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ABSTRACT Specific Emitter Identification is the association of a received signal to a unique emitter,

and is made possible by the naturally occurring and unintentional characteristics an emitter imparts onto

each transmission, known as its radio frequency fingerprint. This paper presents an approach for identifying

emitters using convolutional neural networks to estimate the inphase/quadrature (IQ) imbalance parameters

of each emitter, using only the received raw IQ data as input. Because an emitter’s IQ imbalance parameters

will not change as it changes modulation schemes, the proposed approach has the ability to track emitters,

even as they change the modulation scheme. The performance of the developed approach is evaluated using

simulated quadrature amplitude modulation and phase-shift keying signals, and the impact of signal-to-

noise ratio, imbalance value, and modulation scheme are considered. Furthermore, the developed approach

is shown to outperform a comparable feature-based approach, while making fewer assumptions and using

fewer data per decision.

INDEX TERMS Specific Emitter Identification (ESI), convolutional neural networks, IQ imbalance,

estimation.

I. INTRODUCTION

Specific Emitter Identification (SEI) is the act of correlat-

ing an emitter with a received signal, using a database of

radio frequency (RF) features. SEI algorithms are often used

in military settings for emitter tracking [1], and have also

become a powerful tool for use in cognitive radio applications

to enforce Dynamic Spectrum Access (DSA) rules [2].

Current state-of-the-art SEI systems rely on the measure-

ment of pre-determined and expert-defined signal features,

which are then clustered by emitter for identification [1].

However, extracting expert features often requires consider-

able pre-processing of the raw signal data, such as synchro-

nization, carrier tracking, demodulation, and signal-to-noise

ratio (SNR) estimation, in addition to the computational cost

of measuring or estimating the expert features. Further, these

pre-determined features are often only accurate over a nar-

row range of parameters and require accurate and consistent

measurement or estimation, in order to ensure quality SEI

performance.

Features often used in traditional SEI algorithms are either

taken from the transient or the steady-state portions of the

received signal. When using features extracted from the tran-

sient signal, SEI performance relies heavily on the accuracy
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and consistency of the transient detection and removal pro-

cess, as this directly affects the quality of the features [3].

Though using features extracted from the steady-state portion

of the received signal are generally more practical, expert

features used to describe the steady-state signal often have

their own limitations. For example, wavelet-based techniques

are heavily impacted by the choice of wavelet function [4].

Further, preamble-based techniques fail when the received

signal does not have a pre-defined preamble [3], and tech-

niques analyzing the cyclostationary features of a signal are

often inconsistent in the presence of frequency or phase

uncertainties [5].
While neural networks have been used to perform the

classification stage of SEI algorithms found in the litera-

ture, taking in pre-defined features as input [6], this work

investigates the ability to perform emitter identification using

neural networks to perform the feature extraction/estimation

stage. More specifically, this work builds off of prior work in

which an approach was developed using Convolutional Neu-

ral Networks (CNNs) to extract an expert feature, transmitter

IQ imbalance [7]. Using the developed CNN IQ imbalance

estimators described in Section III, an approach is presented

in Section IV to identify emitters across numerous modula-

tion schemes. Either the ability to determine the modulation

class of the received signal, or that the modulation class of

the received signal is known a priori, is assumed. However,
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FIGURE 1. The result of transmitter IQ imbalance applied to the in-phase
component of a 16QAM signal in the constellation diagram, SNR = 20dB.
Top Left: no imbalances. Top Right: phase imbalance = 30◦, gain
imbalance = 0. Bottom Left: phase imbalance = 0, gain imbalance = 0.9.
Bottom Right: phase imbalance = 30◦, gain imbalance = 0.9.

under no circumstances is it assumed that the CNN input is

adjusted for synchronization, carrier-tracking, SNR estima-

tion, or demodulation. Performance analysis of the developed

SEI approach is also given in Section IV, and shows the

ability to identify emitters by their gain imbalance only with

higher accuracy than a comparable feature-based approach.

