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Abstract

Species tree inference from gene family trees is becoming increasingly popular because it can account for discordance
between the species tree and the corresponding gene family trees. In particular, methods that can account for multiple-
copy gene families exhibit potential to leverage paralogy as informative signal. At present, there does not exist any widely
adopted inference method for this purpose. Here, we present SpeciesRax, the first maximum likelihood method that can
infer a rooted species tree from a set of gene family trees and can account for gene duplication, loss, and transfer events.
By explicitly modeling events by which gene trees can depart from the species tree, SpeciesRax leverages the phylogenetic
rooting signal in gene trees. SpeciesRax infers species tree branch lengths in units of expected substitutions per site and
branch support values via paralogy-aware quartets extracted from the gene family trees. Using both empirical and
simulated data sets we show that SpeciesRax is at least as accurate as the best competing methods while being one order
of magnitude faster on large data sets at the same time. We used SpeciesRax to infer a biologically plausible rooted
phylogeny of the vertebrates comprising 188 species from 31,612 gene families in 1 h using 40 cores. SpeciesRax is
available under GNU GPL at https://github.com/BenoitMorel/GeneRax and on BioConda.

Key words: species tree inference, gene family tree, maximum likelihood, gene duplication, horizontal gene transfer,
gene loss.

Introduction
Species tree inference is a challenging fundamental problem
in evolutionary biology. Species trees provide a framework for
interpreting biological diversity, determining evolutionary
relationships, studying the evolution of key traits, and for
understanding the underlying processes of evolution. But
existing methods for species tree inference have widely ap-
preciated limitations (Dagan and Martin 2006; Bryant and
Hahn 2020). New methods that can make better use of
genome-scale data, including multicopy gene families, resolve
long-standing debates about challenging nodes in the tree of
life and the processes of genome evolution that underpin
major transitions in evolution.

Perhaps, the most widely used approach for species tree
inference is concatenation (also known as the supermatrix
approach). Here, per-gene sequences are first aligned into per-
gene multiple sequence alignments (MSAs) and subsequently

concatenated into a single, large supermatrix. Then, statistical
tree inference methods (maximum likelihood [Kozlov et al.
2019; Minh et al. 2020] or Bayesian inference [Aberer et al.
2014; Lartillot et al. 2009; Ronquist et al. 2012]) are applied to
infer a tree on these supermatrices. The concatenation ap-
proach heavily depends on accurate orthology inference,
which still constitutes a challenging problem (Altenhoff
et al. 2019). In addition, concatenation methods were shown
to be statically inconsistent under the multispecies coalescent
model (Kubatko and Degnan 2007; Mendes and Hahn 2018)
because of potential incomplete lineage sorting (ILS).
Furthermore, supermatrix analyses can be misled in unpre-
dictable ways if horizontal gene transfers (HGTs) are included
in the concatenated supermatrix, for instance when analyzing
microbial data (Williams and Embley 2014; Dombrowski et al.
2020). Hybridization (Elworth et al. 2019; Lutteropp et al.
2021), and recombination (Posada 2000) constitute other
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sources of incongruence between the species tree and the
per-gene sequences that might cause the supermatrix ap-
proach to fail.

As gene family tree (GFT) methods can alleviate some of
the pitfalls of the supermatrix approach, they are becoming
increasingly popular. GFT methods can take into account
that the evolutionary histories of the gene trees and the spe-
cies tree are discordant due to biological phenomena such as
ILS, gene duplication, gene loss, and HGT. In addition, some
GFT methods can estimate the root of the species tree with-
out the need for an outgroup. Character evolution tracing or
phylogenetic post analysis methods such as dating or species
delimitation require a rooted tree as input, to identify ances-
tor–descendant relationships. But inferring the root can be
difficult using the standard outgroup method when the out-
group is distant or when no obvious outgroup is available
(Shavit et al. 2007).

At present, the most widely used GFT tools only model ILS
(Bouckaert et al. 2014; Zhang et al. 2018) and are limited to
single-copy gene families. Several tools that can handle multi-
copy gene families have been developed (Wehe et al. 2008;
Boussau et al. 2012; Zhang et al. 2020; Molloy and Warnow
2020), but, despite the potential of these approaches, they
have not yet been widely adopted. This may be due to the
unfamiliarity of the software and, for some tools, the lack of
an efficient, scalable, and user-friendly approach. This situa-
tion is beginning to change: ASTRAL-Pro can deal with dupli-
cations and losses, and SpeciesRax—the tool we introduce
here—can account for duplications, losses and transfers,
which may be particularly important in the analysis of micro-
bial genomes.

One class of existing methods to infer species trees from
multiple-copy gene families attempts to simultaneously esti-
mate the GFTs and the species tree (Boussau et al. 2012; de
Oliveira Martins and Posada 2017). However, these methods
are computationally demanding and are limited to small data
sets comprising less than 100 species.

Another class of existing methods handles the GFT infer-
ence and the species tree inference steps separately. As input
they require a set of given, fixed GFTs and do not attempt to
correct the GFTs during the species tree inference step.
DupTree (Wehe et al. 2008) and DynaDUP (Bayzid et al.
2013) search for the species tree with the most parsimonious
reconciliation cost, measured as the number of duplication
events in DupTree, and the sum of duplication and loss
events in DynaDUP. STAG (Emms and Kelly 2018) infers a
species tree by applying a distance method to each gene
family that covers all species, and subsequently builds a con-
sensus tree from all these distance-based trees. However,
STAG ignores a substantial fraction of signal by discarding
gene families that do not cover all species. FastMulRFS
(Molloy and Warnow 2020) extends the definition of the
Robinson–Foulds (RF) distance to multiple-copy GFTs and
strives to minimize this distance between the species tree and
all input GFTs. ASTRAL-Pro (Zhang et al. 2020) is a promising
improvement of ASTRAL that can handle multiple-copy
GFTs: ASTRAL-Pro uses dynamic programming to infer the
species tree that maximizes a novel measure of quartet

similarity that accounts for orthology as well as paralogy.
All of the above methods are nonparametric and do not
deploy a probabilistic model of evolution. In addition, none
of them explicitly models HGT.

Here, we present SpeciesRax, the first maximum likelihood
method for inferring a rooted species tree from a set of GFTs
in the presence of gene duplication, gene loss, and HGT. We
implemented it in the GeneRax framework, our recently pub-
lished species-tree-aware GFT correction tool (Morel et al.
2020). SpeciesRax takes as input a set of MSAs and/or a set
of GFTs. If MSAs are provided, SpeciesRax will infer one max-
imum likelihood GFT tree per gene family using RAxML-NG
(Kozlov et al. 2019). Thereafter, SpeciesRax first generates an
initial, reasonable (i.e., nonrandom) species tree by applying
MiniNJ (which we also introduce in this paper), our novel
distance-based method for species tree inference from GFTs
in the presence of paralogy. MiniNJ shows similar accuracy as
other nonparametric methods while being at least two orders
of magnitude faster on large data sets. Finally, SpeciesRax
executes a maximum likelihood tree search heuristic under
an explicit statistical gene loss, gene duplication, and HGT
model starting from the MiniNJ species tree. When the spe-
cies tree search terminates, SpeciesRax calculates approxi-
mate branch lengths in units of mean expected
substitutions per site. Furthermore, it quantifies the recon-
struction uncertainty by computing novel quartet-based
branch support scores on the species tree. Because we imple-
mented all of these new methods in our GeneRax software,
users can now perform GFT inference, species tree inference,
GFT correction, and GFT reconciliation with the species tree
using a single tool. We show that SpeciesRax is fast and at
least as accurate as the best competing species tree inference
tools. In particular, SpeciesRax is twice as accurate (in terms of
relative RF distance to the true species trees) than all other
tested methods on simulations with large numbers of paral-
ogous genes.

