model parameters. All PSRF
values less than 1.20 for tree length, alpha and kappa
for all genes. The mean standard deviation of the par-
tition probabilities was less that 0.01 in all runs but 3.
The 3 genes with larger values all had very little prob-
ability on any 1 tree, and the posterior sample of trees
contained all possible topologies. The low phylogenetic
signal may have been a cause of the slow convergence
(although other genes that returned a similar result

FIGURE 1. Species trees from the different analysis: a) MAP tree from Bayesian analysis of the concatenated data set. Node labels are posterior
probabilities from analysis of the data set with a single partition (first number) and gene-by-gene partitioning (second number). Branch lengths
are based on the nonpartitioned analysis and the tree is rooted using midpoint rooting for display purposes. b) MAP tree from BEST analysis of a
smaller data set consisting of the longest gene alignments. Node labels are posterior probabilities. c) Primary concordance tree (cladogram) from
the BCA of all genes, showing genome-wide (GW) and sample-wide (SW) CFs along with the 95% HPD interval for the highlighted branches.
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FIGURE 2. Plot of probability of the MAP tree against the width of the credible set in the independent Bayesian analyses. The width of the
credible set is the number of topologies that comprise 95% of the posterior density. The posterior densities of gene tree range from very narrow
(most or all probability on a single tree) through very wide (nearly equal posterior probability on each of the possible topologies). Each point
represents 1 independent gene alignment.

with respect to the distribution of trees displayed faster
convergence).

Overall, the width of the 95% highest posterior den-
sity (HPD) intervals (the number of trees in the poste-
rior sample that comprise 95% of the total probability)
ranged from 1, indicating a single topology with pos-
terior probability greater than 0.95, to 99. Given 105
possible rooted topologies for the 5 ingroup species,
an HPD of 99 means that nearly all possible gene tree
topologies are represented in the posterior sample. See
Figure 2 for a graphical representation of the posterior
samples of trees. The topology returned in the concate-
nated Bayesian analysis is the MAP tree in only 8 of the
307 genes, with a mean posterior probability of 0.812.
We contrast this result to the yeast analysis, where 44
of the 106 genes return the supermatrix topology as the
most probable tree (Ané et al. 2007).

Using the egsi index, we estimated the relative de-
gree of exclusive ancestry for the Asian species group
(O. sativa, O. nivara, O. rufipogon) to be 0.300 (P value
of 0.103). For the African species group (O. glaberrima,
O. barthii), the egsi value was 0.581 with a P value of
0.071. The egsi is scaled between 0 and 1, with a value of
1 indicating a monophyletic group across all the input
trees. The results for the rice gene trees indicate that
neither the African nor the Asian group is supported
across all the gene trees, and the index for the Asian
group is not greater than what might be expected from
a randomly generated set of gene trees.

Bayesian Concordance Analysis
The primary concordance tree, estimated using BCA

and the independent posterior distributions of genes

trees, is shown in Figure 1. It is the same topology as
the concatenated Bayesian analysis. Note that the CFs in
the BCA tree are much more conservative than the pos-
terior probabilities in the topology estimated from the
concatenated alignment (top right in Fig. 1). There was
good agreement between the calculated sample-wide
CFs and the extrapolated genome-wide CFs, which
is not unexpected given that our data set is a large
random sample of genes distributed across the whole
rice genome. To determine the significance of the CFs
in the primary concordance tree, we examined the 95%
HPD intervals for clades that conflicted with those in
the primary concordance topology (see Table 2). The
(O. barthii, O. glaberrima) clade is the only CF in the
primary concordance topology where the 95% HPD
interval does not overlap with a conflicting clade.

The BCA method is robust to the prior probability
on gene tree incongruence (the α parameter in BUCKy).
See Figure 3 for a comparison of the alpha value on the
3 clades in the primary concordance topology. All the
HPD intervals for a given clade overlap for all α values.
We see the greatest effect of the prior distribution on
the clade with the highest posterior probability in the
concatenated analysis: (O. glaberrima, O. barthii). In this
case, CFs decrease with decreasing α. In contrast, there
is no effect on the clade including (O. sativa, O. nivara,
O. rufipogon), which had lower probability in the con-
catenated analysis.

