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Specific emitter identification is a technique that distinguishes different emitters using radio fingerprints. Feature extraction and
classifier selection are critical factors affecting SEI performance. In this paper, we propose an SEI method using the Bispectrum-
Radon transform (BRT) and a hybrid deep model. We propose BRT to characterize the unintentional modulation of pulses due to
the superiority of bispectrum distributions in characterizing nonlinear features of signals. We then apply a hybrid deep model
based on denoising autoencoders and a deep belief network to perform further deep feature extraction and discriminative
identification. We design an automatic dependent surveillance-broadcast signal acquisition system to capture signals and to build
dataset for validating our proposed SEI method. +eoretical analysis and experimental results show that the BRT feature
outperformed traditional features in characterizing UMOP, and our proposed SEI method outperformed other feature and
classifier combination methods.

1. Introduction

Specific emitter identification (SEI) is a technique that
distinguishes different emitters using radio frequency fin-
gerprints. +e technique has attracted much attention in
recent decades, meeting many application requirements in
electronic intelligence, cognitive radio, wireless network
security, and Internet of things. To realize SEI, there are two
key problems to be solved: effective feature extraction and
classifier selection.

+e RF fingerprint, also known as the unintentional
modulation on pulses (UMOPs), has characteristics of uni-
versality, uniqueness, and stability. +us, extraction of un-
intentionalmodulation features from signalsmakes it possible
to identify specific emitters. Various methods have been
proposed to characterize UMOP [1–16]. +ese methods fall
into categories of waveform-, transform-, and transmitter-
based approaches. Waveform-based methods extract features
from pulse waveforms directly, usually from time and fre-
quency domains. Features obtainable with waveform-based
methods include instantaneous frequency [1–3] and ampli-
tude features [4, 5].+ese features have the advantage of lower

computational costs, but they are easily affected by envi-
ronmental noise. +ey also perform poorly when analyzing
non-Gaussian and nonstationary processes. For these reasons,
researchers have proposed other transforms to extract fea-
tures in the transform domain, including the ambiguity
function [6], the wavelet transform [7], the Hilbert–Huang
transform (HHT) [8–10], and short-time Fourier transform
[11, 12]. +ese transforms are appropriate for analyzing
nonlinear and nonstationary signals. However, they are time-
consuming when used as input features for SEI due to their
large dimensions. Furthermore, the choice of kernel and basis
functions influences their performance considerably. Other
researchers have explored modeling the imperfections and
distortions of some transmitter components to realize SEI,
including the imperfections and distortions of oscillators,
receivers, and transmitters [13–16]. However, this kind of
method offers only incomplete results because UMOP is a
systematic result caused by all components of the transmitter,
not just those chosen for modeling.

Since the theory of higher-order spectral analysis
(HOSA) was developed in the late 1980s, research has shown
its superiority in analyzing non-Gaussian and nonstationary
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processes, such as modeling of nonlinear systems [17, 18]
and signal classification [19, 20]. +e higher-order spectrum
refers to the multidimensional Fourier transform of higher-
order cumulants. Compared with feature extraction
methods in the time and frequency domains, the higher-
order spectrum has three characteristics: (a) it contains
amplitude and phase information simultaneously, (b) it
includes the nonlinear component of signals, and (c) the
higher-order cumulant of Gaussian noise equals to zero.
Owing to these characteristics, it is possible to extract
UMOP features using the higher-order spectrum.

Deep learning has garnered much attention because of its
superiority for feature learning and feature representation.
Deep learning stems from the simulation of the information
processing process of human brain. Humans often describe
the input information in hierarchical ways, with multiple
levels of abstraction. +e brain also appears to process in-
formation through multiple stages of transformation and
representation [21]. To simulate the information processing
process in human brain, deep learning methods extract ab-
stract feature in hierarchical ways. Deep learning models are
built using the basic modules including convolutional neural
network (CNN), restricted Boltzmann machine (RBM), and
autoencoder (AE) and its variants. By combining these simple
but nonlinear modules, deep learning methods are able to
transfer the feature representation at one level into a higher
and more abstract level. By combining enough such trans-
formations, very complex and nonlinear features can be
learned [22]. According to the architectures and techniques
intended for use, deep learning models can be categorized
into three main classes: generative deep architectures, dis-
criminative deep architectures, and hybrid deep architectures.
Among the three architectures, the hybrid deep architectures
stack several generative and discriminative modules, making
them superior in some fields [23]. Hybrid deep models have
been used extensively to perform image classification [24, 25]
and video classification [26, 27].

Motivated by the preceding discussion, we propose a
feature extraction method called the Bispectrum-Radon
transform (BRT). Furthermore, we propose an SEI method
based on the BRTand a hybrid deep model. In the proposed
SEI method, the BRT extracts UMOP features while the
hybrid deep learning model performs further feature
learning and identification. We summarize the main con-
tributions of this paper as follows:

(i) We propose a feature extraction method based on
bispectrum theory and used it to characterize
UMOP.

(ii) We propose an SEI method. +e method extracts
the UMOP features via BRT and uses a hybrid deep
model to perform deep feature extraction and
discriminative identification.

(iii) We design a signal acquisition system to receive the
automatic dependent surveillance-broadcast (ADS-
B) signals of civil aircraft and use the received
signals to verify the identification performance of
the proposed method.

(iv) +e thorough experiments and analysis show the
effectiveness and superiority of the proposed
method.

