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The anomalously small jumps in specific heat, 4C, of superconducting lanthanum and
yttrium compounds are discussed in terms of Suhl, Matthias and Walker’s theory of super-
conductivity in the case of overlapping two bands. It turns out that the law of corresponding
states still holds in a generalized sense. The ratio between the jump and the electronic
specific heat in the normal phase at the transition temperature, 4C/7T,, is a function of four
independent quantities, although the theory contains five parameters. The ratio is found to
be generally smaller than the BCS result, 1.43, for superconductors with a single conduction
band. It is suggested that electron tunneling experiments could determine the two energy
gaps at the absolute zero temperature and the ratio between them at the transition temperature,
thereby providing sufficient knowledge to estimate the ratio. The experimental results for
niobium and molybdenum are discussed. Niobium does not show such a small ratio and is
suggested to have rather strong pairing interactions. Molybdenum is a weak coupling super-
conductor and has a small ratio 4C/7T,. In one of the Appendices, a derivation is presented
of the electron tunneling characteristics at non-zero temperatures, the time variation in the
density matrix being explicitly taken into account.

§ 1. Introduction

Recently, Satoh and Ohtsuka found an anomalous specific heat of - super-
conducting lanthanum and yttrium compounds such as YSi;e, YGeys, LaSi,, and
LaGe,” Their jump in specific heat, 4C, at the transition temperature 7T, was
small in comparison with the BCS result® For instance, the ratio between the
jump AC and the electronic specific heat at T, in the normal phase, yT,, is only
0.69 for LaGe,, while the BCS theory gives 1.43. The above authors have con-
cluded that the anomalous specific heat is due to some intrinsic property of the
compounds and that since superconductors with isotropic single band tend
to give larger jumps as the pairing interactions get stronger,” the observed
smaller jumps should be related to the presence of a complicated Fermi surface
and/or overlapping electronic bands. In the ThSi, type crystal structure of
the above compounds, Si and Ge form a three-dimensional graphite structure.

It would be reasonable to assume the existence of a conduction band due to

this. On the other hand yttrium and lanthanum would give rise to a d or f
band. The latter band might overlap with the former and the Fermi surface
would be in the overlapping bands. Thus, it may be worthwhile discussing a
model of simple superconductors with two overlapping bands without taking
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1112 T. Soda and Y. Wada

into account other complications of the Fermi surface such as its anisotropy.

A model with overlapping bands was discussed by Suhl, Matthias and
Walker? and by Kondo.” Suhl, Matthias and Walker generalized the BCS
formulation, including interband interactions in a pairing form. The transition
temperature was given in terms of five parameters, the cutoff energy in the
pairing interactions, the two electronic densities of states in the normal phase, one
corresponding to each band, and three interaction strengths, two of which
characterize intraband processes and the other interband processes. Since the
densities of states are always multiplied by the interaction strengths, there are
only five independent parameters in the formalism. It was also pointed out
that there are generally two energy gaps and their temperature dependence was
indicated. Kondo generalized Suhl, Matthias and Walker’s discussion by choosing
different cutoff energies for the three processes, Assuming one of the intraband
processes and the interband process to be independent of the electron-phonon
interactions, he took the corresponding energy cutoffs to be independent of the
average phonon frequency and discussed the isotope effect. |
. In the present work, the simpler model of Suhl, Matthias and Walker is
used, since we do not intend to discuss the isotope effect and the theory is not
very sensitive to the choice of the cutoffs. The model was applied to explain
the specific heat anomaly of pure niobium at low temperatures by Sung and
Shen.” They were able to fit the experimental data and determine three quanti-
ties, the smaller energy gap, the ratio between the two densities of states and
the magnitude of the interband interaction.

We shall first investigate the conditions for the energy gap equation to have
a solution and derive an expression for the free energy difference between the
two phases. The specific heat expression given by Sung and Shen can be
. obtained from the free energy difference. It is quite remarkable that the law
of corresponding states still holds as far as the ratio 4C/yT, is concerned. It
is determined if four independent quantities are given in spite of the fact that
the formalism contains five parameters. Therefore, one does not have to perform
~ five independent experiments in order to estimate the ratio quantitatively. We
would like to suggest electron tunneling experiments to measure the magnitudes
of the two gaps at the absolute zero of temperature and the ratio between them
at the transition temperature. These three, together with the transition temper-
ature, compose the four quantities, Apart from quantitative estimates, the ratio
AC/yT, is shown. to be generally smaller than the BCS value, in qualitative
agreement with Satoh and Ohtsuka’s experiments, The contribution to the jump
AC is determined by the derivative d4,’/dT at the transition temperature where
4, is the energy gap in the 1 band and 7" denotes the temperature. The band
with the larger energy gap gives the main contribution to 4C, its d4,\’/dT |r-r,
being large, while the both bands contribute equally to 77%., except for the
density of states factor. Thus the ratio 4C/7T. is decreased.- ‘ |
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Sjbeciﬁc Heat of Superconddctors with Overlapping Bands 1113

In § 2, a brief derivation of the energy gap equation under the Hartree-Fock-
Gorkov approximations” is given. Relevant properties of its solutions are in-
vestigated. In § 3, the free energy difference between the supperconducting and
“the normal phases is given in terms of the energy gaps. The expression for
the ratio 4C/yT, is written as a function of “observable quantities”. In § 4,
tunneling experiments are discussed as a possible way of observing the above
quantities. This will help us to confirm whether the superconductor is really
of overlapping band type. In the last section, the ratio 4C/yT, is discussed
for niobium and molybdenum. The former is suggested to be a strong coupling
superconductor, while the latter actually possesses a small ratio 4C/7T..

