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I. INTRODUCTION 

Heavy flavor physics is now extensively studied exper- 

imentally at both e”e- and hadronic colliders. Exper- 

iments at 2” have led to the availability of new data 

on the profiles of jets initiated by~heavy quarks [1,2]. 

Further progress is expected &rn the measurements at 

the CERN e+e- collider LEP 2 and, especially, at a fu- 

ture linear e+e- collider. The principal physics issues of 

these studies are related not only to testing the funda- 

mental aspects of QCD, but also to their large potential 

importance for measurements of heavy particle proper- 

ties: lifetimes, spatial oscillations of flavor, searching for 

CP-violating effects in their decays, etc. Properties of 

b-initiated jets are of primary importance for analysis of 

the final state structure in t$ production processes. A 

detailed knowledge of the &jet profile is also essential for 

the Higgs boson search strategy. 

The physics of heavy quarks has always been consid- 

ered as one of the best testing grounds for QCD. Despite 

this, not many attempts to derive self-consistent pertw 

bative theory (PT) results for the profiles of heavy quark 

jets have appeared so far. This paper is aimed at a con- 

densed presentation of the part of the results of the long- 

term Leningrad-St. Petersburg QCD group project’ that 

concerns PT analysis of the inclusive energy spectra of 

heavy quarks. 

The .&ction of this subject is motivated by the follow- 

ing topical questions: (i) To what extent can the heavy 

quark distribution be treated as a purely perturbative 

‘On leave of absence from the Institute for Nuclear Physics, 

St. Petersburg, G&china 188350, Russia. 

‘For some basic references, see [3-81. 
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(infrared safe) quantity? (ii) Can we describe the gross 

features of jets initiated by heavy quarks without invok- 

ing phenomenological fragmentation schemes? (iii) What 

kind of information can be extracted from the measure- 

ments of heavy quark energy spectra and, in particular, 

ftom the scaling violation effects? 

There are two ingredients of the standard renormal- 

ization group (RG) approach to the description of the 

energy spectra of heavy flavored hadrons HQ. Here one 

starts from a phenomenological fragmentation function 

for the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Q(z) -+ HQhf) (1.1) 

transition and then traces its evolution with the annihila- 

tion energy W by means of PT QCD. Realistic fragmen- 

tation functions [9] exhibit a parton-model-motivated 

maximum at (hereafter M is the heavy quark mass) 

const 
I.-%,%---. 

3: M 

Taking gluon radiation at the PT stage of evolution into 

account would then induce scaling violations that soften 

the hadron spectrum by broadening (and damping) the 

original maximum and shifting its position to larger val- 

ues of 1 - 2~ with W increasing. 

This approach has been successfully tried by Mele and 

Nason [lo], who have studied the effects of multiple soft 

gluon radiation and have been looking for realistic frag- 

mentation functions to describe the present day situation 

with heavy particle spectra and to make reliable predic- 

tions for the future. Being formally well justified, such 

an approach, however, basically disregards the effects 

that the finite quark mass produces on the accompany- 

ing QCD bremsstrahlung pattern, since the W evolution 

by itself is insensitive to M (save the power-suppressed 

M2/W2 corrections). 

At the same time, as far as one may consider M a 

sufl?ciently large momentum scale, it is tempting to carry 
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out a program of deriving the predictions that would keep 

under PT control, as much as possible, the dependence 

of HQ distributions on the quark mass. 

In Sec. II we present and discuss the PT formula for 

inclusive quark spectra D(z; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW , M) that in the QED case 

would give an unambiguous &order-improved hbsohte 

prediction for the inclusive energy distribution of muons 

produced in 

e+e- + p*(z)@ + “’ . (1.2) 

Given an explicit dependence on rn,,, one may theoret- 

ically compare, say, the p and 7 spectra, a goal that, 

generally speaking, cannot be achieved within the stan- 

dard “evolutionary” framework. 

In Sec. III the topical questions listed above are ad- 

dressed. We discuss the problem of “infrared instabil- 

ity” of the PT quark spectra and suggest a solution 

of this formal difficulty based upon the notion of an 

“infrared regular” effective coupling. Having regular- 

ized the PT expression in this way, we observe that the 

gluon bremsstrahlung effects (Sudakov suppression of the 

quasielastic~ kinematics I --t 1) lead to particle spectra 

that have a’ similar shape to the non-PT fragmentation 

function. 

An emphasis of the role of PT dynamics has been suc- 

cessfully tested in studies of light hadron distributions in 

QCD jets. Prompted by the s~&ess of the MLLA-LPHD 

approach [ll], we consider an option ‘of describing the 

gross fetitures of heavy-quark-initiated jets entirely by 

means of PT QCD, withdut invoking any fragmentation 

hypothesis. 

The LPHD philosophy would encourage us to continue 

the PT description of an inclusive quantity down to small 

momentum scales and with the hope that such an ex- 

trapolation~ of the quark-gluon language would be dual 

to the sum &er all possible hadronic excitations. For 

the problem under consideration, such an approach could 

describe the energy fraction distribution averaged over 

heavy-flavored hadron states, the mixture that naturally 

appears, e.g., in the study of inclusive hard leptons. 

In Sec. IV, we report results on.the’comparison,of the 

PT predictions with the measured c and b energy losses at 

different annihilation energies. Fitting’the rate of scaling 

violation in (z)(W) results in the QCD scale parameter 

A that, after being translated into the popular modified 

minimal subtraction (MS) scheme, agrees with the values 

extracted from other studies. On the other hand, the ab- 

solute values of (z,,b) at a given energy are mo&t sensitive 

to the behavior of the radiation intensity, say, below l-2 

GeV. 

Limited experimental information does not at present 

allow us to disentangle various possible shapes of a:” 

near the origin. At the same time, a quite substantial 

difference between (re) and (~6) fits nicely into the PT- 

controlled mass dependence, provided the characteristic 

integral of the effective coupling over the “confinement” 

region assumes a fixed value: 

2 Ge” dk4”(k) 
-  u 0.38 GeV 

?r 

(with k the linear momentum variable). Given this value, 

one may predict the differential c and b energy distri- 

butions at arbitrary W , predictions which prove to be 

unaffected in practice by our ignorance of the detailed 

behavior of a:” in the small momentum region. 

In Set V th& results of the study are discussed and 

conclusions are drawn. 

A detailed derivation of the master formula for the 

inclusive heavy’ quark energy spectrum is given in the 

Appendixes. In Appendix A the problem of running cow 

pling in the perturbative radiator is dealt with. Appendix 

B is devoted to second loop effects in the anomalous di- 

mension. 

II. PERTURBATIVE ENERGY SPECTRUM 

OF LEADING QUARKS 

We denote the cm. system (c.m.s.) annihilation en- 

ergy by W, and M E mW is the quark mass. Here we de- 

scribe perturbative QCD results for the inclusive energy 

spectrum of heavy quarks, D(z; W , M), CT z ~EQ/W , 

produced in e+e- + Q(I) + &+ light parton% 

This function has the following properties: It embodies 

the exact Srst ordei results 1121 D(l) = u,f(z;m), and 

as a consequence, it has the correct threshold behavior at 

1 - 2n < 1; in the relativistic limit rn << 1, it accounts 

for all significant logarithmically enhanced contributions 

in high orders, including (1) running coupling effects, (2) 

the two-loop anomalous dimension, and (3) the proper 

co&fficient function with exponential Sudakov-type loga- 

rithms, which are essential in the quasielastic kinematics, 

(1 - 2) < 1; it takes.into full account the controllable de- 

pendence on the heavy quark mass that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmakes possible 

a comparison between the spectra of b and (directly pro- 

duced) c quarks. 

By “threshold behavior” we mean here the kinemati- 

cal region of nonrelativistic quarks, IW  - 2A4 N M, in 

which gluon bremsstrahlung acquires additional dipole 

suppression. At the same time we will not account 

for the Coulomb effects that would essentially modify 

the production cross section near the actual threshold, 

W  - 2M < M [13]. 

We are mainly interested in the “leading” energy re- 

gion of I of order of (or close to) unity. For this reason we 

disregard in what follows potentially copious production 

of Q& pairs via secondary gluon splitting,2 i.e., sing@ 

sea contribution, as well as the specific Q + Q + QQ 

transition that appears in the nonsinglet anomalous di- 

mension beyond,the first loop (for a review see [14] and 

references therein). 

Therefore the quark distribution we define below will 

satisfy the sum rule zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

J 
1 

dzD(z;W ,M) = 1. (2.1) 
2m 

‘Apart from the integral effect of the unregistered pairs em- 

bodied into the running coupling; see below. 
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The accuracy of the PT prediction described in this paper 

is 

D(s; w, i%f)[1+ O(L+] (‘w 
with m, the standard Born cmss section factor. 

We define the normalized inclusive energy spectrum as 

This expansion is uniform in z; that is, the a: correction 

does not blow up (neither as a power nor logarithmically) 

when (1 -z) + 0. 

do -1 = 
m; w, w = Fttot z - 

J 
-%-jDj(W,M) , r 2ni zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(2.4) 

A. Deflnition of the leading quark distribution 
where the contour I? runs parallel to the imaginary axis 

in the complex moment j plane. 

Aiming at an exact account of the first order QCD 

The inclusive cross section for single-particle produc- effects, we include in ntot the first a. correction to the 

tion in e+e- annihilation is conveniently written in terms annihilation crms section, which in the case of relativistic 

of structure functions as, e.g., 114) quarks reads 

(Ttot = uo[l + ;&a + O(aZ)], 4w 
a = a(W2) S y, CF = s = ; 

c 

With tbis definition, the structure functions ?= in the moment representation become 

Fm(j) = c&)(1 - qcFa[j-* - l])Dj[l + O(u2)] , 

CL(j) = cp&, CT(j) = 1+ @aj-1, cz(j) = 1- ;cFaj-l 

B. Radiator 

The in&grand of (2.4) may be written in the exponential form as 

(2.5) 

(2.6) 

where the “radiator” &u/&c originates from the improved tist order gluon emission probability, in which finite mass 

and running coupling effects have been included.3 The corresponding expression reads 

+ (-‘(I -z)] - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa’(t)(l - z) + a’(t)A(‘)(z)} (2.7~~) 

(2.7b) 

Here the two characteristic momentum scales have been introduced: 

(2.8) 

with 

3Detailed derivation of the radiator is presented in Appendix A; see also 171. 
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The following notation was also used: 

The radiator (2.7) vanishes at 

(2.9) 

2 = rmin E 2m; 
( 

p(z,;,) = 0, &2 = wdll-:$ = KZ) , 

thus justifying the lower kinematical limit in Eq. (2.6). 

1. Relativistic approximation 

In the relativistic approximation, rn < 1, we set v = /3 = C = 1 to get a simplified expression 

/“’ ${a(t)P(z) - a’@)(1 - z) + a’(t)A+)} + a(@) (2 + &} + a(~~) {e} ( (2.10a) 

z+ 

QZ = W%(l -z), K2 = M2(1 - z)Z/z ( (2.10b) 

where C. Logarithms and their exponentiation 

(2.11) 

The integration variable t determines the physical hard- 

ness scale of the running coupling and is related to the 

transverse momentum of the radi&m4 In the dominant 

integration region, 

kr < W=, t=x.k:. (2.12) 

The lower limit t 2 tc2 sets the boundary for the essential 

gluon emission angles: 

This restriction manifests the “dead cone” phenomenon 

characteristic for bremsstrahlung off a massive particle. 

It is largely responsible for the differences between radia- 

tive particle production in jets produced by a light and a 

heavy quark (excluding the decay products of the latter); 

see [4-61. 

Singularities of the radiator (2.7) at I = 1, when driven 

through the inverse Mellin transform (2.4), (2.6), give 

rise to ln(1 - z) terms. Bearing this in mind, one may 

represent the term-by-term structure of the radiator by 

the symbolic expression 

(2.7a) ==+ a(CS + 52) + ac + a% 

+[a% + ayes + SZ)] ) (2.13a) 

(2.7b) =+ aS + aS + aS , (2.13b) 

where C = In W/M and S = In l/(1 - z) represent large 

logarithms that usually reflect enhancements due to qua- 

sicollinear and soft gluon radiation, respectively. As we 

shall see shortly, under the ‘Lphysical” definition of the 

QCD coupling the last second order term in (2.13a) is 

free from the double-logarithmic contribution (the un- 

derlined piece) so that the “convergence” of the PT ex- 

pansion (2.13) is improved. 

