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The anomalously small jumps in specific heat, JC, of superconducting lanthanum and 
yttrium compounds are discussed in terms of Suhl, Matthias and Walker's theory of super~ 

conductivity in the case of overlapping two bands. It turns out that the law of corresponding 
states still holds in a generalized sense. The ratio between the jump and the electronic 
specific heat in the normal phase at the transition temperature, J:JCfrTe, is a function of four 
independent quantities, althou~h the theory contains five parameters. The ratio is found to 
be generally smaller than the BCS result, 1.43, for superconductors. with a single conduction 
band. It is suggested that electron tunneling experiments could determine the two energy 
gaps at the absolute zero temperature and the ratio between them at the transition temperature, 
thereby providing sufficient knowledge to estimate the ratio. The experimental results for 
niobium and molybdenum are discussed. Niobium does not show such a small ratio and is 
suggested to have rather strong pairing interactions. Molybdenum is a weak coupling super
conductor and has a small ratio J:JC/rTe. In one of the Appendices, a derivation is presented 
of the electron tunneling characteristics at non-zero temperatures, the time variation in the 
density matrix being explicitly taken into account. 

§ I. Introduction 

Recently, Satoh and Ohtsuka found an anomalous specific heat of super

conducting lanthanum and yttrium compounds such as YSi1.9o, YGe1.62, LaSi2, and 

LaGe2.
1

) Their jump in specific heat, JC, at the transition temperature Te was 

small in comparison with the BCS result.2l For instance, the ratio between the 

jump JC and the electronic specific heat at · Te in the normal phase, rTe, is only 

0.69 for LaGe2, while the BCS theory gives 1.43. The above authors have con

cluded that the anomalous specific heat is due to some intrinsic property of the 

compounds and that since superconductors with isotropic single band tend 

to give larger jumps as the pairing interactions get stronger,3
l the observed 

smaller jumps should be related to the presence of a complicated Fermi surface 

and/ or overlapping electronic bands. In the ThSi2 . type crystal structure of 

the above compounds, Si and Ge form a three-dimensional graphite structure. 

It would be reasonable to assume the existence of a conduction· band due to 

this. On the other hand yttrium and lanthanum would give rise to a d or f 
band. The latter band might overlap with the former and the Fermi surface 

would be in the overlapping bands. Thus, it may be worthwhile discussing a 

model of simple superconductors with two overlapping bands without taking 
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1112 T. Soda and Y. W ada 

into account other complications of the Fermi surface such as its anisotropy. 

A n1odel with overlapping bands was discussed by Suhl, Matthias and 

Walker4
l and by Kondo. 5) Suhl, Matthias and Walker generalized the BCS 

formulation, including interband interactions in a pairing form. The transition 

temperature was given in terms of five parameters, the cutoff energy in the 

pairing interactions, the two electronic densities of states in the normal phase, one 

corresponding to each ·band, and three interaction strengths, two of which 

characterize intraband processes and the other interba1;1d processes. Since the 

densities of states are always multiplied by the interaction strengths, there are 

only five independent parameters in the formalism. I't was also pointed out 

that there are generally two energy gaps and their temperature dependence was 

indicated. Kondo generalized Suhl, Matthias and Walker's discussion by choosing 

different cutoff energies for the three processes. Assuming one of the intraband. 

processes and the interband process to be independent of the electron-phonon 

interactions, he took the corresponding energy cutoffs to be independent of the 

average phonon frequency and discussed the isotope effect. 

In the present work, the simpler model of Suhl, Matthias and Walker is 

used, since we do not intend to discuss the isotope effect and the theory is not 

very sensitive to the choice of the cuto~s. The model was applied to explain 

the specific heat anomaly of pure niobium at low temperatures by Sung and 

Shen. 6
l They were able to fit the experimental data and determine three quanti

ties, the smaller energy gap, the ratio between the two densities of states and 

the magnitude of the interband interaction. 

We shall first investigate the conditions for the energy gap equation to have 

a solution and derive an expression· for the free energy difference between the 

two phases. The specific heat expression given by Sung and Shen can be 

. obtained from the free energy difference. It is quite remarkable that the law 

of corresponding states still holds as far as the ratio 11C/rTc is concerned. It 

is determined if four independent quantities are given in spite of the fact that 

the formalism contains five parameters. Therefore, one does not have to perform 

five independent experiments in order to estimate the ratio quantitatively. We 

would like to suggest electron tunneling experiments to measure the magnitudes 

of the two gaps at the absolute zero of temperature a~d the ratio between them 

at the transition temperature. These three, together with the transition temper

ature·, compose the four quantities. Apart from quantitative estimates, the ratio 

11C/rTc is shown. to be generally smaller than the BCS value, in qualitative 

agreement with Satoh and Ohtsuka's experiments. The contribution to the jump 

JC is determined by the derivative dA~ 2 /dT at the transition temperature where 

11~ is the energy gap in the A. band and T denotes the temperature. The band 

with the larger energy gap gives the main contribution to JC, its dA~ 2 /dTir=Tc 

being large, while the both bands contribute equally to rTc, except for the 

density of states factor. Thus the ratio AC/rTc is decreased.· 
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Specific lfeat of Superconductors with Overlapping Bands 1113 

In § 2, a brief derivation of the energy gap equation under the Hartree-Fock

Gorkov approximations7
) is given. Relevant properties of its solutions are in

vestigated. In § 3, the free energy difference between the supperconducting and 

the normal phases is given in terms of the energy gaps. The expression for 

the ratio JC/rTc is written as a function of "observable quantities". In § 4, 

tunneling experiments are discussed as a possible way of observing the above 

quantities. This will help us to confirm whether the superconductor is really 

of overlapping band type. In the last section, the ratio JC/rTc is discussed 

for niobium and molybdenum. The former is suggested to be a strong coupling 

s~perc·onductor, while the latter actually possesses a small ratio JC /rTc. 