Results

Accuracy on Simphy Simulations
We plot the accuracy of the different species tree reconstruc-
tion methods under varying parameters for the D TLSIM and
DLSIM experiments in figures 1 and 2, respectively. We ex-
cluded DupTree and NJst from the D TLSIM plots and NJst
from the DLSIM plots for the sake of an improved visual
representation of the results because of their very high error
rate. In addition, we represent the average relative RF distance
of all tested methods over all simulated data sets in table 1.
For species trees with 25 taxa, one incorrect split corresponds
to a relative RF distance of 0.045.

We also assessed the accuracy of the reconstructed GFTs
under different simulation parameter configurations. Under
the default parameters, the average relative RF distance be-
tween the true GFTs and the GFTs inferred with RAxML-NG
is 0.43 for the D TLSIM and DLSIM experiments. When vary-
ing the number of sites, the average relative RF distance
ranges between 0.26 for 300 sites and up to 0.54 for 50 sites
(see fig. 3a). When varying the GFT branch length scaler, the
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average RF distance varies from 0.42 without scaling to 0.91
for the smallest scaling value of 0.01 and 0.94 for the largest
scaling value of 100,000 (see fig. 3b). The remaining simulation
parameters do not have a substantial impact on the GFT
inference accuracy.

Table 1 shows that SpeciesRax is on average the most
accurate method, followed by MiniNJ, ASTRAL-Pro, and
FastMulRFS. DupTree and NJst are substantially less accurate
than SpeciesRax (by a factor of 4 up to 5 in presence of HGT)
and all aforementioned methods.

As expected, all methods perform better when the degree
of informative data (number of sites, number of families)
increases and perform worse when the discordance between
the GFTs and the species tree (ILS level, DTL rates) increases.
We do not observe a clear correlation between the number of
species and the reconstruction accuracy.

Compared with the other methods, SpeciesRax recon-
struction accuracy seems to be less affected by increasing
DTL rates and almost unaffected by increasing DL rates. We
hypothesize that high DL rates are more likely to introduce
adversarial (or hidden) paralogy. In other words, paralogous
genes are likely to be labeled as orthologous genes by
approaches such as ASTRAL-Pro or FastMulRFS that only
infer paralogy from the GFTs (see also Molloy and Warnow
2020). For instance, FastMulRFS has only been proven to be
consistent when no adversarial paralogy occurs (Molloy and
Warnow 2020). In addition, ASTRAL-Pro and FastMulRFS do
not attempt to handle HGT events. SpeciesRax explicitly
models both, DL, and HGT events, which might explain
why it is more robust to both, adversarial paralogy, and
HGT.

Large ancestral population sizes are associated with higher
rates of ILS. As SpeciesRax does not explicitly model ILS, it
might be expected to perform poorly as the rate of ILS

increases. In our simulations, all methods performed worse
as the ancestral population size was increased, but the reduc-
tion in accuracy was similar for SpeciesRax and for methods
that account for ILS.

For instance, in the DLSIM experiment, for a moderate
population size (107 individuals), SpeciesRax, MiniNJ, and
ASTRAL-Pro exhibit analogous accuracy (rRF¼ 0.057,
rRF¼ 0.052, and rRF¼ 0.061, respectively). Under the largest
simulated population size (109 individuals), SpeciesRax
(rRF¼ 0.183) outperforms MiniNJ (rRF¼ 0.219), ASTRAL-
Pro (rRF¼ 0.264), DupTree (rRF¼ 0.266), and FastMulRFS
(rRF¼ 0.379).

Finally, increasing gene conversion (GC) rates does not
seem to substantially affect the accuracy of the competing
methods.

Accuracy on Empirical Data Sets
Here, we describe the results of species tree inference on
empirical data sets with ASTRAL-Pro, DupTree, FastMulRFS,
MiniNJ, and SpeciesRax. We excluded NJst from this analysis
because it performed poorly on most empirical data sets.
Initially, we only compare unrooted topologies and defer
the root placement analysis to a separate subsection. We
provide a graphical representation of the species trees in-
ferred with SpeciesRax as well as the relative pairwise RF
distances between all pairs of inferred trees in
Supplementary Material online.

Vertebrates188 Data Set
All tested methods inferred a different species tree. We first
counted the number of splits that differ between the inferred
trees and the multifurcating NCBI taxonomy (Federhen 2012)
tree. The SpeciesRax, ASTRAL-Pro, and FastMulRFS tools

(a) (b)

(c)

(d)

FIG. 1. Average unrooted RF distance between inferred and true species trees, in the presence of duplication, loss, and HGT. (a) DTL rates, (b) T rate
(fixed DL rates), (c) DL rates (fixed T rates), (d) number of species taxa, (e) number of sites, (f) number of gene families, (g) GFT branch length scaler,
and (h) population size.
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disagree on five splits, MiniNJ on six splits, and DupTree
disagrees on 20 splits.

Then, we focused on the five splits on which SpeciesRax
disagrees with the NCBI taxonomy tree that we downloaded
from the Ensembl Compara database. Among those discor-
dant splits, the SpeciesRax tree seems to clearly violate only
one well established phylogenetic relationship (Venkatesh

et al. 2014): The elephant shark, which is a Chondrichtyian,
is placed by SpeciesRax within Osteicthyians, as sister to
Sarcopterygii. Note that all tested methods (ASTRAL-Pro,
FastMulRFS, DupTree, and MiniNJ) agree with SpeciesRax.

In the following, we analyze the remaining four disagreements.
First, SpeciesRax (as well as all other competing tools)

places Cichliformes as sister to Ambassidae whereas the

(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIG. 2. Average unrooted RF distance between inferred and true species trees, in the presence of duplication and loss (no HGT). (a) DL rates, (b)
population size (ILS), (c) number of species taxa, (d) number of sites, (e) number of gene families, (f) GFT branch length scaler, and (g) GC rate.
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taxonomy places Pomacentridae as sister to Ambassidae.
Most studies we have found support the taxonomy
(Betancur-R et al. 2013; Near et al. 2013; Hughes et al. 2018)
but other studies are undecided about the resolution of these
clades and present trees inferred using different inference
methods that support the three alternative resolutions
(Eytan et al. 2015).

Another discordance with the taxonomy occurs within the
avian subtree, between the Estrildidae, Fringillidae, and
Passerellidae clades: the taxonomy groups the Estrildidae
and Fringillidae together, whereas SpeciesRax, ASTRAL-Pro,
and FastMulRFS group Fringillidae and Passerellidae together.
A recently published 363 taxon bird phylogeny (Feng et al.
2020) agrees with SpeciesRax on this split and perfectly
matches the remaining 24 taxon avian subtree we inferred.

In addition, all tested tools place Bos mutus (yak) and Bison
bison closer to each other than to Bos taurus, whereas the
taxonomy places B. mutus next to B. taurus. To our knowl-
edge, the literature agrees with our resolution (Decker et al.
2009; Kumar et al. 2018).