§ 2. Eﬁergy gap equation

We shall consider a system of electrons interacting with one another
through two-body forces. A Bloch state for an electron is specified by parameters
p and o, p indicating: both the crystal momentum %k and the electronic band
denoted by 1. The parameter o gives the spin orientation. The Hamiltonian
of the system takes the form ‘

—_ g * *
H= ; €pe Cpor Cpo+ 52 Upapay Cpor Cqa’ Cqra? Cpra- 2-1)
o -

The operators c¢,, and c,: destroy an electron in a Bloch state (p, o), and create
an electron in the same state, respectively. ¢€,, is the kinetic energy of an
electron, and vy,gy, gives the strength of the two-body forces, satisfying the
hermiticity condition
, (Vpapa)* =Vprarpas

where the asterisk means a complex conjugate. quantity.

The energy gap equation can be derived under the Hartree-Fock-Gorkov
approximation, the discussion following exactly the same lines as for a system
with a single electronic band.® We simply replace the crystal momentum suffix

k by our p. A Bloch state with a parameter —p has the opposite crystal mo-
mentum —k in the same band. We shall assume pairing between the electrons

in the time-reversed states, neglecting the pairing between the electrons in def-

ferent electronic bands, This is generally a reasonable assumption, since the
Fermi momentum varies from band to band. ' :

Let us just quote the results of the discussion. Introducing Nambu’s matrix
notation” by

' — [ €pt + Nk ‘
gtVp_< 1,; >’Wp _‘(CpT’C—pi)>

C-pi

one defines the thermodynamic Green’s function

G(p; ti, t) = —Trexp(BR—ID) T T, ) ¥," (22).
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1114 : - T. Soda and Y. Wada

Here, Tr means the trace operation, and f is the inverse temperature
B=1/kT,
& being Boltzmann’s constant. .4 is defined by
H=H-—uN.
¢ is the chemical potential and N the total number of electrons
| N=3 cp Cpo-
Po
The grand potential 2 is given by '
exp(—fp82) =Trexp(—LH). (2-2)

The symbol 7T indicates the time ordering operation with the usual sign con-
vention. The wave fields ¥,(¢z) and 7,*(#) are defined to be

Vo) =exp () ¥, exp(—He), U,* (2) =exp(J) ¥y exp (— HHe).

One introduces the Fourier transform of the Green’s function by

G(p 't t) =% Sexp[ —iE,(ti— 1)1 G(p, iE,). (2-3)

n=—co

Here,
E,= (@2n+1)n/8, n being an integer.
Under the Hartree-Fock-Gorkov approximation, G(p, iE,) is given by

‘lE,,, + gp'rs + A1p7'1 + Aszﬂ

GE.)'—E,’ @4

- G(p, iE,) =

Here,
gp = Ep + Xp— U
E)=¢€,"+ 41, + 43,.

The 7.s are the Pauli spin matrices. The quantities y,, 4.p, and 4,, are all
real and are determined by the equations

1 3 E
Lp =§qj<fupqpq——2, quqp> {1—— WE: tanhﬁzq} , ) (2-5)
4 RE . o
»=— 2V pg—2-tanh =7 2-6
do= =2 "R, 2 (2-6)

Here
Ap:A1p+iAzp,
27

Vpe="Up,—p,9,~q-

The first equation, (2-5), gives the ‘Hartree-Fock field in the superconducting
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Specific Heat of Superconductors with Overlapping Bands 1115

phase and the second one, (2-6), is nothing but the usual BCS equation.

Now we shall introduce simplifying assumptions as in BCS. Since we are
concerned only with states close to the Fermi surfaces, so that |€,]<w, where
w, is the typical phonon energy, the pairing strength Vpq can be replaced by
“its average value over the crystal momenta. The average depends on the band
index A and has three values. Two of them, V,, and V,, give the strengths
of the intraband pairings in the s and 4 bands, respectively. The names of
the bands are arbitrarily chosen. The last one, V,,, gives the interband pairing
strength. Because of the definition of V,,, (2:7), V4, Vs and V,, are all real.
By a phase transformation of ¥, one can always take 4,,=0 and regardthe
energy gap 4, as real.” Further, introducing the densities of Bloch states of
one spin per unit energy at the respective Fermi surfaces, N and N, we can
rewrite the energy gap equation (2-6):

As— 773A I(As> B) ﬂd,AdI(Acb B)’ .
dq= _ns/AsI<As, 5) _WdAdI(Ad; .8) . (28)

The energy gap 4, now depends only on the parameter 4, (A=s or d). 7, and
7. are defined by

773 = VssM > 778, = Vsd

‘ Na=V aalNa, Wd,ivstd. 2-9)
Finally, I(4, B) is
14, B :S Aep tanh PEr | (2-10)
VB 2 |

The above equation was first discussed by Suhl, Matthias, and Walker.”
In order to obtain the transition temperature 7T, one replaces the I(4,, 8)’s
by . ,

16 =10, ) = [ L tanh B5 g, L, (2-11)

and eliminates the remaining 4,’s. The quadratic equation for I(f.), thus
obtained, has the solutions
| 1
- 2(0s%a—5"1d")
Because I(B.) is positive by its definition, (2-11), the right-hand side of (2-12)

should be positive. This requirement leads to the conclusmns
(1) when 70,97

I(B.) = [_77s_7]di 1/(53_7%;)2% 47?3,7711’] . (2-12)

a) if 7,<<0 and 7,<C0, there are two solutions for the transition temperature,
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1116 T. Soda and Y. Wada

‘b) if >0 and 7,>0, there is no solution for T..