§ 2. Energy gap equation 

We shall consider a system of electrons interacting with one another 

through two-body forces. A Bloch state for an electron is specified by parameters 

p and a-, p indicating both the crystal momentum k and the electronic band 

denoted by A.. The parameter u gives the· spin orientation. The Hamiltonian 

of the system takes the form 

H "E * +1" * * = ~ per Cpa: Cpa: 'J~Vpqp'q' Cpa: Cqa:' Cq'a:' Cp'a:· (2·1) 
per 

The operators cpa: and c/cr destroy an electron in a Bloch state (p, u), and create 

an electron in the same state, respectively. EP<T is the kinetic energy of an 

electron, and Vpqp'q' gives the strength of the two-body forces, satisfying the 

hermiticity condition 

(vpqp'q' )* = vp'q'pq, 

where the asterisk means a complex conjugate, quantity. 

The energy gap equation can be derived under the Hartree-Fock-Gorkov 

approximation, the discussion following exactly the same lines as for a system 

with a single electronic band. 8
) We simply replace the crystal momentum suffix 

k by our p. A Bloch state with a parameter - p has the opposi~e crystal mo

mentum - k in the same band. We shall assume pairing between the electrons 

in the time-reversed states, neglecting the pairing between the electrons in. def

ferent electronic bands. ·This is generally a reasonable assumption, since the 

Fermi momentum varies from band to band. 

Let us just quote the results of the discussion. Introducing Nambu's matrix 

notation9
) by 

?]! = ( Cp t \ ?]! + = (c* . ) 
P * ) ' P pt' C-pt ' 

C-pt I 

one defines the thermodynamic Green's function 
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11:14 T. Soda and ·Y. W ada 

Here, Tr means the trace operation, and /3 is the inverse temperature 

/3=1/JCT, 

JC being Boltzmann's constant. S£ is defined by 

Si=H-pN. 

f.!. IS the chemical potential and N the total number of electrons 

N= :E c;a Cpa· 
per 

The grand potential Q is given by 

exp (- j3Q) = Tr exp (- /3S£). 

The symbol T indicates the time ordering operation 'With the usual sign con

vention. The wave fields lJI P (t) and lJI P + (t) are defined to be 

lJI P (t) = exp (Sit) lJI P exp (-Sit), lJI P + (t) :._ exp (Sit) lJI P +exp (- $-£t). 

· One introduces the Fourier transform of the Green's function by 

G(p,""th t 2) = __l_ ~exp [- iEn (tl- t2)] · G (p, iEn). 
/3 n=-co 

Here, 

En= (2n+1)n//3, n being an integer. 

Under the Hartree-Fock-Gorkov approximation, G(p, iEn) IS given by 

G ( iE ) _ iEn + E v'Ts + L11p'T1 + L12p'T2 . 
p, n (iEnY ~ Ep2 

Here, 

Ep= Ep+ Xp- f./., 

E 2 ·- 2 ,42 ,12 
p =Ep +..::~lp+..::~2p· 

(2·3) 

(2·4) 

The T/s are the Pauli spin matrices. The quantities Xp, L11p, and L12p are all 

real and are determined by the equations 

Here 

Xp = L; (vpqpq _ _!_Vpqqp) {1- Eq tanh /3Eq} , 
q 2 Eq 2 

Llv=- L;Vpq___4q_tanh /3Eq . 
q 2Eq 2 

Llp = Lllp + iL12p' 

V pq = Vp, -p,q, -q. 

(2·5) 

(2·6) 

(2·7) 

The first equation, (2 · 5), gives the Hartree-Fock field In the superconducting 
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Specific Heat of Superconductors with Overlapping Bands 1115 

phase and the second one, (2 · 6), is nothing but the usual BCS equation. 

Now we shall introduce simplifying assumptions as in BCS. Since we are 

concerned only with states close to the Fermi surfaces, so that I E"PI <wo, where 

Wo is the typical phonon energy-, the pairing strength V pq can be replaced by 

its average value over the crystal momenta. The average depends on the band 

index A and has three values. Two of them, Vss and Vaa, give the strengths 

of the intraband pairings in the s and d bands, respectively. The names of 

the bands are arbitrarily chosen. · The last one, V 8 a, gives the interband pairing 

strength. Because of the definition of Vpq, (2·7), Vw Vaa and Vsa are all real. 

By a phase transformation of ?JI'P, one can always take L/2p=O and regard -the 

energy gap .:J, as real. 9
l Further, introducing the densities of Bloch states of 

one spin per unit energy at the respective Fermi surfaces, Ns and Na, we can 

rewrite the energy gap equation (2 • 6): 

Lis= -r;sLIJ (Lis, {3) -r;a' Llal (Lia, {3), 

Lla= -r;/ Llsl(Lio {3) -r;aLial(Lia, {3). (2·8) 

The energy gap LIP now depends only on the parameter A, (A=s or d). 1J>- and 

rh' are defined by 

Finally, I(LI, {3) 1s 

"f/s = VssNs, r;/ = Vsa Ns, 

"f/a= VaaNa, "f/a
1 
~ VsaNa. 

rug 

( d- r.;E 
I (LI>-, {3) = ) ~ tanh_JJ_p . 

. 
0 

Ep 2 

(2·9) 

(2·10) 

The above equation was first discussed by Suhl, Matthias, and 'Yalker.4
l 

In order to obtain the transition temperature Tc, one replaces the I(LI>.., {3) 's 

by 

(2 ·11) 

and eliminates the remaining Ll>-'s. The quadratic equation for l(f3c), thus 

obtained, has the solutions 

(2·12) 

Because I(f3c) is positive by its definition, (2 ·11), the- right-hand side of (2 ·12) 

should be positive. This requirement leads to the conclusions: 

(1) when 'Yj8'YJa>r;s'r;a': 

a) if 'YJs<O and r;a<O, there are two solutions forth~ transition temperature, 
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1116 T. Soda and Y. Wada 

·b) if 'fls>O and r;a>O, there IS no solution for Ta. 

