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Abstract

Motivation: Circular RNAs (circRNAs) are a poorly characterized class of molecules that have been

identified decades ago. Emerging high-throughput sequencing methods as well as first reports on

confirmed functions have sparked new interest in this RNA species. However, the computational

detection and quantification tools are still limited.

Results: We developed the software tandem, DCC and CircTest. DCC uses output from the STAR

read mapper to systematically detect back-splice junctions in next-generation sequencing data.

DCC applies a series of filters and integrates data across replicate sets to arrive at a precise list

of circRNA candidates. We assessed the detection performance of DCC on a newly generated

mouse brain data set and publicly available sequencing data. Our software achieves a much higher

precision than state-of-the-art competitors at similar sensitivity levels. Moreover, DCC estimates

circRNA versus host gene expression from counting junction and non-junction reads. These read

counts are finally used to test for host gene-independence of circRNA expression across different

experimental conditions by our R package CircTest. We demonstrate the benefits of this ap-

proach on previously reported age-dependent circRNAs in the fruit fly.

Availability and implementation: The source code of DCC and CircTest is licensed under the

GNU General Public Licence (GPL) version 3 and available from https://github.com/dieterich-lab/

[DCC or CircTest].

Contact: christoph.dieterich@age.mpg.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

CircRNAs are a recently rediscovered class of abundant and universally

expressed RNA species (Jeck and Sharpless, 2014). The development

of software solutions for detecting and quantifying circRNAs is slowly

gaining momentum despite the increasing interest in circRNAs.

CircRNAs are characterized by a back-splicing event where the down-

stream 30 splicing ‘tail’ joins back with the upstream 50 splicing ‘head’

to form a circular RNA structure (see Supplementary Fig. S1).

This structure becomes visible in sequencing data as ‘scrambled’ exons

as the co-linearity of genome and transcript is violated. However, the

existence of ‘back-splicing’ junction reads does not prove the circularity

of the transcript of origin. Other mechanisms (e.g. trans-splicing) may

yield such reads, but only circRNAs are depleted in polyA-enriched

samples and resistant to RNAse R treatment. So far, all available algo-

rithms are using these ‘back-splicing’ reads as a key element in

circRNA detection. As a consequence, detection performance heavily

depends on the employed read mapper and its ability to map circRNA

junction reads to the underlying genome or transcriptome. The two

most recent addition to the circRNA detection tool set are CIRI (Gao

et al., 2015) and KNIFE (Szabo et al., 2015). Other circRNA detecting

pipelines have been published along with research papers but seem to

perform worse than the two in the corresponding benchmarks.
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It has been recently shown that circRNAs may vary in their

abundance relative to their host gene (Westholm et al., 2014). It is

interesting to statistically discern cases where circRNA and linear

isoform expression are tightly coupled from the ones where expres-

sion diverges between the two. To this end, read counts over the

back-splice junction are typically used as an estimate of circRNA ex-

pression and read counts from exons or linear splice junctions as an

estimate of the host gene expression.

2 Results

2.1 Efficient circular RNA detection by DCC
We motivate our circRNA detection workflow from the review

paper of Lasda and Parker (2014). Essentially, we are looking for

chimeric read alignments, which are reported by the fast and splice-

aware read mapper STAR (Dobin et al., 2013). Our method works

with single and paired-end data and executes a sequence of analysis

steps as outlined in Supplementary Figure S2 and below:

1. If paired end reads are available, mapping of mates must be con-

sistent with a circular RNA template.

2. Filtering by minimal number of junction reads per biological

replicates to suppress ‘noisy’ candidates.

3. Test for presence of canonical GT/AG splicing signal at circRNA

junction borders. Candidates with non-canonical splicing signals

are discarded.

4. Removal of back-splicing events that map to the mitochondrial

genome.

5. Suppression of mapping artefacts by masking candidates from

repetitive or homologous regions.

6. We report new alternative linear splicing events (circle skipping

junctions) if detected (see Supplementary Fig. S8).

As a result set, we report identified candidate circles by genomic co-

ordinates, gene locus annotation, type of circularization and overlap

with gene body annotation (see Supplementary Tables S1–S3).

