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1 Introduction

In modern economies, information is dispersed both across market participants (see Hayek

1945) and within firms. Managers, in particular, usually have unique information about

production and market conditions that in practice is too costly to communicate to others

in the firm. This type of information, termed “specific knowledge” by Jensen and Meckling

(1992), is critical for pricing, investment and many other decisions, and is often the reason

why managers are entrusted with decisions in the first place. To deal with the resulting

agency problems, it is necessary to provide managers with appropriate incentives.

Little is known, however, about how to design incentives and performance measure-

ment for agents with specific knowledge. Standard models of incentive contracting do not

allow for specific knowledge: while an agent’s actions are typically unobservable to his

principal, the agent has no private information about what actions he should be pursuing,

since the production technology is assumed to be common knowledge.1 This failure to take

into account one of the most important reasons for why principal-agent relationships exist

has led prominent empirical researchers to conclude that standard incentive models are

too limited for understanding managerial compensation (Murphy, 1999; Lafontaine and

Slade, 2000; Lambert, 2001).2 Attempts to incorporate specific knowledge into incentive

models, however, easily run into analytical difficulties.

In this paper I study optimal incentives, performance measurement and delegation

in a model in which the agent has specific knowledge, and show that the results have

wide-ranging implications. The basic argument captured in the model is very simple: if

an agent has specific knowledge about how his actions contribute to the principal’s payoff,

then the best way to get him to use his knowledge in choosing his actions is to provide

incentives based on the principal’s payoff or another closely correlated measure of “out-

put”. Since output measures are subject to random influences outside the agent’s control,

however, output-based pay exposes the agent to income risk, for which the principal has

to compensate the agent if he is risk-averse or wealth-constrained. Weighing the benefits

1 See e.g. Holmström (1979, 1982), Holmström and Milgrom (1987, 1991), Feltham and Xie (1994),

Baker (2000, 2002).
2 The importance of localized knowledge is emphasized in papers that study optimal delegation de-

cision; see, for instance, Aghion and Tirole (1997), Dessein (2002), Stein (2002), Marino and Matsusaka

(2003), Alonso and Matouschek (2005). But these models typically abstract from incentive contracts,

e.g. by assuming that agents are infinitely risk-averse.
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and costs of incentive pay then leads to the prediction that the more valuable the agent’s

specific knowledge for the principal, the greater are the optimal incentives for the agent.

This basic argument can be expanded to generate predictions about the optimal choice

of performance measures. In addition to providing incentives based on output, it is often

also possible to base compensation on “input” measures that are closely correlated with

an agent’s actions and to a lesser extent subject to noise. For instance, for a salesperson,

input measures might include hours worked, number of customers contacted, new accounts

created, quality of advice, etc.; and measures of output might be sales or profit (see

Section 2 for more examples). The agent’s specific knowledge can then be interpreted as

knowledge of how different inputs translate into output. The differences between standard

agency models and the scenario considered here, especially with regard to informational

assumptions and the available performance measures, are illustrated in Figure 1.

Figure 1 about here.

When both input and output performance measures are available, we obtain the fol-

lowing tradeoff, which is formalized in Section 3 for a simplified version of my main model.

An incentive contract based on some formula combining input measures minimizes the

agent’s income risk, compared with compensation based on a noisy output. But input-

based compensation does not give the agent much incentive to use his specific knowledge;

instead, his actions are largely determined the compensation plan. Output-based compen-

sation, in turn, gives the agent an incentive to use his knowledge in the most productive

way, but also exposes the agent to greater income risk. In the optimal incentive contract,

the weights on input- vs. output-based pay are chosen to strike a balance between the dual

goals of minimizing income risk and maximizing the utilization of valuable knowledge.

The full model (see Section 4) is a two-task model in which the principal faces tech-

nological uncertainty about the productivity of effort for each task. The agent receives

private information about the productivities, which he is unable to communicate to the

principal. For simplicity, I take the existence of specific knowledge as given; that is, I am

not concerned with information acquisition (see Aghion and Tirole 1997) or communica-

tion (see Dessein, 2002, and Marino and Matsusaka, 2003).