The last inconsistency between the taxonomy and the
SpeciesRax tree occurs among the Platyrrhini (monkey sub-
order) when placing Aotidae, Cebus/Saimiri, and
Callitrichidae. This split is perhaps more interesting because
SpeciesRax disagrees with the competing methods: the tax-
onomy places Cebus/Saimiri and Callitrichidae together,
SpeciesRax places Aotidate and Callitrichidae together. The
ASTRAL-Pro, FastMulRFS, MiniNJ, and DupTree tools all
group Aotidate with Cebus/Saimiri. There exist studies that
agree with the SpeciesRax (Perelman et al. 2011; Springer et al.
2012) but also the ASTRAL-Pro (Fabre et al. 2009) resolutions
of these clades.

Plants23 Data Set
Both SpeciesRax and ASTRAL-Pro species trees disagree with
the literature by placing the Malvales as sister to Malpighiales
(instead of sister to Brassicales [Albert et al. 2013; Garcia-Mas
et al. 2012]). The SpeciesRax species-driven quartet support
scores positively support our resolution, suggesting a poten-
tially misleading signal from the GFTs. When investigating the
GFTs, we observed that the Brassicales genes often diverge
much earlier than they should and that they are often placed
outside of the Rosids clade to which they should belong. A
hypothesis for this misleading signal is the apparent overes-
timation of the gene family sizes during the gene family clus-
tering performed in the original study (Garcia-Mas et al. 2012)
as many gene families contain 150 genes (the maximum

family size cutoff used in the respective gene family clustering
procedure). In addition, the GFTs exhibit clear clusters of
genes covering all species separated by extremely long
branches. We note, however, that DupTree and FastMulRFS
correctly inferred the entire species tree.

Plants83 Data Set
The unrooted topologies of the SpeciesRax (fig. 4), ASTRAL-
Pro, and FastMulRFS trees are in very good agreement with
current biological opinion on the Viridiplantae phylogeny,
recovering Setaphyta, and the monophyly of bryophytes
(Puttick et al. 2018; Leebens-Mack et al. 2019; Harris et al.
2020). The SpeciesRax tree further agrees with several recent
analyses (Leebens-Mack et al. 2019; Harris et al. 2020) in plac-
ing the Coleochaetales algae as the closest relatives of
Zygnematophyceae and Embryophyta (land plants). The
tree inferred by DupTree features a number of disagreements
with conventional views of plant relationships.

Fungi60 Data Set
All tools found a species tree that disagrees with the literature:
They placed the clade formed by Chytridiomycota and
Zygomycota between Basidiomycota and Ascomycota, which
are typically grouped together (Lutzoni et al. 2004; Marcet-
Houben and Gabald�on 2009). The positive extended quad-
ripartition internode certainty (EQPIC) score computed with
SpeciesRax along the relevant path shows that the quartets of
the GFTs do support this incorrect split. We conclude that
the GFTs contain a misleading signal around this split. One
possible explanation is that Encephalitozoon cuniculi is evolu-
tionary very distant from the remaining species, potentially
causing a long branch attraction effect (Bergsten 2005). Apart
from this split, SpeciesRax, ASTRAL-Pro, and FastMulRFS in-
ferred the same tree, which agrees with the original species
tree obtained via concatenation (Marcet-Houben and
Gabald�on 2009). The tree inferred with DupTree differs
from the SpeciesRax tree in one split.

Primates13, Cyanobacteria36, Vertebrates22, and Fungi16

Data Sets
All tools inferred the same species trees for the Primates13,
Cyanobacteria36, and Fungi16 (fig. 5) data sets and do not
violate any well-established phylogenetic relationship. On the
Vertebrates22 data set, all tested methods inferred trees that
agree with the multifurcating NCBI taxonomy, but the in-
ferred bifurcating trees are nonetheless different: ASTRAL-
Pro, MiniNJ, and SpeciesRax inferred the same tree, which
differs from the FastMulRFS tree by one split and the
DupTree tree by two splits.

Archaea364
The original authors (Dombrowski et al. 2020) suggested
that one reason for the difficulty in resolving the archaeal
tree was the presence of host–symbiont gene transfers in
broadly conserved marker genes, in which members of the
host-associated DPANN Archaea sometimes grouped with
their hosts in single gene phylogenies. Using the full set of

Table 1. Average Relative RF Distance between the Inferred Trees and
the True Trees Over All Simulated Data Sets.

Method D TLSIM DLSIM

SpeciesRax 0.110 0.092
MiniNJ 0.132 0.099
ASTRAL-Pro 0.172 0.121
FastMulRFS 0.202 0.133
DupTree 0.518 0.212
NJst 0.455 0.346
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marker genes, the SpeciesRax tree recovered a clan
(Wilkinson et al. 2007) of DPANN; that is, all DPANN
Archaea clustered together on the tree. The unrooted

SpeciesRax topology is congruent with several recent anal-
yses of the archaeal tree (Raymann et al. 2015; Williams
et al. 2017; Dombrowski et al. 2020).

(a) (b)

(c) (d)

(e) (f)

(g)

FIG. 3. Average relative average distance between true and inferred GFTs on simulated data sets (SIMDL experiment). (a) Number of sites and (b)
GFT branch length scaler.
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Life92
SpeciesRax and ASTRAL-Pro both recovered the major line-
ages of Archaea and Eukaryotes, including the Euryarchaeota
and “TACK” Archaea (Thaumarchaeota, Aigarchaeota,
Crenarchaeota, and Korarchaeota) within the Archaea, and
the SAR, Archaeplastida and Amorphea clades of Eukaryotes.
ASTRAL-Pro resolves the Excavates into two separate clades
(Discoba and Metamonada, with Trimastix branching be-
tween them), whereas SpeciesRax unites them as sister
groups, albeit with very weak statistical support (–0.03); pre-
vious work is equivocal as to whether these two lineages form
a monophyletic Excavata clade (Hampl et al. 2009; Burki et al.
2020).

SpeciesRax recovers the monophyly of Asgardarchaeota,
whereas ASTRAL-Pro instead places one lineage,
Odinarchaeota, with the TACK Archaea; the position recov-
ered by SpeciesRax is the consensus view (Zaremba-
Niedzwiedzka et al. 2017). However, SpeciesRax recovers
Asgardarchaeota as sister to the TACK Archaea, albeit with
low support (–0.0075). This topology is incompatible with a
specific relationship between Eukaryotes and
Asgardarchaeota, as supported by analyses of conserved
marker genes (Spang et al. 2015; Zaremba-Niedzwiedzka
et al. 2017; Williams et al. 2020). The unrooted tree inferred
by ASTRAL-Pro groups Asgardarchaeota (without
Odinarchaeota) with Eukaryotes, and is therefore compatible
with an origin of the eukaryotic host cell from within the
Asgardarchaeota.