+e rest of this paper is organized as follows: in Section 2,
we analyze the UMOP generationmechanism.We introduce
the BRT in Section 3. We present the hybrid deep learning
model and the proposed SEI method in Section 4. In Section
5, we present our experimental results and discussions.
Section 6 concludes the paper.

2. Generation Mechanism of UMOP

+e UMOP is caused by various components of the
transmitter circuit, including oscillators, power amplifiers,
and modulators. Figure 1 [28] shows the general structure of
a radio transmitter.

As shown in Figure 1, before being transmitted by the
antenna, the signal is processed by a series of electronic
devices, including many nonlinear electronic devices, such
as power amplifiers, intermediate frequency (IF) filters, and
radio frequency (RF) filters. +is process causes the unin-
tentional generation of various nonlinear components that
remain in the transmitted signals as UMOP.

UMOP has the characteristics of universality, unique-
ness, and stability. First, UMOP is ubiquitous because dif-
ferences in the performance of electronic devices and circuits
are inevitable, even when for identical devices are operating
under the same conditions. Meanwhile, the uniqueness of
UMOP is attributable to differences in device manufacturing
processes, component tolerances, material properties, and
environmental factors [29]. Finally, UMOP is stable because
these differences between devices and circuits are subtle but
consistent over a considerable period. Owing to the char-
acteristics mentioned above, UMOP is extremely useful in
solving SEI problems, making the choice of features for
characterizing UMOP a significant research focus for SEI.

3. Bispectrum-Radon Transform

In this section, we introduce our proposed BRT to char-
acterize UMOP. We first introduce the bispectrum distri-
bution and the Radon transform. We then present the BRT
and the algorithm for extracting the bispectrum projection
vectors via the BRT. Finally, we analyze the discrimination
performance of the BRT feature.

3.1. BispectrumFeature of UMOP. Based on HOSA theory, a
bispectrum distribution is the two-dimensional Fourier
transform of the third-order cumulants. It has the lowest
order and the fewest calculations among higher-order
spectrums.We express the bispectrum distribution of a pulse
x(t) as

B w1, w2(  � G3,x w1, w2( 
�

τ1


τ2

C3x τ1, τ2( e− j w1τ1+w2τ2( ),
(1)
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where w1 and w2 are frequencies in the two-dimensional
Fourier transform. C3x(τ1, τ2) is a third-order autocorre-
lation function calculated as

C3x τ1, τ2(  � E x∗(t)x t + τ1( x t + τ2(  . (2)

Figure 2 shows bispectrum distributions of a theoretical
pulse and a received ADS-B pulse. +e subtle UMOP fea-
tures are visible, demonstrating the effectiveness of the
bispectrum distribution in describing UMOP.

3.2. Bispectrum-Radon Transform. As presented in Figure 2,
the bispectrum distribution shows strong potential for
characterizing UMOP. However, it is time-consuming to use
two-dimensional bispectrum matrices to perform SEI di-
rectly. Hence, we introduce the Radon transform to project
the two-dimensional bispectrum matrices into one-di-
mensional vectors.

In a two-dimensional Euclidean space, a matrix can be
projected in a certain direction by applying the Radon
transform. Figure 3 shows the geometrical interpretation.

For a line f(w1, w2) in a plane (w1, w2), the Radon
transform is given by

R(θ, p) �B
D
f w1, w2( δ p − w1 cos θ − w2 sin θ( dw1dw2,

(3)
where θ is the given angle and p is the distance from the
origin to the line f(w1, w2). We define the delta function
δ(x) as

δ(x) �
0, x≠ 0,
1, x � 0.

 (4)

+us, we can express the delta function in equation (3) as

δ p − w1 cos θ − w2 sin θ(  � 0, p − w1 cos θ − w2 sin θ≠ 0,
1, p − w1 cos θ − w2 sin θ � 0.


(5)

+erefore, we can understand the Radon transform as a
projection process, where each point in R(θ, p) corresponds
to a line in the plane.

Based on the bispectrum theory and the Radon trans-
form, we propose a feature extraction method called Bis-
pectrum-Radon transform (BRT). BRT projects the
bispectrummatrix into a projection vector, BR(θ), using the

Radon transform. BR(θ) is the linear integral of B(w1, w2)

with θ, written as

BR(θ) �B
D
B1 w1, w2( δ p − w1 cos θ − w2 sin θ( dw1dw2.

(6)
+us, the process for extracting bispectrum projection

vectors using the BRT decomposes into two processes: (a)
the estimation of the bispectrum distribution and (b) the
projection using the Radon transform. We use an indirect
method for bispectrum estimation. Algorithm 1 presents the
whole algorithm. Figure 4 shows the process of extracting
bispectrum projection vectors, and Figure 5 shows the
bispectrum projection vectors from actual ADS-B signals of
three aircraft. Subtle and stable differences are clearly visible
in Figure 5, proving the usefulness of the projection vectors
for characterizing UMOP, distinguishing different emitters
and accomplishing SEI.

4. Hybrid Deep Model

In this section, we present an SEI method with a hybrid deep
model performing identification using the bispectrum
projection vectors as input. We first introduce the basic
modules of the hybrid model and their hierarchical feature
learning mechanism. +en we present the proposed SEI
method.

4.1. RBM and DBN. First proposed by Hinton et al. [30],
DBN is a class of the generative model constructed from
stacked restricted Boltzmann machines (RBMs). It learns
hierarchical feature representations from complex input
data. RBMs are probabilistic generative models able to learn
a joint probability distribution of the training data [31].+ey
are good at extracting hidden and abstract features from
training data. Le Roux and Bengio [32] have given the
theoretical proof that RBMs are universal approximators of
discrete distributions. +e proof means that RBMs are ex-
cellent for modeling complex distributions.