(2) when 7.7,/ >, there is only one transition temperature given by

1
IR, =
(. 2(1a—15"14")

(3> when NsNa = 773/77@1,, :

[ﬂ?rm— V (s — 70 + 4904 } (2-13)

a) if 75<_0, there is a transition temperature given by
I8y ==—1,
Ts + 7a
b) if 5,0, there is no 7.
Here, it is important to note that
214 =V Ny N, = 0.

In case (1), the effect of the interband interaction V., is still weak and the
criterion for the superconducting transition is given by that for each component

band. The two transition temperatures reduce to the transition temperature of

each band in the small V,, limit. They can be characterized by the relative
phase between 4, and 4, at T,,

xo=lim 4,/ 4,.

T>Te
Using the’energy gap equations, (2-8), one finds

o= — L +7L(Be)) /7 L(Be) .
Substituting the expression for I(3.), (2:12), we have

1 4 4
Te=— [77¢—7?S:E1/(778—77d)2+4778 N4 } (2-14)

Na

Each of the two signs in (2-14) corresponds to its counterpart in the expres-

-sion for I(B.), (2-12), respectively. Since the higher transition temperature is
given by the negative sign in (2-12), the corresponding x, has the opposite
sign to ;. Thus, we can conclude

for higher T, sgn x,= —sgn Vg,
for lower T, sgn z,=sgn V.
In case (_2)
sgn x,= —sgn V.

There is a similar situation for the solutions of the gap equations (2-8)
at the absolute zero of temperature, 4 and 4,’. The discussion in Appendix A
gives the following conclusions : ‘ '
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Specific Heat of Superconductors with Overlapping Bands 1117

(1) When 79.>7/7, and

a) if 7,<<0 and %,<0, there are two solutions for the energy gaps at zero
temperature. Each solution is characterized by the sign of the ratio,

xOEAdO/Aso-

For the solution with larger 4,"s,

sgn z,= —sgn Vg, (2-15)

for the other solution with smaller 4,"s,

sgn xy=sgn V.

b) If >0 and 7,>0, there is no solution,

(2) When 7/7,/ >4, there is only one solution whose x, has the sign

sgn xy= —sgn V. . (2-16)

(3) When 773/7701,:77877(1: and

a) if 7,<C0, there is a solution whose z, is given by

Zo="a/74 .

b) If >0, there is no solution.

4

Fig. 1. The two solutions of the energy
gap equations in the case (1) a) and
Ve >0. The solid curves represent the
solution with the larger 4,%s and the
higher T,, while the dotted curves give
the other solution. The solid and
dotted curves do not intersect each
other.

There is a complete parallelism between
the situations at 77=0 and at T=1T.,.

These conclusions suggest the tem-
perature dependence of the energy gaps,
when there are two solutions. It is
illustrated in Fig. 1. The solid curves
give 4,’s with the larger 4,”s and the
higher T, while the dotted curves re-
present 4,’s with the smaller 4,”s and
the lower 7, The essential point is
that the solid and dotted curves do not
cross over, that is, the solution with
the larger 4,”s always has the higher
T, Suppose there were a cross over.
Then the sign of the ratio

x=44/4,

for the solution with the larger 4,%s

would have to change somewhere between T'=0 and 7'=T,, 4, vanishing there.
This would give rise to a new transition temperature.
The energy gap equation is the condition for the system to have minimum
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1118 ‘ . T. Soda and Y. Wada

free energy. When there are two solutions, one of them corresponds to a stable
state and the other to a metastable state. The solution with the larger 4,%s
and the higher T, gives the stable state, Its transition temperature is also given
by (2-13). The metastable state solution will not be discussed further.
Finally, we shall explicitly derive the temperature dependence of the energy
gaps at ‘temperatures close to T, in order to calculate the specific heat jump.
Eliminating the 4,’s outside the I’s in the energy gap equations, (2-8), one gets

L= —0I(dy, 8) =7 I(de, ) = (ita—1/1) I (4ss B) I(day B).
Substituting the expansion of I(4, 3) in a power series in 4° at f~ 3"

104, 8)=1(8) +log & —TE® (B4Y" 1. o gay, 2-17)
_ : o4 8 T

¢

we find

B

c

0= {95+ 74+2@s0a—757) I(B.) }log

' _Zc—%'i [{ns+ Grna— 00 ) I(B) } 457

+ e+ 10— 71"9") I(B.) } 44°]

2
+o<1—~T ) - (2-18)
Here £ (2) is the Riemann zeta function and & (3) =1.2021. Since
;
A¢2=x02432+0<1— T ) ,
T,
the relation (2-18) gives ‘
p=_ 8T st 2B @ita=1"1) __1og By O<1 _T )2_
7C3)B" stz + L+ x.) L(Be) (Usa— 15" 74) Be 7(15 10)

This expression can be rewritten in terms of observable quantities such as
the energy gaps and the transition temperature, instead of -the coupling parameters
7s. The energy gap equations (2-8) reduce to

2(1)0 7 40 20)0
— 94 44 lo
| Asol 77d ¢ g I Adol

1=— (775 + Wd,xc) I(Bc) ’

at T=0 and T=T,, respectively. Here the weak coupling approximation

Aso = - 773A30 ].Og

>
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14, 00) =log 22| w,>|4]

14|
is used. 773‘ and 7, turn out to be
o= — 1 2,4 1(B.) — 44" log 2wo/|44])
T I8 x4, log (200/]4°]) — 4. log (2w0/14.])
77(1, 1 As {I(Bc> —log (ZwO/IASUD} (220)

T 1B zudllog (wo/ |4, — 4 log 200/ 4]

Similarly, we obtain

Ny = 1 . Adol(ﬁc) _‘.Z',,Aso log (2(1)0/]4’30!)
I(B) .4 log (2wo/|4]) — 4, log (20°/14)
e L xeddI(Be) —log (Co/|4])} e