After receiving his information, the agent chooses his effort levels for both tasks.

Depending on the model’s parameters, the agent’s effort can be interpreted literally as

multidimensional effort as in Holmström and Milgrom (1991), or alternatively as a decision

e.g. between different investment projects like in models of delegation (see Footnote 2).
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The agent is risk-neutral but protected by limited liability; it is therefore costly for

the principal to expose the agent to risk. The principal can compensate the agent based

on verifiable information about the agent’s effort (i.e. his input), and on a noisy measure

of output. I refer to the extent of noise in measuring output as environmental uncertainty

(or risk). In contrast to Holmström and Milgrom (1991), I abstract from any difficulties

in measuring the agent’s effort on each task. The main insights of the paper, however,

remain valid even when multitask measurement problems exist.

I obtain a closed-form solution for the optimal compensation contract. When there is

no technological uncertainty, or when the agent has no private information about it, the

principal prefers input-based pay because output-based pay is risky. In contrast, if the

agent’s private information is sufficiently valuable, it is optimal to pay the agent at least

partially for output, even if effort can be measured perfectly.

Giving an agent incentives already implies that he has been delegated authority over

the tasks in question. Although the paper’s emphasis is on the link between specific

knowledge and incentives, the model also lends itself to predictions about the principal’s

optimal delegation decision. Specifically, delegation is optimal if the principal can attain a

higher profit under the optimal incentive contract than if she carried out the tasks by her-

self, without specific knowledge. Delegation and incentives are thus complementary as e.g.

in Holmström and Milgrom (1994). Even when the decision to delegate is inframarginal,

however, changes in the model’s parameters still affect the optimal contract.

The basic idea that the optimal incentive contract depends on the value of the agent’s

information is mirrored in the comparative-statics results, which are derived from one

general principle. Define the social value of knowledge as the difference between the total

surplus attained when an agent with specific knowledge chooses first-best actions, and

the analogous surplus that would result if the agent had no specific knowledge. Then it

can be shown that any parameter change that increases the social value of knowledge also

leads to a shift towards more output-based pay and to a higher profit from delegation.

I go on to argue that the results of the model have many implications, both theoretical

and applied. First, they provide a common explanation for why several predictions of the

standard theory are often not supported by evidence (see Section 5). Prendergast (2002)

already explained, using an argument based on specific knowledge, why the negative

relation between risk and incentives predicted by theory tends to be contradicted by

the data. I show that the same holds for predictions derived from the Informativeness
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Principle. For instance, compensation is often based on noisy output measures even when

good input measures are available (Murphy 1999, Ittner et al. 2003). Also, changes in

performance caused by known events outside the agent’s control are often not filtered out

in the way predicted by theory (Bertrand and Mullainathan 2001). Finally, as is well

known, relative performance evaluation is rarely used in practice (see e.g. Prendergast,

1999; or Bushman and Smith, 2001). A common explanation can resolve all of these

puzzles: when agents have specific knowledge about how to respond to uncertain events,

it is optimal to provide output-based incentives even if doing so increases agents’ income

risk, which renders the informativeness principle invalid.

Second, the formal results lead to a many empirical predictions (see Section 6), some

consistent with the evidence, and some yet to be tested. Specifically, I develop predictions

about how optimal incentive contracts and delegation decisions depend on the knowledge

gap between principal and agent, job complexity, the value of effort, a firm’s growth

options, corporate governance, product market competition, and the rate of change in an

industry; and discuss possible empirical measures for the variables of the model.

Two of the predictions follow from theoretical arguments of broader relevance. One is

that subjective performance evaluation of an agent by his principal is constrained by the

principal’s knowledge about the agent’s job. This observation suggests that subjective

evaluations play a different role in practice than envisioned in the previous theoretical

literature. Another, unrelated, argument is that if an optimal incentive contract depends

on the knowledge gap between principal and agent, it follows very naturally that level and

structure of CEO compensation would depend on the quality of corporate governance. In

particular, the apparent correlation between weak governance and high CEO pay shown

in recent studies does not prove that CEO pay is determined by CEOs’ power to extract

rents from shareholders, contrary to what has been claimed.