II. TRANSMITTER IQ IMBALANCE

A. CAUSES AND IMPLICATIONS

Transmitter-induced, frequency-independent IQ imbalance is

caused by non-idealities in the local oscillators, mixers, pas-

sives, and differential pair wiring of the transmitter which

cause the in-phase and quadrature components of the modu-

lator to be non-orthogonal. As a result, the real and imaginary

components of the complex signal interfere with each other,

which can increase the bit error rate of the communications

system, if not properly accounted for. However, this hardware

impairment can also be used to identify emitters, as emitters

with differing levels of IQ imbalance will alter transmissions

with different intensities.

The result of IQ imbalance in the real component of a

16QAM signal is shown in Fig. 1 in the constellation diagram

and with exaggerated imbalance values for clarity. A phase

imbalance, shown in the lower left constellation, results in the

rotation of the real component of the symbols. Meanwhile a

gain imbalance, shown in the upper right constellation, results

in the stretching or contracting of the real component of the

symbols.

In many systems, demodulation of the received signal may

be impractical or impossible, such as in blind systems where

FIGURE 2. The result of transmitter IQ imbalance applied to the in-phase
component of a 16QAM signal in the time domain, SNR = 20dB. Top Left:
no imbalances. Top Right: phase imbalance = 30◦, gain imbalance = 0.
Bottom Left: phase imbalance = 0, gain imbalance = 0.9. Bottom Right:
phase imbalance = 30◦, gain imbalance = 0.9.

synchronization cannot be assumed. Therefore, the proposed

approach uses only the raw received signal as input. This

eliminates the need for demodulation which is required in

many traditional SEI techniques [8].

The result of IQ imbalance on the real component of a

16QAM signal is shown in the time domain in Fig. 2 with the

same imbalance values used in Fig. 1. In a transmitter with

a phase imbalance, the phasor of the signal will be shifted,

and in a transmitter with a gain imbalance, the amplitude of

the signal will increase or decrease. While phase imbalances

are more difficult to detect visually in the time domain, using

the proposed approach developed in [7] and described in III,

CNNs are capable of learning features which enable them to

estimate both gain and phase imbalances, given enough input

samples and reasonable SNR values.

B. SIGNAL MODEL

For simplicity, this work assumes only frequency-independent

IQ imbalance, as is often assumed in existing litera-

ture [9]. Although most modern communications systems are

affected by frequency-dependent IQ imbalance, frequency-

independent IQ imbalance is a valid approximation for imbal-

anced narrowband systems and imbalance due to the analog

components of emitters [9], [10]. Without loss of generality,

all imbalances are modeled on the in-phase component of

the modulated signal before transmission through an additive

white Gaussian noise (AWGN) channel [11], as follows:

Consider the baseband signal

x(t) = xi(t) + jxq(t), (1)

where xi(t) and xq(t) are real-valued time-varying baseband

signals. An IQ modulator with IQ imbalance modulates this
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baseband signal to its bandpass equivalent through

x(t) = (1 + α) cos(2π f0t + θ )xi(t) − j sin(2π f0t)xq(t), (2)

where f0 is the carrier frequency. In II-B, α is the transmitter’s

gain imbalance and θ is the transmitter’s phase imbalance,

such that an ideal transmitter, with no IQ imbalance, has α =

0 and θ = 0◦. Then, the received signal, after transmission

through an AWGN channel, is given by

y(t) = R

{ ∞
∑

k=−∞

(1 + α) cos(2π f0t + θ )xki (t)

− j sin(2π f0t)xkq (t)

}

+ n(t) (3)

where n(t) is a zero-mean white Gaussian noise process

[12], [13].

C. DATASET GENERATION

Using the signal model described above, all data used in

the following simulation results were generated using the

gr-signal_exciter module in GNURadio [14]. Though IQ

imbalance parameters for real systems are not easily found,

prior works in IQ imbalance estimation and compensation

use test values ranging from 0.02 to 0.82 for absolute gain

imbalance and from 2◦ to 11.42◦ for phase imbalance, with

most works used test values on the orders of 0.05 and 5◦

for gain and phase imbalance respectively [8], [11], [13],

[15]–[18]. Therefore, QAM signals of orders 8, 16, 32, and

64 and PSK signals of orders 2, 4, 8, and 16 were simulated

with linear gain imbalances between [−0.9, 0.9], uniformly

distributed, and phase imbalances between [−10◦, 10◦], uni-

formly distributed, in order to incorporate all possible offset

values one might encounter in a real system. The effects

of an imperfect signal detection stage were simulated also

by applying frequency offsets between [−0.1, 0.1] times

the sample rate, uniformly distributed, and by sampling the

simulated signal between [1.2, 4] times Nyquist, uniformly

distributed [19]. Then a root-raised cosine filter with a roll-

off factor of 0.35 was applied to the sampled signal, and the

signal was normalized to an average symbol power of 1dB.