Rooting Accuracy on the Simulated Data Sets
In this subsection, we compare the root placement accuracy
of SpeciesRax and DupTree with respect to the root split
score we introduced in the Experiments section. A lower
root split score corresponds to a higher accuracy. On average,
over all DLSIM experiments, SpeciesRax (rss¼ 0.43) recovers
the true root placement more frequently than DupTree

(rss¼ 0.59). As shown in figure 6a, SpeciesRax tends to infer
more accurate root placements for increasing DL rates
(rss¼ 0.63 in absence of DL events and rss¼ 0.23 under
the highest DL rates). The results of the D TLSIM experiment
suggest that SpeciesRax (rss¼ 0.50) is slightly negatively af-
fected by HGT, whereas DupTree (rss¼ 0.92) almost always
fails to recover the correct root placement. Figure 6b shows
that SpeciesRax infers slightly less accurate root placements
when the HGT rates increase (rss¼ 0.43 without HGT and
rss¼ 0.53 with the highest HGT rate). We provide all root
split score plots in Supplementary Material online.

Rooting Accuracy on the Empirical Data Sets
In the following, we conduct an in-depth assessment of the
accuracy of the species tree root inference with SpeciesRax on
the tested empirical data sets.

We first discuss the data sets on which SpeciesRax inferred
a species tree root that agrees with the current literature. On
the primates13 data set, SpeciesRax correctly places the spe-
cies tree root between the Strepsirrhini and Haplorhini clades
(Chatterjee et al. 2009). On the Fungi16 data set, the root
inferred with SpeciesRax correctly separates the Candida and
Saccharomyces clades (Butler et al. 2009). The root we in-
ferred on the Vertebrates22 species tree correctly separates
the Actinopterygii and Sarcopterygii clades (Meyer and
Zardoya 2003). On the Plants23 data set, our species tree
root correctly separates the Chlorophyta and Streptophyta
clades (Leliaert et al. 2012). On the Fungi60 data set, we cor-
rectly find that E. cuniculi (Microsporidia clade) diverged ear-
lier than the other clades contained in the data set (Nagy and
Szöll}osi 2017). On the Vertebrates188 data set, SpeciesRax
infers a root that groups lampreys and hagfishes, on one
side, and cartilaginous fishes, bony fishes, and tetrapods on
the other side. The position of the vertebrate root is still
controversial (Takezaki et al. 2003; Miyashita et al. 2019)
and our resolution complies with some of the plausible

(a) (b)

FIG. 4. The species tree inferred with SpeciesRax from the Plants83 data set. The red circle indicates the expected root position. Support values
displayed on the right side of each branch are EQPIC scores, reflecting the degree of agreement between the underlying GFTs and the
corresponding branch. The values range between �1 and 1, with positive values indicating positive support for a branch from the GFTs. For
instance, the branch that separates the seed plants from the other plants has a support of 0.691 (excellent support) and the branch that separates
the bryophytes from the other plants has a support of 0.005 (low but positive support). Branches with a negative support are represented in red.

SpeciesRax . doi:10.1093/molbev/msab365 MBE

7

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/article/39/2/m
sab365/6503503 by guest on 22 Septem

ber 2023

https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msab365#supplementary-data


scenarios discussed in the literature (Meyer and Zardoya
2003; Takezaki et al. 2003; Miyashita et al. 2019).

On the Plants83 data set, SpeciesRax agrees with the liter-
ature in placing Embryophyta (land plants) within the
Streptophyte algae. However, the inferred root is three
branches away from the consensus position, in the common
ancestor of the Chlorophyta (Volvox, Chlamydomonas, and
Uronema).

On the Cyanobacteria36 data set, the root placement
inferred by SpeciesRax is one branch away from one of the
three plausible roots inferred in a recent study (Szöll}osi
et al. 2012).

The Archaea364 data set only contained single-copy gene
families, and thus no gene duplications. As a result, the posi-
tion of the root was uncertain. However, the 95% confidence
set of possible root placements obtained via the approxi-
mately unbiased (AU) test (Shimodaira 2002) was compatible
with several recent suggestions in the literature, including a
root between DPANN and all other Archaea (Williams et al.
2017; Dombrowski et al. 2020) and a root within the
Euryarchaeota (Raymann et al. 2015), among a range of other
positions within and between the major archaeal lineages.

The root inferred by SpeciesRax on the Life92 data set is
biologically implausible as it is located between Viridiplantae

FIG. 5. The species tree inferred with SpeciesRax from the Fungi16 data set.
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and all other taxa. One possibility is that root inference for
these data is affected by large differences in gene content
among the included taxa. For example, the Viridiplantae
(and other Archaeplastida) have chloroplasts, and so possess
an additional source of bacterial-origin genes compared with
other Eukaryotes and Archaea. To evaluate the impact of
major gene content differences, we performed another
SpeciesRax analysis in which the gene families covering less
than half of the species were removed. In this second analysis,
the root was inferred to lie between the Eukaryotes and
Archaea. This root position is compatible with a three-do-
main tree of life hypothesis. However, this should be inter-
preted with caution, because the branch separating
Eukaryotes and Archaea is one along which major gene con-
tent changes occurred, including (but not limited to) the
acquisition of a bacterial genome’s worth of genes in the
form of the mitochondrial endosymbiont (Roger et al. 2017).

Runtime
Before comparing runtimes, we emphasize again that we ex-
ecuted the experiments on a 40-core machine and that only
SpeciesRax and ASTRAL-Pro provide a parallel implementa-
tion. Although this choice might appear to favor SpeciesRax
and ASTRAL-Pro, we argue that the absence of parallelization
constitutes a substantial limitation of the remaining tools as
completing an analysis in less than 1 day on a parallel system
instead of having to wait for several weeks represents a strong
advantage.

We also emphasize that SpeciesRax is the only tested tool
that can be executed across several compute nodes with
distributed memory in contrast to ASTRAL-Pro that can
only run on a single shared memory node. All tools, with
the exception of MiniNJ, required huge amounts of memory
for the largest data set (>200 GB on vertebrates188) and can
therefore not be executed on most common servers. The
SpeciesRax MPI implementation allows to distribute the
memory footprint over different compute nodes, which is
not feasible with the other tools.

We show the runtimes for an increasing number of species
and an increasing number of families for the simulated data sets
in figure 7. Our MiniNJ method requires <0.1 s for all param-
eter combinations and is the fastest method we tested. The

runtimes of DupTree and FastMulRFS grow faster with increas-
ing number of gene families, and DupTree runtime quickly
raises with the number of species. The SpeciesRax and
ASTRAL-Pro runtimes are less affected by these parameters.

On almost all empirical data sets, MiniNJ and SpeciesRax
are the fastest methods. On the two largest data sets
(Plants83 and Vertebrates188), MiniNJ is at least one order
of magnitude faster than SpeciesRax and SpeciesRax is at least
one order of magnitude faster than all other methods. In
particular, SpeciesRax only requires 1 h on 40 cores to infer
the 188 vertebrate species tree with 188 species and 31,612
gene families.

Discussion

A Fast and Accurate Approach
We introduced two new methods for species tree inference
from GFTs in the presence of paralogy. Our MiniNJ tool is a
distance-based method that is faster than all tested methods
while being at least as accurate as all other nonparametric
methods for the majority of our simulated data experiments.
In particular, MiniNJ inferred a species tree with 188 species in
<1 min from more than 30,000 gene families. SpeciesRax, is a
novel maximum likelihood tree search method that explicitly
accounts for gene duplication, gene loss, and HGT events.
Our SpeciesRax tool infers rooted species trees with branch
lengths in units of mean expected substitutions per site.
Further, to assess the confidence of the inferred species
tree, we introduce several quartet-based support measures.