(2) when r;s'r;a'>r;sr;d, there IS only one transition temperature given by 

l(f3e)=
2

( ~ , ') [-r;s-r;d-v(r;s-r;dY+4r;s'r;a'], 
'f/s'f/d 'f/s 'f/d 

(3) when 'f/s'f/d = r;s' 'f/d1 
: 

a) if 'fls<O, there is a transition temperature given by 

. 1 
J(f3e) = ---' 

'f/s + 'f/a 

b) if r;s>O, there is no Ta. 

Here, it is important to note that 

r;s' r;d' = V;a Ns Na > 0. 

(2·13) 

In case (1), the effect of the interband interaction Vsd is still weak and the 

criterion for the superconducting transition is given by that for each component 

band. The two transition temperatures reduce to the transition temperature of 

each band in the small Vsd limit. They can be characterized by the relative 

phase between Lid and Lis at Ta, 

x~=lim Lid/ Lis. 
T-'>Te 

Using the energy gap equations, (2 · 8), one finds 

Xe = - (1 + 'f/sl (f3e)) /'f/d1 
J(f3e). 

Substituting the expression for J(f3e), (2·12), we have 

Xc= 2 ~/ [r;d-r;s±V(r;s-r;dY+4r;/r;a']. (2·14) 

Each of the two signs in (2 ·14) corresponds to its counterpart in the expres

sion for I (f3c), (2 ·12), respectively. Since the higher transition temperature is 

given by the negative sign in (2 ·12), the corresponding Xa has the opposite 

sign_ to r;a'. Thus, we can conclude 

In case (2) 

for higher Tc, sgn Xa = - sgn Vsa, 

for lower Tc, sgn Xc = sgn Vsd. 

sgn Xa= -sgn Vsa· 

There is a similar situation for the solutions of the gap equations (2· 8) 

at the absolute zero of temperature, L1s0 and .dd
0

• The discussion in Appendix A 

gives the following conclusions: 
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Specific Heat of Superconductors with Overlapping Bands 1117 

(1) When 7J87Ja>r;s' 7Ja', and 

a) if 7J8 <0 and 7Ja<O, there are two solutions for the energy gaps at zero 

temperature. Each solution is characterized by the sign of the ratio, 

Xo=.da
0

/ 11s
0

• 

For the solution with larger J~ 0
's, 

sgn Xo= -sgn V 8 a, 

for the other solution with smaller J~ 0
's, 

sgn Xo = sgn Vsd. 

(2·15) 

b) If 7Js>O and 7Ja>O, there IS no solution. 

(2) When r;s'r;d'>7Js7Jd, there IS only one solution whose x 0 has the sign 

sgn Xo=- sgn V 8 a. 

(3) When 'YJ/ r;/ = 7Js7Jd, and 

(2·16) 

a) if 7J8 <0, there is a solution whose x 0 IS giVen by 

Xo = 7Ja/ r;/. 

b) If 7J8 >0, there IS no solution. 

Tcz T 

Fig. 1. The two solutions of the energy 

gap equations in the case (1) a) and 

V 8a>O. The solid curves represent the 

solution with the larger J~ 0 's and the 

higher Te, while the dotted curves give 

the other solution. The solid and 

There is a complete parallelism between 

the situations at T= 0 and at T= Te. 

These conclusions suggest the tem

perature dependence of the energy gaps, 

when there are two solutions. It is 

illustrated in Fig. 1. The solid curves 

give J~'s with the larger J~ 0 's and the 

higher Te, while the dotted curves re

present J~'s with the smaller J~ 0 's and 

the lower Te. The essential point is 

that the solid and dotted curves do n:ot 

cross over, that is, the solution with 

the larger J~ 
0 's always has the higher 

Tc. Suppose there were a cross over~ 

Then the sign of the ratio 

dotted curves do not intersect each 

other. for the solution with the larger J~ 0 's 

would have to change somewhere between T=O and T=Te, .da vanishing there. 

This would give rise to a new transition temperature. 

The energy gap equation is the condition for the system to have minimum 
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1118 T. Soda and Y. W ada 

free energy. When there are two solutions, one of them corresponds to a stable 

state and the other to a metastable state. The solution with the larger L1>-0's 

and the higher Tc gives the stable state. Its transition temperature is also given 

by (2·13). The metastable state solution will not be discussed further. 

Finally, we shall explicitly derive the temperature dependence of the energy 

gaps at temperatures close to Tc in order to calculate the specific heat jump. 

Eliminating the J>-'s outside the I's in the energy gap equations, (2 · 8), one gets 

1= -r;8l(L1:wf3) -r;dl(Lla, (3)- (r;8r;a-r;s'r;a')I(L18, (3)I(L1a, (3). 

Substituting the expansion of I(Ll, (3) in a power series in L/ 2 at (3rvf3c/0
) 

we find 

0 = {r;8 + 'l/a + 2 ( 7j87Jd- r;/ T;d') l(f3c)} log_(}__ 
f3c 

- 'i(~!~f3c
2 

[ {r;8+ (r;8r;a-r;s'r;a')J(f3c)}LJ/ 

+ {r;a+ (r;8r;a~r;s'r;a')I(f3c)}L1d 2
] 

(2·17) 

+0(1- ~ r. _ (2·18) 

Here ( (z) IS the Riemann zeta function and ( (3) = 1.2021. Since 

the relation (2 ·18) gives 

L1 d 
2 

= Xc 
2 

L18 
2 + 0 ( 1 - T r' 

Tc 

This expression can be rewritten in terms of observable quantities such as 

the energy gaps and the transition temperature, instead of the coupling parameters 

1J>-'s. The energy gap equations (2 · 8) reduce to 

,L1 o L1 o l 2wo , L1 o l 2wo 
8 = -r;8 8 og IL18ol -r;a d og IJ/1' 

at T = 0 and T = Tc, respectively. Here tlie weak coupling approximation · 
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Specific Heat of Superconductors with Overlapping Bands 1119 

1 (Ll, oo) =log 
2

wo , wo> I Jl 
. I Lll 

IS used. 'Y/s and r;/ turn out to be 

r; = __ 1_. . XcL1s
0
1(/3c) - J/ log (2wo/l L1d

0
l) . 