Exponentiation of collinear logarithms follows from the 

general factorization theorem.’ Arguments in favor of 

‘This applies to C-contaminated terms of (2.13a) as well as 
to the last contribution in (2.13b), which actually is due to 

4For the spacelike evolution, a similar relation holds [15] with hard gluons collinear to the Q momentum (the “backward jet” 

0-l substituted for z in (2.12). correction (71). 
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exponentiation of aS2 + a.9 contributions according to 

(2.6) have been given in [7], motivated by the factor- 

ization property of soft bremsstrahlung. Expoeentiation 

of nonlogarithmic 0(a) corrections, corresponding to the 

terms in the nonintegral part of the radiator (2.7a) that 

are regularatl(l -z) + 0, is questionable (indeed wrong) 

and unnecessary within the accuracy adopted [see (2.2)]. 

Keeping such terms in the exponent is a matter of choice. 

We do so just to simplify the result and make the normal- 

ization sum rule (2.1) automatically satisfied, D+l = 1. 

When translated into the standard language of the 

RG-motivated approach, the integral part of the radiator 

(2.10) may be said to embody the anomalous dimension 

together with (a part of) the correction to the hard cross 

section due to the z-dependent factor in the upper inte- 

gration limit: 

J w’z(1-5) $+)P(z) = jwx $+)P(z) + a(W)P(z) ln[z(l -z)] + 0 (a21;z(1; “)) (2.14) 

Nonuniformity of such an expansion with respect to the 

potentially large logarithm, In(1 - z), explains why we 

preserve the exact kinematical limits in (2.7). By ne- 

glecting the last term in (2.14), one would lose control 

of the a2S3 terms. Such contributions formally belong 

to the second order correction to the hard cross section 

and therefore lie beyond the reach of the two-loop RG 

analysis. In the meantime, such ignorance would un- 

dermine the possibility of keeping track of essential first 
subleading corrections, anlog2”-‘, at the level of run- 

ning coupling effects in the quark form factor (Sudakov 

suppression). 

Let us stress that Eqs. (2.6), (2.7) solve the problem 

of au-order resummation of soft radiation effects both in 

the hard mm section6 and in the coeficient function, 

which is at low-momentum scales 6’ o( M2. In particu- 

lar, the term in (2.7b) proportional to a(&‘) (which is W 

independent and therefore gets lost in the standard eve- 

lution approach) accounts for the exponentiated contri- 

bution &xn soft gluons at small emission angles 0 < 00, 

k: << M’, the dead cone subtraction effect. Notice that 

the similar term proportional to a(&‘) (which does be- 

long to the hard cross section corrections) is due to the 

dead cone subtraction in the backward jet. 

D. Second loop effects 

The preliminary result of [7] is improved by taking into 

full account effects of the two-loop anomalous dimen- 

sion embodied in the a’ and A@) of ,(2.7a). We prefer 

to treat these two terms separately, as the former natu- 

rally emerges in the dispersion relation approach to defi- 

nition of the running coupling [17]. It shows that beyond 

the tist loop the “soft” and “hard” parts of the Gribov- 

Lip&w-Altar&-Paisi (GLAP) splitting function (2.11) 

in the anomalous dimension actually acquire different 

physical interaction strengths 1151: 

7(l) = 1 +r2 a= ===s 7(Z) = a& + [a - a’](1 - z) 

The actual expression for A depends on the renormalization scheme chosen for the one-loop coupling. It may be fixed, 

e.g., by matching with the known two-loop &% result for the nonsinglet fragmentation function. To this end one has 

to consider the W-dependent part of the relativistic radiator (2.10), 

c-l* = 

s 

W%(l-2) & 

F dx 
t{a&)P(z) - a’(t)(l -I) + a2(t)Ag(z)} 

-2a:+22 
1-a: 2(1-z) 

+ const + 0(2(W)) , 

and, with account of (2.5) relating D to the structure fun+ms, compare the scaling violation rate according to (2.6), 

(2.15) with that computed in [18-201. 

By doing so (see Appendix B) one arrives at (Ca = N, = 3, 2’~ = $) 

A#) = P(z)n: + 6@)(z) , 

BFor a review of such resummation programs, see, e.g., [16] and references therein. 
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(2.16b) 

(2.16~) 

The V term is responsible for the difference between the 

timelike and spacelike anomalous dimensions. Explicit 

expressions for V(I) and R(z) are given in Appendix B. 

I. Introducing the physical coupIing8 

In the z + 1 limit, Ag [Eq. (2.16)] peaks together 

with P(z) 0: (1 - x)-l. At the same time, .&@) is less 

singular in this limit: 

V(z)/A(“)(z) cx (1 - z)ln(l -z) , 

R(z)/A(~)(z) rx (1 - 2)” . 

As far as large quark energies are concerned, 110/(1-z) > 

1, the 6@) term constitutes a small correction. Thus 

the major part of the two-loop effect according to (2.16) 

reduces to a finite renormalization of the leading term 

aP(z). This naturally suggests absorbing the correction 

by introducing the “physical” effective coupling accord- 

ing to 

a&‘(s) + a’A$&) 

= a.&+) +26(2)(z) + O(2) , (2.17a) 

a.* = aF;is(l + ale), am = a&( 1 - a,& (2.17b) 

Equation (2.17b) relates the scale parameters A of the 

two schemes. This relation within two-loop accuracy 

reads 

lrlA& = 

Our A,* coincides with the h~c introduced by Catani, 

Marchesini, and Webber in [21]. 

.?A Quark thresholds in the running coupling 

One additional comment is in order concerning the 

essence of a:*. In spite of the formal equivalence of 

the two representations (2.17a), the former one is phys- 

ically preferable since L\@)(z) is i&x from an ill-defined 

quantity nf representing the number of “active” quark 

flavors. The t integration in (2.7) runs over a broad re- 

gion that is sliced by the finite quark mass scales. Natu- 

rally, one has to increment nf when passing such a scale, 

e.g., q = 3 + nf = 4, when going through t = 1.5 

GeV. 11, has to be redefined by adjusting to a new 

,&function value, and Am should be changed accord- 

ingly. The problem appears to be entirely technical, 

however, and reflects a deficiency of the MS prescrip 

tion as one of the schemes based upon the dimensional 

regularization technique that eventually treats fermiom 

as massless particles: The discontinuous behavior of A 

and A gets compensated in the physical combination 

(2.17a) that emerges in the full two-loop anomalous di- 

mension. It is worthwhile to notice that our convention 

[nt-independent A@)(z), the scale parameter A defined 

by (2.18)] is in accordance with the Brodsky-Lepage- 

Mackenzie (BLM) prescription [22] for optimizing the 

choice of “physical coupling.” 

For argument’s sake, one may once again invoke the 

QED example (1.2). In this context, an application of 

the m scheme would reveal the same problem with the 

lepton thresholds (e,/1,7, etc.), while a,~ would be noth- 

ing but the physicalrunning QED coupling, the one given 

by the Euclidean photon renormalization function 23(t) 

that is unambiguously linked by the dispersion relation 

to fermion pair production (with the finite fermion mass 

effects fully included). 
The improved one-loop expression for a,~ accountjng 

for finite quark mass effects reads (for a detailed discus- 

sion, see PS]) 

+Gw) (P < MC) , (2.19a) 

II 
= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAln(Q’/M,? - 5, Q >> Ms, 

2Q2/5Mj, Q <M;, 
(2.19b) 

where fil accounts for gluon and massless quark contri- 

butions (01 = ba,,,+ = 9) and II is the standard fermion 

loop polarization operator known from the mid-1950s [see 

below Eq. (3.24)]. According to (2.19b), heavy flavors 

decouple at low momentum scales (as they ought to). In 

the “ultraviolet” regime, II acquires a constant subtrac- 

tion Tom the leading logarithmic behavior, which term, 

if treated as the two-loop correction, explains the nf- 
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dependent piece of the K factor (2.16b) that enters the 

relation (2.1’7b) between the physical and m couplings: 

-$& = &(-i). 

3. A@) is practically negligible 

As an estimate of the magnitude of the i\@) correction, 

we present its contribution to the second moment j = 2 

that describes quark energy losses: 

CJ?{ampj(l + UK) + a’dy)} zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

= CFPj{CZ&  + a26j} + O(a3) , 

= -0.1735 . (2.20) 

Being numerically very small already for j = 2, the rel- 

ative correction 6j continues to fall as j-’ with j in- 

creasing. Therefore in practice one may use (2.7) with 

A(‘) E 0, provided the physical effective coupling (2.1’7b) 

is used. 

E. Axial vs vector currents in Qo production 

The master equation (2.7) has been written for the case 

of Qa production via the vector current, in which case 

C=&$ = 1+ 2m2 = g3 - v”) 

This factor tends to 1 in the relativistic limit rn + 0, 

but depends otherwise on the production channel (see 

Appendix A for details). It is worthwhile to note that 

beyond the leading twist approximation, generally speak- 

ing, there is no way to define the universal fragmentation 

distributions that would be independent of the pmduc- 

tion stage. The origin of such nonuniversality (that shows 

up at the level of a,& Inn’ terms) may be traced back 

to the process-dependent radiation of hard gluons:’ 

du 0: w&o, rn (1 -  s)dr . 

In practice, we have to deal with a mixture of vector and 
axial production currents. In the pure axial case C should 

be substituted by 

‘Both the “soft” and “semisoft” terms of the radiation spee- 

trum, cc wp’du, and rn ldw, remain universal [23,24]. 

In addition, the 6-‘(1 - z) term in (2.7) acquires an 

extra mass correction factor (1 + 2m’). Both this effect 

and the difference between CV and [A are proportional to 

rn2 = (M/W )2. We conclude that the difference between 

the radiation spectra in V and A channels vanishes as 

(1 - v’) in the relativistic case, while for nonrelativistic 

quarks, v < 1, the axial contribution to the cross section 

is relatively suppressed as A/V - u2. 

Therefore (2.4)-(2.7) may be used in practice for the 

realistic V + A mixture, in particular, at the 2” peak. 

III. HADRONIZATION AND INFRARED 

FINITE a. 

In the QCD context the non-PT phenomena inevitably 

enter the game. It is important to stress, however, that 

the strong interaction not only determines the hadroniza- 

tion transition (l.l), but also affects to some extent the 

quark evolution stage: The high order effects embodied 

into the running zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcoupling seem to undermine the very 

possibility of the PT analysis. 

It is often believed that the large quark mass M > A 
provides a natural cutoff, which keeps the relevant space- 

time region compact enough to avoid the truly strong, 

non-PT interaction in a course of the quark evolution. 

To illustrate the point we invoke a rough estimate that 

follows immediately from (2.6) and is valid for numeri- 

cally large z values in the double-logarithmic approxima- 

tion 171, 

qz; w, M) cc (1 - .)cFac-1 , 

with Ac the characteristic evolution integral: 

(3.h) 

At= I 
(1-a)w2 dk; a,(kJ 

(1-2)1&,f* k:n . 
(3.lb) 

In the fixed coupling approximation, we would get 

xexp -@nZ(l-z) 
{ 1 

. (3.2) 

In the small coupling regime C&a,/?~)ln $ < 1, this 

distribution exhibits a sharp peak at large 2 followed by a 

steep falloff in the I + 1 limit due to the double logarith- 

mic Sudakov suppression. One expects a qualitatively 

similar shape for the heavy hadron spectrum due to the 

Q + HQ transition from parton model consideration [25] 

which lead to the so-called Peterson fragmentation func- 

tion [9] 

(3.3) 

4Y2 
N= +[l + O($)] 
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This function peaks at 1 - I c el/’ < 1, leading to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD. = D.[kl > P’]D!~) 3 3 2 (3.5a) 

(I-  5)rragm = “Q ; v2 2 (lmQ1 - l)[l + O(@)] 
In other words, we split the radiator into two pieces cor- 

responding to large and small transverse momentum re- 

gions (t z kf for 3: close to 1): 

(3.4) 

g = z[ki > $I+ {g} 
(C) 

[k: I$] . (3.59 

A. Peterson fragmentation function This formal separation becomes informative if one is al- 
vs integrated coupling lowed to choose the boundary value /I well below the 

quark mass scale (e.g., ~1 = 1 GeV providing p/M < 1 

One may single out effects of the non-PT momentum for the b quark case). Within such a choice only z close 

region by factorizing the D spectrum in the moment rep- to 1 would contribute to wee). For illustrative purposes 

resentation (2.6) into the product of the “safe” PT part let us neglect subleading p/M effects and retain the most 

and the “confinement” factor: singular term only to get an estimate 

One arrives at 

l&c) M 
I 

o/M 
3 0 

dZ[(l - z)j-l - 11~ 
I 

pa dt ~CF 
-4)y  

[rM)Z t 

(3.6a) 

(3.6b) 

It is important to stress that it is the first “confinement insensitive” factor of (3.5a) only that depends on W. Therefore 

the ratio of the moments 

Dj(WWlDj(%W (3.7a) 

as a function of W and the heavy quark mass is expected to be an “infrared-stable” PT prediction. Another message 

one receives observing the structure of the radiator (2.7) is that the ratio of the moments for diflwent quarks, 

Dj(WMdIDj(W,Mz) > (3.7b) 

should tend to a W-independent confinement sensitive (sic) constant in the relativistic limit W > MI, Mz. 