As Figure 6 shows, an RBM consists of a visible layer and
a hidden layer.+e visible layer processes the input data, and
the hidden layer detects the feature. +ere are full and
undirected connections between visible and hidden units but
none between pairs of visible or pairs of hidden units [33]. In
Figure 6, the visible units v � [v1, v2, . . . , vn]

T and the hidden
units h � [h1, h2, . . . , hm]

T are in binary states (i.e., for

DSP
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converter 
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Figure 1: General structure of a radio transmitter.
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arbitraries i and j, vi ∈ 0, 1{ } and hj ∈ 0, 1{ }).wij is the weight
between unit vi and hj.

To describe the state of an RBM, the energy function of
E(v, h) is defined as

E(v, h) � − m
i�1

n
j�1

wijvihj − m
i�1

aivi − n
j�1

bjhj, (7)

where ai and bj are the biases of units vi and hj, respectively.
E(v, h) is determined by the weights and biases under a
given v and h. According to the given energy function, a joint
probability distribution p(v, h) can be obtained for all of the
possible pairs of visible and hidden vectors:

p(v, h) �
1

Z
exp(− E(v, h)) �

exp(− E(v, h))v,hexp(− E(v, h)), (8)

whereZ is a normalization term andZ � v,hexp(− E(v, h)).
+e probability distribution p(v) of visible layer v is the

marginal distribution of p(v, h). +us, we can express p(v)
as

p(v) �
1

Z

h

exp(− E(v, h)). (9)

As mentioned above, there are no visible-visible or
hidden-hidden connections in RBM. Hence, when given a
visible layer v, the state of each hidden unit is conditionally
independent, and vice versa. +erefore, the conditional
distributions of a visible unit and a hidden unit take the
forms

p hj � 1 | v  � σ bj +
i

viwij⎛⎝ ⎞⎠, (10)

p vi � 1 | h(  � σ ai +
j

hjwij⎛⎝ ⎞⎠, (11)

where σ � (1 + e− x)− 1. Hinton [34] proposed a learning
algorithm called the contrastive divergence (CD) algorithm
to learn the optimal distribution for RBM. In the CD al-
gorithm, the original state of the visible layer is set to an
arbitrary training sample with the binary state of each
hidden layer deduced by equation (10). After obtaining all of
the states of hidden units, the probability of each visible unit
can be deduced by equation (11). +erefore, a reconstructed
visible layer is obtained, and a reconstruction error exists
between the reconstructed visible layer and the initial input
visible layer. +e application of a stochastic gradient ascent
algorithm optimizes the reconstruction error. With suffi-
cient training, the reconstruction error gradually decreases
and the RBM parameters stabilize.

As noted, a DBN is composed of several stacked RBMs.
To effectively train a DBN, Hinton et al. [30] proposed a
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Figure 2: +e bispectrum distributions of (a) a theoretical and (b) a received ADS-B pulse.
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Figure 3: Geometrical interpretation of the Radon transform.
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input: S: signal with length N;M: the segment size of signal; K: the number of segments, K � N/M; θ: the projection angle in Radon
transform
output: BR: the bispectrum projection vector
(1) Divide the signal S into K segments with M points in each segment;
(2) Let xk(0), xk(1), . . . , xk(M − 1) be the M points of k-th segment. Calculate the third-order cumulants of K segments

ck(i, j) � 1/MM2

n�− M1
xk(n)xk(n + i)xk(n + j), k � 1, . . . , K,

where i and j are the indexes of the third-order cumulants.
M1 � max(0, − i, − j) and M2 � min(M − 1,M − 1 − i,M − 1 − j);

(3) +e average of the third-order cumulants of all segments, c(i, j), is calculated and is taken as the estimation of the third-order
cumulant of the signal Sc(i, j) � 1/KKk�1ck(i, j)

(4) Calculate the estimation of the bispectrum distributionB(w1, w2) � Li�− LLj�− Lc(i, j)w(i, l)exp[− j(w1i + w2l)]
where L<M − 1. w(i, l) is the two-dimensional lag window function;

(5) Calculate the bispectrum projection vector BR(θ) by conducting (5).

ALGORITHM 1: Extraction of bispectrum projection vector via the Bispectrum-Radon transform.
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Figure 4: Process of the Bispectrum-Radon transform.
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Figure 5: Bispectrum-Radon transform features of three aircraft. (a) Aircraft A. (b) Aircraft B. (c) Aircraft C. (d) Comparison of three aircraft.
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greedy layer-wise unsupervised learning method. +e
training process has two stages: pretraining and fine-tuning.
In the first stage, the RBMs are trained from the bottom-up
layer by layer. +e CD algorithm is used to train and op-
timize the RBM parameters. In the second stage, the ac-
cumulated error in the layers after pretraining leaves the
parameters less than optimal, so the backpropagation is then
used to fine-tune the DBN parameters. +e fine-tuning stage
optimizes the entire DBN.

4.2. AE and DAE. Motivated by the training strategy of
DBN, Bengio et al. [35] proposed replacing the RBM
modules with autoencoders to build the stacked autoencoder
(SAE) model. SAE is also a generative model, and it could be
used for unsupervised feature learning. An AE consists of an
encoder and a decoder that perform the encoding and
decoding process separately. Figure 7 shows the basic ar-
chitecture of an AE.