A third contribution of the paper is to make a step towards synthesizing the theory of

incentives and the literature on optimal delegation (see footnote 2). As I argue in Section

4.1, the two-task version of the model helps to eliminate much confusion in the literature

over the extent to which “effort exertion” in incentive models and “decision making” in

models of delegation are conceptually similar or different.

The formally most closely related model is that of Prendergast (2002), in which an

agent has specific knowledge about the profitability of different available projects. When

the risk associated with the projects’ payoffs is low, the optimal contract requires the agent
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to work on an assigned project and compensates him for his effort. Prendergast shows that

as the risk increases, the principal at some point prefers to switch to an “output-based”

contract in which the agent is given both the authority and incentives to pick the most

profitable project based on his specific knowledge. The present paper contains a similar

result among many others, but is very different from Prendergast’s in purpose and scope.

Prendergast is concerned solely with the risk-incentives tradeoff. This paper, in contrast,

begins with specific knowledge as a ubiquitous feature of principal-agent relationships and

explores its consequences for incentive contracting more generally. Most of the puzzles

explained and predictions derived here are unrelated to risk.

Other papers in which an agent obtains private information about his productivity

before choosing his action include those of Baiman, Larcker and Rajan (1995), Lafontaine

and Bhattacharyya (1995), Zabojnik (1996), Baker and Jorgensen (2003), and Shi (2005).

Like Prendergast’s, these papers focus on the relation between risk and incentives rather

than the role of specific knowledge itself. Also, solving models of this kind is notoriously

difficult because the agent’s income risk is a function of his effort, which in turn depends

on private information that is learned only after the contract is written. Accordingly,

most of the papers mentioned do not obtain analytical results.3

Finally, some papers in the literature on multitask agency problems also examine

a tradeoff between input- and output-related pay, or can be interpreted in that way.4

However, it is a tradeoff that arises from an agent’s incentive to “game the system” when

performance measures are distorted, which plays no role here. In particular, papers in

which the agent has private information about how his effort affects measured performance

emphasize the need to suppress the agent’s incentive to use his information (Baker 1992;

Baker, Gibbons and Murphy 1994). Here, in contrast, one goal in designing the contract

is to encourage the agent’s use of his information.5

3 Zabojnik (1996) derives an optimal contract analytically but makes a simplifying assumption about

the agent’s risk preferences. In independent work, Baker and Jorgensen (2003) obtain some formal

comparative-statics results but no closed-form solution for the optimal contract. Their main result is

that incentives can be positively related to volatility (what I call technological uncertainty), whereas here

they always are. They also show that (as here) optimal compensation is partially based on output even

when effort is verifiable, but do not study the determinants of input- vs. output-related pay.
4 See, for instance, Baker (1992), Baker, Gibbons, Murphy (1994), Feltham and Xie (1994), Baker

(2000, 2002), and Datar, Kulp and Lambert (2001).
5 Baker (1992) shows that (like here) even with verifiable effort, a forcing contract is generally not
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2 Inputs and Outputs: Applications

The novelty of the distinction between “inputs” and “output” emphasized here lies not

in the terms themselves (which have been used before), but in the idea that the agent

has specific knowledge about how inputs translate into output. The distinction can be

applied to any performance measures that can be meaningfully ranked along an input-

output continuum, irrespective of how close the measures are to the ends of the spectrum

(effort and actual ouput). For any two performance measures for a given job, one can label

the measure more closely related to the agent’s actions as an “input”, and the measure

more closely related to the principal’s payoff as an “output”. Whether a performance

measure is to be classified as an input or output depends on what other measure it is

being compared with. The same performance measure may be called an input for one job

but an output for another. Some examples may be helpful:

Two of the most often studied performance measures for CEOs are stock prices and

accounting (e.g. earnings) measures. Stock price is usually the best available measure of

firm value, but is also influenced by many factors outside a CEO’s control. Accounting

and non-financial (e.g. operational) measures, on the other hand, are less closely related

to firm value but are more under the CEO’s control because “managers understand and

can ‘see’ how their day-to-day actions affect year-end profitability” (Murphy 1999, p.