We proceed with the estimate of the “confinement” factor (3.6b). As far as p/M may be treated as a small 

parameter, for finite moments j .-a 1, ~/L/M < 1, 

(3.6) 

with 

(3.9) 

In particular, for the energy losses j = 2, one has 

In@ ) z l,+$c) = -2Cpg [1 + 0 ($)I , (#’ = ‘=p { -2cF$} ’ (3.10) 

If (3.8) were applicable for all j, the inverse Mellin transform would result in a singular distribution 

D(Z)(~) = S(z -  (cz)‘) (3.11) 

This singularity gets smeared when a proper treatment is given to the large j region. To tbis end one may use a simple 
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expression that interpolates between (3.8) and the correct logarithmic %ymptote of the %mfinement radiator” in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(3.6): 

In Dtc’ 3 
Pa -2cr zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 (3.12) 

As a result, a distribution emerges that peaks around I = (2) cc) and is rather similar in shape to (3.3). The extreme 

I + 1 asymptote is determined by the region of parametrically large moments (j) K (1 -z)-’ > M/p. It is different 

for two regimes: 

a.(O) > 0, InDy) - -C, y ln’ (j;) ==%. D(z) c( 
exp{-C&,(0)/2?r] ln2(1 - z)} 

1-X 
(3.13a) 

a,(O) = 0, lnD,!C) N -2C&,ln (j$) ===+ D(z) cc (1 - z)-2cF=0-1 , (3.13b) 

. 

I 

where, in the latter case, 

(3.14) 

Reproducing the concrete behavior of the Peterson func- 

tion (3.3) in the large r limit, C(z) - (1 - z)‘, would 

require 20 = i in the second regime (3.13b). We con- 

clude that the particle distribution originating from (3.6) 

is capable of reproducing the gross features of the popu- 

lar Peterson fragmentation function (provided, naturally, 

that the notion of the infrared regular effective coupling 

is implanted in the PT-motivated “confinement” radia- 

tor). 

An important message comes from comparing the en- 

ergy losses that occur at the hadronisation stage. Based 

on the pickup hadronization picture, the characteristic 

parameter E in (3.3) has been predicted to scale [9] as 

cQ rn (2)’ cc M-’ 

(with mp the quantity of the order of the constituent light 

quark mass). Confronting (3.4) that (up to a logarithmic 

factor) scales as ,& with the PT prediction (3.10), we 

get 

= 1 -exp 
{ 

-2c$} 

Tz 2cp5, 

which justifies the expected scaling law.’ 

%nilar behavior was advocated recently by Jaffe and Ran- 
dall (261 who have exploited the difference between the hadron 
and heavy quark masses as a small expansion parameter. 

It is worthwhile to remember that neither the Peterson 

function nor our PT-motivated “conl?nement” distribu- 

tion is an unambiguously defined object. The former as 

an “input” for the evolution is by itself contaminated by 

gluon radiation effects at the hard scale t - M2 that 

are present even at moderate W 2 2M. On the other 

hand, D[ki 5 $1 crucially depends on an arbitrarily in- 

troduced separation scale p that disappears only in the 

product of the factors responsible for “PT” and “non- 

PT” stages (3.5a). Neyertheless, bearing this in mind, 

one may still speak of a direct correspondence between 

these two quantities, namely, C(z) in the j representation 

and Dee) as given by (3.6). 

This’ means that instead of convoluting phenomeno- 

logical C(z) with the W-dependent “safe” evolution- 

ary quark distribution, one may try to use consistently 

the pure PT description that would place no artificial 

separator between the two stages of the hadroproduc- 

tion. On first sight,, one gains not much profit substitut- 

ing one non-PT object, the phenomenological fragmen- 

tation function C(z), with another unknown, namely, 

the behavior of the effective long-distance interaction 

strength a,(k) (at, say, k 5 2 GeV). There is, how- 

ever, an important physical difference between the two 

approaches: a. should be looked upon as an miver- 

sal process-bidependent quantity. Therefore quite sub- 

stantial differences between inclusive spectra of c- and 

b-flavored hadrons should be under complete control ac- 

cording to the explicit quark maa dependence embodied 

in the PT formulas. 

B. Modeling the coupling 

To study the i+med sensitivity of PT results, one can 

try different shapes of the effective coupling or, equiv- 
alently, different ways to extrapolate the characteristic 

function 

E(Q2) = j” $+ + const (3.16) 
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to the “confinement” region of small Q’. Using the one- 

loop expression for the coupling, 

4 ~:*‘w = 2a(‘)(k2) = 
bln(k2/A2)’ 

,,=“N -zn 
x 3 = 3 ’ ’ 

(3.17) 

for [, one gets 

(3.22a) 

which corresponds to the effective coupling 

a!‘)(k) = $;;f;’ 
?r 

p’(k2) = ; In In $ + const , (3.18) 

which expression is defined only for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk > A. 

For the two-loop effective coupling, we use the stan- 

dard approximate expression 

c@‘(k) = a!“(k) l- 
( 

b1 In ‘;$‘/*‘) $) (k)) , 

(3.19a) 

with 

This expression preserves the perturbative asymptotic 

form (3.17) up to power corrections A2p/Q2p. Notice 

that the effective coupling (3.22b) with C, = 1 has a fi- 

nite limit (Y~(O)/?T = 4p/b, while for C, > 1 it vanishes 

at the origin. 
For the two-loop coupling, one substitutes, in (3.20), 

bI = $N: - (YN, + 2C~)n, (3.19b) 

and a?) given by the one-loop formula (3.17). The ana- 

lytic expression for t then reads 

~(2)(k2)=~(In~+~~)+const, L~ln$. 

(3.20) 

~*l;,=;ln(~+Cp) , (3.23a) 

which results in 

a?‘(k) _ d@(k2) 

- = dlnk2 57 

= k,~~pna,] $ (1- 22) ., (3.23b) 
1 

1. F model 

The simplest prescription which we refer below as the 

F model consists of freezing the running coupling near 

the origin. One follows the basic PT dependence given 

by either (3.17) or (3.19a) down to a certain point k,2 

where the coupling reaches a given value 

nial shapes of the effective coupling in the Gz model 

(G model with p = 2 and the two-loop a, with nf = 

5 massless flavors) are displayed in Fig. 1 for different 

values of the parameter C,. Crosses mark the curve that 

provides the best, fit to mean energy losses (see below). 

(3.21.a) 

and then keeps this value down to k2 = 0. c then takes 

the form 

= t(k’) - c(kf), kZ > k,” , 

(3.21b) 

E(k’) = Aln(k”/k:), k2 < k,2 , 

with k, related to A by (3.21a). 

2. G model 

The set of Gp models (generalized shift models) gives FIG. 1. Wal shapes of a”.” in the Ga model (two loop, 

another more flexible example for the trial effective cou- nf = 5). Marked by crosses is the best-fit coupling. For 

pling. It emerges when one regularizes the evolution func- comparison the best-fit F-model coupling (A = 0.19) is shown 

tion (3.18) as with a dashed line. 
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3. Quark threrrholds zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

When it comes to an accurate account of heavy quark 

thresholds in aa, we modify the logarithmic denominator 

of c$(k2) in (3.19a) according to (2.19) as 

with 

(3.24a) 

(3.24b) 

Given infrared regular behavior of a:“, numerical eval- 

uation of the inverse Mellin transform (2.4) with the PT 

radiator (2.7) becomes straightforward. The inclusive en- 

ergy heavy quark spectrum obtained along these lines is 

concentrated (has a sharp maximum) near z4 = 1 at 

W > 2M and softens due to gluon bremsstrahlung ef- 

fects with W increasing. One achieves a similar soften- 

ing, increasing the radiation intensity in the PT domain 

(by taking a larger value of A) and/or at small momen- 

tum scales (by varying the “confinement parameter” of 

the model; larger A, smaller C,). 

Since available experimental information on differen- 

tial heavy quark spectra is rather scarce at present (and 

possibly contradictory), we restrict ourselves by consid- 

ering the mean energy losses, which, as we have discussed 

above, can be studied to quantify the influence of non-PT 

effects. 

The value of (ZQ) = D&F’, M)’ shows quite a strong 

variation with A/C. However, from the general factor- 

ization argument (3.7a), one would expect the energy 

dependence of (5~) to stay well under PT control. As 

demonstrated in [27], the normalized quantity 

(W)(w)/(~Q)(wO) (3.25) 

is indeed practically insensitive to the variation of the 

“confinement parameter” of the model. Therefore the ra- 

tio (3.25) may be looked upon as an infrared-stable quan- 

tity suitable for measuring A as has been suggested by 

Msttig [l]. 

The position of the peak in the energy distribution 

seems to give another less trivial example of a stable pre- 

diction. Once again, as in the case of (zQ), the absolute 

value of the peak position depends strongly on the cho- 

sen A value. At the same time the nonalized quantity 
I,,~&W)/Z~~~(WO) exhibits much weaker A/C depen- 

dence than the PT-controlled dependence on A [7,8]. 

Thus the W  evolution (scaling violation) in quark en- 

ergy losses (Zr) (W ) allows one to extract the scale pa- 

rameter A which value proves to be practically insensitive 

to the adopted scheme of a;* extrapolation. At the same 

time the absolute values of (19) are quite sensitive to the 

gross effective radiation intensity below l-2 GeV, which 

makes it possible to quantify the corresponding “confine- 

ment parameter” of the scheme and, thus, the shape of 

the coupling. 

It is worthwhile to notice that there is a natural theo- 

retical scale, the “measurement” of a:” below l-2 GeV, 

to be compared to. As shown by Gribov [ZS], in the pres- 

ence of light quarks color confinement occurs when the 

effective coupling (parameter A of the F model) exceeds 

rather small critical value 

A > {$}'" = Ci-' [I - &I'& 0.14 . (3.26) 

Thus, within the Gribov confinement scenario, an in- 

teresting possibility arises. Namely; if phenomenologi- 

cal ~2:~ extracted from the data does exceed aFt, but 

remains numerically small, tbis would provide a better 

understanding of the PT approach to multiple hadropro- 

duction in hard processes. 

IV. NUMERICAL ANALYSIS 

OF ENERGY LOSSES 

In this section we compare experimental data with the 

generalized PT prediction which embodies the notion of 

the infrared regular effective QCD coupling. As an in- 

put we take the world average values [I] of (rq?) listed in 

Table I. Errors have been &aluated by taking statisti- 

cal and systematic errors in quadrature. The first three 

entries stand for the direct production of D’ mesons at 

different center-of-mass energies; the last four data for 

the mean quark energy have been extracted by unfolding 

the inclusive lepton (e,~) spectra corn heavy Q decays. 
As mentioned above, the PT approach advocated in 

tbis paper cannot pretend to fully describe exclusive 

heavy hadron spectra (with D’ an example). Our treat- 

ment of the hadronization stage that implicitly appeals 

to duality arguments makes it plausible to rather apply 

tbis approach to inclusive quantities such as the lepton 

energy distributitins. Nonetheless, for lack of anything 

better, we take the measured mean energy of D’ as a 

representative of (zp) to be~compared directly with the 

PT-motivated prediction for the quark energy losses. 