In the encoding process, the hidden layer effectively
extracts the intrinsic expression of the input data. +e
encoding function can be described as

h � f(x) � sf(Wx + p), (12)

where x is the input data and h is the code obtained. W
represents the weight matrix between the input layer and the
hidden layer. p is an offset vector. sf( ) is the activation
function of the encoder. In this paper, we choose the sigmoid
function as the activation function:

sf(z) �
1

1 + e− z
. (13)

In the decoding process, the output layer reconstructs
the input data based on the hidden layer. +e decoding
function can be described as

r � g(h) � sg W
Th + q , (14)

whereWT represents the weight matrix between the hidden
layer and the output layer. q is an offset vector. sg( ) is the
activation function of the decoder. Hence, the learning task
of AE can be abstracted into a convex optimization problem
that minimizes the reconstruction error between the re-
construction and the input data. We describe the optimi-
zation problem as

min
θ

sg W
Tsf(Wx + p) + q  − x����� �����2, (15)

where θ is the parameter set and θ � W,WT, p, q . Equation
(15) shows that the AE attempts to learn an identity function
such that the reconstruction is as close as possible to the
input data.

Based on the basic AE model, some variants are pro-
posed with different constraints, such as sparse autoencoders
(SAE), denoising autoencoders (DAE), contractive
autoencoders, and convolutional autoencoders. With dif-
ferent constraints, the AE variants can be applied for data
denoising, dimensionality reduction and feature extraction.
Among the variants of AE, DAE reconstructs the original
input data from the noise-contaminated input data by
minimizing the reconstruction errors. In DAE, part of the
input data is randomly replaced with noise. In practice, they
are usually set to 0. Hence, the added noise allows the
autoencoder to extract more expressive features. +erefore,
the optimization problem of DAE can be described as

min
θ

sg W
Tsf(Wx + p) + q  − x����� �����2, (16)

where x is the noise-contaminated input data.

4.3. Hybrid Deep Model. In this part, we propose a hybrid
deep model to realize deeper feature extraction and ex-
pression in SEI process.+e hybrid deepmodel is built based
on RBM and DAE. Figure 8 shows its architecture. A DAE is
used as the first layer, two RBMs as the middle layers, and a
logistic layer acts as a classification layer. +e hybrid model
combines the advantages of DAE and DBN both. First, the
structure of the AE model and its variants maintain the
recoverability of the input data, which is very important for
the extraction of primary feature. Furthermore, the DAE
maps the data into a high-dimensional space, which effec-
tively increases the separability of the data. In this process,
the recoverability of DAE ensures the stability of the pro-
jection result. Moreover, DAE also extracts abstract features
better than the basic AE model. Two stacked RBMs make up
a two-tier DBN that used to extract deep feature from the
output of the DAE layer. +erefore, in the hybrid deep
model, the DAE maps the input data into a high-dimen-
sional space, and then two RBM layers project the data into
the low-dimension space and extract deep features layer by

Hidden layer

Visible layer

wij

hj

vi

Figure 6: RBM architecture.

Encoder Decoder

Figure 7: AE architecture.
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layer. Hence, the hybrid model is able to further extract the
intrinsic feature of the input data hierarchically and is re-
sistant to noise within the input data.

4.4. SEI Method via BRT and the Hybrid Deep Model. We
propose an SEI method using the BRT and the hybrid deep
model. +e BRT is applied to extract bispectrum projection
vectors of emitters’ signals, and then the hybrid model is
applied to realize hierarchical feature detection and classi-
fication. +e training of the hybrid deep model has two
phases: the pretraining phase and the parameter fine-tuning
phase. In the pretraining phase, we choose different training
methods according to the modules of each layer. +e RBM
layers are trained using the CD algorithm, and the DAE layer
is trained using the method proposed by Vincent et al. [36].
In the parameter fine-tuning phase, we use backpropagation
to fine-tune the parameters of the entire model. Hence, the
proposed SEI method includes the following four steps:

Step 1 (feature extraction): calculate the bispectrum
projection vectors of the received signal via the pro-
posed BRT method. +en, normalize the bispectrum
projection vectors and divide them into training and
testing sets.

Step 2 (pretraining): use the unsupervised training
method mentioned above to train the hybrid deep
model layer by layer and obtain the initial parameters of
the model.

Step 3 (fine-tuning): use the backpropagation to fine-
tune the parameters of the hybrid deep model based on
the expected results and the output.

Step 4 (individual identification): use the testing set as
the input of the hybrid deep model, and obtain the
identification result. Compare the identification results

with the original labels, and then calculate the iden-
tification accuracy.

5. Experiments and Discussion

5.1. Experimental Settings. In this section, we first introduce
the ADS-B signals and our signal acquisition system. +en,
the preprocessing method of the received signals and the
parameter settings are introduced.

5.1.1. Signal Acquisition. To evaluate the performance of the
proposed SEI model, we conducted a signal acquisition
experiment and the received signals were used to test the
performance of our SEI model.

We chose ADS-B transmitters for civil aircraft as the objects
to be identified. ADS-B is a type of surveillance technology using
satellite and data link technology. Aircraft equippedwithADS-B
systems periodically and automatically broadcast their real-time
flight information, such as speed, altitude, heading, and climb
rate, into the surrounding airspace. Ground stations monitor air
targets in the airspace by receiving and decoding ADS-B signals.
+e most widely used data link in ADS-B systems is the
1090MHz extended squitter Model S (1090ES) data link, using
pulse position modulation (PPM) recommended by the In-
ternational Civil Aviation Organization (ICAO). ICAO has
drafted general technical standards for ADS-B transmitters and
stipulates that each aircraft has a unique aircraft registered
number (ARN).+erefore, it is possible to obtain the ARN of an
ADS-B pulse train by decoding the received pulse train
according to the general standard. After obtaining the ADS-B
signals and its ARNs, we can build a dataset to test the SEI
method. Figure 9 shows a received ADS-B pulse train.