2506).6 Accordingly, one can think of stock price as output, and accounting and non-

financial measures as inputs.7 If CEOs have specific knowledge of how they contribute to

firm value, then shareholders face a tradeoff between undistorted but risky stock-based

compensation, and compensation based on other measures that is less risky but also gives

CEOs less incentives to use their knowledge to maximize firm value.

Similar arguments apply to the distinction between Economic Value Added (EVA) and

scores obtained from a “Balanced Scorecard”, both of which have been advocated in the

accounting literature and among practitioners as performance measures for executives.

Here, EVA, as a highly aggregated accounting measure, is an output measure compared

optimal if the agent has private information about how his effort affects measured performance. But

without distortions a fully output-based contract is optimal since in his model the agent is risk-neutral.
6 See also Sloan (1993), who argues that firms’ use of accounting measures in addition to stock price

can be understood as a way to shield CEOs from market risk.
7 Clearly, not all non-financial measures are inputs. For example, market share would hardly be

considered an “input” relative to (output) measures such as share price or earnings.
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with the wide array of financial and non-financial performance measures provided by a

balanced scorecard. Again, specific knowledge plays a key role in the distinction: scorecard

measures may be more accurate, but firms do not know how they translate into firm

value, and therefore end up weighting them in an arbitrary manner. As a result, “tying

rewards only to the scorecard metrics exacerbates the problem employees have in making

multiple tradeoffs without having a definition of what better is” (Stern Stewart, 1999).

By contrast, basing compensation on EVA exposes managers to risk but gives them much

better incentives to use their knowledge.

For division- or lower managers, “output” is often best captured by (accounting) mea-

sures of division profit, whereas “inputs” may include a variety of operational measures.8

Alternatively, when managers are compensated based on the performance of their own

unit as well as that of a larger group (e.g. the entire firm), one can think of the former as

an input and the latter as an output (see Section 6, point 6).

Similarly, retail chains face a choice between compensating the managers of company-

owned outlets based on sales figures or instead operational measures (such as “quality,

service, cleanliness” in the classic McDonalds case, see Sasser and Pettway, 1974). Sales-

people can be compensated based on the sales or profit they generated (output), but also

on very detailed input measures such as new accounts created, hours worked, number of

items sold in certain product categories, etc.9

3 A Simple One-task Model

This section develops the main insights of the paper in a simple model with one task and

only few parameters. In the next section, I study a more elaborate two-task version of the

model, which leads to additional insights. Consider a model in which a principal hires an

agent to produce an output by exerting effort:

8 Ittner and Larcker (1998) document an increase in the use of non-financial in addition to the

more traditional financial performance measures over time. Ittner, Larcker and Rajan (1997) study the

determinants of the use of financial and non-financial measures, testing hypotheses derived from the

informativeness principle.
9 Hauser, Simester and Wernerfelt (1994) have argued that measures of customer satisfaction may be

better measures of long-term profitability from a salesperson’s efforts than short-term sales. In line with a

main point of this paper, they argue that basing compensation on customer satisfaction may be desirable

especially when the agent knows better than the principal how his actions contribute to long-run profits.
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Production: Output, denoted Y , is stochastic and can be either 0 or 1. The probability

that Y = 1 is given by min{aθ, 1}, where a is the agent’s effort exerted on the two tasks,

θ is the productivity of effort.

Technological uncertainty: The productivity θ is either high, 1 + t, or low, 1 − t,

with equal probability. The parameter t ∈ [0, 1] measures the degree of technological

uncertainty. (Many of the model’s parameters are normalized between 0 and 1 or −1 and

1, which significantly simplifies the subsequent calculations.)