8 

I(/3c) XcL1s0 
log (2wo/IL1s0l)- L1d0 log (2wo/IL1d0 1) ' 

'Y/d'=_1 ___ . 
0 

L1s
0
{1(/3c)-:-log (~wo/IL1s

0

l)} 
0 l(/3e) XcLls log (2wo/IL1sl) -Lld log (2wo/IL1u I) 

(2· 20) 

Similarly, we obtain 

'Y/d = _1_, Jd
0
l(/3c) - XcL1s

0 
log (2wo// .:18°/) 

I(f3c) XcL1/ log (2wo/ / L1s0
/) - L1d0 log (2w 0

// L1d0
/) ' 

r;'= __ 1_. XcL1d
0
{l(/3c) -log (2wo//L1d

0
/)} __ 

8 

l(/3e) XcL1s0 
log(2wo//L1s

0
/) -Jd0 log(2wo)/L1d0 1) 

(2. 21) 

In the weak coupling approximation, one has 

"'o 

( d€ /3/! 
I (f3c) = J --y tanh-

2
- =log (1.14f3cwo), (2· 22) 

0 

according to the BCS estimate. The coupling parameters r;A.'s are thus expressed 

in terms of JA.0's, Xc, Tc and w0• It is. quite remarkable that if one substitutes 

these relations into the expression for J/, (2 ·19), the quantity w0 is cancelled 

out and we have 

(2· 23) 

Here 

X =Ll 0 lo 2 /JA.o/ 
A. A. g 3.51CTc 

The original energy gap equations, (2 · 8), contained five independent 

parameters. Nevertheless, the observable quantity .:18
2 depends only on four 

quantities, the two JA.0 's, Xc, and Te. In the BCS theory the gap equation had 

two parameters, Jf(O) V and w0 • But the energy gap depended only on f3c at 

/3/"'-.//3c. It was an example of the "law of corresponding states " 11
) which says 

that the physically observable quantities are ~niversal functions of the reduced 

temperature T /Tc, if they are expressed in reduced units. The present result 

is a generalization of the law of corresponding states to superconductors with 

overlapping bands. This reduces the number of experiments which provide the 

information necessary to estimate LlC/rTc. 
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1120 T. Soda and Y. W ada 

§ 3. Free energy difference and jump in specific heat 

In this section, the free energy difference between the superconducting and 

the normal phases is derived under the Hartree-Fock-Gorkov approximation. 

The result turns out to be a sum of contributions from the two bands, each 

having a form given by the BCS theory. The jump in specific heat is then 

discussed and the ratio JC/rTa is explicitly given. It turns out to be generally 

smaller than the BCS value 1.43. 

Defining a grand potential S2 as a function of the volume, temperature and 

chemical potential, by Eq. (2 · 2), 

exp (- {3!2) = Tr exp (- {3c!f{), 

one can obtain the difference in the thermodynamical potential (Gibbs' free 

energy) between the two phases, J<I>, by 

(3·1) 

Here, the suffices n and s specify the normal and superconducting phases, 

respectively. A brief discussion of the above relation (3 ·1) is given in Ap

pendix B. 

Suppose the two-body interaction Vpqp'q' is proportional to a parameter g 

0 
Vpqp'q' = gvpqp'q'. 

Then, the grand potential Q also depends. on the parameter g and one easily 

finds 

(3·2) 

Here, H 1 is the second term of the Hamiltonian, (2·1), and the parentheses 

mean a thermal average : 

Under the Hartree-Fock-Gorkov approximation/) this thermal average IS trans

formed to 

<Hr) = t L:vpqp'q'<c;'"" c~> Cq~o-' Cp'a-) 

= tL:vpqp'q' [ <c:"" Cp'o-)<c:a-' Cq'o-')- <c;'a- Cq'o-')<c:'u' Cp'o-) 

+ <c;u c:,.,)<cq'a-' cp'o-)] 

=L:(2vpqpq-Vpqqp)npt nqt 

+ L:V pp' G21 (p, t, t- 0) G12 (p', t', t'- 0). (3·3) 

nr-t is the average number of electrons in a Bloch state p with up spm. In 

calculating the difference in <Hr) between the . two phases, we can disregard 

the first term in the right-hand side of (3 · 3). nr-t in the superconducting 
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Specific Heat of Superconductors with Overlapping Bands 1121 

phase is different from that in the normal phase only at the vicinity of the 

Fermi surface, / EP/ <wa. In this region, the two-body interaction v varies so 

slowly that the first term in (3 · 3) depends effectively on the total electron 

numbers in the region which are independent of the phase. 

Substituting the expression for the Green's function, i.e. (2 · 3) and (2 · 4) 

into (3 · 3), one obtains 

J(Hz) = (Hz)n- (Hz)s 

-=:E Jp
2 

tanh/3Ep=:ENA.JA. 2I(JA.,/3). (3·4) 
P 2Ep 2 A. 

In virtue of the energy gap equation (2 · 8), the integrals I (JA., /3) are expressed 

in terms of JA., 11>- and r;/, 

(3·5) 

Substituting (3 · 4) and (3 · 5) into the equation for JSJ, (3 · 2), we have 

As 

+ ~df1s{2Ns(r;a' 0 f1d-r;d 0 f1s) +2Nd(r;/ 0f1s-"f/s
0
f1d) df1a} /g(r;s0

"f/a
0 -r;/0r;/ 0

) 

0 
- _ df1s 

As 

. = -)d[:ENA.JA. 2J(JA, p)J +2~df1s:ELhl(f1A, p) dJA. 
0 A. dJs 

(3·6) 

Here, the relation 

is used. Since JSJ is identical with J(J), J(j) turns out to be a direct sum of the 

,contributions from the two bands, each contribution being given by the BCS 

result. The corresponding result for the specific heat was already used by Sung 

and Shen in their analysis of the low temperature specific heat of niobium. 6
) 
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1122 T. Soda and Y. W ada 

The relation (3 · 6) is particularly simple In the following two cases. At th~ 

absolute zero of temperature, one finds 

and at temperatures close to Tc, 

Here, the expansion of I(J, {3) in terms of {3J, (2·17), is used. Although t3c 

depends on the coupling strength g, I(t3c) +log(f3/t1c) does not. 