We designed a signal acquisition system, shown in
Figure 10, to receive and store ADS-B signals. Figure 11
shows the structure of the system. +e system includes a
1090MHz antenna, a Tektronix DPO7054 oscilloscope, and
an ADS-B RF front end.+e antenna receives ADS-B signals
transmitted by aircraft in surrounding airspace in real time,
then the RF front end’s power amplifiers and bandpass filters
process the signals, amplifying the ADS-B signals and fil-
tering out environmental noise and other signals. After that,
an oscilloscope shows and stores the ADS-B signals syn-
chronously. +e SEI of the ADS-B transmitters is subse-
quently performed offline on a computer. +e sampling rate
and the bandwidth of the signal acquisition system were
5GHz and 500MHz separately.

We carried out the experiment in Xi’an, China, over two
weeks. We collected pulse trains from six aircraft to create a
dataset for our SEI experiments. +ere are three types of
aircraft within the six aircraft: Boeing 737-89P (A and B),
Airbus A321-214 (C and D), and Airbus A320-232 (E and F).
Figure 12 shows the number of pulses from the six aircraft.

5.1.2. Parameter Settings. According to the general technical
standards, the pulse width of ADS-B signals is 0.5 ± 0.05 μs.
Considering the differences in device manufacturing pro-
cesses, component tolerance, and environmental factors, the
duration length of a single pulse is set to be 0.8 μs, which is

Logistic layer

RBM2

RBM1

SEI features

DAE

Figure 8: Architecture of the hybrid deep model.
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4000 points. As shown in Figure 13, we consider setting the
pulse detection threshold to detect the start of the pulse. +e
following methods are applied to determine the start of each
pulse and obtain the rising edge of the pulses.

First, we detect the maximum amplitude of the pulse,
Amax. +en the position of the point with an amplitude
threshold αAmax could be searched. According to the pulse
width L which is specified in the general standard of the
ADS-B system, the start and the end points of the pulse could

be determined based on β1 and β2. Finally, an ADS-B pulse
with the length of Ls � (β1 + β2)L is obtained. In our ex-
periment, α � 0.4, L � 2500, β1 � 0.2, and β2 � 1.4. We set
the duration of the rising edge to be 0.3 μs, so the first 1500
points were intercepted as the rising edge of the pulse.

Using the received signals, we built a dataset to evaluate
the SEI method. +e dataset consisted of the bispectrum
projection vectors and their labels. +e label of each ADS-B
signal, i.e., the ARN of the aircraft, was deduced by decoding
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Figure 9: A received ADS-B pulse train.
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Figure 10: +e ADS-B acquisition system.
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ADS-B pulse trains. +erefore, signals with the same ARN
were categorized together. +en the bispectrum projection
vectors of the rising edges of the pulses were obtained using
BRT. We divided the dataset into training and testing sets,
putting 50% into the training set.

We used the indirect method with a 128-point fast
Fourier transform to compute the bispectrum distribution of
the rising edges. +e projection angle in the Radon trans-
form is a key parameter affecting the performance of BRT
features, so we sampled at intervals of 5° between 0° and 180°.
+e performance of BRT features with different projection
angles are shown in Figure 14. Finally, we set θ to 45°, which
achieved the highest identification performance. In addition,
before the bispectrum projection vectors input into the
hybrid deep model, we applied a normalization process.

+e performance of the hybrid deep model is highly
dependent on the amount of available training samples, the

architecture, and the hyperparameters.+e dimension of the
bispectrum projection vectors is 185 in the experiment, so
we used 185 units in the input layer. We applied a DAE layer
to map the data to a dimension space three times as large as
the original dimension, so there are 555 units in the output
of the DAE. After that, the DBN consists of two RBM layers
that were applied to compress and project the data to 300
and 100 dimensions. Finally, we used a logistic layer to
determine the category of the input data. +erefore, the
architecture of our model is (185, 555, 300, 100).

Among the hyperparameters, we found the number of
the epochs, the minibatch size, the learning rate, the zero-
masked fraction, and the momentum have a significant
influence on the performance of the model. We therefore
applied a gird search method to tune and select the
hyperparameters of the hybrid deep model. Finally, in the
pretraining stage, we used a learning rate of 0.03, a mini-
batch size of 25, an epoch number of 25, and amomentum of
0.9. +e zero-masked fraction is 10%, which means that 10%
of the input units were randomly set to zero. Besides, in the
fine-tuning stage, we used a learning rate of 0.3, a minibatch
size of 25, and an epoch number of 200.

5.2. Experiments. In this part, we performed comparative
experiments to evaluate the feature extraction and identi-
fication performance of the proposed SEI method. First, we
presented the output of each layer to observe the processing
of the hybrid deep model. Second, we compared the feature
extraction and identification performance of the existing
method and the proposed model. Furthermore, we analyzed
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Power amplifier Power amplifierBandpass filter Bandpass filter Oscilloscope

RF front end

Figure 11: Structure of the ADS-B acquisition system.
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the SEI ability of the proposed model based on the confusion
matrix. Finally, we compared the performance of the fea-
tures under different SNRs.