The BCA method is also robust to the inclusion of all
307 six-species gene trees, which includes alignments
with very little phylogenetic signal. The difference in
mean CFs between the data set with 162 alignments and
the data set with all 307 alignments is less than 0.06 for
all clades, and the difference in HPD interval width is
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TABLE 2. Checking for overlapping 95% HPD intervals for sample-
wide CFs of conflicting clades. Each group of 2 clades represents the
primary concordance tree clade (in bold) and the conflicting clade with
the highest CF

Clade Mean 95% HPD Overlaps?
CF interval

(Oryza glaberrima, Oryza barthii) 0.707 (0.648, 0.759)
(Oryza nivara, O. glaberrima) 0.071 (0.043, 0.111) No
(Oryza rufipogon, O. nivara) 0.353 (0.235, 0.451)
(O. rufipogon, Oryza sativa) 0.194 (0.105, 0.315) Yes
(O. sativa, O. rufipogon, 0.202 (0.136, 0.272)

O. nivara)
(O. sativa, O. nivara, 0.238 (0.170, 0.302) Yes

O. barthii, O. glaberrima)

less than 0.05. Therefore, the inclusion of the uninfor-
mative alignments does not significantly change either
the mean CF or its estimated level of uncertainty.

BEST Analysis
The data set of 162 genes did not converge in 1.6

billion iterations. Parameter values (log likelihood and
the parameter LnJointGenePr for the species tree and
tree lengths for a random sample of gene trees) differed
greatly across 3 independent runs and all were unstable,
continuing to increase up to the end of the analysis (see
Fig. 4). For this reason, we do not report any phyloge-
netic results from analysis of the full data set with BEST.
We were successful with some of the BEST analysis of
the smaller data sets, although 2 of the 20-gene data sets,
2 of the 3-gene, and 5 of the 40-gene data sets did not
converge after 200 million iterations. For those that did
reach stationarity, we removed between 2000 and 8000
of the 20,000 total samples as burn-in.

For the set of longest genes (26 genes with more than
1000 nucleotides), the MAP tree was the same topol-
ogy returned by the concatenated analysis and by BCA

FIGURE 3. BCA: effect of changing the prior on gene tree incon-
gruence (α) on the CFs for the 3 highlighted clades in the primary
concordance tree shown in Figure 1. Error bars are the width of the
95% HPD interval.

analysis (see Fig. 1). Probability of this topology was
0.509, which means that the MAP tree is equivalent to
the majority rule consensus tree. The 95% credible set
contained 12 trees, and the second and third most prob-
able trees were those with alternate resolutions of the 3
Asian species.

This same topology was also the most frequent MAP
tree in the subsampled genes (11 of 31 sets of genes).
The probabilities of these MAP trees ranged from a
high of 0.833 to a low of 0.217, with a mean posterior
probability of 0.44 over all 32 of the subsampled data
sets. However, the remaining analyses support alternate
topologies. One of the other striking results is the num-
ber of maximally asymmetric topologies sampled by
BEST, a tree shape that did not appear in concatenated
Bayesian analysis or in BCA analysis. For example, the
MAP tree is a maximally asymmetric topology in 10 of
the subsampled gene analyses. See Figure 5 for results
over all analyses. The use of more genes (or having more
nucleotides in total) did not increase the frequency with
which we observed any particular topology, meaning
that conflicting phylogenetic signal was not correlated
with fewer numbers of genes or nucleotides. Overall,
most analyses support the African clade (O. glaberrima,
O. barthii), with only 3 analyses giving less than 0.95%
posterior probability to this clade in the species tree.
Overall, subsampling 10, 20, 30, and 40 sets of rice genes
does not give a stable result for the species tree under
the BEST model.

Computational Efficiency
The various phylogenetic inference methods vary

considerably in terms of running time. Concatenated
Bayesian analysis required 5–8 h for 5,000,000 gener-
ations and 2 MCMC chains in MrBayes. Independent
Bayesian analysis, which is also step 1 of the BCA
method, required approximately 1 h per gene tree (2
million generations; 3 Metropolis-coupled MCMC chains
in MrBayes), and this step was trivially parallelized on
our computer cluster so that total elapsed time for all
genes was less than 2 h. The second step of BCA analy-
sis required less than 5 min for calculation of CFs across
the posterior distributions of gene trees. In contrast,
1.6 billion iterations of BEST analysis for the concate-
nated 162 gene data set required nearly 2 months for
each MCMC chain, for an analysis that did not converge
over that period of time. Therefore, joint inference of
gene trees and species trees greatly increases the com-
putational burden over concatenated, independent or
BCAs. The increased analysis time is, of course, due to
the increased complexity of the BEST procedure, and
the tradeoff is the that this method more explicitly mod-
els gene tree incongruence, providing estimates of other
parameters in addition to topology.