Information about θ: The principal knows the distribution but not the realization of

θ. The agent receives a private signal θ̃ ∈ {1 + t, 1 − t} about θ. The probability that

θ̃ = θ is given by (1+k)/2, where k ∈ [0, 1] captures the quality of the agent’s knowledge.

The agent cannot communicate θ̃ to the principal.

The productivity θ, and the agent’s specific knowledge about it, should be interpreted

very broadly; it may represent information about the firm’s production technology, market

conditions, or optimal responses to changes in those conditions. All that matters is that

the agent has specific knowledge relevant to his (first-best) choice of a, which is what the

multiplicative term aθ is meant to capture.

Agent’s utility: The agent is risk-neutral, but protected by limited liability, which is a

combination of assumptions economically very similar to risk aversion. The agent’s utility

is w−a2/2, where w is his total compensation (described below) and a2/2 is the disutility

of effort.

Performance measurement: As discussed in Section 2, the distinction between inputs

and output can be interpreted very broadly. But since the role of measurement errors for

the design of optimal contracts is well known (see Prendergast, 1999, or Lafontaine and

Slade, 2000), there is no loss of generality in assuming in the model that one performance

measure is effort itself, and the other a noisy measure of output. This simplification also

helps to highlight a central point of this paper: even if effort can be perfectly measured,

basing compensation on risky output measures is generally desirable when the agent has

specific knowledge.

Thus, I assume that the agent’s effort a can be measured without noise and is con-

tractible. Output, however, can be measured only imperfectly by a contractible variable

y that takes the values 0 or 1. The probability that y = Y is given by (2 − e)/2, where

e ∈ [0, 1] is a measure of environmental uncertainty or risk : if e = 0, y measures Y per-
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fectly, whereas if e = 1, y is entirely uninformative. Unless mentioned otherwise, I assume

that e > 0, since for e = 0 there is no reason to use a as a performance measure and the

results of the model are trivial. For θa ∈ [0, 1], the expected value of y conditional on θ

and a is given by

E[y(θ, a)] =
e

2
+ (1 − e)θa. (1)

Note from (1) that while environmental risk does not affect the true productivity of the

agent’s effort, it does reduce the responsiveness of measured performance to the agent’s

effort. This is a standard feature of any moral-hazard model with only two possible

outcomes (see e.g. Laffont and Martimort 2001, Chapter 4.3), but stands in contrast to

e.g. the model of Holmström and Milgrom (1987, 1991).10

Compensation: I confine attention to contracts that are linear in both a and y; that

is, the agent’s total compensation is given by

w = α + βa + γy. (2)

The restriction to linear contracts is standard, and is motivated by their use in practice.

Also, keep in mind that a used as performance measure stands as a metaphor for noisy

signals of effort, which is why I assume that the principal pays a piece rate for effort

instead of using e.g. a forcing contract (it will become clear that a forcing contract would

not be optimal anyway).

Limited liability means that the agent’s compensation must be non-negative for any

effort level and any realized output (although realized utility may be negative). Since both

a and y can be zero, this means that the salary α must be nonnegative. As is standard

in models with limited liability, I assume that the agent’s participation constraint is not

binding; therefore, we can without loss of generality set α = 0.

Timing:

1. The principal offers a contract (β, γ); the agent accepts or rejects.

2. The productivity θ is realized.

10 Another source of uncertainty in addition to technological uncertainty and environmental risk is

of course the randomness of Y itself. This randomness, however, is irrelevant for the results because

both principal and agent are risk-neutral and therefore only care about the expected value of Y . The

randomness of Y is merely a convenient way to map continuous actions into a set of two outcomes.
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3. The agent receives a signal θ̃ about θ .

4. The agent chooses effort a.

5. The output Y and the measured performance y are realized, and the agent is com-

pensated accordingly.

To keep the calculations simple and avoid case distinctions, I restrict the analysis

to parameters that lead to interior equilibrium solutions for all endogenous variables.