The jump in specific heat JC is given by 

JC=C -C =T fPJQ), = 7((3) '0N,( dJA.2 )2 
s n c :;;'\T2 . 2 2T .w "' dT 

_ lJ T==Tc 8Jr /); c A. T=Tc 

Here, the explicit temperature dependce of J:>.. 2 at TrvTc, (2 · 23), is used. Since 

the electronic specific heat in the normal phase takes the form 

Cn =rT = t 7r
2 (Ns + Na) tc

2T, 

the ratio between JC and rTc is 

JC 12 Ns + Xc
4
Na ( Xc.fs- Xa )

2 

rTc=7((3) ·-Ns+Na . Xc3Js-Jd . 
(3·8) 

The ratio Nd/ N 8 can also be expressed in terms of the observable quantities, 

since 

Here the definition of rJA.', (2 · 9), and the expressions for them, (2 · 20) and 

(2 · 21), are used. Substituting this relation into (3 · 8), one finally obtains 

(3·9) 

where 

(3·10) 

and 

Xc=lim Jd/ Js. 
T->Tc 
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Specific Heat of Superconductors with Overlapping Bands 1123 

The ratio JC/rTc thus turns out to be different from the BCS value 1.43 by 

the factor in (3 · 9). 

In order to see that this factor is generally less than unity, we shall first 

show that one of the energy gaps, 2IJ>..0 !, is generally larger than 3.q tcTc, while 

the other is smaller. In the simple BCS case, the energy gap at zero temperature, 

2IJ0I is equal to 3.5 teTe. Therefore, 3.5 tcTc would give a sort of average of 

the gaps in our case. Then it is reasonable to expect that one of the gaps 

would be larger than the average, and the other smaller. This can be proved 

if it is shown that 

(3 ·11) 

Here, the expression for I ((3 c) , (2 · 22) , is used. The second expression in 

(3·11) can be rewritten in terms of the coupling parameters, rJ>.. and rJ>..
1

, ~nd 

Xo, 

I 

- !1!_ {r;d- 'fJs- t/(r;s- 'fJdY + 4r;s' 'fJd
1 

} ]. 

Xo 

Here the expressions for I(/3c), (2·13), and for log(2w0/IA>..0!), (A·1), are used. 

The above expression is not positive, if 

I 

'fJd
1 
Xo {rJs- 'fJa- V (rJs- 'fJd) 2 + 4r;/ 'fJd

1
} + :!/____!___ {r;d- 'fJs- V (r;s- 'fJd) 

2 + 4r;/ r;/ } > 4r;/ r;/. 
Xo 

Neither side of this inequality is negative, since r;/r;/ >0 and sgn xo= -sgn 

Vsd, (2 ·15) and (2 ·16). Therefore, we can square the two sides· and calculate 

the difference. This turns out to be 

Since the sign of Xc is the same as that of x 0, as discussed in § 2, the de

finition of x, (3 ·10), gives 

- 2 x= -axe, 

with a positive constant a 2
• Substituting this relation into the expressiOn for 

JC/rTc, (3·9), one finds 

LIC = 1 .43 (1 + a 2
)

2
Xc

2 
, 

rTc (1+a 2Xc 2)(a2 +xc2
) 

which IS smaller than 1.43, since 
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1124 T. Soda and Y. W ada 

(1 + a 2
Xe

2
) (a2 + x/) - (1 + a2Yx/ = a 2 (1- Xe

2
)

2>0. 

The ratio, (3·9), reduces to the BCS value only if Xe=1 or x=O. 
The reduction in the ratio JC/rTc could be understood if one considers 

the case of weak interband interactions Vsa. The jump in specific heat depends 

on the derivative of J:x.. 2 at Tc, (3 · 7). If there is no inter band interaction, 

Vsa = 0, one of the gaps vanishes at Tch and the other at Tc 2• A small Vsa lets 

the first gap linger on to Tc 2, as illustrated in Fig. 1. The derivative dJ:x.. 2
/ dT 

of that gap at Tc 2 becomes small. Therefore, the jump JC is of the same order 

of magnitude as that of the single band case. On the other hand, rTe is in

creased owing to the increase of the electronic density of states. The ratio 

· JC/rTc is thus reduced. 

To estimate JC/rTc numerically, the four quantities 118°, Ja0
, Xe and Tc have 

to be known. Since Tc is already known, one has to observe the energy gaps. 

We. would like to suggest electron tunneling experiments as one of the pos

sibilities to find them. In the next section, the tunneling characteristics of 

superconductors with overlapping bands will be discussed. 

§ 4. Tunneling characteristics of superconductors 

with overlapping hands 

It is worth while emphasizing here that electron tunneling experiments will 

give a direct check that a superconductor has overlapping bands in Suhl, Mat

thias and Walker's sense. Since there are two energy gaps in their model, the 

tunneling characteristics should exhibit a corresponding structure. 

The discussion of the characteristics follows exactly that for the supercon

ductors with a single band. Suppose the tunneling Hamiltonian takes the form12
> 

Hr= ~ {Tpp'cr;,a-c~a-+h.c.}. (4·1) 
pp'o- . 

Here, T PP' is the matrix element for an electron in a Bloch state p to tunnel 

through the junction from left to right into a Bloch state p'. The superscripts 

l and r refer to the left and right metals, respectively. Since the electrons at 

the Fermi surfaces contribute to the tunneling, Tpp' can be replaced by its value 

on the Fermi surfaces. Suppose the left metal has two overlapping bands, while 

the right one has a single band. Then, Tpp' has two typical values 

T:x.. = TkFl;x.,; kFr, (A =s or d), 

where kJ..:x.. and kFr are the Fermi momenta of the left and right metals, respec

tively. 