I(8.) x4 log (2w0/]4°]) — 42 log (2w./144])

In the weak coupling approximation, one has

18, = S% tanh_%i ~log (1.14B,0,), (2.22)

0

according to the BCS estimate. The coupling parameters 7,’s are thus expressed
in terms of 4,”s, x,, T, and w,. It is quite remarkable that if one substitutes
these relations into the expression for 4,%, (2-19), the quantity w, is cancelled
out and we have '

8’ 2.4, — 4, 8 T \?
4= Lels fd Jog P+ 01— . : 2.-23
7C(3)Bcz xcaAs'"Ad g Bc ( Tc/ ( )
Here
_ 2] 4,
4=4,"log —=> 1
> » 108 3.57T,

The original energy gap equations, (2-8), contained five independent
parameters, Nevertheless, the observable quantity ~4," depends only on four
quantities, the two 4,”s, z,, and 7., In the BCS theory the gap equation had
two parameters, N(0)V and o, But the energy gap depended only on f, at
B~pB.. It was an 'example of the “law of corresponding states " which says
that the physically observable quantities are universal functions of the reduced
temperature T/7T,, if they are expressed in reduced units. The present result

is a generalization of the law of corresponding states to superconductors with
overlapping bands. This reduces the number of experiments which provide the

‘information necessary to estimate 4C/7T,.

Zz0z 1snbny Lz uo1senb Aq 615128171 L L L/9/9€/e1onue/did/woo dno-olwepese//:sdny wouy papeojumoq



1120 : T. Soda and Y. Wada

§ 3. Free energy difference and jump in specific heat

In this section, the free energy difference between the superconducting and
the normal phases is derived under the Hartree-Fock-Gorkov approximation.
The result turns out to be a sum of contributions from the two bands, each
having a form given by the BCS theory. The jump in specific heat is then
discussed and the ratio 4C/yT, is explicitly given. It turns out to be generally
smaller than the BCS value 1.43.

Defining a grand potential £ as a function of the volume, temperature and
chemical potential, by Eq. (2-2),

exp(—pB8) =Tr exp(—BID),

one can obtain the difference in the thermodynamical potential (Gibbs’ free
energy) between the two phases, 40, by

A0=0,— 0, =2, — 2, = 42. (3D

Here, the suffices 7 and s specify the normal and superconducting phases,
respectively. A brief discussion of the above relation (3-1) is given in Ap-
pendix B.

Suppose the two-body interaction wp,,4 is proportional to a parameter ¢
Vpap'a =9I Vpap'a’ -
Then, the grand potential £ also depends on the parameter ¢ and one easily
finds

Q‘g:i<HI>_ (3.2)
0g g -
Here, H; is the second term of the Hamiltonian, (2-1), and the parentheses
mean a thermal average:

(Hp=Trexp(B(L2—90))H;.

Under the Hartree-Fock-Gorkov approximation,” this thermal average is trans-
formed to

{Hp =% 2 0paprg{Cps Cao’ Cqro Cpra) 7
=12 Vpapa [{Cpe Cpra{Cas Cqrar) —Cpo Cqrar ) CTer Cpro
+{cps cgs)lCqror Cpr cr>:|
=2 (2Vpapq— Vpgap) pt Mgt
+ 3 WVop Gu(p, £, t—0)Gr(p’, ', £’ —0). (3-3)

n, is the average number of electrons in a Bloch state p with up spin. In
calculating the difference in (H;> between the two phases, we can disregard
the first term in the righthand side of (3-3). #, in the superconducting
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Sp‘eciﬁc Heat of Superconductors with QOverlapping Bands 1121

phase is different from that in the normal phase only at the vicinity of the
Fermi surface, |€,|]<{w,. In this region, the two-body interaction v varies so
slowly that the first term in (3-3) depends effectively on the total electron
numbers in the region which are independent of the phase.

Substituting the expression for the Green’s function, i.e. (2-3) and (2-4)
into (3-3), one obtains

A<HI> = <H1>n— <H1>s

=s e anh e 3 N4T(4,, 8). 3

P

In virtue of the energy gap equation (2-8), the integrals I(4,, 8) are expressed
in terms of 4,, 7. and 7,’,

ATC4, ) = 1A=tk

Nsha— 75 %z
41 (g §) = T4 da (3-5)
Nella— s Md .

Substituting (3-4) and (3-5) into the equation for 482, (3-2), we have

= (s W INAr a4 + Nuda G Ay — 041
0 g (773 77(1 778 77(1 ) .

—_— SCZ[{N!A.\; (Wd/OAd_')?doAs) +NdAd (778/04 7]504’(1>}/g (773 Ve —773,0 /0)]
ds

+ des {ZNs (77«1’044 74°4s) +2N,(7,°4, 7730400 ddq } / 9 108 —1"°1"%)

p dd,
AS
- —farenaian, 91+ 2\ansarar, 52
4y, .
2 OI(A)O 8) ‘ .
ZA%NMX D | 3-6)

Here, the relation
N, 77d/0 = NsNstd/g = Nd%m

is used. Since 42 is identical with 4@, 40 turns out to be a direct sum of the
contributions from the two bands, each contribution being given by the BCS
result. The corresponding result for the specific heat was already used by Sung

and Shen in their analysis of thé low temperature specific heat of niobium.?”
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1122 ‘ T. Soda and Y. Wada

The relation (3 6) is particularly simple in the following two cases. At the

absolute zero of temperature, one finds

0= — 25 dASN A,

0

02 0 1 20,
o _
04" 2149 2

ZNMJ’Z, T=0,
)“ -

and at temperatures close to T,

4

., 0 [72(3)F4, 7¢(3)p’ .
A40=>\ d4,N, 4, E N4t T~T,.
x\og N ( 8’ > 167*

Here, the expansion of I(4, 8) in terms of B4, (2-17), is used. Although g,
depends on the coupling strength g, I(83.) +log(8/B.) does not
The jump in specific heat AC is given by