5.2.1. Validation Experiment. To observe the classification
process of the hybrid deep model, the output of each layer
was projected onto the 2-D plane via the linear discriminant
analysis (LDA) method. Figures 15(a)–15(d) show the 2-D
reduction of the input and output data of each layer.
Figure 15(a) shows that although the input data overlapped,
they were still distinguishable and discriminative. It means
that the BRT features are effective for extracting the UMOP
features. Figures 15(b)–15(d) show that the data are grad-
ually separated and increasingly differentiated layer by layer.
It shows that the hybrid deep model successfully performed
further extraction of the input data hierarchically.

5.2.2. Comparative Experiment. +e comparative experi-
ments evaluate the performance of the proposed model from
two aspects: feature extraction and identification.

In comparison with feature extraction methods, we
compared our method with traditional bispectrum-based
methods and other state-of-the-art methods. +ese methods
were axially integral bispectrum (AIB), surrounding-line
integral bispectrum (SIB), radially integral bispectrum
(RIB), circularly integral bispectrum (CIB), bispectrum di-
agonal slice (BDS), RF distinct native attribute (RF-DNA)
[29, 37, 38], Hilbert–Huang transform- (HHT-) based
postprocessing features [39], and fractal features [40].

AIB, SIB, RIB, and CIB are integral bispectrum features
with different integration paths. Figure 16 shows the integral
paths of AIB, SIB, RIB, and CIB. As mentioned earlier,
bispectrum has shown good performance in extracting
UMOP features. However, the existing bispectrum-based
features have some limitations. First, the integration paths of
AIB and SIB could contain all the bispectrum points, but
subtle energies caused by UMOP are easily drowned in
integral calculation. Second, the comprehensiveness of RIB
and CIB is related to the density of integration paths. +e
integration paths of RIB and CIB make it difficult to achieve
uniform sampling in the process of discrete integral sum-
mation. As shown in Figure 16, if the integration paths are
sparse, some points will be missed, or, if they are dense, some
points will be reused in the adjacent path. Finally, the BDS
features contain only the energy on the diagonal line, so a
considerable amount of energies scattered in other regions is
lost.

RF-DNA features are statistical RF fingerprint features
that extracted from instantaneous amplitude, phase, and
frequency responses [29, 37, 38]. In [29, 37, 38], the RF-DNA
sequences are extracted by (a) segmenting the instantaneous
amplitude, phase, and frequency of the received signals, then
centering and normalizing the segments; (b) calculating the
metrics (i.e., variance, skewness, and kurtosis) of each
segment and the entire region; and (c) arranging the metrics
in a vector form. In our experiments, the received signals
were segmented into 10 segments, so finally we obtained a
full-dimensional N � 99 RF-DNA feature set.

HHT is the well-known technique to deal with nonlinear
and nonstationary signals [39]. In [39], an SEI feature set
named VMD-SF is proposed based on variational mode
decomposition (VMD) and spectral features. +e VMD-SF
feature set includes temporal and spectral features. +e
temporal features are extracted from the Hilbert spectrum of
the decomposed VMD modes, and the spectral features are
extracted from the spectral modes obtained using VMD. In
our experiments, signals were decomposed into three modes
using VMD, so we obtained a full-dimensional N � 18
VMD-SF feature set.

Fractal features have potential in characterizing com-
plexity and irregularity of signals. In [40], fractal features
based on box-counting dimension and variance dimension
are used to distinguish phase noises between emitters. In our
experiments, we applied the method proposed in [40] to
obtain the fractal features of the received signals. +e re-
ceived signals were segmented into 10 segments, so we
obtained a full-dimensional N � 20 fractal feature set.

Figure 17 shows the features extracted from actual ADS-
B signals of six aircraft.

Second, to evaluate the identification ability of the hybrid
deep model, six classifiers were applied for a comparison:
DAE, DBN, conventional neural network (CNN), k-nearest
neighbor (KNN), support vector machine (SVM), and LDA.
+e DAE model used in our experiment has two stacked
autoencoders and a backpropagation layer. +e DAE model
has an architecture of (185, 100, 60). +e DBN model
consisted of two stacked RBMs with an architecture of (185,
120, 60). +e LeNet-5 used in this paper consists of two sets
of conventional and average pooling layers, followed by two
fully connected layers and finally a softmax classifier. +e
size of the input image in LeNet-5 is 28× 28, so we extended
the one-dimensional feature to 1× 784 using cubic spline
interpolation and further reshaped to 28× 28. In addition,
we reduced the dimension of input data via the PCAmethod
before inputting the data into the SVM and LDA. +e ratio
of energy loss in the PCA method is 0.01. A gird search
method was used to tune and select the hyperparameters of
classifiers. +e parameter settings of the classifiers are listed
in Table 1, and the results of the comparative experiments
are shown in Table 2.

Table 2 shows the performance of different features with
different classifiers. Among all the combinations of features
and classifiers, the proposed method based on BRT features
and the hybrid deep model performs best.