The preliminary analysis has shown [7,8] that an in- 

dependent fitting of the D and L(epton) data results in 

the best-fit curves A&A) and &(A) that cross just at 

the best-fit value of A. This’was the observation that 

TABLE I. Experimental measurements of (z,)(w,M). 

PIOCSS 

(1) 
(2)c-?D'+... 

(3) 

(4) c -3 z+ 

f5) c+ z+ ,.. 

(6) b + 1 + . 

(7) b --f I + . 

Wc.,. (GeV) (“0) 
10.4 0.727iO.014 
30 0.587f0.015 

91 0.~06*0.009 

57.8 0.541f0.036 

91 0.522iO.022 

29-35 0.789f0.022 

91 0.699z!cO.O09 
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motivated us to look upon a;’ as a process-independent 

quantity to confront the c and b measurements l-7 with 

a unique one-parameter PT prediction.’ 

Hereafter, we fix heavy quark masses to be 

M, = 1.5 GeV, Ma = 4.75 GeV (4.1) 

(Sensitivity to the b-quark mass will be discussed below.) 

A. Fitting mean quark energies 

Figure 2 shows the quality of the fit to seven separate 

data of Table I together with the total x2 as a function of 

A@‘) in the F model with A = 0.191 (the best-fit value). 

Some explanation is in order. ‘In this figure (and similar 

plots below) for each datum the ratio 

theor - expt 

expt error 
(4.2) 

is displayed against the right vertical scale. Dashed hor- 

izontal lines mark lu levels for each single datum. The 

two curves (which should be read out against the left 

scale) show the squared deviation of the points (4.2) from 

the median, that is, the total x2. The solid curve .sums 

np all seven data, while the dash-dotted one accumulates 

the “high W” data only. The “high W” sample we define 

excluding the entries No. 1 and No. 6, which correspond 

to the quark mass-to-energy ratios 

M/E z MJ5 GeV - M&5 GeV N ; 

These two entries are subject to significant nonrelativistic 

corrections. The fact that the two fits are consistent is 

good news: It shows that the nonrelativistic effects have 

been properly taken into account” in the PT radiator 

(2.7). 

Figure 3 demonstrates sensitivity of the PT descrip 

tion to the “conf?nement parameter.” Here we have cho- 

sen the Gz model for a change. The first thing to be 

noticed is that with the best-fit parameter Cz = 2.86 one 

obtains the same value A(‘) % 580 MeV, a comparable 

quality of the fit, xLi, ~ii 0.7, and even the same dy- 

namics of each of seven data as in the above F-model 

description (Fig. 2). In the upper part of this plot, 

two marginal values of C, are also shown which corre- 

spond to one standard deviation from the total seven-fit: 

x&(2.53) = x$,(3.21) =x$,(2.86) + 1. 

In Fig. 4 comparison is made of the quality of the fits 

within different models for the effective coupling (two 

loop, nf = 5). For each value of A, the A/C parameter 

‘In spite of the fact that such a naive approach suggests the 

same theoretical expectation for the two physically different 

data No. 3 and No. 5. 

“The relativistic version of (2.4)-(2.7) reported earlier [7] 

failed to properly embody the “b at 32” datum No. 6. 

A=O.lSl 

FIG. 2. A dependence of the F-model fit to mean energy 

losses (two-loop a$ with nf = 5). The right scale shows the 

normalized deviation between a theoretical prediction and an 

experimental datum (4.2). Dashed lines mark the lu band. 

Solid and dash-dotted lines show the values of x2 (against 

the left scale) for all data and the high W data sample corre- 

spondingly. 

has been adjusted to minimize the error (one-parameter 

fit). The upper scale shows corresponding values of am 

at LEP recalculated from a$ with use of the relation 

(2.17b). 

It is worthwhile to notice some peculiarity of the G1 

model. This model is “too soft” in a sense that it in- 

duces the negative preasymptotic power term x k-’ in 

or:“(k), which correction suppresses a:* in a relatively 

high momentum region. 

Figure 5 illustrates this peculiarity. Here the couplings 

corresponding to the best-fit A/C values for A@) = 580 

MeV are compared. Solid lines (F, GzA) correspond to 

x2 z 0.7. In the G1 model shown by the dash-dotted line 

(x2 x 1.2), a:* stays noticeably smaller above 1.5 GeV 

before the perturbative logarithmic regime sets up and 

all the models merge. 

As a result, to compensate for reduced radiation inten- 

sity the best-fit A value [and thus a(Mz)] within the G1 

model tends to be larger compared to “sharp” models F, 

Gz, . . . . 

Leaving G1 aside, we conclude that both the quality 

of the fit and the value of A the “sharp” models point at 

hardly exhibit any model dependence. l+om Fig. 4 (see 

also Fig. 3) we deduce 

A@) = 580 f 80 MeV (4.3a) 

Being translated into the m parameter tbis gives 

arn = 0.127 z& 0.003 (4.3b) 

The error here is purely statistical (one standard devia- 

tion). 
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X B(91) 0 B(32) [3 C(91) 9 C(58) X D(Q1) * D(30) X D(lO) 

- xe All data - - ,yz High W data only 

In what follows we shall be using the 0.003 shift in 

nm induced by the G1 model (see Fig. 4 and Ta- 

ble II below) as a rough estimate of the systematic uncer- 

tainty due to possible “soft” preasymptotic power effects 

in the running coupling. 

Figure 6 demonstrates consistency of the total Gz- 

model fit with fits to various subsets of data: D* (items 

FIG. 4. One-parameter iits to energy losses within different 

models for a:‘. 

FIG. 3. Sensitivity of the 

Gz-model fit to the shape of 

a:’ at the origin (two loop, 

“f = 5). The values of 

Cz in the upper plots corre- 

spond to one standard devi- 

ation from the best fit (bot- 

tom-left). The bottom-right 

graph displays the margin in 

the low-momentum behavior of 

CF. 8 

l-3 of Table I), “leptons” (4-7), high W (items 2-5, 7). 

Here x2 is plotted against the reference value a&Mz). 

D’ data are more restrictive since they have smaller 

experimental errors than inclusive lepton measurements. 

Low W points zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAb --t lepton8 + ... at 32 (No. 6) and, 

especially, D* at 10 (No. 1) are quite important as they 

provide a lever arm for scaling violation. Inclusion of 

FIG. 5. Best-fit a:’ for A@) = 580 MeV. The G1 model 

underestimates the radiation above 1.5 GeV. 
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FIG. 6. Consistency between the fits tp different subsets of 

data on mean energy losses (two loop, nf = 5). Horizontal 

lines mark one standard deviation levels. 

these two measurements does not spoil the fit, x2/5 (total 

fit) z x2/3 (high W), but incr&ses its quality reducing 

statistical error by a factor of 2. 

B. Energy ratios and A determination 

In Fig. 7 results of the Gl-model fit to the ratios of 

(SQ) at different energies are shown. Solid curves accu- 

mulate the squared errors in the description of four ratios 

D*(91)/D*(lO) and D*(91)/0*(30) and two ratios from 

leptonic quark decays, C(91)/C(58) and B(91)/B(32). 

As we have discussed above, one expects such ratios to 

be protected against our ignorance about the confinement 

physics. Indeed, a rather high stability in the quality of 
the fit inside a huge range of variation of the %mfinement 

parameter” C, is seen. Bottom-right insertion displays 

the corresponding shapes of a:*. Within the chosen in- 

terval of C,, the characteristic value of A (4.6) varies frcm 

0.09 (C.J = 10, A = 0.7) up to 0.41 (C, = 1.4, A = 0.5), 

that is, changes by a factor of 2 in both directions around 

the value 0.19 [Eq. (4.6b)] that we have obtained describ- 

ing absolute energy losses. 

Also shown in Fig. 7 is the mixed bottom-to-charm 

ratio B(Sl)/C(Sl). This one does not belong here and, 

contrary to the generic c/c and bJb quark ratios, strongly 

depends on C, as expected. 

We observe that three of four generic ratios show no 

variation with C, at all. It is the ratio D*(91)/D*(lO) 

only that induces home negative correlation between A 

and A: The latter moves to larger values with a decrease 

of the low-scale interaction intensity. Such a systematic 

drift is natural: The charm quark mass is too small 

to completely protect the normalization point D*(lO) 

against W-dependent (sic) confinement effects at total 

energy as low as 10 GeV. At the same time the first ratio 

dominates the fit, while the experimental accuracy of the 

three others is not sufficient at present to provide a direct 

safe way of measuring the A parameter. 

Roughly, one might present the result of fitting quark 

energy ratios as 

A(‘) = 0.60 f O.l5(stat) + O.lO(syst) (4.4a) 

If statistical and systematic errors in Fig. 7 were uncor- 

related (which is not the case), (4.4a) would correspond 

to 

X B(91)/C(91) 

x2 2.6 F.J c,=A / j 2 

0.5 E \ / x.x 4-2 

0.2 0.4 0.6 0.6 1 

0.2 0.4 0.6 0.6 1 

A@) (GeV) 

1.5 
aelk) 
2 

1.0 

0.5 0.0 D 
1 0 k/A’: 3 4 

FIG. 7. Cz dependence of 

energy ratios (Gz model, two 
loop, nf = 5) with x2 for the 

first four ratios shown by solid 
lines and corresponding shapes 
of a:’ (bottom-right). The ra- 

tio B(91)/C(91) not belonging 

to the fit exhibits a strong CS 

dependence, contrary to generic 

c/c and bfb ratios. 
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FIG. 8. Mb dependence. Fits within,F and Gz models are 

shown (two loop, n, = 5). 

a&Mz) = 0.128 f 0.007 (4.4b) 

For the time being it will stice to conclude that deter- 

mination of Ac51 from quark energy ratios is consistent 

with that from absolute energy losses; cf. (4.3). 

C. Bottom quark mass 

Figure 8 illustrates sensitivity of the total seven-fit to 

the bottom quark mass. Here we have fixed A4, = 1.5 

GeV and looked for a minimal x2 with respect to maria- 

tion of A/C!2 (one-parameter fit) for a given A and Mb. 

The quark mass dependence of the spectrum (2.4)- 

(2.7) and, thus, of energy losses is basically logmith- 

mic [apart from nonrelativistic corrections zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(M/W)2 and 

“confinement” effects /1,/&f]. Nevertheless, a certain 

range of “preferable” bottom quark masses may be read 

out f&n Fig. 8. Within one standard deviation (Gz 

model), 

Ms = 4.73 zk 0.38 GeV (4.5) 

A better understanding of the nature of the mass pa- 

rameter M as it enters the PT formulas is needed before 

such an analysis may be used for “measuring” the bottom 

quark mass. 

AS for now, one finds satisfaction in noticing that the 

value Mb = 4.75 GeV we have been using throughout 

tbis paper [29] does fit nicely into the PT picture of mean 

energy losses. 

D. Integrated coupling as invariant of the flt 

Being free to play around with the detailed shape of 

a;’ at the origin, one finds it necessary at the same time 

to fix some characteristic,measure of the radiation inten- 

sity in the non-PT momentum region. Figure 5 suggests 

trying an area under the curve for an invariant parame- 

ter bf the fit., The result is quite impressive: Areas under 

the G2-4 and P coupling6 are practically indistinguish- 

able. Introducing 

TABLE II. Best seven-fits within various models for effective coupling. AJC, am, x2- and A 

are given for the central A values. 