Necessary and sufficient conditions are

(a1) 2k2t2 >
e

1 − e
, and

(a2) 2(1 − e)kt[2 − (1 + t)(1 + kt)] + e(1 + t) > 0

Condition (a1) states a lower bound to the quality of the agent’s knowledge k, and guar-

antees an interior solution for γ. Condition (a2) guarantees that θa does not exceed

1.11

The analysis of the game is very simple. In fourth stage of the game, the agent chooses

his effort based on his beliefs about θ, denoted θ̂, to maximize

βa + γE(y|θ̂, a) − a2

2
= βa + γ

(
e

2
+ (1 − e)θ̂a

)
− a2

2
, (3)

the solution to which is

a = β + (1 − e)γθ̂. (4)

To compute various expected values, a slightly different notation is convenient: The

productivity θ can be written as 1 + τt, where τ = ±1 with equal probability. Likewise,

the agent’s signal θ̃ can be written as 1 + st, where s = ±1 and Pr(s = τ) = (1 + k)/2. It

is easy to establish that the agent’s belief θ̂ conditional on s is then given by θ̂ = 1 + kts.

All that remains to do is to plug (2), (1) and (4) into the principal’s profit Y − w

and take expectations over the joint realizations of τ and s. Maximizing the resulting

expected profit over β and γ leads to the following result:

Proposition 1 Under conditions (a1) and (a2), the optimal contract parameters are

given by

β∗ =
e

4(1 − e)k2t2
and γ∗ =

1

2(1 − e)
− e

4(1 − e)2k2t2
, (5)

where γ∗ is increasing and β∗ is decreasing in k.

11 The existence of parameter sets that satisfy both conditions can be seen by example; choose e.g.

k = .8, t = .6 and e = .2.
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Proof: see the Appendix.

At one extreme, when pay is only input-based (β > 0, γ = 0), then the agent’s effort

depends only on β and not on his private information θ̂; cf. (4). Thus, with input-based

pay, the agent has no incentive to use his specific knowledge. This is still an incentive

contract and not a forcing contract; nevertheless, the agent’s equilibrium effort is fully

determined, very much like in standard models of incentive contracting.

At the other extreme, purely output-based pay (β = 0, γ > 0) is costly for the principal

whenever measuring output is subject to errors (e > 0): the more measured performance

is affected by noise, the less it is affected by effort, cf. (1). To induce a certain level of

effort, the principal therefore has to pay a higher reward for a good outcome. Since the

reward for a bad outcome is already bounded from below at zero, greater risk is costly

for the principal.12

Thus, the key tradeoff in this model is that input-based pay is riskless but fails to

make use of the agent’s information, whereas output-based pay encourages the optimal

use of information but is risky and hence costly for the principal. When technological

uncertainty and the agent’s specific knowledge are sufficiently important, the optimal

incentive contract is partly input- and partly output-based.

Proposition 1 also states the most important comparative-statics result of the model:

the better the agent’s knowledge, the more his compensation will be based on output; the

intuition is straightforward. This result also holds when output is the only performance

measure available, i.e. when input cannot be measured:

Proposition 2 If a is not verifiable and hence β is restricted to zero, then the optimal

output piece rate is given by

γ∗ =
1

2(1 − e)
− e

4(1 − e)2(1 + k2t2)
, (6)

which is increasing in k.

Proof: see the Appendix.

12 This result is familiar when the agent is risk-averse, but also holds when the agent is risk-neutral

but protected by limited liability (on the following, see also Laffont and Martimort, 2001, Chapter 4).

While in the model of Holmström-Milgrom (1987) risk affects the agent’s participation constraint but not

his incentive constraint, in general (and especially in models with only two realizations of performance)

it affects both constraints. With a risk-neutral agent and limited liability, risk affects only the incentive

constraint.
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While Propositions 1 and 2 are intuitive, their significance is to establish a link between

specific knowledge and the properties of optimal incentive contracts. I leave a discussion

of how the optimal contract depends on the uncertainty parameters e and t to Sections

4.4 and 5.1 in the context of the full model.

4 The Full Model With Two Tasks

I now extend the basic model to two tasks. In the two-task model, the agent must be

induced not only to exert a certain level of effort, but also to allocate his effort in an

efficient manner. I introduce some new notation and additional parameters; otherwise,

everything is the same as in the one-task model.