64@ 7¢(3) d4,’
4C=C,—C,=T, =—= 7 NN,
‘ 0T? |r=r. 8n'k*T, Z < darT >T Te
87rIcT Zody— A4 \?
ORL e (N, +z'N,) (ZLe= e 3-7
ey (et miND (xm Ad) (3-7)

Here, the explicit temperature dependce of 4, at TNT,,, (2-23), is used. Since
the electronic specific heat in the normal phase takes the form

C,=7T= %7m"(N,+N,«£'T,
the ratio between 4C and 7T, is -
AC _ 12 N,+xz‘N, ( Zods— g >27
TTc 7C (3> N3+Nd xcaj;"—]d .

The ratio N,/N, can also be expressed in terms of the observable quantities,
since

(3-8)

Na _1d __ 4

Ng 773/ xcjd .

Here the defmition of %, (2-9), and the expressions for them, (2-20) and
(2-21), are used. Substituting this relation into (3:-8), one finally obtains

4C _y 43 x(Ze—E (3-9)
\ 7T, Az x—1) (X —x)
where
f:—_i: Ado . ].Og (2IA¢OI/3.5ICTG) ‘ ‘ . (3.10)
4, 4° log (2]4°/3.5¢T,)
and

o= hm Ad/d,g .

T—>Te
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Specific Heat of Superconductors with Overlapping Bands 1123

The ratio 4C/yT, thus turns out to be different from the BCS value 1.43 by
the factor in (3-9).

In order to see that this factor is generally less than unity, we shall first
show that one of the energy gaps, 2|4,°, is generally larger than 3.5 £7,, whilé
the other is smaller. In the simple BCS case, the energy gap at zero temperature,
2|4°| is equal to 35T, Therefore, 3.5«£T, would give a sort of average of
the gaps in our case. Then it is reasonable to expect that one of the gaps
would be larger than the average, and the other smaller. This can be proved
if it is shown that '

214, 21458 { 20 } { ZwO} :
lo sl .lo a I(B,) —lo 0 I(R,) —1lo <0. 3-11
83 seT. %3507 (Be) yh (Be) 840 (3-11)
Here, the expression for I(8,), (2-22), is used. The second expression in
(8-11) can be rewritten in terms of the coupling parameters, 7, and 7/, qnd
xO,

214, 214, 1

log 214s ! g = 4914
83T, % 3T 2(%%—%’%’)2[ el

— 4 o {7 — nd —V (=10 + 4914 }

1/(778_'7?d) +4773 Wd }:I

Zo

Here the express1ons for I(8,), (2-13), and for log (2w0/ldh°l), (A-1), are used.
The above express1on is not positive, if

14 ol — 90—V (773-774)2 + 4774} + Z: 10— 71—V (s —712)* + 470" 74 } Z 497"
0 .
Neither side of this inequality is negative, since 7,7,/ =0 and sgn x,= —sgn

Ve (2-15) and (2-16). Therefore, we can square the two sides and calculate
the difference. This turns out to be

{(ﬂd/xo + s ) (773 — 77d) - <77d,$§ -

Xy

7 . 2
77.5' >-l/ (773"77d)2 _}_4,”8/77(1/ } .
To
Since the sign of z, is the same as that of x,, as discussed in § 2, the de-
finition of %, (3-10), gives ‘ ‘
x=—axzx,
with a positive constant @’. Substituting this relation into the expression for
AC/yT,, (3-9), one finds
/ ) 2\2, . 2
4C —1.43 (1+a”)’z,
7T, A +a'z”) (@ +x.)

>

which is smaller than 1.43, since
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1124 T. Soda and Y. Wada

A+a'z) (@+z") — L +a)Vz'=a’(1—=z)=0.

The ratio, (3-9), reduces to the BCS value only if z,=1 or x=0.

The reduction in the ratio 4C/yT, could be understood if one considers
the case of weak interband interactions Vi, The jump in specific heat depends
on the derivative of 4, at 7T, (3-7). If there is no interband interaction,
V=0, one of the gaps vanishes at T, and the other at T,. A small V,, lets
the first gap linger on to T, as illustrated in Fig. 1. The derivative d4,’/dT
of that gap at T, becomes small. Therefore, the jump 4C is of the same order
of magnitude as that of the single band case. On the other hand, y7, is in-
creased owing to the increase of the electronic density of states. The ratio
- 4C/7T, is thus reduced.

To estimate 4C/yT, numerically, the four quantities 4,°, 4,', x, and T, have
to be known. Since 7, is already known, one has to observe the energy gaps.
We would like to suggest electron tunneling experiments as one of the pos-
sibilities to find them. In the next section, the tunneling characteristics of
superconductors with overlapping bands will be discussed.

§4. Tunneling characteristics of superconductors
with overlapping bands

It is worth while emphasizing here that electron tunneling experiments will
give a direct check that a superconductor has overlapping bands in Suhl, Mat-
thias and Walker’s sense. Since there are two energy gaps in their model, the
tunneling characteristics should exhibit a corresponding structure.