Model for Best fit YZ 1nteera1 A 

cr:” 

Two-loop, 

parameter 
A = 0.184 

A (MeV) 
730+95 

(4:6b) 

0.184 

with Cz = 2.48 725585 0.125 0.64 0.191 

c> b cs = 4.41 710f80 0.124 0.66 0.193 

thresholds; c, = 7.79 705f8.0 0.124 0.68 0.194 

*(sca C, = 1.38 8201100 0.128 0.69 0.189 

Two-loop, A = 0.190 585+85 0.127 0.73 0.187 

with five Ca = 2.88 585zk80 0.127 0.68 0.191 

massless c, = 5.59 575zt80 0.127 0.69 0.193 

quarks; Cn = 10.8 575i75 0.127 0.70 0.193 

A(6) CI = 1.46 655195 0.130 0.75 0.190 

One-loop, A= 0.193 480f70 0.120 0.71 0.188 

with three G-2 = 2.22 485zk65 0.120 0.66 0.190 

IWJSSleSS cs = 3.94 480f60 0.120 0.66 0.191 

quarks; C, = 6.90 480+60 0.120 0.66 0.191 

*w one loop Cl = 1.20 515*75 0.122 0.69 0.189 

Oneloop, A = 0.209 310%50 0.133 0.90 0.189 

with five C, = 2.68 315*50 0.133 0.79 0.191 

massless C, = 5.48 315150 0.133 0.78 0.191 

quarks; c, = 10.9 315&50 0.133 0.79 0.191 

*w c?“< loop c, = 1.28 330f50 0.134 0.84 0.189 

(4.6~~) 
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we get (with one standard deviation error estimated from 

the Gz-model margin; see Fig. 5) 

A(2 GeV) = 0.190 ;t 0.010 (4.6b) 

This integral measure not only proves to be quite stable 

against the choice of lowmomentum regularization, but 

also resistant to different approximations for the high- 

momentum tail of cY$ (k). 

Table II accumulates characteristics of various seven- 

fits and demonstrates an amusing stability of the value 

(4.6b). This justifies the qualitative expectation of 

Sec. III A that it is the integral of the coupling as a char- 

acteristic measure of confinement (ha&on&&ion) effects 

in inclusive energy spectra, pa of Eq. (3.9), that is re- 

sponsible for the low-momentum contribution to mean 

energy losses. 

Thus we find empirically that the characteristic inte- 

gral (4.6) turns out to be a fit-invariant quantity which 

one has to keep fixed to describe the absolute values of 

energy losses. As pointed out by Gribov, it can be looked 

upon as the long-distance contribution to the QCD field 

energy of a heavy quark. It is worthwhile to notice that 

such an integral appears in the relation between the run- 

ning heavy quark mass at scale Jo and the pole mass [30] 

MP”1. - M(p) = s?r zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ 
d3k a,(k) 

-- 

3 ICI<,, (27V k2 

I’ 
111 I,, I., I,, I,, L 

0.1 o.,, 0.12 0.13 c 

a&Z) 

1 

FIG. 9. Relation between A and ams( one loop (dot- 
ted line), two loop (dashed line) for three and five massless 
quarks and the two-loop coupling with c- and &quark thresh- 

olds (solid line). 

E. Two-loop azR with heavy quark thresholds 

and ax determination 

It is important to notice that the different approxima- 

tions for the high-momentum tail of c~,“~ listed in Table II 

provide similar quality fits and preserve the A value, but 

at the same time lead to systematically different values 

of am(Mz). Figure 9 helps to relate the values of the 

A parameter for different approximations for the running 

cPff to the reference value a&i&). 

‘In the problem under consideration, one probes the 

coupling at MZ scale only indirectly. To start, “half” of 

the data belong to smaller W’s. Moreover, even when the 

LEP measurements are concerned, the main contribution 

to energy losses originates from a broad logarithmic in- 

tegral of a:“(k) running from k 5 MQ up to k 5 n/r,, 

so that momenta just above Ma (as well as between MC 

and Mb) play quite an essential role. The reference val- 

ues of am appearing in Table II emerge as a result of 

extrapolation from intermediate momentum scales that 

dominate in the fit. Such an extrapolation is sensitive to 

details of the high-momentum behavior of the running 

coupling. When nf is taken smaller and/or the two- 

loop effects are being taken into account, LX:” becomes 

a steeper falling function of momentum and the resulting 

value of arn decreases. 

Even an account of heavy quark thresholds [which 

makes @‘f(k) a steeper function below k 5 Mb] drives 

down the cvfui~ value. To demonstrate this effect we in- 

clude Figs. 10 and 11, showing the quality of the PT 

description of absolute energy losses with an account of 

the second loop and c- and b-quark th&hold effects in 

the running coupling. In Fig. 10 the model dependence 

of the total seven-fit is shown (cf. Fig. 4); Fig. 11 collects 

fits to differe@ subsets of data (cf. Fig. 6). 

Our conclusions about the relative stability against the 

choice of low-momentum regularization model and about 

the consistent description of leptonic, D’, and high W 

data hold. From these plots one obtains (see also Ta- 

ble II) 

A@+2) = 0.720 f O.OSO(stat) f O.O15(syst) GeV , (4.&a) 

FIG. 10. Quality of the total fits vs A (two-loop aZR with 

c, b thresholds). 
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Ga model 

+thresholds 

TABLE III. Characteristics of the best Gz-model fits. 

“f A(“,) cs X2 A (2 GeV) a:’ (2 GeV) a:“(?&) &(Mz) WdMz) 

3+2 725 2.48 0.65 0.191 0.530 0.303 0.135 0.125 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5 315 2.68 0.79 0.191 0.443 0.302 0.145 0.133 

One-loop 4 395 2.43 0.72 0.191 0.463 0.303 0.139 0.126 

3 485 2.22 0.66 0.190 0.488 0.306 0.134 0.120 

5 585 2.88 0.69 0.191 0.494 0.303 0.138 0.128 

Two-loop 4 770 2.72 0.64 0.190 0.549 0.305 0.131 0.120 

3 935 2.56 0.62 0.190 0.608 0.305 0.124 0.112 

where we have singled out systematic uncertainty due to 

model dependence. This results in 

arn = 0.125 z’c 0.003 (4.8b) 

It is important to stress that the second loop effects are 

there in the running coupling and nf is not a free pa- 

rameter: Quarks (and their masses) are what they are. 
Therefore a huge interval of am values seen in Table II 

has nothing to do with the actual theoretical uncertainty 

in determining this important datum. 

Before we turn to a discussion of systematic errors, 

some comment is in order. It has to do with the number 

of acting quark flavors and will eventually give us an 

additional consistency check of the approach. 

An attentive reader could have noticed that using five- 
flavor running coupling seems to contradict the very logic 

of the present paper. Indeed, in Sec. II we constructed 

the energy distribution corresponding to direct produc- 

tion of a heavy quark Q. To do so we disregarded the sea 

mechanism of heavy quark production and omitted the 

second loop anomalous dimension term related to &Q&Q 

final states. 

However, there is yet another subtle source of copious 

QQ pairs, namely, the running coupling a:” embodied 

FIG. 11. Consistency of Ga-model fits to subsets of data 

(two loop; c, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAb thresholds). 

into the PT radiator. The way the coupling runs in the- 

oretical expressions for inclusive characteristics depends 

on the experimental setup: A veto on fermion pair pro- 

duction in the final state suppresses the effective inter- 

action strength at large momentum scales (QCD cou- 

pling decreases faster; an increase of oe,,, slows down). 

Therefore, to preserve the logic of the approach, we bet- 

ter make it clear that the use of the nf = 3 effective 

coupling, which goes along with the suppression of addi- 

tional CE, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAb6 pairs, is consistent with the reported result 

(4.8b). 

In Fig. 12, Gz-model couplings are shown with the 

best-fit parameters A and Cz listed in Table III. As far 

as low momenta are concerned, variations due to nf and 

one versus two loops should be looked upon simply as dif- 

ferent models for trial-regularized coupling. All of them 

do the job. In particular, the three-flavor a:” which in- 

terests us at the moment (the last line of Table III) does 

FIG. 12. Gz-model couplings with the best-fit parame- 

ters A and CZ listed in Table III. As far as low momenta 

are concerned, variations due to nf and one vs two loops 

should be looked upon simply as different models for trial 

regularized coupling. All of them do the job. In particu- 

lar, the three-flavor aZR which interests us at the moment 
(the last line of Table III) does provide an excellent fit, 

x2/Nm F;: 0.6/5. 
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provide an excellent fit, x’/Nr,~ % 0.6/5. 

High stability of the A value (4.6b) is confirmed once 

again. Moreover, one more interesting fit-invariant quan- 

tity emerges, namely, the value of the effective coupling 

at the bottom mass scale:” 

afyM*) F;i 0.30 (4.9) 

The curves in Fig. 12 are quite different below 2 GeV, fo- 

cus around 5 GeV, and diverge again at high momenta. 

The columns adjacent to the double-lined one in Table III 

illustrate this behavior. In particular, the three-flavor 

coupling continued to the LEP scale is substantially lower 

compared to the “3+2” coupling we have been using be- 

fore (0.124 vs 0.135). However, it would be erroneous to 

read out am = 0.112 from the last line of Table III. 

As we see, heavy flavors in @ are indeed irrelevant 

for the problem under consideration. However, they do 

contribute to the evolution of the standard QCD cou- 

pling. Therefore, having found the magnitude of a:’ at 

intermediate scales k - 5 GeV which dominate in the 

problem, one has to apply the five-flavor evolution from 

N 5 up to 91 GeV, aiming at extraction of the reference 

value ar;iis(Mz). 

Since the starting value @(Mb) = ,0.305 practically 

coincides with that from the previous “3+2” analysis 

(0.303), so do the results. Choosing the starting point 

of high-momentum extrapolation in between k = Mb/2 

and k = 2Ms leads to 

arn = 0.125 & 0.003 (4.10) 

The, slightly inflated, error here is moderate, and the 

central value perfectly matches with the result of the pre- 

vious analysis (4.8b) based on “3f2” coupling. 

F. Systematic errors and prospects 

First of all, there is a problem of the correspondence 

between theoretical predictions and the data. As we have 

stressed above, the formulas of this paper were designed 

to describe the mean energy of a primary quark produced 

in the e+e- annihilation vertex. We were treating exper- 

imental numbers as corresponding to direct Q& produc- 

tion. We do not feel in a position to judge to what extent 

the experiments actually met such an expectation. 

The good news is, however, that the bottom sector is 

safe in this respect: The 9 + b sea component is van- 

ishingly small at present and so is charm production at 

low energies [31]. Therefore only LEP charm data should 

concern us here. Bearing this in mind, it is important to 

notice that the D’ LEP datum No. 3 (which is the most 

precise measurement and therefore practically the only 

one vulnerable) does correspond to primary charm.” 

Monte Carlo (MC) modeling was used to subtract the 

gluon component (with an uncertainty included in the 

experimental systematic error). The reliability of such a 

subtraction has been recently verified by the first OPAL 

measurement of the charm production via gluons [32]. 

Apart corn this, one can think of the following sources 

of systematic error of a=(Mz) determination. 

(1) Higher orders. Estimate: 0.009; Comment: opti- 

mistic. follows from analysis of the approximate relation 

(2.17b) between physical coupling a:” and am and of 

forceful exponent&ion of a. terms in the radiator (2.7). 

Apart from the three-loop analysis, an exact 0(az) the- 

oretical calculation of (z ) would be helpful. 

(2) Power effects in c$ (k > 2 GeV). 0.003; arbitrary 

(hopefully conservative). is based on comparison with 

the “soft” G1 model (see above). The variation within 

“hard” regularization models (F, Gz-4) is below 0.001 [see 

(4.8)]. To gain quantitative theoretical control over the 

l/k2 power term in the effective coupling and, thus, to 

reduce corresponding systematic error might be not as 

hopeless a goal as it seems. 

(3) Kinematical effects. 0.000; safe. The structure of 

the PT spectrum is such that it respects the kinematical 

boundary z > z,in = 2M/W only in the tist a. order. 

The contribution to (2~) from the potentially dangerous 

region between z,in and 2s,;, can be estimated as 

AbQ) - a.(W)/n(l - (zQ))z;in , 

which value is well below 1% even for s,;, as big as f. 

(4) Quark masses. 0.002; conservative. Given that 

the structure of the low-momentum contribution propor- 

tional to A naturally embodied in PT analysis reminds 

that of the shift from Euclidean to “on-shell” quark mass 

[see (4.7)], one may worry about double counting if the 

pole mass is used for M in the PT formulas. The problem 

should be studied theoretically. Meanwhile, let us men- 

tion that one may get an equally good description of the 

absolute values of mean quark en&gy losses with smaller 

(Euclidean?) quark masses plugged in. For example, by 

taking 

M, = 1.30 GeV, M6 = 4.50 GeV , 

one obtains13 

Gz model C2 X2 A (2 GeV) %m(Mz) 
,I(‘) = 600 3.60 0.72 0.166 0.1260 

A($+21 = 740 2.94 0.66 0.166 0.1257 

We observe that the resulting value a&Mz) hardly in- 

creases by 1 per mil. 