Asmentioned above, a bispectrum is a type of higher-order
spectrum that is superior in expressing intrinsic nonlinear
features of signals and reducing environmental noise. +e
bispectrum distribution contains amplitude and phase infor-
mation simultaneously and accurately characterizes nonlinear
components within signals. Gaussian noise can be suppressed
in the bispectrum calculation because the higher-order
cumulant of Gaussian noise is equal to zero. Among the
traditional bispectrum-based features, the RIB andCIB features
have a problem of nonuniform sampling that introduces ad-
ditional errors. +e AIB and SIB have fixed integration paths,
whichmeans it is difficult tomaximize theUMOP difference of
different emitters’ signals. Furthermore, theUMOP features are
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easily drowned in integral calculation. Our previous studies
[41, 42] have proven that the BDS is useful for identifying signal
modulations. However, although a considerable amount of
energy is accumulated on the diagonal line, there are still
significant scattered energies gathered in other regions. +ese
scattered energies contain abundant individual information,
which are lost in the BDS feature. It should be noted that the six
bispectrum-based features are continuous features, while the
RF-DNA, VMD-SF, and fractal features are discrete features
consisting of different metrics. Discrete features such as RF-

DNA, VMD-SF, and fractal features characterize UMOP
through different metrics. But its characterization ability de-
pends on the validity of the selected metrics. In the experi-
ments, we found that the variance metrics, within RF-DNA, of
different aircraft were not distinguishable so does the spectral
roll-off within VMD-SF and the box-counting dimension
within the fractal features. For SEI problems like the identi-
fication of ADS-B emitters, the ultimate goal is to identify
individual emitters discriminatively, even if these emitters
operate on the same frequency and have the same modulation.
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Figure 17: Extracted features of aircraft. (a) BRT, (b) BDS, (c) AIB, (d) SIB, (e) CIB, (f ) RIB, (g) RF-DNA, (h) VMD-SF, and (i) fractal.
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Hence, to achieve stable and effective individual recognition
performance, it is necessary to extract subtle UMOP features
adequately and maximize the distinction between UMOP
features of different emitters. +e proposed BRT extracts
features using the projection of the bispectrum distribution and
characterizes the UMOPwithin the signals. It not only contains
the amplitude, the phase, and the spatial information of the
distribution but also contains all of the distribution details.
Hence, it offers significantly more complete extraction of
UMOP features. In addition, the difference in different
emitters’ signals is maximized by selecting the optimal pro-
jection angle. +erefore, the BRT extracted features contain
more individual signal characteristics and enable the best in-
dividual recognition performance.

Among all the classifiers, the hybrid deep model per-
formed best. Actually, KNN, LDA, and SVM are shallow
learning methods, and it is difficult to use them to extract the
deep structural features of high-dimensional input data.
KNN and LDA are traditional linear classifiers. +e SVM
classifier has some nonlinear learning ability by applying
kernel functions, but it remains a shallow learning algorithm
when compared with the DBN and DAE. Compared with
traditional classifiers, DBN, DAE, and CNN better perform

deep learning of high-dimensional input data. CNN is more
suitable for processing images and may not take full ad-
vantage of the BRTfeatures. +e hybrid model combines the
advantages of DAE and DBN. +e experimental results
demonstrate that the hybrid deep architecture performed
better than the single deep architecture. In the hybrid model,
the application of DAE mapped the data into a high-di-
mensional space and increased the data separability. In this
process, DAE’s recoverability ensured the stability of the
projection result. +en, based on the output of the DAE
layer, the two-tier DBN further extracted intrinsic and
nonlinear features hierarchically. Furthermore, the pre-
training process provided reasonable initial parameters for
the model, and the backpropagation mechanism improved
the discrimination performance.

Consequently, theoretical analysis and experimental
results show that the proposed model achieved satisfactory
SEI performance.

5.2.3. Analysis of Confusion Matrix. +e experimental re-
sults in Table 2 show that the proposed model performed
satisfactorily in identifying ADS-B signals of aircraft. To

Table 1: +e parameter settings of classifiers.

Classifiers Parameters setting

Hybrid deep model
DAE layer

Learning rate 0.03; momentum 0.9;
Number of epochs 25; size of minibatch 25

Fine-tuning stage
Learning rate 0.3;

Number of epochs 200; size of minibatch 25

DBN
Pretraining stage

Learning rate 0.01; momentum 0.5;
Number of epochs 20; size of minibatch 25

Fine-tuning stage
Learning rate 0.5;

Number of epochs 300; size of minibatch 25

DAE

+e autoencoder layers
Learning rate of autoencoder 1 0.1;
Learning rate of autoencoder 2 0.1;

Size of minibatch 25; number of epochs 5;
Activation function “sigmoid”

+e backpropagation layer
Learning rate 0.5;

Number of epochs 60; size of minibatch 25;
Zero-masked fraction 10%

CNN (LeNet-5)

Shape of convolutional layer C1 [1, 5, 5, 6];
Size of subsampling layer S2 2∗ 2;

Shape of convolutional layer C3 [5, 5, 6, 12];
Size of subsampling layer S4 2∗ 2

Learning rate 0.5
Number of epochs 20 size of minibatch 5

SVM
Kernel function “RBF”;

Gamma in kernel function 0.07
Cost parameter 1

KNN Number of neighbors 10 Energy loss ratio in PCA method 0.01
LDA Energy loss ratio in PCA method 0.01

Table 2: +e results of the comparative experiments (identification accuracy in %).

Features
Classifiers

Hybrid deep model DBN SAE CNN (LeNet-5) SVM KNN LDA

BRT 90.25 87.57 86.39 81.06 86.37 83.23 82.16
RIB 83.84 81.89 81.06 76.76 83.52 79.92 77.18
CIB 87.07 85.18 83.16 76.29 84.44 79.97 81.12
SIB 85.59 82.86 81.00 74.16 83.39 78.15 76.36
AIB 84.23 82.45 82.19 72.40 86.09 81.57 81.40
BDS 87.08 85.53 84.03 66.16 85.42 77.67 81.76
RF-DNA 62.36 60.58 85.87 73.26 86.72 87.57 86.88
VMD-SF 65.62 62.34 66.38 62.85 80.37 82.97 77.28
Fractal features 78.25 76.68 63.48 62.29 62.45 80.07 72.34
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further evaluate and analyze the individual identification
ability of the method, especially the identification ability of
the same type of emitters, we analyzed the identification
result in detail.