The discussion of the characteristics follows exactly that for the supercon-
ductors with a single band. Suppose the tunneling Hamiltonian takes the form"

Hy= > {Tpp ¢ 3yo cpe+h.c}. ' (4-1)

pPe ~ ‘

Here, T, is the matrix element for an electron in a Bloch state p to tunnel
through the junction from left to right into a Bloch state p’. The superscripts
[ and r refer to the left and right metals, respectively. Since the electrons at
the Fermi surfaces contribute to the tunneling, 7T',,. can be replaced by its value
on the Fermi surfaces. Suppose the left metal has two overlapping bands, while
the right one has a single band. Then, T, has two typical values |

T)L:Tlcpl)u;'k;pr, (Z:S or d),

where ki, and %, are the Fermi momenta of the left and right metals, respec-
tively. '

The expression for the tunneling currents given by Scalapino, Schrieffer
and Wilkins®® is rederived in Appendix C as a result of the time variation of the
density matrix. The formulation may have further applications. If a potential diffe-
rence V is applied across the junction (V >0, if the potential is higher at the right
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metal), the tunneling current from right to left, I(V), is given by

[}

_ dre aAT LATF 2 1 1
1(V) = -2 5T NxNgmdwRe<VW><l+eﬁw 1+eﬂ<é’~“’>>'
: (4-2)

Here, the right metal is supposed to be in the normal phase and e is the absolute
value of the electronic charge. .

dl/dV is easily calculated and one immediately finds that the contribution
to the w integral comes mainly from the region eV —kT <0<V +,T, thereby
giving rise to the possibility of observing the energy gaps 4,’s. At the absolute
zero of temperature, the ratio of dI/dV between the superconducting and the
normal phases is given by

ﬂ) /_dl> _ TN (eV)/V/ (VY =471 +1Tul’Ni (eVI/V (VY =141
CZV Os dV 0n } ITs‘IstZ'!‘[Td]szl

The dI/dV curve thus gives 4, and 4., which determine the ratio ¥ defined
by (3-10). The other ratio x, could also be determined by tunneling experiments
at temperatures close to T,. Then we would be able to estimate the ratio 4C/yT,
according to (3-9) and immediately know if the small specific heat jumps are
really due to the overlapping of the electronic bands.

Finally, let us note possible difficulties in observing the tunneling charac-
teristics. First, if one of the |7,|2N,"”s is quite small in comparison with the
other, it might be difficult to observe both 4,’s. Secondly, when one of the
gaps is too small compared to the other, the relevant structures in the dI/dV
curve might be overlooked. According to Sung and Shen’s analysis,” niobium
might belong to this case. Finally, if the two gaps, 4, and 4, are quite close
each other, the structure would be masked by the anisotropy effect, reducing
the dI/dV curve to that of a single band superconductor.

§ 5. Discussion

We have discussed the Suhl-Matthias-Walker model for superconductors with
overlapping bands and shown that the ratio between the jump in specific heat,
AC, and the electronic specific heat at the transition temperature, 17T, is generally
smaller than the BCS value 1.43. In order to know the ratio quantitatively, the
parameters in the model have to be given. It has been suggested that we observe
the tunneling characteristics at low temperatures and at temperatures close to
T.. These two experiments would be enough to provide the information neces-
sary to estimate AC/7T,, since the system still satisfies a generalized *law of
corresponding states ”. Moreover, tunneling experiments would give a direct
check to see if the system is really a superconductor with overlapping bands.

Let us next consider the cases of two transition elements, niobium and
molybdenum, for which the observed values of 4C/yT, are available. Leupold
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1126 . T. Soda and Y. Wada

and Boorse measured the ratio for niobium, which presumably has overlappmg
5s and 4d bands, and found™

aAC
7T,

The result was larger than the BCS value. We believe that this large value
is due to strong coupling effects. When the electron—phonon interactions become
strong, the ratio is enhanced, as in lead and mercury.
The strength of the interactions is indicated by the ratio of 7, and the

Debye temperature §. According to Leupold and Boorse,

T.=9.195°K, §=275°K, for niobium,
thereby giving

T,/0=0.033.

Lead has the ratio 0.07 and aluminum, 0.002. This clearly indicates that niobium

has a rather strong electron-phonon coupling and may not be understood by the

simple weak-coupling theory presented in this paper. Actually, Leupold and
Boorse observed an anomaly in the temperature dependence of the cr1t1cal field,
which is typical of strong coupling superconductors.

Meanwhile, a specific heat anomaly at low temperatures (7'<(0.27,) was
found by Shen, Senozan and Phillips.® Sung and Shen analyzed the anomaly
using the Suhl, Matthias, and Walker’s model. They were able to select a set
of parameters which could reproduce the experimental data for pure specimens.
This may mean that the strong coupling effect is not so dominant at low tem-
peratures, The characteristic phenomenon in the strong coupling superconductors
is the strong damping of quasiparticle excitations. -The damping rate, however,
becomes less appreciable at low temperatures. -

According to Sung and Shen, one of the two gaps, As, is quite small,

ASOZO.IﬁlcTC.

This may be the reason why many tunneling experlments on niobium have
overlooked two-band effects.

Rorer, Onn and Meyer measured the transition and the Debye temperatures of
molybdenum,'®

T,~092°K, 0=461+ IQO,K, for molybdenum,
thereby giving the ratio
T./0—0.002.

The pa1r1ng interactions are presumably as weak as alummum In- fact, the
ratio 4C/yT, was found to be '
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Specific Heat of Superconductbrs with Overlapping Bands 1127

AC
7T
which is smaller than the BCS value.

In this paper we have discussed only the anomaly in the specific heat jump.
Suhl, Matthias and Walker’s model has also been applied to other phenomena
such as accoustic attenuation, nuclear spin relaxation and electromagnetic ab-
sorption. The results of these discussions will be published in separate papers.