The expression for:_ the tunneling currents given by Scalapino, Schrie:ffer 

and Wilkins13
> is rederived in Appendix C as a result of the time variation of the 

density matrix. The formulation may have further applications. If a potential diffe

rence Vis applied across the junction (V>O, if the potential is higher at the right 
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Specific Heat of Superconductors with Overlapping Bands 1125 

metal), the tunneling current from right to left, I(V), is given by 

. 1 ) 
1 + e(3(ru-eV) ' 

(4·2) 

Here, the right metal is ~upposed to be in the normal phase and e is the absolute 

value of the electronic charge. 

dl/ dV is easily calculated and one immediately finds that the contribution 

to the w integral . comes mainly from 'the region e V -tcT < w< e V + tcT, thereby 

giving rise to the possibility of observing the energy gaps Lh,,'s. At the absolute 

zero of temperature, the ratio of dl/ dV between the superconducting and the 

normal phases IS given by 

dl) I dl) 
dV o8 . dV On 

ITsi 2N/(IeVI/V(eVY-IL1s0 l2
) + ITdi 2Ndz(leVI/V(eVY-IL1d0 l2

) 

1Ts.I 2N/+ 1Tdi 2Ndz 

The dl/ dV curve thus gives Ll8° and Jd0, which determine the ratio x defined 

by (3 ·10). The other ratio Xc could also be determined by tunneling experiments 

at temperatures close to Tc. Then we would be able to estimate the ratio JC/rTc 

according to (3 · 9) and immediately know if the small specific heat jumps are 

really due to the overlapping of the electronic bands. 

Finally, let us note possible difficulties in observing the tunneling charac

tenshcs. First, if one of the IT>-I 2N>-z's is quite small in con1parison with the 

other, it might be difficult to observe both J>-'s. Secondly, when one of the 

gaps is too small compared to the other, the· relevant structures in the dl/ dV 

curve might be overlooked. According to Sung and Shen's analysis,6
l niobium 

might belong to this case. Finally, if the two gaps, Lis and Jd are quite close 

each other, the structure would be masked by the anisotropy effect, reducing 

the dl/ dV curve to that of a single band superconductor. 

§ 5. Discussion 

We have discussed the Suhl-Matthias-Walker model for superconductors with 

overlapping bands and shown that the ratio between the jump in specific heat, 

JC, and the electronic specific heat at the transition temperature, rTc, is generally 

smaller than the BCS value 1.43. In order to know the ratio quantitatively, the 

parameters in the model have to be given. It has been suggested that we observe 

the tunneling characteristics at low temperatures and at temperatures close to 

Tc. These two . experiments would be enough to provide the information neces

sary to estimate JC/rTc, since the system still satisfies a generalized "law of 

corresponding states". Moreover, tunneling experiments would give a direct 

check to see if the system is really a superconductor with overlapping bands. 

Let us next consider the cases of two transition elements, niobium and 

molybdenum, for which the observed values of JC/rTc are available. Leupold 
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1126 T. Soda and Y. W ada 

and Boorse measured the ratio for niobium, which presumably has overlapping 

5s and 4d bands, and found14
l 

.JC = 1.87. 
rTc . 

The result was larger than the BCS value. We believe that this large value 

is due to strong coupling effects. When the electron-phonon interactions become 

strong, the ratio is enhanced, as in lead and mercury. 

The strength of the interactions is indicated by the ratio of Tc and the 

Debye temperature e. According to Leupold and Boorse, 

Tc=9.195° K, 8=275° K, for niobium, 

there by g1 v1ng 

Tc/8 = 0.033. 

Lead has the ratio 0.07 and aluminum, 0.002. This clearly indicates that niobium 

has a rather strong electron-phonon coupling and may not be understood by the 

simple weak-coupling theory presented in this paper. Actually, Leupold and 

Boorse observed an anomaly in the temperature. dependence of the critical field, 

which is typical of strong coupling superconductors. 

Meanwhile, a specific heat anomaly at low temperatures (T<0.2Tc) was 

found by Shen, Senozan and Phillips. 15
l Sung and Shen analyzed the anomaly 

using the Suhl, Matthias, and Walker's model. They were able to select a set 

of parameters which could reproduce the experimental data for pure specimens. 

This may: mean that the strong coupling effect is not so dominant at low tem

peratures. The characteristic phenomenon in the strong coupling superconductors 

is the strong damping of quasiparticle excitations. ·The damping rate, however, 

becomes less appreciable at low temperatures. . 

According to Sung and Shen, one of the two gaps, L18 , is quite small, 

L1s0=0.161CTc. 

This may be the reason why many tunneling experiments on niobium have 

overlooked two-band effects. 

Rorer, Onn and Meyer measured the transition and the Debye temperatures of 

molybdenum,16
l 

Tc=0.'92° K, e = 461 + 10°.K, for molybdenum, 

thereby giVIng the ratio 

Tc/8=0.002. 

The pmnng interactions are presumably as weak as aluminum. In· fact, the 

ratio L1C/rTc was found to be 
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Specific Heat of Superconductors with Overlapping Bands 1127 

L1C 
--= 1.29 ± 0.15, 
rTc . 

which is smaller than the BCS value. 

In this paper we have discussed only the anomaly in the specific heat jump. 

Suhl, Matthias and Walker's model has also been applied to other phenomena 

such as accoustic attenuation, nuclear spin relaxation and electromagnetic ab

sorption. The results of these discussions will be published in separate papers. 
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Appendix A 

The energy gap equations at the absolute zero of temperature 

In this Appendix, we shall discuss the energy gq.p equations, (2 · 8) at the 

absolute zero of temperature and derive the results given in § 2. 