In terms of accuracy, SpeciesRax is more accurate than its
competitors on simulated data sets, and up to twice as ac-
curate under high duplication, loss, and HGT rates. On em-
pirical data sets, SpeciesRax is on par with or more accurate
than its competitors. In addition, among the tested tools,
SpeciesRax, PHYLDOG, and DupTree are the only methods
that can infer rooted species trees. On simulated data sets,
SpeciesRax outperforms both PHYLDOG and DupTree in
terms of root placement accuracy. SpeciesRax inferred the
correct (biologically well-established) roots on six out of ten
empirical species trees, and found roots that are close to the
plausible roots in three out of the remaining four data sets
(Plants83, Archaea364, and Cyanobacteria). For the most
challenging-to-root data set (Life92), we managed to infer a
plausible root by removing those gene families that only cov-
ered less than half of the species.

Despite being a compute-intensive maximum likelihood
based tree search method, SpeciesRax is faster than all tested
methods (except MiniNJ) on large empirical data sets. This is
due to our fast method MiniNJ for inferring a reasonable
starting tree and to our efficient reconciliation-aware search
strategy. In addition, SpeciesRax provides a parallel implemen-
tation and can be run on distributed memory cluster systems.
Thereby it facilitates conducting large-scale analyses (table 2).

Further, SpeciesRax has been integrated into our GeneRax
tool that is available via Github and BioConda (Grüning et al.
2018). With GeneRax, users can execute the following (op-
tional) steps in one single run: GFT inference from the gene
alignments, rooted species tree inference with SpeciesRax

FIG. 6. Average root split score for increasing DL rates (no HGT) and
for increasing HGT rates (fixed DL rates). (a) DL rates (DLSIM exper-
iment) and (b) T rate, fixed DL rates (D TLSIM experiment)
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from the GFTs, species-tree aware GFT correction, and GFT
reconciliation with the rooted species tree. Alternatively,
SpeciesRax can be used to infer the root of a user-specified
species tree (typically obtained from concatenation methods)
before inferring reconciliations. Thus, GeneRax has become a
versatile, one-stop shop for executing likelihood-based anal-
yses on multiple-copy gene families.

Future Work
Despite our encouraging results, SpeciesRax still faces some
challenges.

First, SpeciesRax cannot currently take into account GFT
reconstruction error/uncertainty. This issue will become
more prevalent with increasing taxon numbers and the asso-
ciated increase in reconstruction uncertainty. Therefore, we
intend to explore several ideas to overcome this limitation. A
first idea consists in contracting the low-support branches of
the GFTs and adapting our reconciliation model to multi-
furcating GFTs. Alternatively, we will explore if coestimating
the species tree and the GFTs is feasible, as conducted by
Phyldog (Boussau et al. 2012), for instance. Finally, we could
take as input a distribution of GFTs for each gene family
(instead of just one maximum likelihood GFTs) and integrate
over this distribution of per gene family GFTs to compute the
likelihood score. Such a GFTs distribution could obtained
from Bayesian inference tools (Ronquist et al. 2012), from

bootstrap trees (Felsenstein 1985), or from a set of plausible
GFTs (Morel et al. 2021).

Secondly, we plan to implement more complex models of
GFT evolution in SpeciesRax. First, the UndatedDTL model
could be improved by modeling variation in DTL intensities
among different branches of the species tree. This could, for
instance, result in a better placement for microsporidia in the
fungi60 tree, because this species is known to have a higher
rate of losses than the other fungi. Furthermore, the
UndatedDTL model implemented in SpeciesRax allows for
HGTs between any pair of species, even if such HGTs are
impossible timewise. Some models (Szöll}osi et al. 2012) ex-
tract time information from the species tree to prohibit non-
contemporary HGTs, that is, HGTs between species that have
not coexisted and thus could not have exchanged genes.
Finally, some promising work (Chan et al. 2017; Rasmussen
and Kellis 2012; Li et al. 2020) has been conducted to account
for both DTL events and ILS in a single model. We hope that
models that better reflect the complexity of gene family evo-
lution will yield more reliable species tree inference.

Finally, there now exists a range of quite distinct methods
for species tree inference, and choosing the best method for
analyzing a given data set is difficult. The available methods
differ in the extent to which they consider ILS, HGT, phyloge-
netic uncertainty, and the underlying complexities of molecu-
lar sequence evolution. Some methods are also more scaleable

(a) (b)

FIG. 7. Average runtime in seconds for species tree inference. (a) Number of species and (b) number of families.

Table 2. Species Tree Inference Runtimes for All Tested Tools.

Data Set FastMulRFS DupTree ASTRAL-Pro SpeciesRax MiniNJ

Primates13 62 s 18 s 38 s 14 s 2 s
Cyanobacteria36 19 s 26 s 12 s 14 s <1 s
Fungi16 9 s 7 s 18 s 7 s <1 s
Vertebrates22 9 min 5 min 2 min 45 s 2 min 30 s 7 s
Fungi60 16 min 17 min 1 min 30 s 1 min 2 s
Plant23 9 min 6 min 1 min 35 s 2 min 8 s
Life92 6 h 2 h 20 min 31 min 6 min 2 s
Archaea364 11 min 6 h 1 min 14 min 10 s
Plants83 4 h 2 h 40 min 1 h 40 min 8 min 27 s
Vertebrates188 14 days 3.5 days 12 h 1 h 5 min 53 s
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than others. Because no method provides a full treatment of all
of the complexities of genome evolution, prior biological opin-
ion about the extent to which ILS, HGT, GFT error, or other
signals might contribute in specific cases may help to guide the
decision about which method to use. In addition to being able
to infer species trees from multiple-copy gene families, one
potential advantage of SpeciesRax is that it might be less sen-
sitive to errors in orthology assignment, or—as observed in the
archaeal data set—gene transfers of marker genes, because the
DTL model can account for duplication-loss or transfer events.
Benchmarking of the available tools on both empirical and
simulated data sets will provide further insight into their rela-
tive performance and will help to develop practical guidelines
for users interested in species relationships and genome evo-
lution across the tree of life.

Materials and Methods
We recently (Morel et al. 2020) introduced the undatedDTL
model, which is a phenomenological discrete time model that
describes the evolution of a GFT along a species tree through
gene duplication, gene loss, speciation, and HGT events. In
addition, we described an algorithm for computing the cor-
responding reconciliation likelihood, that is, the probability of
observing a set of GFTs G ¼ ðG1; . . . ;GnÞ given a rooted
species tree S and the set H of duplication, loss, and HGT
intensities describing the expected frequency of those events
relative to the frequency of the speciation events:

L S;HjGð Þ ¼
Yn

k¼1
P GkjS;Hð Þ: (1)

As already mentioned, SpeciesRax takes a set of unrooted
GFTs as input. It starts its computations from an initial species
tree that can either be randomly generated, user-specified, or
inferred using our new distance method MiniNJ. Then, it
performs a tree search for the rooted species tree S and the
model parameters N that maximize the reconciliation likeli-
hood LðS;HjGÞ. At the end of the search, it also calculates
support values for the inner branches of the inferred species
tree from the GFTs. Finally, we also describe the adaptation of
our likelihood score to better account for missing data and
inaccurate assignment of sequences to gene family clusters.