“Since the magnitude of cr:’ around 5 GeV > A is insen- 

sitive to A/C and depends only on A, the same conclusion 

(4.9) follows from F and Gs,~ models. 

laAn older average (zn.) = 0.494 f 0.014, which we have 

used in the previous analysis (271, was contaminated by the 

sea. We are indebted to P. Mittig for clarifying this point. 

134.5 is a preferable bottom mass value for A& = 1.3, anal- 

ogously to Mb = 4.75 for M, = 1.5; see above, Fig. 6. 
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--- 0, model 

1 c,, 2.22 

Another feature of the alternative set of quark masses 
worth noticing is a systematic decrease of the value of 

characteristic integral A. This may be a welcome trend 

bearing in mind a recent analysis of power corrections to 

jet shape variables; see [33]. For the time being we choose 

to look upon this 10% shift as a systematic uncertainty 

which will be greatly reduced when proper theoretical 

understanding of the nature of the quark mass parameter 

is achieved. 

Having said that, we modify (4.6b) and present the 

final result for the integrated coupling as 

A (2 GeV) = 0.18 f O.Ol(stat) f. O.OZ(syst) . (4.11) 

Finally, in Fig. 13 we demonstrate the W evolution 

of realistic c- and bquark spectra obtained within the 

F model with one-loop three-flavor cr:“. These curves 

correspond to the values of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA and A providing the best 

common fit to mean energy losses as described above. For 

comparison the best-fit Gz-model curves are also shown 

for LEP energy. F- and G-model spectra are quite close 
to each other. We may conclude that it s&ices to fix 

the integral parameter (4.6b) together with the value of 

A to predict the differential energy distributions with a 

reasonable accura~y.‘~ 

A stable numerical procedure for numerical evaluation 

14Let us notice that the differential quark energy spectra 

obtained by the inverse Mellin transform (2.4), (2.6) violate 

kinematical boundary D(z < 2M/W) = 0 at the O(a:) level. 

FIG. 13. Evolution of inclusive c, b spec- 

tra from W = 32-500 GeV. The best-fit 
F-model (solid line) and Gz-model curves 

(dashed line) are shown. 

of the inverse M&n transform (2.4) remains to be de- 

signed. 

V. CONCLUSIONS 

Jets initiated by heavy quarks (b,c) are now exten- 

sively studied experimentally. The interest in tbis sub- 

ject is connected not only with testing the fundamental 

aspects of QCD, but also with its large potential im- 
portance for measurements of heavy particle properties: 

lifetimes, spatial oscillations of flavor, searching for CP- 

violating effects in their decays, etc. Properties of b- 

initiated jets are of primary importance for analysis,of 

the final state structure in the tE production processes. 

In this paper we presented results of the study of the in- 

clusive energy spectra of leading heavy flavored particles 

(ffQ) based on the perturbative expressions (2.4)-(2.7) 

for heavy Q distributions that emerge after taking into 

proper account multiple gluon bremsstrahlung off the Qa 
pair. 

Our approximation includes the two-loop anomalous 

dimension, keeps track of the collinear lo arithms a In W 

and alnM, soft double-logarithmic 5 aln (1 - ZQ), and 

essential single-logarithmic aln(1 - ZQ) contributions in 

all orders. At the same time, it embodies the exact first 

order result O(a) for the inclusive energy distribution, 

which property is necessary to account for nonrelativistic 

suppression of gluon radiation in the situation when jet 
energies are comparable with a heavy quark mass. 

The spectra we have been considering correspond to 

direct Q production. Such an approach disregards the 
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sea contribution to heavy quark yield, which is numeri- 

cally small at present and foreseeable energies. Accord- 

ingly, a specific term in the nonsinglet two-loop anoma- 

low dimension has been omitted which is due to Q&Q& 

final states and would violate the “multiplicity” sum rule 

(2.1). 

Apart from this simplification, the formal rela- 

tive accuracy of the perturbative result (2.4)-(2.7) is 

O(a’(W’)), which estimate is un$onn in ZQ. Pertw- 

bative corrections at the quark mass scale which were 

left out of control start from O(aS(iw)). 

We have formulated the perturbative result (2.4)-(2.7) 

in terms of a “physical” coupling, the one which directly 

measures radiation intensity of relatively soft gluons [21]. 

This coupling constant is different from (roughly, 10% 

larger than) am and is approximately related to the lat- 

ter by (2.17b). Expressed in terms of a;*, the radiator 

(2.7) acquires the two-loop contribution A(‘), which is 

free from an artificial nf dependence [22] and proves to 

be numerically negligible. 

There are two ingredients of the standard approach 

to description of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAHQ spectra. Here one starts from the 

phenomenological non-PT fragmentation function for the 

Q --t HQ transition and then traces its evolution with an 

increase of the annihilation energy W  by means of PT 

QCD. Being formally well justified for describing the W 

evolution, this approach, however, leaves the dependence 

on the quark mass M basically out of the PT control.” 

Motivated by the LPHD concept, we attempted to 

derive pure PT predictions without invoking the phe- 

nomenological fragmentation function. The starting 

point for such an attempt was the observation that an 

appearance of the parton model motivated peak in the 

non-PT fragmentation at large ZQ [25,9] can be at- 

tributed to the Sudakov suppression effects provided one 

feels courageous enough to continue the PT descrip- 

tion down to the region of gluon transverse momenta, 

kl. - A(W/m)‘=, which at present (and foreseeable) 

energies looks dangerously close to the nonperturbative 

domain. 

When getting rid of the transverse momentum cutoff, 

one faces the problem of the formal “infrared pole” in a, 

and is forced to introduce the effective nonsingular cou- 

pling a:*(k) that remains finite at k 5 A. It is not easy 

to justify the very notion of a. at small momenta where 

the PT quark-gluon language teems to be hardly applica- 

ble at all. In the problem under consideration, it can be 

related to the effective measure of intensity of accompa- 

nying particle production at the confmement stage of the 

HQ formation, a finite number of light hadrons produced 

in addition to the (W-dependent) particle yield due to 

PT-controlled gluon bremsstrahlung at the first stage of 

the hard Qa pair creation process. 

We have checked that, in accordance with expecta- 

‘“A plausible rescaling procedure for extracting the non-PT 
part of the B meson fragmentation from the existing data on 
D meson spectra was suggested, recently in 1341. 

tions based on general factorization properties, our ig- 

norance about confinement does not affect the W de- 

pendence of the mean energy losses (zQ)(W, M). Thus 

the ratio (zr)/ can be used to extract the 

fundamental QCD parameter A. Another infrared-stable 

quantity found empirically is the PT prediction for the 

normalized peak position, ~~~(w)/e~*(K’o). 

At the same time, the absolute values of (zr), peak 

positions, and particle distributions in general show up 

substantial variations with the value (momentum depen- 

dence) of a, es in the origin chosen as an input for cal- 

culating the PT radiator (2.7). We have compared ex- 

perimental values of (~0) extracted from leptonic c- and 

b-quark decays and (ID.) directly with the PT-motivated 

prediction for the quark energy losses. 

Our treatment of the hadronization stage that implic- 

itly appeals to duality arguments makes it plausible to 

apply a purely perturbative approach to inclusive quanti- 

ties such as the lepton energy distributions. Meanwhile, 

it cannot pretend to describe ezclu.sive heavy hadron 

spectra such as those of D’, for example. Therefore, 

taking the measured mean energies of D’ for (ZQ) might 

introduce some systematic uncertainty to the fit, the er- 

ror which is difficult to estimate. 

Nonetheless, such a comparison has demonstrated that 

radiative charm and beauty losses may be consistently 

described in the energy range W = 10 --t 90 GeV 

within a variety of models for low-momentum behavior of 

the infrared-finite effective coupling azR. By tuning the 

shape parameter of a model, one achieves an accuracy of 

the common fit as good as x2/&p = 0.7/5 (seven data 

points, two free parameters A and A/C). 

We have checked that the fit to all data is consistent 

with the fits to high W , D’, and ,inclusive lepton data 

samples. 
At first sight, we have gained not much profit since we 

had to pay for eliminating an arbitrary non-PT fragmen- 

tation function bv introducine another arbitrary function 

a:“(k) at k < 2 “GeV. An e&ntial physically Important 

difference between two approaches is that azff as a key 

ingredient of the PT-LPHD approach is supposed to be 

universal so that (quite substantial) differences between 

inclusive spectra of c- and b-flavored hadrons should be 

under control. By simultaneous fitting of the available 
experimental data on the energy losses in charm and 

beauty sectors, we have demonstrated consistency of the 

hypothesis of a$ universality. 

Moreover, the same notion of the infrared-finite effec- 

tive coupling can be tried for a good many interesting 

problems in the light quark sector. An incomplete list of 

such phenomena for which the PT analysis has been car- 

ried out recently to next-to-leading order includes trans- 

verse [35] and longitudinal momentum distributions [36] 

in hadron-initiated processes, the energy-energy correla- 

tion [37], the thrust 1381, and the heavy jet mass distri- 

bution [39] in e+e- annihilation. 

The presence of the exponential of the characteristic 

integral over gluon momenta which emerges after all- 

order resummation of the Sudakov logarithms [40,41] 

is a common feature of the corresponding PT expres- 
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sions. It is straightforward to derive quantitative PT- 

motivated predictions by implementing the universal nzB 

in these integrals and, at the same time, by getting rid of 

non-PT “hadronization” effects which are usually taken 

into account by convoluting the PT distributions with 

phenomenological fragmentation functions (initial parton 

distributions for the case of h&on-initiated processes). 

Carrying out this laborious but promising program, 

one should get valuable information about the confme- 

ment physics as seen through the eyes of the integrated 

influence of the large-distance hadron production upon 

inclusive particle distributions and/or event characteris- 

tics. 

To this end the numerical results of our analysis of the 

heavy quark energy losses, namely, 

(2 GeV)-1 1’ CeYdk+ = 0.18 f O.Ol(expt) 

&O.O2(theor) , (5.la) 

am(A4~) = 0.125 + O.O03(expt) 

*O.O04(theor) , (5.lb) 

should be looked upon as a first hint for the more de- 

tailed study including the light quark phenomena dis- 

cussed above: 

One comment is in order concerning the nature of the 

results (5.1). The parallel description of c, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAb losses is sen- 

sitive to azff in the low-momentum range, say, of the 

order of (and below) Mb, so that the integral character- 

istic (5.1~~) gets fixed quite sharply (theoretical error is 

due to our ignorance about the heavy quark masses and 

should be eliminated in the future). 

At the same time such a description proves to be 

quite liberal to details of the high-momentum behavior 

of the coupling (one- versus two-loop a., number of ac- 

tive quark flavors). From this point of view, the value 

(5.lb) that one extracts at the end of the day is rather 

a tribute to (unfortunate) tradition. a&S(Mz) should 

be looked upon as a reference value which emerges after 

theoretical extrapolation rather than a quantity that is 

“measured” by the above analysis. Theoretical error in 

(5.lb) is dominated by potential k-’ power correction 

effects in a;“(k). 

Let us stress again that in the low-momentum region 

behavior of the effective coupling is poorly known not be- 

cause of the limited knowledge of higher order effects, but 

rather because of an essentially different physical phe- 

nomenon that enters thk game, the one that is usually 

referred to as confinement. 

From this point of view, ow notion of the infrared- 

finite a:’ differs from one that emerges from the three- 

loop analysis based upon the renormalization-scheme- 

invariant approaches to the e+e- annihilation cross sec- 

tion [42,43] and the, T-lepton hadronic width 1421. Nev- 

erth+s, it is worth mentioning that the value of the 

couplant (a./“)(O) and the integral measure obtained in 

[43] in the framework of the minimal sensitivity principle 

[44] are consistent with (5.la). 