At T=O, the integral J(JA, /9), defined by (2·10), takes the form 

which reduces to 

I(JAo, oo) =log 2wo ' 
I JA 

0
1 

in the weak coupling limit. J(JA, /9) is always positive by definition. It can 

also be rewritten as 

I 

J(J/, oo)= ~d-,'1/dXo -J(xo)>O, 
' 'f/8 '1/d - 'Y/8'Y/d 

I(L1d0, oo)- 'Y/8-: Sr;/ /xo) -g(xo) >O. 
'Y/8 'Y/d - 'Y/8'Y/d 

(A·1) 

Here one of the I(JA0
, oo) is eliminated in the energy gap equations. The I's 

should be always positive as functions of x 0• The absolute magnitudes of the 

energy gaps are given by 

*> After this work was finished, Dr .. A. J. Leggett informed us of a paper by Yu Lu:r and 

Gu Ben-Yuan, who discussed Suhl, Matthias and Walker's model in a special case where the three 

pairing strengths VAAl are only slightly different one from another.18> They obtained a reduction 

in AC/rTc in this case. 
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1128 T. Soda and Y. W ada 

I J o I Wo I J o I _ Wo 
8 

sinh f(xo) ' d sinh g (x
0

) ' 

(A·2) 

where the parameter x 0 is determined by 

sinh f(xo) = I Xo I sinh g (x0) • (A·3) 

Introducing the notation 

Fig. 2. The two functions in the equation 

(A.3) when all ~},. and ~},.'are positive. 

The solid curve gives sinh f(x0) and 

the dotted ones represent lxo.l sinhg (.x0). 

There is always one intersection 

at xo<O. The other one at x 0>0 

appears on the upper half plane if 

~d/~a'>~s' /~s· 

one can draw the curves of the functions 

on the two sides of Eq. (A· 3). sinh 

f(xo) is represented by a solid curve in 

Fig. 2 in the case that ~d>O and ~d'>O. 

It increases exponentially when x 0 ap

proaches negative infinity. The curve 

intersects the x 0 axis ·at x 0 = ~ d/ ~ d'. The 

two dotted curves give lxolsinh g(xo) 

when ~ 8 and ~s'>O. The function tends 

to lxol sinh ~ 8 at x 0 ~ ± oo, that is, it 

increases linearly. The intersection with 

the Xo axis is Xo=~s' /~ 8 • Now it is 

evident that we always have one root 

for Eq. (A· 3) at x 0<0, because of the 

difference in the asymptotic behavior of 

the two functions. Moreover, if ~d/~/ 

is larger than ~/ /~ 8 , one has another 

root at x 0>0; this root gives a larger 

value for IL/8°1 as can beseen from Fig. 2 and (A·2). Since there is symmetry 

between the s and d ·bands, the latter root also gives a larger value for 1Jd0 l 
than the former. A similar discussion can be applied for the various cases with 

'respect to the signs of ~.,., and ~],.'. The intersections between the solid and 

dotted curves on the upper half plane are relevant, since f(xo) and g (xo) should 

be positive, (A ·1). Then one easily obtains the results: 

(1) When ~/ and ~d'>O, and 

{ 

~d/~/>~s' /~8' 
~s>O, 

~/ ~~8>~d/~a', 

{ 

~d/~/>~s' /~s, 
~8<0, 

~ s' I~ 8 > ~ d/ ~a', 

then . there are two roots, of which the one 
with x 0>0 gives the larger gaps, 
there is one negative root, 

one negative root, 

no root. 

(2) When ~/ and ~/ <O, and 
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Specific Heat of Superconductors with Overlapping Bands 1129 

~\>0, 1 
~ s' I~ s > ~ d/ ~ d', two roots, of which the negative one gives 

the larger gaps, 

~d~~d'>~s' /~s• one positive root, 

~s<O, 1 
~/ /~s>~d~~d

1

' one positive root, 

~d/~/>~s' /~s' no root. 

The above results exhaust all cases since ~s' ~ / is always positive. Now it IS 

straightforward to derive the final conclusions given in § 2. 

Appendix B 

Difference in thermodynamic functions between 

the normal and the superconducting phases 

For the sake of completeness, we shall here show that the difference in 

the grand potential between the normal and superconducting phases is identical 

with that in the thermodynamical potential (Gibbs' free energy), although this 

fact has been used extensively.17
l 

The grand potential Q is evaluated from the equation 

exp (- [3Q) = Tr exp (- [3$-£) 

as a function of the volume V, the temperature T, and the chemical potential 

p. It takes the form 

t2a=- Vpa(/1, T) 

In the phase a. a stands for the suffixes n and s. Pa IS the pressure 

which gives the chemical potential in the a phase, fla, as a function of pressure 

and temperature. According to the Gibbs-Duhem relation, the total number of 

electrons N is given by 

N=V fJpa I . 
f}jl T 

(B·1) 

The difference In the thermodynamical ,potential ([J can be written as 

J([J = ([Jn- ([Js=N {fln (T, P) - /ls (T, P)}. 

The difference In the grand p~tential Q takes the form 

JQ=Qn-Qs= -V {pn(/1, T) -ps(/1, T)}. 

Taking fl = fls and V = V;, one obtains 

JQ=- Vs{Pn(fln-J/1, T) -p} 

= Vs { fJpn I Jp- ___!_ fJ2p: I (J/lY + ... } 
f) fln T 2 f) fln T 

(B·2) 
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1130 T. Soda and Y. Wada 

The second term in the parentheses is smaller than the first by a factor iJfJ./ fJ.n. 

apn/8 /J.nl:r gives the density of the system, by the relation (B ·1) ~ this is propor

tional to k/, kF being the Fermi momentum. 82pn/8 fJ.n2 l:r is proportional to 

3kFm. Here, m is the effective mass of the electrons. Therefore, the ratio 

between the second and the first terms turns out to be 

3m iJfJ.~ 311/J. 
2k/ 4/J.n . 

The volume in the superconducting phase Vs can be replaced by Vn, if one 

again neglects small corrections of the order of 11fJ./ fJ.n. The expression for JQ, 

(B · 2) , then gives 

Appendix C 

Tunneling characteristics at non-zero temperatures 

In this Appendix we would like to present a general discussion 1n order 

to obtain the tunneling characteristics at non-zero temperatures. Although the 

discussion will simply reproduce the known results, it might provide the basis 

for more general analyses and for further applications to other problems. 