Finally, white Gaussian noise was added such that all signals

had SNRs between [0dB, 25dB], uniformly distributed.

III. CNN IQ IMBALANCE ESTIMATORS

In this section, the prior work [7] using CNNs to estimate IQ

imbalance is described and expanded upon to include testing

using PSK signals, as well as QAM signals, to show the

designed architecture is modulation agnostic.

A. MODEL DESIGN, TRAINING, AND EVALUATION

The network architecture designed for the approach is shown

in Fig. 3. The network contains two two-dimensional convo-

lutional layers and four dense fully-connected layers, where

the convolutional layers are designed to extract relevant fea-

tures from the input signal and the fully-connected layers are

designed to estimate the IQ imbalance on the signal, using

FIGURE 3. The CNN architecture designed for estimation of transmitter IQ
imbalance.

the extracted features [20]. Though models were trained and

evaluated using input sizes of 512, 1024, and 2048 raw IQ

samples, in order to investigate the trade-offs between input-

size and performance, the final models and those used in

the SEI approach, use an input-size of 1024 samples, as this

proved to be a good balance point between performance and

network training and execution time. The Rectified Linear

Unit (ReLU) activation function is used in every layer, except

for the output layer which uses a linear activation function.

Because the ReLU activation function zeroes out all neg-

ative values, the use of a linear activation function in the

output layer allows the network to estimate negative gain and

phase imbalance values. Stochastic gradient descent, with an

RMSProp optimizer and a mean squared error loss function,

was used to train the networks [21].

Two separate networks are trained to estimate gain imbal-

ance and phase imbalance, allowing each network to be opti-

mized for estimating gain and phase imbalance respectively.

Both networks share the same architecture, but have differ-

ent parameters and hyper-parameters and are not dependent.

Therefore, theymay be trained and run in parallel, or only one

may be used, as is the case in the SEI approach presented in

Section IV. An iterative script was use to select the best per-

forming models after many iterations using different training

parameters.

Separate networks are also trained to estimate IQ imbal-

ance for the different modulation types simulated (QAM

and PSK). However, results in Section III-B will show that

the performance of these networks is comparable, indicating

that the designed network architecture is modulation agnos-

tic. It also should be noted that though the networks have

been trained per modulation type, they are generalizing over

modulation order (i.e. the networks trained to estimate IQ

imbalance for QAM can estimate gain and phase imbalances

for QAM signals of orders 8, 16, 32, and 64).

The normalized mean squared error (NMSE) was used to

evaluate network performance [22]. Each network trained

with a database containing 2000000 sets of labeled sam-

ples. Meanwhile, the validation and testing databases each

contained 10000 sets of labeled samples. To further evalu-

ate the performance of the estimators, evaluation sets were

constructed containing 180000 and 200000 sets of samples

for the gain imbalance estimator and the phase imbalance
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FIGURE 4. The true linear gain imbalance value versus the linear gain
imbalance value estimated by the 1024-input CNN gain imbalance
estimators with QAM input signals at 10dB SNR.

FIGURE 5. The true linear gain imbalance value versus the linear gain
imbalance value estimated by the 1024-input CNN gain imbalance
estimators with PSK input signals at 10dB SNR.

estimators respectively, such that 1000 sets of samples were

generated at evenly spaced intervals of 1α = ±0.01 and

1θ = ±0.1◦ within the training range.

B. SIMULATION RESULTS AND DISCUSSION

The initial results shown in Fig. 4-7 show the ability to

estimate gain and phase imbalances, using the designed

CNN architecture. However, the stronger linear correla-

tions in Fig. 4 and 5 than in Fig. 6 and 7 indicate that

phase imbalance is more difficult to estimate than gain

imbalance. More input samples would likely produce better

phase imbalance estimation results, providing more data to

learn from. Similarly, a more sophisticated network archi-

tecture may also produce better phase imbalance estimation

results.