Phenomenological verification of the fact that the ef- 

fective QCD coupling stays numerically small would be of 

large practical value. Gribov theory of confinement [28] 

demonstrates how color confinement can be achieved in 

a field theory of light fermions interacting with compara- 

tively small effective coupling, a fact of potentially great 

impact for enlarging the domain of applicability of per- 

tnrbative ideology to the ~physics of hadrons and their 

interactions. 
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APPENDIX A: RUNNING COUPLING 

IN THE RADIATOR 

1. Notation and kinematics 

We consider production of a QQ pair with on-mass- 

shell four-moment8 p:,pg and a gluon with momentum 

kp by a colorless current with the total momentum Q’. 

Hereafter, for a sake of simplicity we measure all the mo- 

menta and the quark mass in units of the total annihila- 

tion energy (g2 E W 2 = 1). 

In terms of quark and gluon energy fractions, 

zi = 2(&q), I = 2&q), q + a + t = 2 ; 

2p1pz = (q -  k)’ -  2m= = 1 -  E -  2771’ + k2 = z1 + z2 -  1 -  2m= + k2 , 

virtual quark propagators are 

~1 z (PI + k)’ -d = I-  ~2, nz~(pz+k)2-mm2=1-z~. 

(Al) 

b-1 
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[Relations (AZ) do not imply kZ = 0.1 

Three-body kinematics restricts the difference of quark 

energy fractions as 

4$]” p= 2 (El - z2y , (A3a) 

where p = P(z) represents the quark velocity in the rest 

frame of the Q& pair (Qa c.m.s.): 

WbI 

a. k’ = 0 

For the on-mass-shell gluon case, one has 41rz’]’ = .z2, 

(q - k)2 = 1 - z, and (A3) gives 

fl= (I-E)~“> 1-1 (A4) 

I, 0, basis. When the gluon energy is kept fixed, it is 

convenient to use the scaled d$%mx of quark energies 

as a complementary variable related to the gluon angle 

in the Q& c.m.s.: 

21 = 31 - Q - -paL~+p. 
z 

(A5) 

The maximal value luI = fl is reached when the gluon is 

collinear with one of the quarks. 

Introducing the maximal quark velocity 21, 

~=<212~1-4m~~,z, 

one may present the integration phase space as 

Some useful relations are 

; - 212 = 4(1 Zl)(l t2)t-2 - - , 

( 1 1 
-+- = 

- - 21 z2 1 1 - - tz z1 > (1-a)(1 2 -a) 
-2 

4 

1-G 2. 

One has to fix z and integrate over y in the limits y- 5 

y 5 y+, which follow &mn the kinematical restriction 

(A4). In terms of z,y the latter takes the form 

y2(1 - 2 + m2) - y(z - 2m2)(1 - 2) + m2(1 - z)” < 0 

649) 

This gives 

y* = 2(1 _’ ,,” m2) (z - 2mz f J;rz-4mz) . 

Introducing 

z,, E $(z - 2m2 + dm) = I + O(n2) , (AlO) 

one may write [cf. (2.8)) 

(l- 4% y+ = I-&+& = z[l + 0(72)] , 

(All) 
1-X 

y- = -rn2 = $??[I + O(mZ)] 
=I 

Useful relations are 

Y+ - Y- = 1 -1z-,“m2 rn , (A12a) 

(y-)-1 - (y+)-’ = Fm-, , (A12b) 

(A6) (y+)” - (y-)2 = (z - 2m2)Gxz ( 1 -‘z-;m2)2. 

(A7) 
(A12c) 

(A84 

b. k’ > 0 

If we allow the gluon to have a positive virtuality k’, 

(A3) takes the form 

Wb) 
(zl - ~2)’ 5 (z2 - 4k2) 1 - I-4”: ka) (A13) 

z,y basis. For the purpose of deriving a single- 

inclusive-quark spectrum, we break the symmetry be- and leads to the following maximal invariant gluon mass 

tween tl, t2 and denote for given ~1, t2: 

6414) 
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As we shall see below, the structure of the matrix element zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2. VASP cmx.s sections 

is such that essential contributions emerge from the loga- 

rithmic region y- < y < y+, as well as from the vicinity 

of the lower limit, (y-y-) N y- N m2. Therefore for our 
The differential first order cross section integrated over 

purposes the following approximate expression sul?ices: 
angles of the final Q&g system may be written as 

k$ = (I- Z)(Y - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY-) + O(d) , (Al5) 

{ > 

d2oqq, 

&da c 
= pCFa,nc . 

2?r (Al’) 
which differs from the exact formula (A14) only in a tiny 

region close to the ~pperintegration limit, (y+ -y) N rn’. 

Two characteristic momentum scales emerge related to 

the limiting values of the y integration [cf. (2.8)]: 
The subscript C marks the production current [vector 

(V), axial vector (A), scalar (S), or pseudoscalar (P)] 

Q”(z) E W(1 - z)y+ 0 W%(l -z) ; 
and u(O”) is the universal high-energy limit of the Born 

w-5) 

transition probability, current (C) --t QQ. 

K”(Z) s W(1 - z)y- ?=z M2(1-%)2/z 

A straightforward calculation leads to the following ex- 

pression for the II factors:‘6 

nc = 2ccs+xc, 

31”s s+s 

( 2 1 > 
=(I-zx)+, 

3t*=(1+2m~)?&+47?2~, xs=?lp=31v+2. 

Here S is the “soft” bremsstrahlung term: 

(A&) 

(A18b) 

(A%) 

x-2791 rn= l-X+??3 

= l-x y y2 (l-x)2 
WY 

Its contribution to each of the squared matrix elements is explicitly proportional to corresponding C factor, the one 

that determines the energy dependence of the corresponding Q& Born cross section: 

(A20a) 

(A20b) 

Cn=Cs=vZ=1-4m2, &x=1. 

As a result, the nomalized differential distribution can be written in the following general form as a sum of a universal 

%oft” and a process-dependent “hard” contribution: 

d2 = %{2S + <,-‘Xflc}dx dy . 6421) 

E, 0, basis. Both the structure of the matrix element and the kinematics becoine particularly simple in terms of 

the gluon energy fraction and gluon angle in the Q& c.m.s. [see (A5)]. Making use of (A@, one gets 

&.=4(1-z) ,02-d 4(1-z) ~2sin20c 4m2 

9 (1 -t&2)2 
=- 

22 (l-P~cos~0J~1-.+4m~ ’ 

T++J2= 
4 

1 - p2 0x2 0, 
-2. 

(A22a) 

(A22b) 

“See [24] for details. 
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Invoking (A7), (AX), we obtain, for the inclusive gluon energy spectrum in the vector channel (see also [45]), 

Our convention to call the two pieces of the matrix element “soft” and “hard” becomes clear now: In the soft gluon 

limit t < 1, the second term is zz down compared to the first one. In this representation the “dead cone” phenomenon 

is also manifesting: The soft classical term S vanishes in the very forward directions (O,, ?r - 0, < 00 = rn). 

In a relativistic situation (rn < $), a collinear logarithmic enhancement occurs and the two pieces of (A23) 

participate in forming the GLAP-splitting function: 

It is worthwhile to notice that the O(z-‘) and O(1) parts of the p + q+g(t) splitting function are process independent, 

while the O(z) piece breaks factorization at the level of the 0( m21nm2) correction. Therefore the very notion of 

“fragmentation function” as a way of treating the jet evolution independently of the production mechanism gets lost 

beyond the leading twist. 

To stress the logarithmic character of the angular integration, one may represent (A23) as 

(A24a) 

where 

(A24b) 

For other production channels, the second “hard” term 

in (A23), (A24a) should be changed according to (A18c), 

(A20b). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

3. Integration over virtual boson mas.~ 

Considering inclusive characteristics (e.g., such as the 

quark energy spectrum) beyond first order of perturba- 

tion theory, one has to allow the gluon to decay in the 

final state, that is, to have a positive virtuality k2, and 

to integrate over the latter within the available phase 

space. Actually, only such a combination of real and 

virtual gluon production leads to a sensible physical an- 

swer. First of all, an exclusive real gluon production 

cross section is clearly zero because of the standard in- 

finite (double logarithmic) Sudakov form factor suppres- 

sion. Second, and more importantly, a “real” gluon is 

an ill-defined object since its “on-mass-shell” interaction 

strength a~ may not be defined perturbatively (which is 

a real “infrared catastrophe” inherent in QCD). 

Integration over k2 leads to the appearance of the run- 

nmg coupling in the inclusive cross section. This nice 

property, discovered in the pioneering papers by Gri- 

bov and Lipatov on the partonic structure of logarith- 

mic field theories [17], is particularly helpful in the QCD 

context. Here neither LYO in “elastic” radiation nor small 

virtuality inelastic gluon decay systems are well defined. 

Meanwhile, their combined action results in a. legitimate 

a.(k,) at the Euclidean scale related to the maximal 

available gluon virtuality. 

We shall demonstrate tbis correspondence, taking care 

of subleading effects which might be relevant within the 

adopted approximation.. To this end we write down a 

formal dispersion relation (with one subtraction) for the 

running coupling: 

cy(&z) z Ly05(-Q2) = mJ -t Q2 J 
O5 dk2 u(k’) 

- -  
0 k= k= f Q2 ’ 

(A25a) 

where o is related to discontinuity of 2’3 at positive vir- 

tuality, 

o(k’) = ~[“(k2 -  ie) -  &(k2 + ie)] 

= -zDisc{&(k’)} . (A25b) 

In QED, 5 is nothing but the photon renormalization 

function and a~ nil & is the on-mass-shell coupling con- 

stant. 

Strictly speaking, such an identification is true for an 

Abelian theory only. In the QCD context the Ward iden- 

tity between vertex and fermion propagator corrections, 

&2, = 1, does not hold. As is well known, both the 

non-Abe&n vertex renormalization correction Z, WA’ and 

the gluon propagator factor Z, participate (in a gauge- 

dependent way) in forming the running a,. So one has 

to look upon 2, in the dispersion relation (A25) as the 

gauge-invariant product 
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This subtlety does not affect the result, however. a’) belong to 2, only, and employing a “quasi-Abelian”  

Another motivation is to use the nf dependence as relation (A25) becomes natural. 

a gauge to pinpoint the structure of the running ag in 

the inclusive cross section 1221. Quark loops (in order 

In the problem under consideration, the following 

structure emerges: 

with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAkk = kA(q,z2) the maximal squared virtual boson mass allowed for given s,y. Here we have singled out the 

k2 = 0 part of the matrix element by writing 

M(t~,t~; k’) = M(.q,t~;O) + k’AM(z1,tz; k”) (A27) 

Now we may relate the characteristic integral in the first term in the right-hand side (RIB) of (A26) with the dispersion 

formula (A25a). To this end we employ the following ezact representation of the disper%on relation: 

a(&‘) = ao + Q2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
J 

-  dk%(k’) = a. + @  dk2 

0 k2(k2 + Q2) J o 
& k2) + 

J 

o1 &W/t) - 4Q”t)l C-428) 

Perturbatively, o is of the order of a*. As a result, the last finite integral term constitutes a neat-to-nezt-to-leading~~g 

correction to the main one. To see this one has to view o as a slowly varying (logarithmic) function of its argument”  

and to perform the Taylor expansion in lnQ2 to obtain 

J 

o1 &[o(Q’/t) - u(Q’t)] = -2u’(Q’) i1 & lnt + .(u” ‘) is $‘(Qz) 

This exercise demonstrates a close correspondence between the spectral den& y (A25b) and the P function [46]: 

a(&') = no + 
s 

Q2 dk2 

0 
Fo(k2) + $‘(Q’) + . , 

u(Q” ) = a’(&‘) - $P(Q2) + O(&‘)) . 

(A29a) 

(A29b) 

Thus we express pertwbatively the structure in the curly brackets in (A26) in terms of the running coupling at the 

Euclidean point Q2 = k$: 

a(k~)3(ao+~L’~~(ka)}=.(k~)-~a”(ka)+... (A30) 

I 

4. Running coupling in the first order spectrum where S(“ ) and $?’ are given by the original “ on-mass- 

shell-boson”  expressions (A19) and (AlBb), respectively. 