=1.29+40.15,
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Appendix A
The energy gap equations at the absolute zero of temperature

In this Appendix, we shall discuss the energy gap equations, (2-.8) at the
absolute zero of temperature and derive the results given in § 2. '
At T=0, the integral I(4,, ), defined by (2-10), takes the form

I(4,", o0) :Séi =log _[0)0 + V0l + 14" ]

) E, 14,

>

which reduces to

20,
|4,
in the weak coupling limit. I(4,, 8) is always positive by definition. It can
also be rewritten as

I(Ahoy OO) = log

2

1047, 00) = M0 B _ £y >0,
| 75 Mg

7737711
I(4s, 00) == /2 gy >0, (A1)
s 77 —MsTa

Here one of the I(4,° o0) is eliminated in the energy gap equations. The I’s
should be always positive as functions of x,, The absolute magnitudes of the
energy gaps are given by

*) After this work was finished, Dr. A. J. Leggett informed us of a paper by Yu Luh and
Gu Ben-Yuan, who discussed Suhl, Matthias and Walker’s model in a special case where the three
pairing strengths Vi, are only sllghtly different one from another 18) They obtained a reduction
in 4C/yT, in this case.
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4=

sinh f(x) ’

A= B0 | .
[47] sinh 9z’ (A-2)

where the parameter x, is determined by

sinh f(xo) = |x|sinh ¢ (z). (A-3)

Introducing the notation

S=m/ 01 =100 > &/ ="/ (014 ~nna),

d—[Xol sinh g (Xo)

Fig. 2. The two functions in the equation
(A.3) when all &, and &,/ are positive.
The solid curve gives sinh f(x;) and
the dotted ones represent |zy) sinhg (o).
There is always one intersection
at 2,<0. The other one at zu>0
appears on the upper half plane if
Ealbd/ >E4 [Es.

one can draw the curves of the functions
on the two sides of Eq. (A-3). sinh
f(x,) is represented by a solid curve in
Fig. 2 in the case that £,>0 and &,/>0.
It increases exponentially when z, ap-
proaches negative infinity. The curve
intersects the x, axis at x,=§&,/&,/. The
two dotted curves give |x|sinh g (x)
when &, and &’>0. The function tends
to |xsinh & at xy;—> oo, that is, it
increases linearly. The intersection with
the =z, axis is xy=§,//&. Now it is
evident that we always have one root
for Eq. (A-3) at x,<<0, because of the
difference in the asymptotic behavior of
the two functions. Moreover, if &,/&,
is larger than &,//&,, one has another
root at x,>0; this root gives a larger

value for |4,"] as can be seen from Fig. 2 and (A-2). Since there is symmetry
between the s and d-bands, the latter root also gives a larger value for |4,
than the former. A similar discussion can be applied for the various cases with

respect to the signs of &, and &/,

The intersections between the solid and

dotted curves on the upper half plane are relevant, since f(x,) and ¢(x,) should
be positive, (A-1). Then one easily obtains the results:

(1) When &/ and &,/>0, and

E4/E/>8&/ /&, then there are two roots, of which the one
&.>0, with x,>0 gives the larger gaps,
&/, >E,/€/, there is one negative root,

$s<0,{

(2) When &/ and &,/<C0, and

CE./8>8&//&, one negative root,

és,/€s>$¢/éd/, no root,
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&/ /€, >€,/€/, two roots, of which the negative one gives
Es>0,% the larger gaps,
£,/ >¢&/ /&, one positive root,

£’ /e>>&,/€,/, one positive root,

éd/éd/>gs’/€s, no root.

The above results exhaust all cases since &’¢, is always positive, Now it is
straightforward to derive the final conclusions given in § 2. ‘

$5<0’ {

Appendix B

Difference in thermodynamic functions between
the normal and the superconducting phases

For the sake of completeness, we shall here show that the difference in
the grand potential between the normal and superconducting phases is identical
with that in the thermodynamical potential (Gibbs’ free energy), although this
fact has been used extensively.'” ‘

The grand potential £ is evaluated from the equation

exp(—p82) =Tr exp(—BH)

as a function of the volume 'V, the temperature 7T, and the chemical potential
4. It takes the form ‘

‘-Qa = Vpa (ﬂ’ T)

in the phase . « stands for the suffixes n and s. p, is the pressure

p=po (U, T),

which gives the chemical potential in the a phase, #,, as a function of pressure
and temperature. According to the Gibbs-Duhem relation, the total number of
electrons N is given by ‘ '

N=V b« | (B-1)
o |r

The difference in the thermodynamical potential @ can be written as
40=0,—0,=N{u,(T, p) — 1:(T, p)}.
The difference in the grand potential 2 takes the form
42=0,— 2= —V{pa(t, T) —ps(t, T)}.
Taking #=u, and V=7V,, one obtains
42= =V { pu(tta— 4y, T) —p}

0pn 1 0%,
:VS{ A —
0ty |7 g 2 0u,

(Aﬂ)“r---} . (B-2)

Zz0z 1snbny Lz uo1senb Aq 615128 L/1L L L L/9/9€/e1onue/did/woo dno-olwepese//:sdny wouy papeojumog
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The second term in the parentheses is smaller than the first by a factor 4u/u,.
0pa/ 0l r gives the density of the system, by the relation (B-1); this is propor-
tional to %k, kr being the Fermi momentum. 0%,/0x,'|r is proportional to
3kzm. Here, m is the. effective mass of the electrons. Therefore, the ratio
between the second and the first terms turns out to be

3m 34u
du== .
ZkF2 “ 4lan

The volume in the ‘superconducting phase V, can be replaced by V,, if one
again neglects small corre(,tlons of the order of 4u/u, The expression for 42,
(B-2), then gives ‘ ‘

Angngﬂ du=Ndp= 40,

/un T
Appendix C

Tunneling characteristics at non-zero temperatures

In this Appendix we would like to present a general discussion in order .

to obtain the tunneling characteristics at non-zero temperatures. Although the
discussion will simply reproduce the known results, it might provide the basis
for more general analyses and for further applications to other problems.