As noted previously, there were three types of aircraft
within the six aircraft in our experiment. Figure 18 shows the
normalized confusion matrix of the identification result of
the proposed model. It shows that the proposed model
satisfactorily performed SEI. +e identification accuracy
ranged between 85.63% and 94.29%. It is worth noting that
the identification error rate of aircraft of the same type is
higher than that between different types of aircraft, which
agrees with our expectations. Based on the confusion matrix,
we use four evaluation metrics to analyze the performance of
the model further: precision, recall, specificity, and F1 score.
+ese metrics are defined based on the concepts of true
positive (TP), false negative (FN), false positive (FP), and
true negative (TN), as illustrated in Figure 19.

+e definitions of the metrics are as given below:

precision �
TP

TP + FP
,

recall �
TP

TP + FN
,

specificity �
TN

TN + FP
,

F1 score �
2 × precision × recall

precision + recall
,

(17)

where precision refers to the proportion of the correctly
predicted samples in the positive-predicted samples. Recall
refers to the proportion of the correctly predicted samples in
the positive-labeled samples. Specificity refers to the pro-
portion of the correctly predicted samples in the negative-
labeled samples. +e F1 score is a comprehensive indicator
that combines the results of precision and recall. +ese
metrics value ranges from 0 to 1, with 1 representing the best
output of the model. +ese are commonly presented as
percentages between 0 and 100.+emetrics of the six aircraft
are shown in Table 3. All the metrics indicate good success,
demonstrating that the proposed method exhibited satis-
factory performance for individual identification of the six
aircraft.

5.2.4. Further Analysis. We considered evaluating the per-
formance of different features by superimposing Gaussian
noise on the received signals.+e function awgn.m inMatlab
was applied to add white Gaussian noise to the received
signals. Its calling format is y� awgn(x, snr, “measured”),
where x is the received signals, snr is the signal-to-noise
ratio, and the parameter “measured” means that the signal
level of x is computed to determine the appropriate noise
level based on the value of snr. However, it should be noted
that the SNR of the processed signals is lower than the true
SNR of the ADS-B signals due to the noise carried in the
receiving process. +erefore, we define the snr in awgn.m

function as RSNR, which means the received-signal-to-noise
ratio (RSNR). Figure 20 shows the identification accuracies
of features under different RSNRs.+e classifier is the hybrid
deep model. It can be seen from Figure 20 that the per-
formance of the features decreased as the RSNR decreases.
Compared with other features, the BRT feature maintained
higher identification accuracy than other features under
different RSNRs.

5.2.5. Further Analysis. Feature extraction and classifier
selection are two critical factors affecting SEI performance. It
is easy to see in Table 2 that the combination of excellent
individual features and classifiers resulted in satisfactory SEI
performance. But it is worth noting that the difference in
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Table 3: +e confusion matrix metrics (%).

Aircraft
Metric

Precision Recall Specificity F1 score

A 89.08 88.67 97.70 88.87
B 85.35 85.63 97.55 85.49
C 95.74 94.29 99.06 95.01
D 91.59 90.50 98.09 91.04
E 88.64 91.25 97.86 89.92
F 89.76 90.22 98.08 89.99
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performance between features was greater than the differ-
ence between classifiers.+is phenomenon indicates that the
selection of UMOP features is the more influential factor for
SEI performance. +e discriminative UMOP features could
provide a good start for the identification of classifiers.
Excellent UMOP features combined with different classifiers
achieved satisfactory SEI performance, while the perfor-
mance using poor feature expression always remained low.
In future research, we will consider further improvements to
the BRT feature extraction method.

Furthermore, the experimental results from Figure 18
and Table 2 show that the individual identification accuracy
of the proposed method averaged 90.25% using BRTfeatures
of a single ADS-B pulse.+erefore, a significant advantage of
the proposed method is that the individual feature of the
aircraft can be obtained based on a single pulse without
decoding the entire ADS-B pulse sequence. If some ADS-B
pulses are missing or overlapping, the proposed method can
still identify the airplane while the traditional method based
on PPM decodingmay not be able to do so. Furthermore, the
receiving process can accept multiple ADS-B pulses received
continuously. +erefore, it is possible to improve the con-
fidence of the identification results by fusing the identifi-
cation results of several continuous pulses.+is is part of our
future work.

Our proposed method is not only applicable to iden-
tifying ADS-B emitters in civil aviation but is also usable for
other SEI application, such as the identification of airborne
fire-control radar and shipborne warning radar. Many
other emitters behave differently from ADS-B transmitters.
+eir individual information is not contained in their
intentional modulation, so the identifying information of
these transmitters cannot be determined solely from their
modulation modes. However, with sufficient training
samples, our proposed method can successfully identify
these emitters.

6. Conclusions

Feature extraction and classifier selection are critical factors for
realizing SEI. In this paper, we propose an SEI method using
bispectrum theory and deep learning models. +e proposed
method extracts the UMOP features via BRTand uses a hybrid
deep model to perform deep feature extraction and dis-
criminative identification. Experimental results show that BRT
was superior in characterizing UMOP and that our proposed
method achieved satisfactory SEI performance with ADS-B
emitters. Owing to the satisfactory performance of the pro-
posed method, we have considered further investigations
improve the confidence of the identification results by fusing
the identification results of several continuous pulses. We also
plan to investigate the performance of our proposedmethod in
other SEI applications.
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