It is straightforward to calculate the exact QQg matrix In terms of (A27), 

element with account of a nonzero virtual gluon mass 

k2 > 0. Equation (A21) gets modified as follows: AWI = -;i- - & > (A32a) 

2s ==+ 2S(“ ) - k2 (1 & + (1 -1z,,2 
( > 

, (A31a) 

(A31b) “Which is true everywhere except in the very vicinity of a 

fermion threshold. 
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A{%) = 
2(1+ z -Y + @) 

(1-l)Y . 
(A32b) 

a. k” = 0 part of the matriz element zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

To evaluate the radiator (2.7), we start by considering 

the first term in (AZ) proportional to M(zl, ~~2; 0). One 

has to perform the y integration with the factor & that 

emerges after integration over virtual boson mass [see 

6430)L zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

J 

y+ dyd(k& (l ,y)){2s(“) + pP)) I (A331 
Y- 

with k& given by the approximate expression (@Li). In- Here we have explicitly shown the essential y dependence 

voking (AlS), (A18b), we split the integrand into three of the coupling factor 6. The chain of approximations 

pieces as follows: follows: 

(A&a) 

(A34b) 

(A34c) 

Logarithmic piece (A34a). This is the leading contri- 

bution to the radiator, in which the y integration is log- 

arithmic (collinear logarithm): 

J 

B+ dy _ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

.I 
_y4Y - Y- j f (A351 

(A35) = 
J ( 

‘+ 3 
Y- y 

qy) + ir’(y)~n y + . .) Er J” $qy) + ~r’(~) J* ds ,n(l_ 3) 
Y- ?l-lu+ s 

25 
J 

y+ dy zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-qy) -  $I(~-) = J 
Y- y 

Q2 $a@ ) -  ge’) + O(a”(2) + d(Q”)) , 
a2 

where (A30) has been used. We notice that a potential second order contribution cr’ 0: ti2 at the low scale 6’ N M2 

c-g~cels ou$, and the remaining term a’(@) (x a2(W2) is comparable with the two-loop correction to the hard cross 

section (coefficient function) and must be neglected within our approximation. 

Finally, 

J 
dy(A34a) = 

( 
2G + &?(l- 2) 

>J zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

QZ at 

Ica 
,49 C-437) 

Singular piece (A34b). The second term of (A34) originates from the dead cone subtraction. It is explicitly 

proportional to rn’, but this suppression gets compen+ed by the singular behavior in y. The corresponding y 

integral is concentrated in a tiny region (y-y-) N y- cc rn’: 

J 

y+ dy.. 

Y- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

e wa c y -y-) = c +) 
J 

‘ + $a r(y-) JY+. $ ln y= 
II- y 

+ O(a”(Y-)) 
Y- 

(A33) 

The O(a’(y-)) term vanishes in the relativistic approximation: 

J 

Il+ dy 
-lInY--Y-- 

kJ+-Y-)/Y- (j* - ds 
-= 

y- Y2 J Y- II 
(lfl- o mlns,=O’. 

J 

Thus, similarly to what has happened to the logarithmic term (A34a) discussed above, a potential O(~‘(K)) contri- 

bution is absent. One is left with a pure a(~‘) correction to the radiator: 

J 
dy(A34b)=-2m?(~-~]a(~Z)=-2~“i,(,z). k W 

Finite piece (A34c). The corresponding y integral is collinear safe (i.e., finite in the rn2 = 0 limit) and constitutes 

an a(@) correction to the hard cross section. Here one .z&acts the coupling at the upper limit, y - y+, and the y 
integration becomes trivial [see (A12)]: 
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(A40) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

b. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA part zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof the matrix element 

At first sight, the corrections (A32) to the Q&g matrix element proportional to virtual boson mass look negligible: 

The corresponding k2 integration is no longer logarithmic, kZ N kk, and the result is of the order of u(kz) cx a2(kk). 

This expectation indeed comes true for the “hard” correction term (A32b) as well as for the second piece of (A32a). 

However, the l&t. contribution to the “soft” correction term (A32a) is oversingular in y, as a result of which singularity 

logarithmic behavior gets restored and a contribution to the two-loop anomalous dimension emerges. 

Indeed, 

J 
k:, 

dk%(k’) = k; 

0 
a(k;) + u’(k;) ik’ $ In $ + .} E k;C(k;) , 

where 

ir = a’ - ci” + O(C) (A41b) 

Invoking (A15) for k,$, one arrives at the following expression for the A correction: 

-(l - z) II’ $(Y - Y-)5(Y - Y-) 

An approximate evaluation follows: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

J yy $(Y - Y-MY -Y-j = s,“’ $CY - Y-Y+(Y)O(5’(Y-)) 

ez J 
y+ dy.. 

y(y) -  5(y-) = [a(@ ) -  c+~) -  a’(@ ‘) + a’(n’)] -  [a+“) + .] (A43) Y- 
Again, as before, the a”(~“) contribution cancels, and one finally gets the correction 

IS 
dy dk20(kZ)AM(z,y;k2) = -(I -  z)[a(Q’) -  a(n’)] + O(a2(Q2) + a”(~“)) (A44) 

Combining (A37), (A39), (A40), and (A44), we finally arrive at expression (2.7) for the perturbative radiator. 

APPENDIX B: SECOND LOOP ANOMALOUS DIMENSION A(=) 

1. AD (dimensional regularization) 

The two-loop anomalous dimension (AD) has been derived in the framework of a dimensional regularisation ap- 

proach in [18-201. In the notation of Curci, Furmanski, and Petronzio [18], the nonsinglet AD corresponding to 

Q --f Q transition in spacelike evolution reads [Eqs. (4.50)-(4.54) of [18]] 

c,-‘Ij,,(ctz,a) = Q(r) f&-p)(Z), P(z) Ez g , 

Pl) 

Y(‘) = &h(5) + ca&+) + +&Pm, (s) , 
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&2=P(2) 
[ 
;ln%+++;-; +(l+z)lnz++), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 

P"‘=-~[P(I)(Inr+~)+2(1-x)] 
Let US mention an extra contribution due to the Q + Q + QQ transition which reads 

C,-‘@&,a) = O”(CF - $a){2P(-z)&(z) + 2(1+ z) lna: + 4(1 -z)} ) (B3a) 

with 

This contribution (which formally belongs to the nonsinglet AD; see, e.g., PS]) vanishes as (1 - z)~ at large I and 

is color suppressed and numerically negligible. In this paper it has been disregarded together with the singlet (sea) 

contribution to heavy quark yield. 

An algebraic massage leads to the following representation for the quark evolution kernel? 

c,-‘rj,,(z, a) = [a + IC2]P(z) + 2{UCFV(I) + R(z)} - a’[P(z) Inr + 2(1 - z)] (B4) 

The first term here collects the one-loop AD with the part of r(Z) correction explicitly proportional to P(s) with the 

number K given by (2.16b) above. These two combine forming a “physical” coupling in terms of them one according 

to (2.17b). This term totally absorbs the (1 - zr)- 1 singularity of the evolution kernel: V(z) o( ln(1 - z), and ‘R(z) 

vanishes as (1 -CC) in the quasielastic limit. [The very last term in (B4) proportional to the derivative of the running 

coupling, 

a, = d 4Q) 
dlnW 2?r 

=-(~Nc-;TRnf)a2+... , 

does not count, as it is an artifact of the dimensional regularization scheme; see below.] 

The “true” second loop AD in curly brackets of (B4) consists of two contributions. The fist one is 

V(z) = - Pb) 
[ ( 

1 d---i (1 -q 
> 

+(l-z)-~(I+z)lnr lnz zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 1 = dz J J dy J(a: - Y~)IP(Y))+P(z) 144 . 0 0 
So defined, V has a very simple form in the moment representation; namely, 

V(j) E J 0 1 dz +V(z) = P+, ( J 0 1 1 Pj s dc?+(z)+ = J 0 

1+ 12 
dz[z+ - l]- 

1-X > 

P364 

(Obviously, [V(z)]+ = V(z).) This (and only this) contribution changes (acquires an opposite sign) when timelike 

evolution is considered [18]. Therefore (B4) holds for both channels with o = fl referring to timelike and spacelike 

evolution correspondingly. The origin of the V term in the two-loop kernel may be traced back to a simple kinematical 

difference between antiihilation and scattering channels [18]. It has been argued [47] that a mismatch between the two- 

loop e+e- and deep inelastic scattering (DIS) anomalous dimensions would disappear (and thus the Gribov-Lipatov 

relation [17] would be rescued) if one considered scaling violation of “pseudomoments” in z evaluated for a fixed value 

of {~W%nni~, = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{Q2/+}seatt. 
Another term of the second loop AD is 

R(z) = (iCA -cF)P(I)ll?z- 5c&(l+$)l nz+ (1 -z)] +C&+r)ln2+3(1 -x)] 

Similar& to the one-loop splitting function P(z), it obeys the reciprocity relation 117) 

(B7) 

“The “C” prescription is implicit. 
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-dq2-1) = R(x) 

117 

CB84 

and, as a result, stays the same for timelike and spacelike evolution. Contrary to this, 

-cd+-‘) = (-l]l+) 

2. CF (dimensional regularization) 

The O(a) correction to the hard cross section [l&19] [ toe ffi cient function (CF)] has to be taken into considera- 

tion together with the two-loop AD since neither the CF nor AD is a scheme-independent quantity beyond leading 

logarithms. 

It reads [see Eqs. (7.4), (7.10) of [18]] zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

c’=6(1-2)+aCr([~(In~-~)+~(9+5r)]+ 

+3(1+ r)2 
1--2 Inr-;(l+z)+7iZs(l-z) 

I 

, 

c,“=acF. WbI 

The first line of (B9a) is the CF for the scattering channel CC,“); the second line accounts for their difference. After 

simple manipulations one arrives at 

c,” = (1 - $aC,)S(l -z) + ac,[P(a!){1+~(1 -z)] - a} - i(5 + 92)]+ W’) 

In the cross section integrated over the total Q&g production angle [see (2.3)], the combination C;” + 3Cf emerges. 

With account of the longitudinal contribution, the a(1 - z) term gets modified: 

CA(z,a) = C,” + 3C,A = (1 - ;&)G(l -z) + aC~[(BlO)]+ f 3aC~ 

= (I+ $G)S(l - z) + aCr[(BlO) + 3]+ . 

Constructing the CF that describes quark distribution normalized by the total cross section, 

C&a) = (1+ ;ac,)-w(z,a) , 

one gets, with O(a) accuracy, the answer, which may be presented in the form 

C&a) = 6(1-x) + aCF[P(r){ln[l(l -z)] - ;} - a(1 + 2)]+ + ac%{P(s)lnz + 2(1 -z)}+ 

3. Scaling violation rate 

The scaling violation rate is an observable determined by the scheme-invariant combination 

Combining (B4) and (B13), one arrives atl 

D’ ==+ 1% 4 Ka2]cFP(2) + U2CF{CFV(I) + R(r)} + dCp[P(z){ln[z(l - z)] - a} - $(1+ z)] , 

- 
where the MS origin of the running coupling has been stressed in the relevant first order term. 

PW 

k=W 

6313) 

P14) 

This result has to be compared with the scaling violation rate as described by (2.7). To this end one evaluates the 

lnWZ derivative of the relativistic radiator (2.10) to obtain 

“The “+‘I prescription is implicit. 
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D’ a {a(Q2)CFP(z) - a’CF(l - 2) + &&A@)} + a’& 
{ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

-2x 22 
~ - 
1 - 2 + 2(1 -z) 

6316) 

In the leading term one has to expand the coupling of a composite argument @ near W2 as 

a(&?) E a(lyiq + a’ln[z(l -z)] +. . f . (BI? 

Adding together terms proportional to a’, one observes a correspondence with a relevant part of (B15): 

2x 
-- 

1-x 
= -P(z) + (1 - x), & = iP(z)-i(1+z), 

ln[z(l -z)] - (1 -z) - & + & = P(z){ln[z(l - 2)] - 2} - a(1 + s) 

Identifying 

(B15) = (B16) , (W 

we arrive at the final result, which relates an “effective” (dispersion scheme motivated) coupling a.~ with am and 

gives an expression for the “true” second loop correction to the radiator A(‘) we were aiming at 

a.&vP(z) +2&i(*) = [am + Ica~]C&yz) + &&{C,V(z) + R(r)} W’) 
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