The bias of the CNN IQ imbalance estimators was exam-

ined by taking the cumulative average of the CNN out-

puts for 1000 sets of samples with the same offset value.

The estimator is called unbiased if the cumulative moving

FIGURE 6. The true phase imbalance value versus the phase imbalance
value estimated by the 1024-input CNN phase imbalance estimators with
QAM input signals at 10dB SNR.

FIGURE 7. The true phase imbalance value versus the phase imbalance
value estimated by the 1024-input CNN phase imbalance estimators with
PSK input signals at 10dB SNR.

average converges to the true offset value [23]. The bias

and sample variance of the CNN IQ imbalance estimators

is shown in Fig. 8-11, and shows the gain imbalance esti-

mators have low bias and sample variance across all values

within the training range (−0.9, 0.9). However, the bias of the

gain imbalance estimators is slightly higher at positive offset

values.

The results in Fig. 8-11 also show that phase imbalance

estimators are significantly more biased than the gain offset

estimators and have much higher sample variance compared

to the gain imbalance estimators. This further indicates that

phase imbalance is more challenging to estimate using the

designed network architecture, at 10dB SNR. The bias of the

phase imbalance estimators is lowest when the true offset

value is near zero and increases as the magnitude of the true

offset value increases. Meanwhile, the sample variance of the

phase imbalance estimator outputs shows an inverse trend,

further emphasizing the inaccuracy of the phase imbalance

estimators.
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FIGURE 8. The bias and sample variance versus the true linear gain
imbalance value for the 1024-input CNN gain imbalance estimator and
QAM input signals simulated at 10dB SNR.

FIGURE 9. The bias and sample variance versus the true linear gain
imbalance value for the 1024-input CNN gain imbalance estimator and
PSK input signals simulated at 10dB SNR.

The performance of the CNN IQ imbalance estimators

across various SNRs is shown in Fig. 12-15. More specif-

ically, results show that as SNR increases, the Linear Gain

Imbalance Estimation Error (the difference between the true

and estimated imbalances) decreases, as expected. Addition-

ally, as SNR increases, the standard deviation of the esti-

mation error decreases with diminishing returns after 10dB.

Meanwhile, the mean error remains constant near zero.

Fig. 16-19 show the effect of SNR and modulation scheme

on the performance of the CNN IQ imbalance estimators

using the average bias and sample variance of the estima-

tor output. Consistent with the results shown in Fig. 12-15,

Fig. 16-19 show that as SNR of the input signal increases,

the average bias and sample variance of the estimator outputs

decreases. Further, the CNN IQ imbalance estimators trained

on PSK signals outperformed those trained on QAM sig-

nals, producing outputs with lower average bias and sample

variance, especially when estimating gain imbalance. This is

likely because QAM signals are both amplitude and phase

FIGURE 10. The bias and sample variance versus the true phase
imbalance value for the 1024-input CNN phase imbalance estimator and
QAM input signals simulated at 10dB SNR.

FIGURE 11. The bias and sample variance versus the true phase
imbalance value for the 1024-input CNN phase imbalance estimator and
PSK input signals simulated at 10dB SNR.

modulated, while PSK signals are only phase modulated,

making gain imbalances harder to detect in QAM signals

when only observing 1024 samples.

IV. TRANSMITTER GAIN IMBALANCE ESTIMATION

FOR SEI

Three main steps are required to perform emitter identi-

fication using the CNN gain imbalance estimators, shown

in Fig. 20: modulation classification, gain imbalance estima-

tion, and decision making. The result is a decision tree-like

structure in which the output of each step informs the next

action, as described below.

Together, the results shown in the previous section

indicated that the developed CNN IQ imbalance estimation

architecture performs similarly when trained on PSK signals

and when trained on QAM signals. As a result, the pro-

posed SEI approach can be used when receiving signals

with different modulation types. However, because the gain

imbalance estimators are trained to be modulation-specific,
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FIGURE 12. The linear gain imbalance estimation errors for signals
simulated with SNRs between 0dB and 25dB. True linear gain imbalances
vary uniformly between [−0.9, 0.9].

FIGURE 13. The linear gain imbalance estimation errors for signals
simulated with SNRs between 0dB and 25dB. True linear gain imbalances
vary uniformly between [−0.9, 0.9].