Computing a Reasonable Initial Species Tree with
MiniNJ
Here, we introduce MiniNJ (Minimum internode distance
neighbor joining [NJ]), our novel distance-based method for
inferring an unrooted species tree in the presence of paralogy.
MiniNJ is fast, that is, it is well-suited for generating an initial
species tree for the subsequent maximum likelihood optimi-
zation. MiniNJ is inspired by NJst (Liu and Yu 2011), a dis-
tance-based method that performs well in the absence of
paralogy. Initially, we briefly outline the NJst algorithm, and
subsequently describe our modifications.

NJst initially computes a distance matrix from the
unrooted GFTs and then applies NJ to reconstruct the species
tree. NJst defines the gene internode distance Dg such that Dg

ðx; yÞ is the number of internal nodes between the terminal

nodes x and y in a GFT. NJst computes the distance between
two species as the average over the internode distances be-
tween all pairs of gene copies mapped to those two species.

More formally, let a and b be two species. Let K be the
number of GFTs. Let MkðaÞ be the number of terminal nodes
from the GFT k mapped to species a. Let xikðaÞ be the ith
terminal node from the GFT k mapped to species a. NJst
computes each element of the distance matrix DNJst by first
summing over all gene distances from all gene families, and
then by dividing by the number of pairwise gene distances
involved in this sum:

DNJst a; bð Þ ¼
PK

k¼1

PMk að Þ
i¼1

PMk bð Þ
j¼1 Dg xik að Þ; xjk bð Þ

� �
PK

k¼1 Mk að ÞMk bð Þ
:

(2)

NJst has two drawbacks. First, it accounts for all pairs of
gene copies, including paralogous gene copies that do not
contain information about speciation events (see fig. 8).
Secondly, it assigns very high (quadratic) weights to gene
families comprising a high number of gene copies: for in-
stance, a gene family k1 with five gene copies in both species
a and b will contribute 25 times to the distance between a
and b, whereas a single-copy family k2 will only contribute

once. For instance,
PMkðaÞ

i¼1

PMkðbÞ

j¼1

DgðxikðaÞ; xjkðbÞÞ is the sum

over 25 gene internode distances for family k1 and of only
one gene internode distance for family k2. Since the normal-
ization by the number of gene internode distances is con-
ducted after summing over all these quantities (with the
denominator in eq. 2), the contributions of families k1 and
k2 are unbalanced.

MiniNJ adapts equation (2) to address these two issues. It
assumes that, on average, two orthologous genes from two
given, distinct species are closer to each other than two paral-
ogous genes from the same two species (see for instance
fig. 8). Note that this assumption does not always hold, for
instance in the presence of HGT. MiniNJ attempts to discard
pairs of paralogous gene copies by only considering the two
closest GFT terminal nodes mapped to a pair of species for
each family, according to the internode distance. let dabk be
equal to 1 if gene family k contains at least one gene copy
mapped to a and one gene copy mapped to b, and 0 other-
wise. We define DMiniNJ:

DMiniNJ a; bð Þ ¼
PK

k¼1 mini¼1Mk að Þ minj¼1Mk bð Þ Dg xik að Þ; xjk bð Þ
� �

PK
k¼1 dabk

:

(3)

Note that for any two species a and b, all gene families that
cover a and b contribute equally to DMiniNJða; bÞ.

MiniNJ then infers an unrooted species tree from this dis-
tance matrix using the NJ algorithm (Saitou and Nei 1987).

The distance matrix computation has time complexity Oð
PK
k¼1

jgkj2Þ where jgkj is the number of gene sequences in the
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family k. The NJ algorithm has time complexity OðjSj3Þwhere
jSj is the number of species. The overall time complexity of

MiniNJ is thus OðjSj3 þ
PK
k¼1

jgkj2Þ.

Maximum Likelihood Rooted Species Tree Search
Given a setG of unrooted GFTs, SpeciesRax implements a hill-
climbing algorithm to search for the rooted species tree S and
optimize the set of model parameters H (duplication, loss,
and HGT intensities) that maximize the reconciliation likeli-
hood LðS;HjGÞ. In this section, we only briefly explain our
search algorithm. We provide a more detailed description of
the different steps and of the order by which we apply them
in Supplementary Material online.

The search starts from an initial species tree S and a de-
fault or user-specified set of initial model parameters H0.
Then, we alternate between optimizing the species tree root
position, H, and the species tree topology until we cannot
find a configuration with a better likelihood. We optimize
the root position by evaluating the likelihood of the neigh-
bors of the current candidate root position and repeat this
process until we do not encounter a neighboring candidate
root position with a higher likelihood. We optimize H via a
gradient descent approach. To optimize S, we alternate be-
tween two complementary tree search strategies that both
rely on subtree prune and regraft (SPR) moves: The transfer-
guided SPR search assumes that the SPR moves that reduce
the number of required HGT events necessary to reconcile
the GFT with the species tree are more likely to improve the
reconciliation likelihood. In Supplementary Material online,
we detail how we identify and apply such SPR moves. The
local SPR search tries all possible SPR moves within a user-
specified radius (one by default). In both search strategies,

when SpeciesRax finds a species tree S0 with a better likeli-
hood than S, it replaces S by S0.

When applying the final root position search, SpeciesRax
outputs the per-GFT likelihood scores for all tested root posi-
tions. The file with these per-GFT likelihoods can then be
further analyzed with the Consel tool (Shimodaira and
Hasegawa 2001) to perform a range of statistical significance
tests (e.g., the AU test [Shimodaira 2002]) to generate a con-
fident set of root placements.

Calculating the reconciliation likelihood under the
UndatedDTL model represents the major computational bot-
tleneck. To reduce its computational cost, we introduce sev-
eral approximations. The first approximation is to ignore
certain combinations of events that are unlikely to happen
(e.g., a gene being transferred twice in a row), and which
therefore exhibit a negligible contribution to the overall like-
lihood score. The second approximation is to dynamically
estimate the most likely root position for each GFT during
the species tree search, thereby avoiding the need to evaluate
all possible GFT root positions. These approximations are
described in more detail in Supplementary Material online.

Support Value Assessment
Here, we describe how SpeciesRax calculates branch support
values on the species tree from a set of unrooted GFTs G. We
first revisit the definition of a speciation-driven quartet (SQ).
Then, we explain how we use the SQ frequency to assess
branch support values. Finally, we describe two alternative
SQ-based scores, namely the quadripartition internode cer-
tainty (QPIC) and the EQPIC scores.

We first briefly revisit the definition of an SQ (Zhang et al.
2020). Let bG be a set of rooted GFTs with internal nodes either
tagged by “duplication” or “speciation” events as estimated
from G. A quartet from bG 2 bG only contains information

FIG. 8. An example where MiniNJ computes distances that better reflect the true species tree than NJst. (a) The true rooted species tree. (b) A GFT
resulting from a duplication at the root of the species tree. (c) The distance matrix DNJst computed with NJst, incorrectly suggesting that all species
are equidistant, except for C and D. This is the result of distance overestimation due to paralogous genes: for instance, species A and B are neighbors
in the species tree, but the genes A2 and B1 are very distant from each other in the gene tree, because they start diverging at an early duplication
event (paralogous genes). (d) Distance matrix DMiniNJ computed with MiniNJ. The gene internode distances correctly reflect the species distances,
because MiniNJ successfully pruned pairs of paralogous genes, such as A2 and B1, and only takes into account orthologous genes, such as A1 and B1.
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about the speciation events, if it includes four distinct species
and if the lowest common ancestor of any three out of the
four taxa of this quartet is a speciation node. Such a quartet is
called SQ. We refer to Zhang et al. (2020) for a more formal
definition of the SQ count and for its computation from a set
of unrooted and unlabeled GFTs.