Suppose a potential difference V is applied across the junction. V is taken
to be positive when the right metal has a higher potentlal The total Hamil-
tonian takes ‘the form

H:Hl‘l'.HT“eVNT‘*"HT.

Here, H, and H, are the Hamiltonians of the left and right metals, respectively,
each having a form like (2:1). N, is the total number of the electrons in the
right metal and the electronic charge is denoted by —e, e being positive. The
tunneling Hamiltonian FH, takes the form given in (4-1). We shall measure
energies relatively to the Fermi surface by introducing

Hy=H,— 1Ny,
H,=H,.— uN,.

The chemical potential # has the same value in the two metals.
The statistical average of a dynamical quantity A at time ¢ is given by

(AY=Tr(Ap®)), | (C-1)

where 0(z) is the density matrix, which satisfies the equation

7P 10— oH.
dt
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Specific Heat of Superconductors with Overlapping Bands 1131

Since 0(#) can be written as

tHt

tHt >

p(2) =exp < — ) 0(0) exp <_h_

‘the statistical average, (C-1), takes the form

<A =Tr(0(0)A@)). (C-2)

Here, A(¢) is a Heisenberg operator

A(t)=exp<il;h>A ¢xp<— “;It).

In actual tunneling experiments, the junction is first manufactured and then
a potential difference is applied. In the theoretical discussion, we reverse the
order, first applying a potential difference between two separate pieces of metals
and bringing them together to a'contact across an insulating film at time £=0.
Since the total system is in thermal equilibrium at #=<0, the density matrix takes
the form

0(0) =exp{B(2— I, —H,)} (C-3)
at £=0. Here,

Q=02,+2,

exp{—p382} =Tr exp{—pA;}, etc.

At #=0, the tunneling Hamiltonian F, begins to operate so that the system is
no longer in equilibrium and relaxation takes place to a new equilibrium, cur-
rents passing across the junction. Ordinarily, the experiments are carried out
at constant temperature. There might be heat exchanges between the system
and its environment to keep the temperature constant. -If the entropy variation
due to the heat exchanges is small in comparison with the intrinsic entropy
increase associated with the relaxation, the process could effectively be regarded
as adiabatic, and the formulation in this Appendix could be applied. If the
process gave rise to appreciable Joule heat, the present discussion could not
apply. ;

Before going into the calculations, one has to make one more remark.
Strictly speaking, the currents associated with the relaxation are not identical
with those observed in the experiments. The observed currents are stationary
and never vanish.  However, when the system is sufficiently large, the above
two currents should be practically the same since the potential difference is kept
approximately constant, even though a small amount of relaxation current tunnels
through the junction. , _

Now let us consider a Heisenberg operator N;(z), the total number of
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electrons in the left metal, This can be written as
| M(t) =exp {zé‘[t/ﬁ}Nl exp{—idt/h} =U* @) NU @),
where
H=H—u(N,+N,),
Ut) =exp{i (I, + H,—eVN,)t/h} exp{—idt/H},

and U*(¢z) is the Hermitian conjugate of U(z). The operator U(z) satisfies
the equation

h—c‘;—U— _H,OUQ).

Here, H,(¢) is defined by
Hy(¢) =exp{i(H,+I,—eVN,)t/h} Hy exp{—i(H,+ I, —eVN,) t/#}.
U(¢) is obtained in a power series in Hy:

12521

gg 2 (2) ﬁT () dtrddits + -

¢
lxw=1+4{fnmﬁm
zﬁo

N, (¢) is given by

N@® =Ni— ([, ), Nildn
ih

0

t ity t iy

any XXHT () Hr () dtdts + 1h> g SHT (t2) Hy (8) dzzdg N,
(zh)ZStHT (&) dthStH r(t2) dts,

up to the second order in Hjy.
Introducing the eigenstates |7)> and the correspondmg eigenvalues En of
the Hamiltonians 4, and 9, by

Jilny = E,' | n,
I\ np =E|n.p,
one can write a matrix element of ‘the tunneling Hamiltonian :
{n/n, | Hp () [,y = exp (Bt /H) - {n'n.’ | Hrlmin,),
where

E,,=E. +E, —eVN, —E}'—EJ+eVNy.
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Making use of this time dependence and the relation

Sin* (Bwal/28) 72 50 3 ag 4o
?1,’7& 271/2 o ,

we obtain the diagonal matrix elements of N,(z):

ny' ny’

Cum, | N (0) [y = Nyt + Zg"‘ SV (Nl — N3 (B [0 | Hlmn P, (C4)

The average tunneling current from the right to the left at a potential
d1fference V is

I(V)=—¢ hm —~[<Nl>z <Nz>o]

Subst1tut1ng (C-4) into the definition of the statistical average, (C 2), and using
the expression for 0(0), (C-3), one finds

I(V) = ’;g;nexp[e(a E!~EN].

X IZTpp’<nZ,n'r/ lcp 2 Cpa-l nlnr>l 26 (E;’ + E Enl - Enr - ev)

ppo

- IZTpp <nl nr/lcpa'

pp’c

0 (Bl + By — EJ—EJ +eV)].

In this way, we have recovered the expression which Scalapino, Schrieffer and
Wilkins derived by explicitly calculating the transition probabilities.® The
~ discussion hereafter follows theirs exactly, and the tunnelling current between
two superconductors, one with overlapping bands and the other with a single
band, takes the form |

4Te 2 "(w— 1 -
I(V) = g da)ZlTxl Nx (@)N"(0—eV) [1+eﬂ(w—eV) 1+e° J ’

—

where

CNT() = NLbT o]
N)“l (U))—N)\,l Re7w2:_"—lrl,—r—|2-

The above expression reduces to (4-2) when the right metal is normal.
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