FIGURE 14. The phase imbalance estimation errors for signals simulated
with SNRs between 0dB and 25dB. True phase imbalances vary uniformly
between [−10◦, 10◦].

a modulation classification step is required in order to appro-

priately estimate the gain offset of each signal. It is important

FIGURE 15. The phase imbalance estimation errors for signals simulated
with SNRs between 0dB and 25dB. True phase imbalances vary uniformly
between [−10◦, 10◦].

FIGURE 16. The average bias versus SNR for the CNN gain imbalance
estimators with input sizes of 512 samples, 1024 samples, and
2048 samples.

to note that while any modulation classifier may be used,

a key advantage of the developed approach over traditional

approaches is the use of only the raw IQ as input. In order

to retain this advantage, the modulation classifier should also

only use raw IQ as input. An example of such a classifier can

be found in [19].

The output of the modulation classifier determines which

modulation-specific CNN gain imbalance estimator is used

in step two. The point estimate produced by the CNN gain

imbalance estimator in step two is then used to determine

the identity of the transmitter in step three using modulation-

specific decision makers. These decision makers are com-

posed of Gaussian probability density functions (pdf s),

which have been fitted to the output of each CNN gain

imbalance estimator, with Bayes optimal decision bound-

aries, as described below.

A. GAUSSIAN CURVE FIT TO CNN OUTPUT HISTOGRAMS

Using the evaluation sets described in Section III-A, his-

tograms can be produced for the CNN estimator outputs at
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FIGURE 17. The average bias versus SNR for the CNN phase imbalance
estimators.

FIGURE 18. The sample variance of the histograms for the CNN gain
imbalance estimators as a function of SNR.

FIGURE 19. The sample variance of the histograms for the CNN phase
imbalance estimators as a function of SNR.

evenly spaced intervals of 0.01 within the training interval,

[−0.9, 0.9]. As mentioned above, Gaussian pdf s were fitted

to these histograms (Fig.s 21 and 22), and the goodness of

fit was tested using the Chi-Squared Goodness of Fit (GoF)

test, as described in [7] and [24]. Table 1 shows the average

FIGURE 20. The designed emitter identification approach using CNN IQ
imbalance estimators.

FIGURE 21. The fitted Gaussian curve for the 1024 input CNN gain
imbalance estimator output histogram with QAM input signals at 10dB
SNR (Linear gain imbalance = 0.30).

p-value produced by the χ2 test for both the QAM and PSK

gain imbalance estimators, over all offset values. Because

these values all exceed 0.5, a commonly chosen significance

level in the literature [24], [25], the Gaussian distribution

can be called an appropriate fit for the CNN gain imbalance

estimator outputs.

B. BAYESIAN DECISION BOUNDARIES

After modulation classification and gain offset estimation,

step three uses Bayesian decision boundaries between the

fitted Gaussian pdfs to determine the identity of the emit-

ter. Given two offset values, i and j, and fitted pdf s, p(x|i)

and p(x|j), these decision boundaries are calculated as fol-

lows [26]. The following calculations assume that any given
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FIGURE 22. The fitted Gaussian curve for the 1024 input CNN gain
imbalance estimator output histogram with PSK input signals at 10dB
SNR (Linear gain imbalance = 0.30).

TABLE 1. The average p-values produced by the χ
2 GoF test.

emitter is equally likely to have any gain imbalance value, but

are not specific to the Gaussian pdf and can therefore be used

for any curve fit.

Letting x be the received signal data,

Decide i if P(i|x) > P(j|x); otherwise decide j.

Using Bayes Rule, this decision rule can be expressed in

terms of the fitted pdf s (p(x|i), p(x|j)) and the probability of

the emitter have a given gain imbalance value (P(i),P(j)):

Decide i if p(x|i)P(i) > p(x|j)P(j); otherwise decide j.

Finally, assuming each gain imbalance value is equally likely

to occur (i.e. P(i) = P(j)), the final decision rule is

Decide i if p(x|i) > p(x|j); otherwise decide j,

making the decision boundary the intersection point(s) of the

two fitted pdf s p(x|i) and p(x|j) for gain imbalance values

i and j. More specifically, the decision boundary is d =

p(x|i) = p(x|j), as shown in Fig. 23.