We now introduce several notations in order to define the
SQ frequency of a pair of internal nodes in the species tree. Let
S be an unrooted species tree. Let (u, v) be a pair of distinct
internal nodes in S. The nodes u and v define a metaquartet
Mu;v ¼ ðA; B; C;DÞ, where A and B (respectively, C and D)
are the leaf sets under the left and right children of u (respec-
tively, v) with S rooted at v (respectively, u). Let z ¼ ðz1; z2;
z3Þ such that z1 (respectively, z2 and z3) is the SQ count in G
corresponding to the metaquartet topology ABjCD (respec-
tively, ACjBD and ADjBC). Note that z1 corresponds to the
metaquartet topology that agrees with S (ðA; BjC;DÞ) and
that z2 and z3 correspond to the two possible alternative
distinct metaquartet topologies (ACjBD and ADjBC). Let bz
¼ ðbz1;bz2;bz3Þ such that bzi ¼ zi

z1þz2þz3
for i 2 ð1; 2; 3Þ. We

define the SQ frequency of (u, v) in S given G as
SQFGðu; vÞ ¼ bz1.

The SQ frequency represents how many SQs around u and
v support the species tree topology. However, it does not
always reflect if ðABjCDÞ is the best supported of the three
possible metaquartet topologies, in particular when
ð1=3Þ < z1 < ð1=2Þ. For instance,bz ¼ ð0:4; 0:3; 0:3Þ sug-
gests that ðABjCDÞ is the correct topology, butbz ¼ ð0:4; 0:6
; 0:0Þ suggests that the alternative topology ðACjBDÞ is better
supported. Thus, the value of z1 alone is not sufficiently in-
formative to assess our confidence in a branch defined by u
and v.

To overcome this limitation, we therefore also compute
the QPIC and EQPIC scores introduced in Zhou et al.
(2020). Note that these scores were initially defined for
single-copy gene families. Because SpeciesRax operates on
multiple-copy families, we adapt the scores by only counting
SQs instead of counting all quartets. Let (u, v) be two dis-
tinct nodes of S.

qpic0ðu; vÞ ¼ 1þbz1logðbz1Þ þbz2logðbz2Þ þbz3logðbz3Þ (4)

QPICðu; vÞ ¼

0 if z1 ¼ z2 ¼ z3 ¼ 0

qpic0ðu; vÞ if z1 ¼ maxðz1; z2; z3Þ

�qpic0ðu; vÞ otherwise

:

8>><
>>:

(5)

In particular, if u and v are neighbors, we define the QPIC of
the branch e between u and v as QPICðeÞ ¼ QPICðu; vÞ. One
limitation of the QPIC score is that it discards all SQs defined
by nodes u and v that are not neighbors. Zhou et al. (2020)
extends the QPIC score by defining the EQPIC score of a
branch e:

EQPICðeÞ ¼ minfu;vg2NðeÞðQPICðu; vÞÞ;

where N(e) is the set of node pairs fu, vg such that the branch
e belongs to the unique path between u and v.

Note that both QPIC and EQPIC scores range between –1
and 1. They take positive values when they support the rel-
evant metaquartet topologies of the species tree S and neg-
ative values otherwise.

We also note that support values are not calculated under
the probabilistic UndatedDTL model that SpeciesRax
employs to infer the species tree. Instead, they provide a
measure of the topological conflict between the GFTs and
each branch of the species tree based on a nonprobabilistic
heuristic.

Accounting for Missing Data
We refer to missing data as gene copies that are absent from a
gene family to which they should belong. This can occur, for
instance, when some gene sequences have not been sampled
or when the gene family clustering is inaccurate. Missing data
is problematic for species tree estimation, in particular, when
the missing data pattern distribution is nonrandom (Xi et al.
2016). In particular, reconciliation methods like SpeciesRax
can be affected by missing gene copies: for instance, if sequen-
ces for a subset of the species under study have not been
sampled for several families, the statistical reconciliation
model will attempt to explain these missing gene copies via
additional, yet incorrect loss events. Thus, a candidate species
tree that groups such a subset of species into one subtree will
typically exhibit a better reconciliation likelihood score than
the “true” species tree. This is the case, because only one loss
event per family would be necessary to explain all missing
gene copies. We alleviate this problem to a certain extent by
deploying a species tree pruning mode: let G be a GFT and S a
species tree. We replace the reconciliation likelihood term L(S,
G) by L(S0, G), where S0 is obtained from S by pruning all
species that are not covered by G and by removing internal
nodes of degree 1 until the tree is bifurcating. Thus, if a species
is not present in a family, the reconciliation likelihood of this
family does not depend on the position of this species in the
species tree.

A downside of this approach is that it can disregard some
true gene loss events. In addition, it is currently unclear how
the pruned mode affects the properties of the reconciliation
likelihood model. The experiments presented here suggest
that the pruned mode neither decreases reconstruction ac-
curacy nor increases runtimes. A mathematically more ap-
pealing solution would directly incorporate missing data in
the UndatedDTL model.

Parallelization
We parallelized SpeciesRax with MPI (Message Passing
Interface) which allows to execute it using several compute
nodes with distributed memory (e.g., compute clusters). We
distribute the gene families among the available cores to
parallelize the reconciliation likelihood computation.

Experiments
Tested Tools
In the following, we describe the settings we used for execut-
ing all tools (summarized in table 3) in our experiments. We
ran DupTree, FastMulRFS, and MiniNJ with default
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parameters. Among the four outputs that FastMulRFS pro-
vides, we discarded the outputs that may contain multifur-
cating trees (“majority” and “strict”). Among the two
remaining outputs (“greedy” and “single”), we selected
“single” because it performed slightly better in our
experiments.

We used our own (re-)implementation of NJst (available in
GeneRax) because the existing implementation written in R
was too slow for completing our tests in a reasonable time.

We executed ASTRAL-Pro using all available memory (“-
Xms700G -Xmx700G”) and a fixed random number seed (“–
seed 692”).

We executed PHYLDOG using all available cores on the
server (“mpiexec -np 40”) and conducted a nearest-neighbor
interchange-based (NNI) tree search for the GFT optimization
(“rearrangement.gene.tree¼nni”). We used MiniNJ to gener-
ate the starting species tree.

We executed SpeciesRax starting from a MiniNJ tree, with
the UndatedDTL model, with per-family duplication, HGT,
and loss (DTL) rates. We also disabled all irrelevant steps such
as gene tree optimization (“-s MiniNJ –optimize-species-tree
–do-not-optimize-gene-trees –rec-model UndatedDTL –per-
family-rates –skip-family-filtering –do-not-reconcile”). For the
experiments on empirical data sets, we added the SpeciesRax
option “–prune-species-tree” described in Account for
Missing Data. To analyze the empirical data set that do not
contain any multiple-copy gene families (Archaea364), we
disabled the gene duplication events in the UndatedDTL
model (option “–no-dup”).