2.2 Beta-Binomial for modelling circular RNA

expression
We employ a beta-binomial model downstream of the circRNA de-

tection and read counting to model changes in circRNA expression

relative to that of the host gene. We assume that the observed read

counts either originate from linear or circular isoforms. Suppose we

have k groups (e.g. age groups) and each group has m replicates. We

define fðxij;nijÞ : i ¼ 1; . . . ;m; j ¼ 1; . . . ; kg as the set of relevant

read counts for a given candidate circular RNA junction where xij is

the number of back-spliced reads and nij is the number of all reads

(circRNA plus linear plus pre-mRNA). We assume that xj (the num-

ber of circular junction read counts for group j) follows a binomial

distribution with n trials and probability of success h. We further as-

sume that the parameter h of the binomial distribution follows a

beta distribution with pseudocounts a and b. This leads to an analyt-

ically tractable compound distribution where one can think of the

parameter of the binomial distribution as being randomly drawn

from a beta distribution (Skellam, 1948):

h � Betaða;bÞ; xj � Binðn; hÞ

We are interested in testing whether the mean l ¼ aðaþ bÞ�1 of the

distribution differs between the respective groups j 2 1; . . . ;k. Our

null hypothesis states that there is no difference between group

means l1 ¼ l2 ¼ ::: ¼ lk while overdispersion is the same for all

groups. The alternative hypothesis states that there is heterogeneity

across group means. We select between the two alternative hypothe-

ses with a likelihood ratio test (ANOVA). All relevant routines are

implemented in the R package CircTest, which depends on the

aod packages Lesnoff et al. (2012).

2.3 Benchmark of DCC
We contrast the performance of DCC with CIRI and KNIFE on several

RNA-seq datasets (see Data section in Supplementary Text). In prin-

ciple, true positive circRNAs are resistant to RNase R treatment, and

thus the same circRNA should be detectable from RNase R treated

samples as well as from rRNA-depleted total RNA-seq samples.

Especially, the CircleSeq protocol (Jeck and Sharpless, 2014) provides

a gold standard as it involves RNase R treatment, which will partially

digest linear isoforms, while circRNAs are preferentially retained. For

simplicity, we define circRNA candidates that were predicted from

both experiments (CircleSeq and rRNA-depleted) as true positives

(TP), whereas candidates that are just predicted from rRNA-depleted

RNA-seq libraries were defined as false positives (FP). We acknowledge

the fact that incomplete RNAse R digestion of linear isoforms may

lead to mis-classifications in this simple scheme. Figure 1A shows the

benchmark results for RNA-seq data from whole mouse brain. DCC

predicts fewer circRNA candidates than KNIFE. However, the preci-

sion (TP/(TPþFP)) of DCC is much higher (97%) than the one of CIRI

and KNIFE with 89% and 41%, respectively. Intriguingly, the total

number of true positive predictions from DCC (2744) is highest on this

particular data set. Similar results were obtained for another dataset

(see Supplementary Text and Supplementary Fig. S6). Supplementary

Figure S4 provides more details on prediction performance and

overlap. DCC is implemented in python 2.7, was extensively tested on

Mac OS and Linux systems and runs considerably faster than CIRI

(see Supplementary Fig. S3).

2.4 Host gene independent regulation of circRNA

abundance with development
We used DCC subsequently to study circRNA abundance in animal de-

velopment and quantified relative changes of circRNA versus host gene

expression based on read count data (see Supplementary Fig. S1)

with our CircTest package. Briefly, we used the rRNA-depleted total

RNA-seq data from Westholm et al. (2014) and focused on brain sam-

ples from 3 developmental stages (1 day, 4 days and 20 days) across 6

biological replicates. We tested circRNA candidates that were present

in at least 6 out of 18 samples with at least 5 junction spanning reads

for divergent expression to the host gene. From the initial 116 circRNA

candidates, 72 of the circRNAs were significant (P-value �0:05 after

correction for multiple testing, see Supplementary Table S4).
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Fig. 1. (A) Performance of DCC compared with CIRI and KNIFE on paired-end

sequencing data from whole mouse brain. (B) Differentially circRNA expres-

sion for four selected candidates. Ratio of circular junction read counts to

average total counts at exon borders are shown along with the P-values from

CircTest
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Westholm et al. (2014) reported on relative circRNA expression

changes as measured by qPCR ratio for four selected genes. Three of

them (Ank2, scro, p120ctn) ranked top in our list of significant

host-independent circRNAs and CaMKI ranked 22th (Fig. 1B and

Supplementary Table S4). Our results show the same age-dependant

increase as in Westholm et al. (2014), Figure 7E.

3 Discussion

We present a software tandem for circRNA detection (DCC) and rela-

tive quantification (CircTest). We could show that DCC has a higher

precision than its competitors for single and paired-end data sets.

Moreover, we adapt a statistical framework based on the beta-binomial

distribution for identifying host gene independent changes in circRNA

expression. Additional information are provided in Supplementary Text.
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