C. DECISION MAKING

Given a decision boundary, d , calculated between the two

pdf s for gain imbalance values i and j and a received signal,

a decision can be made about emitter identity as follows:

After modulation classification, the received signal is fed

to the appropriate gain imbalance estimator, producing a point

estimate, xi, of the gain imbalance of the emitter which sent

FIGURE 23. An example decision scenario.

the signal. Without loss of generality, let the mean of p(x|i) be

less than the mean of p(x|j), as shown in the example decision

scenario in in Fig. 23. If the point estimate falls on the left side

of the decision boundary, it is decided the transmitted signal

came from an emitter with gain imbalance value i. Otherwise,

it is decided the transmitted signal came from an emitter with

gain imbalance value j.

In the case that the emitters in the system are known,

the pdf s of the known gain imbalance values can be selected

and the decision boundaries between these pdf s calculated.

Decisions on point estimates are then made as described

above. While this method has use cases for Dynamic Spec-

trum Access and cooperative scenarios [27], the ability to

perform SEI in non-cooperative and blind scenarios is a

primarymotivator of this work. In this case, when the emitters

in the system are not known, the approach may still be used.

However, because the pdf s of the known gain imbalance val-

ues cannot be selected, it is only possible to bin the emitters

by their gain imbalance value by selecting and calculating

the decision boundaries between evenly spaced pdf s. For

simplicity, the results shown in Section IV-F will consider

only this second case.

D. THE PROBABILITY OF MIS-IDENTIFYING EMITTERS

Given two fitted pdf s, p(x|i) and p(x|j), and the optimal

decision boundary, d , between the pdf s, the probability of

incorrectly identifying an emitter is given by
∫ ∞

d

p(x|i)dx.

As an example, consider the scenario in Fig. 23, where a

point estimate, xi, is produced from a set of samples received

from an emitter belonging to gain imbalance bin i. Again,

without loss of generality, let the mean of p(x|i) be less

than the mean of p(x|j). A correct classification occurs when

the estimate from the CNN, xi, is less than the decision

boundary d . Therefore, an incorrect classification occurs

when xi > d .
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FIGURE 24. The CNN architecture designed for estimation of transmitter
gain imbalance to perform SEI.

E. MODEL DESIGN, TRAINING, AND EVALUATION

The CNN gain imbalance estimation model used in the devel-

oped approach is the same as described in Section III-A, mod-

ified with one max-pooling layer, with size = 2, between the

convolutional layers and the dense layers, as shown in Fig. 24.

When determining which networks performed best,

the NMSE was no longer a helpful evaluation metric, as a

network with a low average NMSE could produce his-

tograms with larger variance than networks with a higher

average NMSE. Therefore, to evaluate the performance of the

trained networks, the evaluation sets previously described in

Section III-A were used. For a given trained network, pdf s

were fitted for each of the gain imbalance values, and the

minimum gain imbalance separation needed to obtain a prob-

ability of mis-identification of less than 5% was calculated.

This minimum gain imbalance separation value was used

to determine which networks were performing better than

others.

F. SIMULATION RESULTS AND DISCUSSION

To fully analyze the performance of the designed SEI

approach, the following sections investigate the effect of

SNR, true gain imbalance value, and modulation scheme on

the SEI decision, and compare the designed approach to a

traditional feature-based approach. Further, the practicality

of using the designed approach is discussed, considering the

IQ imbalance values typically found in real systems and the

assumptions typically made by traditional SEI systems.

1) IMPACT OF SNR ON SEI PERFORMANCE

Using the evaluation sets constructed for QAM and PSK,

the minimum gain imbalance separations needed to obtain

average probabilities of mis-identification of less 20%, 10%,

and 5% across all gain imbalance values were calculated,

as described in Section IV-D. The impact of SNR on the

ability to identify emitters at these levels of accuracy is

shown in Fig.s 25 and 26. At 0dB, the estimators cannot be

used to perform emitter identification to a 80% probability

of correct identification. However, as the SNR increases,

the minimum gain imbalance separation needed to obtain

< 5%,< 10%, and< 20% probabilities of mis-identification

decreases with diminishing returns at around 20dB. There-

fore, the lower the probability of mis-identification needed in

FIGURE 25. The SNR vs minimum gain imbalance separation needed to
obtain < 5%, < 10%, and < 20% probability of mis-identification using
the CNN gain imbalance estimator trained on QAM input signals.