Hardware Environment
We executed all experiments on the same machine with 40
physical cores, 80 virtual cores, and 750GB RAM. Note that
DupTree, NJst, and MiniNJ only offer a sequential implemen-
tation. In contrast, SpeciesRax, FastMulRFS, ASTRAL-Pro, and
PHYLDOG provide a parallel implementation (although
FastMulRFS has at least one step that seems to be run se-
quentially) and were run using all available cores. We discuss
the implications of this choice in Results.

Simulated Data Sets
We generated simulated data sets with SimPhy (Mallo et al.
2016) to assess the influence of the simulation parameters on
the reconstruction accuracy of the methods.

The parameters we studied are the average number of sites
per gene family MSA, the number of families, the size of the
species tree, the average DTL rates, the GC rate, the GFT

branch length scaler, and the population size. For each pa-
rameter we studied, we varied its value while keeping all other
parameters fixed. In addition, we varied the DL rates while
keeping the T rate fixed, and also varied the T rate while
keeping the DL rates fixed. We generated 100 replicates for
each set of parameter values. We executed the entire exper-
iment twice, once including HGTs (D TLSIM experiment) and
once excluding HGTs (DLSIM experiment).

We reused the default parameters of the S25 (25 species
per species tree) experiment of (Zhang et al. 2020) with some
modifications that we list in the following. By default, we do
not simulate ILS, because SpeciesRax does not model ILS.
Therefore, the species tree inference is easier than in the
original S25 experiment. To make the reconstruction more
challenging and to reduce the computational cost of the en-
tire experiment, we reduced the number of families from
1,000 to 100. To increase the heterogeneity among gene fam-
ilies, we used a log-normal distribution for the sequence
length (with, by default, 100 sites per sequence on average)
and for the DTL rates. In the D TLSIM experiment, we sim-
ulated under the distance-independent HGT model (i.e., the
receiving species is uniformly sampled from all contemporary
species) and we set the default average HGT rate equal to the
default average duplication rates. We provide a detailed list of
the SimPhy parameters in Supplementary Material online.

We inferred the GFTs with ParGenes (Morel et al. 2018),
performing one RAxML-NG search on a single random start-
ing tree per gene family under the general time reversible
model of nucleotide substitution with four discrete gamma
rates (GTRþG4) (Tavar�e 1986; Yang 1993). Then, we inferred
the species trees from the inferred GFTs with every tool listed
in table 3.

Finally, for each data set, we assessed the species tree re-
construction accuracy by computing the average relative RF
distance between each inferred species tree and the corre-
sponding true species tree using the ETE Toolkit (Huerta-
Cepas et al. 2016). We assessed the root placement accuracy
of SpeciesRax, DupTree, and PHYLDOG by introducing the
root split score. It is defined as the proportion of inferred
rooted species trees whose root incorrectly splits the species
into two groups compared with the split induced by the
correct, true root. The remaining methods we tested do
not infer rooted species trees.

Due to excessive runtimes, we only executed PHYLDOG on
the 100 replicates of the default parameter set of the DLSIM
experiment. PHYLDOG was more than two orders of magni-
tude slower than all the other methods and less accurate than
SpeciesRax (see Supplementary Material online).

Table 3. Software Used in Our Benchmark.

Method Type Infers Root Ref.

NJst Distance matrix No Liu and Yu (2011)
DupTree Parsimony Yes Wehe et al. (2008)
FastMulRFS Distance to GFTs No Molloy and Warnow (2020)
ASTRAL-Pro Quartet No Zhang et al. (2020)
PHYLDOG Maximum likelihood Yes Boussau et al. (2012)
MiniNJ Distance matrix No This study
SpeciesRax Maximum likelihood Yes This study
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Empirical Data Sets
We used empirical data sets from various sources to cover a
wide range of organisms including plants, fungi, vertebrates,
bacteria, and archaea. We describe these data sets in table 4.
When the data sets included outgroups, we excluded them
from the analysis, because SpeciesRax does not need any
outgroup to root the species trees. For data sets where we
pruned outgroups and for which alignments were available,
we reinferred the GFTs from the alignments. This was done to
avoid any potential bias in the tree reconstruction that could
be caused by the outgroup (Holland et al. 2003). When the
alignments were available, we used GeneRax to correct the
GFTs and to estimate the DTL intensities on those empirical
data sets, to confirm that they fall in the same range as the
DTL intensities estimated from the simulated data sets (see
Supplementary Material online). In the following we describe
in detail how we assembled each empirical data set.

Primates13 and Vertebrates188 Data Sets. We extracted the
alignments comprising 199 species from the Ensembl
Compara database (Zerbino et al. 2018). We removed five
nonvertebrate species to obtain the Vertebrates188 data set.
Further, we extracted 13 primate species to obtain the
Primates13 data set. For both data sets, we inferred the
GFTs with ParGenes under the GTR þ G4 model with one
random starting tree per RAxML-NG maximum likelihood
search.

Cyanobacteria36 Data Set. We reused the protein alignments
of a previous study (Szöll}osi et al. 2013) covering 36 cyano-
bacteria species to generate the Cyanobacteria36 data set. We
inferred the GFTs with ParGenes under the same substitution
model used in the original study (LG þ G4 þ I) with one
random starting tree per RAxML-NG search.

Fungi16 and Plants83 Data Sets. The Fungi16 and Plants83
data sets, respectively, correspond to the Plant (1 kp) and
Fungal data sets studied in Zhang et al. (2020). We down-
loaded the respective GFTs from https://github.com/chaosz-
hang/A-pro_data (last accessed January 18, 2022).

Fungi60, Plants23, and Vertebrates22 Data Sets. We
extracted data sets from three different phylomes of the
PhylomeDB (Huerta-Cepas et al. 2014) database: vertebrates

(phylome ID ¼ 200), fungi (phylome ID ¼ 3), and plants
(phylome ID ¼ 84). We removed the two outgroup species
(Arabidopsis thaliana and Human) from the fungi phylome to
generate the Fungi60 data set. We removed the five outgroup
species (outgroups: human, Drosophilia, Caenorhabditis ele-
gans, Saccharomyces cerevisiae, and Plasmodium falciparum)
from the plant phylome to generate the plants21 data set. We
reinferred the GFTs of both, the fungi and plants data sets
using ParGenes with best-fit model selection enabled (-m
option) and one random starting tree per RAxML-NG search.
We generated the Vertebrates22 data set from the vertebrates
phylome. Here, we did not remove any outgroup and did
therefore not reinfer the corresponding GFTs.

Life92 Data Set. To compare to the supertrees inferred in the
original study (Williams et al. 2020), we extracted the original
GFTs covering 92 species from the Eukaryote and Archaea
domains. To take advantage of the signal from duplications
and transfers, we also inferred new homologous gene families
from the genomes used in that study. To do so, we performed
all-versus-all Diamond (Buchfink et al. 2015) searches, then
clustered gene families using mcl (Enright 2002) with an in-
flation parameter value of 1.4. As in the original study, sequen-
ces were aligned using MAFFT (Katoh and Standley 2013) and
poorly aligning positions removed using BMGE 1.12
(Criscuolo and Gribaldo 2010) with the BLOSUM30 matrix.

Archaea364 Data Set. We downloaded the MSAs of the
marker proteins from the original study (Dombrowski et al.
2020). We inferred the GFTs with ParGenes using the
LG þ G4 substitution model.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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