DISCUSSION

We are seeing a move to phylogenetic analysis based
on the information contained in gene tree incongruence
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FIGURE 4. MCMC convergence in BEST: a) log likelihood, 162 genes, 1.6×109 iterations; b) log likelihood, 26 longest genes, 2×108 iterations;
c) LnJointGenePr, 162 genes, 1.6× 109 iterations; d) LnJointGenePr, 26 longest genes, 2× 108 iterations. To show more detail in the latter part of
the chains, the plots do not include the first 10,000,000 iterations. Note the differences in scale of the axes between the plots on the left and those
on the right.

due to the availability of many genes for many species
and simultaneous development of novel inference meth-
ods. We have examined the performance of 2 of these
methods, BCA and BEST, using the largest number of
genes that has been applied to either method. These
data from rice also provide an example of species tree
inference for closely related species with a high level of
gene tree incongruence.

In terms of rice phylogeny, the analyses described
here generally agree with the current hypothesis about
the relationship between the Oryza species (Zhu and Ge
2005; Duan et al. 2007; Zou et al. 2008). The 2 African
species, O. barthii and O. glaberrima, form a clade in
nearly all the species trees, and the Asian species,
O. sativa, O. rufipogon, and O. nivara, are supported by
some, but not all, of the inference methods. Taking into
account the incongruence between gene trees does not
drastically change our overall view of rice phylogeny,
but it does give a more varied picture of the support
across the tree. The African clade is much more strongly
supported across the analyses than the Asian clade, and
some of the analyses do not support grouping of the
3 Asian species over other phylogenetic resolutions. In

general, concatenation gives nearly perfect support for
all clades across the Oryza phylogeny, whereas meth-
ods that explicitly consider gene tree incongruence give
support values that are lower and more consistent with
what we know about the biology of these species.

Although each of the methods used in this study is
an example of Bayesian inference of and therefore in-
corporates uncertainty and uses posterior probabilities
in the output, the underlying models and definition
of the output differs greatly. MrBayes and BEST both
output posterior probabilities of whole topologies and
of bipartitions in the tree. These are the probabilities
that tree or clade is true under the specified model,
but that model differs greatly between the 2 programs.
Concatenated analysis in MrBayes assumes a single
shared topology underlying all genes, whereas BEST
uses joint inference of a species tree and gene trees based
on a coalescent explanation for incongruence between
gene trees. In contrast, BCA infers a completely dif-
ferent measure—CFs, or the proportion of the genome
that supports a bipartition—calculated using the poste-
rior probabilities of gene-to-tree maps. It is important
to consider these differences between the models and
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FIGURE 5. Most frequent MAP trees and the range of probability
values for the analysis of subsampled sets of genes in BEST. The 2
African species, Oryza glaberrima and Oryza barthii, form a clade in
each one, whereas relationships between the Asian species are less
consistent across the trees.

output measures when we discuss results across infer-
ence methods.

Bayesian Concordance Analysis
The BCA worked well for the rice data, providing

useful estimates for the proportion of the genome that
supports various bipartitions for the Oryza species.
The method returns the maximum concordance topol-
ogy, which represents the collection of nonconflicting
clades with the highest CFs. This topology is the same
as the tree inferred by supermatrix approaches based
on Bayesian, maximum likelihood and maximum par-
simony frameworks (data not shown). CFs on clades
in the species-level tree are much lower than the pos-
terior probabilities or bootstrap proportions seen in
traditional analyses, illustrating the difference between
these measures. Only 1 partition in the tree, that of the

African species O. glaberrima and O. barthii, returns a
CF that is significantly higher than the estimate for any
contradicting clade. These results are not surprising,
given the extent of gene tree incongruence, and we feel
that the CFs give an useful perspective for genome-
wide phylogenetic analyses. The method is robust
to changes in the parameter of the prior distribution
and to inclusion of less phylogenetically informative
genes. As implemented in the software BUCKy, concor-
dance analysis is extremely fast, even when factoring in
Bayesian inference of the independent gene trees as a
first step.