FIGURE 26. The SNR vs minimum gain imbalance separation needed to
obtain < 5%, < 10%, and < 20% probability of mis-identification using
the CNN gain imbalance estimator trained on PSK input signals.

a system, the higher the gain imbalance separation needed, as

expected.

2) IMPACT OF GAIN IMBALANCE VALUE ON SEI ABILITY

In Section III-B and Fig. 8 and 9, it was shown that the sample

variance of the gain imbalance estimators is slightly lower

when the true offset value is at the limits of the training range

(near −0.9 and 0.9). As a result, the variance of the fitted

pdf s is lower when the true gain imbalance value is near the

limits of the training range, in comparison to when the true

gain imbalance value is near zero. Therefore, the probability

of mis-identification is lower when the true gain imbalance

value is near the limits of the training range.

3) IMPACT OF MODULATION SCHEME ON SEI

PERFORMANCE

The ability to perform gain imbalance estimation on QAM

and PSK signals using the designed CNN architecture was

shown in Section III-B. Though the use of CNN estimators
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FIGURE 27. The histogram outputs for the PSK and QAM estimators both
with true gain imbalance value of -0.58.

for gain imbalance estimation on other signal types was not

investigated, the comparable results of the CNN gain imbal-

ance estimators trained for QAM and PSK showed that the

designed network architecture described in Section III-A was

not modulation specific. Investigation into the performance

of the estimators on further modulation schemes is left for

future work.

Fig. 27 shows the importance of having separate decision

boundaries for each modulation class. Though the true gain

imbalance value of the input signal to the estimators is the

same, the output histograms produced by the modulation-

specific CNN gain imbalance estimators are not. This yields

different decision boundaries for each modulation class.

As discussed in Section III-B and shown in Figs. 18 and 19,

the CNN gain imbalance estimator trained for PSK showed

lower average sample variance than the CNN gain imbal-

ance estimator trained for QAM. This resulted in fitted pdf s

with lower variance for PSK than QAM. Therefore, in gen-

eral, lower minimum gain imbalances are needed to identify

emitters when transmitting PSK signals than are needed to

identify emitters when transmitting QAM signals, as shown

in Fig. 25 and 26. As a result, more emitters can be identified

uniquely.

4) PRACTICAL CONSIDERATIONS

As previously mentioned, for both QAM and PSK, the lower

the probability of mis-identification needed in a system,

the higher the gain imbalance separation needed to achieve

the needed level of accuracy. Therefore, in systems with a

higher tolerance for mis-identification, more emitters can be

uniquely identified, and in systems that require a low prob-

ability of mis-identification, fewer emitters can be uniquely

identified. However, even in systems with a 20% tolerance

for mis-identification and receiving signals exceeding 20dB

SNR, the emitters need to have a linear gain imbalance

separation of at least 0.15. While few publications indicate

measured gain imbalance values for real systems, most prior

works in IQ imbalance estimation and compensation use

TABLE 2. The simulated IQ Imbalance parameters used for comparison to
the approach proposed in [28].

test values on the order of 0.05 [8], [11], [13], [15]–[18],

indicating the gain imbalance values necessary to obtain even

80% accuracy are not practical in real systems. Narrowing the

range of gain imbalance values included in the training set

would likely help combat this problem.

The training set was simulated with gain imbalances

between [−0.9, 0.9], uniformly distributed, in order to incor-

porate any possible gain imbalance value the CNN estimator

might encounter in a real system. However, training over such

a large range has likely hindered the estimator’s accuracy,

as the network has had to learn to generalize over such a

large range [19]. Given that an offset value of 0.9 is likely

much larger than anything one might find in a real system,

the training range could be narrowed to yield better results in

estimator accuracy and therefore SEI ability.

5) COMPARISON TO A TRADITIONAL FEATURE-BASED

APPROACH

In [28], an SEI approach was developed using IQ imbal-

ance estimates and Support Vector Machines (SVMs). The

IQ imbalance estimation algorithm proposed uses statistical

methods to determine gain and phase imbalance using the

received symbols. The approach also requires SNR estima-

tion. They then plot gain versus phase imbalance in two

dimensions and use SVMs to assign the received signal to

an emitter.