Suppose a potential difference Vis applied across the junction. V is taken 

to be positive when the right metal has a higher p<;>tential. The total Hamil

tonian takes ·the form 

H=Hz+Hr-eVNr+H:r. 

Here, Hz and Hr ate the Hamiltonians of the left and right metals, respectively, 

each having a form like (2 ·1) . Nr is the total number of the electrons in the 

right metal and the electronic charge is denoted by - e, e being positive. The 

tunneling Hamiltonian H:r takes the form given in (4·1). We shall measure 

energies relatively to the Fermi surface by introducing 

c!J£ l = Hl - /J.Nz , 

c!J£r = Hr - /J.Nr . 

The chemical potential fJ. has the same value in the two metals. 

The statistical average of a dynamical quantity A at time t is g1ven by 

<A)t=Tr(Ap(t)), (C·l) 

where p (t) is the density matrix, which satisfies the equation 

ih dp =Hp-pH. 
dt 
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Since p (t) can be written as 

. the· statistical average, (C ·1), takes the form 

<A)t=Tr(p (0) A (t)). (C·2) 

Here, A (t) IS a Heisenberg operator 

( ( 
iHt ) ( iHt ) A t) =exp ~h- A exp -~h- . 

In actual tunneling experiments, the junction is first manufactured and then 

a potential difference is applied. In the theoretical discussion, we reverse the 

order, first applying a potential difference between two separate pieces of metals 

and bringing them together to a' contact across an insulating film at time t = 0. 

Since the total system is in thermal equilibrium at t<O, the density matrix takes 

the form 

(C·3) 

at t = 0. Here, 

exp {- j9Ql} = Tr exp {- t9c!J£z}, etc. 

At t = 0, the tunneling Hamiltonian Hr begins to operate so that the system is 

no longer in equilibrium and relaxation takes place to a new equilibrium, cur

rents passing across the junction. Ordinarily, the experiments are carried out 

at constant temperature. There might be heat exchanges between the system 

and its environment to keep the temperature constant. ·If the entropy variation 

due to the heat exchanges is small in comparison with the intrinsic entropy 

increase associated with the relaxation, the process could effectively be regarded 

as adiabatic, and the formulation in this Appendix could be applied. If the 

process gave nse to appreciable Joule heat, the present discussion could not 

apply. 

Before going into the calculations, one has to make one more remark. 

Strictly speaking, the currents associated with the relaxation are not identical 

with those observed in the experiments. The observed currents are stationary 

and never vanish. However, when the system is sufficiently large, the above 

two currents should be practically the same sinc.e the potential difference is kept 

approximately constant, even though a small amount of relaxation current tunnels 

through the junction. 

Now let us consider a Heisenberg operator Nl (t), the total number of 
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1132 T. Soda and Y. W ada 

electrons In the left metaL This can be written as 

Nz(t) =exp{i$-ltjh}Nz exp{-i!l£t/h} =U*(i)NzU(t), 

where 

$-l=H-1-L(Nz +Nr), 

U(t) = exp{i($-lz +3i'r-eVNr) t/h} exp{- iSit/h}, 

and U* (t) IS the Hermitian conjugate of U (t). The operator U (t) satisfies 

the equation 

Here, Hr (t) is defined by 

Hr(t) = exp{i (3l'z +Sir-eVNr) t/h} Hr exp{ ---i (3l'z +$-lr-eVNr) t/h}. 

U (t) is obtained in a power series in Hr : 

Nz (t) is given by 

t ~ t ~ 

+ (~;)'} ~ H T (t,) H T (t,) dt,dt, + (i~)'} ~ H T (t,) H T (t,) dt,dt,N, 

t t 

- ~ )Hr(tl) dt1Nz )Hr Ct2) dt2, 
(zh) o • o 

up to the second order in Hr. 

Introducing the eigenstates Jn) and the corresponding eigenvalues En of 

the Hamiltonians $-[z and $-lr by 

!Jlzi nz) = Enll nz); 

one can write a matrix element of the tunneling Hamiltonian: 

where 
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Making use of this time dependence arid the relation 

sin
2 
(En'nt/2h) 7U ~ (E ) 

--'-------'--~- u , as t~oo, 
E';,n 2/i n n ' 

we obtain the diagonal matrix elements 'of Nz (t): 

(nznr/Nz(t) /nznr)=Nnl + 27Ct ~ (N~--Nnl)iJ(En'n) J(n/iz//HT/nznr)/ 2
• (C·4) 

h nz'nr' 

The average tunneling current from the right to the left at a potential 

difference V is 

Substituting (C · 4) into' the definition of the statistical average, (C · 2), and using 

the expression for p (O), (C · 3), one .finds 

I(V) = 
27Ce ~exp[S(Q-Enz_Enr)]. 

fi nznr 
nz'nr' 

X l~Tpp'(n/n/Jc;;:_ C~o-lnznr)/ 2
o(E;, +E~, -Enz-Enr -eV) 

pp'o-

-J~T:p,(n/ n//c~:_ c;,o-Jnznr)/ 20 (E~, + E~, -Enz-Enr +eV)]. 
pp'cr 

In this way, we have recovered the expression which Scalapino, Schrieffer and 

Wilkins derived by explicitly calculating the transition probabilities.13
) The 

discussion hereafter follows theirs exactly, and the tunnelling current between 

two superconductors, one with overlapping bands and the other with a single 

band, takes the form 

co 

I(V) = 
4

7Ce \ dw~IT>-l 2 N>-z(w)Nr(w-eV) [ ; 
1 J 

h J >- 1 + e (ro-eV) 1 + e,e., ' 
-co 

where 

. N z,r (w) = N z,r Re ==I w==l==o== 
>- >- v ui-IJ},l,ri2. 

The above expression :reduces to ( 4 · 2) when the right metal Is normal. 
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