For this type of data set, with very high gene tree in-
congruence, the CFs and the primary concordance tree
from BCA give a more intuitive estimate of bipartition
support across a species trees than does a supermatrix
approach. Using the latter method, the posterior proba-
bilities estimated for partitions on the species tree do not
reflect the level of incongruence between the gene trees
due to the assumption of a single underlying species
tree. Although posterior probabilities have been shown
to be an accurate measure of support with data simu-
lated on a single topology (Huelsenbeck and Rannala
2004), there are known problem with the traditional
BMCMC methods when the data actually describe a
mixture of topologies (Mossel and Vigoda 2005). One
disadvantage of the BCA method is that each gene is
treated equally, even if there is great heterogeneity in
number of nucleotides across genes. Use of the poste-
rior sample of trees as input, rather than a point estimate
of each gene tree, in advantageous in cases where the
strength of the phylogenetic signal varies across genes
but does not directly address gene length. It is also
unknown how BCA analysis might be affected by the
anomaly zone—combinations of topology and branch
lengths in the species tree that cause an anomalous
gene tree to be most likely. We know that maximum
likelihood or maximum parsimony inference of con-
catenated sequences can be inconsistent under these
conditions (Kubatko and Degnan 2007). If the indepen-
dent Bayesian analysis of gene trees also suffers from
this difficulty, then the BCA analysis of the posterior
samples would also be influenced, although the effect
remains to be tested.

Bayesian Estimation of Species Trees
Analysis of this rice data with the coalescent-based

method BEST posed some methodological challenges.
The BMCMC analysis of the 162 gene data was far from
stationarity after nearly 2 months of analysis time. Does
this mean that BEST is not immediately ready for analy-
sis of this scale? We suggest that it is not the scale of the
data that is the problem. The yeast data set is similar in
size, with 106 genes over 8 species, when compared with
our collection of 162 genes over 6 species. In the analy-
sis of the yeast genes, 80 million MCMC iterations was
sufficient (Edwards et al. 2007), whereas our analysis of
the rice genes had not yet reached stationarity after
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1.6 billion iterations. The depth of the phylogeny and the
resulting extent of gene tree incongruence differs greatly
between the rice and yeast data, and the increased
complexity, combined with lower levels of sequence
divergence, is likely a contributing factor to the slow
convergence. Future work with rice, or other similar
low-level phylogenetic analyses, will include investigat-
ing ways to ensure convergence. A simplistic approach
is to simply run longer MCMC chains, but we may be
able to increase the rate of convergence by thoroughly
exploring Metropolis-coupled MCMC parameters, us-
ing different proposal mechanisms, especially for trees
(Lakner et al. 2008), or perhaps inferring starting par-
ameters for the individual genes before beginning the
joint analysis.

A second reason for the difficulty with the coalescent
approach is that regions of the rice genome almost cer-
tainly violate the assumption that all incongruence is
due to coalescent stochasticity. Given the overlapping
ranges and interspecies fertility in these species (Lu
et al. 2000), we expect both incomplete lineage sorting
and hybridization/introgression to play a significant
role in the evolution of rice. BEST models all incon-
gruence between gene trees as being due to coalescent
stochasticity and assumes that gene flow is not present.
In the face of gene flow, increasing the rate of MCMC
convergence will not solve the underlying problem of
incorrectly fitting a coalescent model. Some studies of
coalescent-based species tree methods have found them
to be relatively robust in the presence of gene flow
(Eckert and Carstens 2008), but the BEST method has
not yet been thoroughly tested in this way.

The full data set may contain regions of the rice
genome where phylogenetic incongruence cannot be
explained using coalescent-based analyses. Our experi-
ments with smaller subsamples of genes were more suc-
cessful in terms of MCMC convergence, although when
examining the phylogenetic results, we see different
MAP topologies from different subsamples of genes.
The set of longest genes returns the same topology as
we see in the concatenated and BUCKy analyses, as do
many, but not all, of the other subsampled gene sets.
The presence of other topologies may indicate that our
subsamples do not contain enough information to accu-
rately infer the species tree, that some of these random
samples describe a different evolutionary history, or that
the presence of gene flow in some data sets is affecting
the inference of the species tree. We contrast this result
to the yeast data set, where 8 randomly sampled genes
were sufficient to recover the same topology inferred
using the full data set of 106 genes (Edwards et al. 2007).
Population genetic studies in rice have started to quan-
tify gene flow in Oryza (Semon et al. 2005; Caicedo et al.
2007; Zhou et al. 2008). Additional types of population
genetic and phylogenetic analyses with larger number
of genes and/or multiple individuals per species will be
able to precisely identify signatures of gene flow within
the rice genome and allow us to explore these hypothe-
ses about the results from BEST as compared with BCA
or traditional single-tree Bayesian analysis.