In order to provide an accurate comparison of the approach

proposed in [28], five QPSK emitters were simulated with

gain and phase imbalance values given in Table 2, for SNRs

between [5dB, 35dB] at intervals of 5dB, and with per-

fect synchronization, as in [28]. The developed CNN gain

imbalance estimator was also retrained to accommodate these

assumptions. More specifically, a CNN gain imbalance esti-

mator was retrained using training, validation, and test sets

with SNRs between [0dB, 35dB], gain imbalance values

(α) between [0.0, 0.3], phase imbalance values (θ ) between

[0◦, 5◦], and no frequency or sample rate offsets, matching

the assumptions in [28].

The results in Fig. 28 show the accuracy of the approach

developed in this chapter to that proposed in [28], given

one capture of 1024 raw IQ samples and given ten captures

of 1024 raw IQ samples. When the approach developed in

this chapter uses only one capture of 1024 raw IQ samples,

the developed approach shows lower accuracies than the

approach presented in [28] by as much as 15%. However, it is

important to note the developed approach uses only estimates

of gain imbalance, while the approach presented in [28]

uses estimates of both gain and phase imbalance, providing

more information about the emitter-of-interest. Phase imbal-
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FIGURE 28. The accuracy of the developed SEI approach using CNN gain
imbalance estimators compared to the accuracy of the approach
proposed in [28], given one and ten captures of 1024 raw IQ samples.

FIGURE 29. The accuracy of the developed SEI approach using the large
training range described in Section II-C compared to the accuracy using
the narrowed training range used to match the assumptions made in [28].

ance estimates could also be incorporated into the approach

developed in this chapter, and would likely increase perfor-

mance. The approach presented in [28] is also dependent

upon an estimate of SNR and assumes perfect synchroniza-

tion, whereas the approach developed in this chapter needs

no external measurements or estimates and can compensate

for an imperfect receiver. Additionally, the accuracy of the

approach proposed in [28] is calculated given 1330 sym-

bols, whereas the accuracy of the approach developed in this

chapter is given for one capture of 1024 raw IQ samples.

For the proposed approach, the outputs of multiple raw IQ

captures can be aggregated to improve accuracy, as shown

in Fig. 28. Therefore, given as few as ten captures of 1024 raw

IQ samples, the accuracy of the approach developed in this

chapter exceeds the performance of the approach proposed

in [28], using less data and making far fewer assumptions.

It should also be noted that limiting the range of IQ

imbalance parameters and assuming perfect synchronization

has improved the performance of the developed approach,

as shown in Fig. 29. This confirms that training over smaller

parameter ranges, more closely aligned with those one might

find in a real system, can improve performance, and is con-

sistent with the results and discussion in [19].

V. SUMMARY AND FUTURE WORK

This work expanded upon prior work showing the ability to

estimate transmitter-induced and frequency-independent IQ

imbalance using CNNs by showing the previously developed

models to be modulation agnostic [7]. More specifically,

performance analysis of the previously developed CNN IQ

imbalance estimators showed the ability to estimate both gain

and phase imbalances, when trained usingQAMand PSK sig-

nals. Further, an approach was designed and evaluated using

parallel, modulation-specific, gain imbalance estimators to

identify emitters.

Results show that for both QAM and PSK modulation

schemes, the performance of the proposed SEI increases

as SNR increases, in the form of smaller gain imbalance

separations needed to achieve lower probabilities of mis-

identification. However, because the gain imbalance estima-

tors trained for PSK slightly outperformed those trained for

QAM, the proposed SEI approach performed better when

the incoming signal was of a PSK modulation scheme. The

approach was shown to need impractical gain imbalance sep-

aration values, even in high SNR scenarios, when the range of

IQ imbalance parameters included in the training set is large,

but performance improved significantly when this range was

narrowed. Further, the accuracy of the approach was shown

to exceed that of a traditional feature-based approach, given

as few as ten captures of 1024 raw IQ samples.

To improve the proposed SEI approach, the range of

gain imbalance values included in the training set can be

narrowed, so that the network has to generalize less. This

was shown when comparing the developed approach to the

approach in [28]. The addition of more hardware impairments

to the model, in order to further discriminate emitters, would

also likely increase performance and is left for future work.

Finally, this work could also be extended to further modu-

lation schemes, different channel models, and to receiver IQ

imbalance.
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