Inferring Species Trees from Gene Trees with
Genome-Scale Data

This study also highlights the differences between tra-
ditional gene-by-gene sequencing strategies, which pro-
duce full sequences from a collection of genes selected
a priori, and high-throughput sequencing approaches.
The latter method provides a large set of randomly sam-
pled genes across the genome, a selection process that is
ideal for these phylogenetic methods that infer species
trees from gene trees. However, the sequencing strategy
also means that many of the “genes” may be only par-
tial gene fragments, as is the case with this rice data. We
have compiled a large number of sequences with great
variation in sequence length and high levels of missing
data. Concatenated, this results in a huge number of nu-
cleotides for supermatrix approaches, but the structure
of the data is more limiting for a gene-by-gene method
of analysis.

In addition to the sequences analyzed in this study,
our bioinformatics pipeline identified an additional
1500 gene tree alignments that contain 4 and 5 species.
We are able to analyze these genes with supermatrix
techniques or by independently inferring trees on a
gene-by-gene basis. Currently, neither BEST or BUCKy
can utilize alignments or gene trees with different num-
bers of species. A future challenge is to incorporate
alignments with missing data into the analyses that
combine gene trees to infer species tree. The authors
of BUCKy discuss the issue of missing data (Ané et al.
2007), suggesting that one possible solution is to add
the missing species in all possible places on the input
trees that lack those species in the posterior sample.
This would likely increase analysis time, but only for
the second phase of the BCA analysis, and given the
speed of the method, this may not be a critical issue.
Another option would be to add missing taxa to the
alignments, so that some taxa only contain missing
(‘?’) characters for some genes. This would almost cer-
tainly decrease the rate of MCMC convergence, adding
analysis time to both phases of the BCA analysis. The
issue of missing data in BEST is more complex. Adding
missing taxa to the input alignments would certainly
increase the difficulty of an already challenging MCMC
convergence problem. It is also unknown how the co-
alescent prior that relates species trees and gene trees
could be modified to allow for missing data. Ideally,
we would like to infer each gene tree using only the
available data but allow each gene tree to influence the
species tree, even if the species tree contains a larger
number of taxa. In general, it becomes difficult to in-
terpret support for a particular clade under any joint
method of analysis of species and gene trees. For ex-
ample, high support for the clade (A,C) in a given gene
tree does not negate the relationship ((A,B),C) in the
species tree if B is not present in the alignment for the
gene.

To maximize the information content in a data set
such as the one we have presented for rice, novel meth-
ods for species tree inference must be able to deal with
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large amounts of missing data, particularly the case
where gene alignments are missing data for an entire
species. The whole genomes of Drosophila provide a
complete set of genes across a dozen species, whereas
other large phylogenomic data sets such as those for
insects (Savard et al. 2006) or mammals (Philippe et al.
2004) have large number of loci over large number of
species, but the data sets are much more sparse, with
many loci missing for many species. In yeast, a small
number of genes was sufficient to resolve the species
tree, depending on the method used (Rokas et al. 2003;
Edwards et al. 2007). More closely related species, with
higher levels of gene tree incongruence, will likely re-
quire a larger number of genes. It is unlikely that ac-
curate and precise inference of species trees from gene
trees will require thousands of genes, but this neces-
sitates some means of selecting genes for inclusion in
the analysis. Other types of inference, such as quantify-
ing gene tree incongruence, or differentiating between
incomplete lineage sorting and hybridization in the
genome, may be best done by maximizing the number
of available genes.

Large phylogenomic data sets have highlighted that
gene tree incongruence is widespread across genomes
and across species in the Tree of Life. The BCA and BEST
methods tested here are a very promising start to infer-
ring species trees using the differences between the evo-
lutionary histories of genes. In addition to providing an
estimate of the species tree and various types of sup-
port for bipartitions across the taxa, these methods will
be invaluable for identifying the specific evolutionary
processes underlying the history of related species.

SUPPLEMENTARY MATERIAL

Supplementary material can be found at
http://www.sysbio.oxfordjournals.org/.
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