4.1 Model

Production: The output Y is again either 0 or 1; the probability that Y = 1 is given by

min{a1θ1 + a2θ2, 1}, where a = (a1, a2) is the agent’s effort exerted on the two tasks, and

θ = (θ1, θ2) is a vector of productivities.

Technological uncertainty: The productivity θi of each task i is given by θi = θ̄(1−tτi),

which differs from the basic model only in that θi is scaled by the parameter θ̄. The τi,

and thus the θi, may be correlated; the probability that τ1 = τ2 is given by (1 + ρ)/2 for

ρ ∈ [−1, 1]. When ρ = 1, the model in effect collapses to a one-task model. When ρ = −1,

the total productivity of effort across tasks is always constant but is concentrated on one

task or the other.

Information about θ: The same assumptions as before hold. The principal knows

the expected productivity θ̄, but not the realization of θ. The agent receives a private

signal s = (s1, s2) about τ ; the probability that si = τi is given by (1 + k)/2. The si|τi

are independent, and so s1 and s2 are correlated only indirectly through the correlation

between τ1 and τ2.

Agent’s utility: The agent’s utility is w − d(a); the disutility d(a) is given by

d(a) =
d

1 + φ
(a2

1 + a2
2 + 2φa1a2),

for φ ∈ (−1, 1]. If φ = 1, the tasks are perfect substitutes for the agent in the sense that

d(a) reduces to d(a1 +a2)
2/2. If a1 = a2 = a, then d(a) reduces to 2da2. Thus, scaling the
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disutility by 1/(1 + φ) ensures that changes in φ affect the interaction ∂2d(a)/(∂a1∂a2)

but not the level of disutility for equal levels of effort on each task.

Performance measurement and compensation: Compensation can be based on both a

and a noisy measure of output y, which relates to true output Y in the same way as in

the basic model. Hence, for θ1a1 + θ2a2 ∈ [0, 1], the expected value of y conditional on θ

and a is given by

E[y(θ, a)] =
e

2
+ (1 − e)(θ1a1 + θ2a2). (7)

Contracts are restricted to be linear; the agent’s total compensation is given by

w = α + β(a1 + a2) + γy.

Again, we can set α = 0. The use of the same piece rate for a1 and a2 is not a restriction

but follows as a result from the symmetry of the model. The timing of the game is the

same as before.

Aside from introducing the new and interpretable parameters θ̄, ρ, d, and φ, the

two-task version of the model helps to clarify the relation between “effort” in models of

incentive contracting and “decision making” in models of delegation. Critics sometimes

question the usefulness of standard hidden-action models, with their focus on effort pro-

vision, for the problem of how to induce managers to “make the right decisions”, for

instance about the choice of investment projects (Holmström 1992, Murphy 1999, Lam-

bert 2001). Some even consider effort and decision-making to be entirely different things,

where specific knowledge plays a role for the latter but not the former.13

This distinction already suggests that the real problem with standard incentive models

lies not in the notion of effort, but instead a failure to account for the role of specific

knowledge. Once it is incorporated into the model, the distinction between effort and

decision-making reduces to a distinction between “how much” and “what”, while the

principles of optimal compensation are the same for both: when agents are risk-averse,

they should be shielded from risk they cannot respond to, irrespective of whether it

pertains to measures of their effort or of their project choices. And their incentives should

be aligned with the principal’s objectives irrespective of whether their choice is about

13 See, for instance, Athey and Roberts (2001), who argue that “motivating effort is done best by

rewarding agents on precise measures of their effort... At the same time, ... getting the right investment

choices may require that the decision-maker’s rewards be tied to total value created” (p. 200).
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effort or projects. Thus, the choice of investment projects is meaningfully different from

“effort” only when there are implications beyond expected profit (such as risk) to consider.

The model introduced here fits both interpretations. If ρ = 1, we have the pure

“effort” case in the sense that only the level but not allocation of effort matters. The

opposite case, ρ = −1, can be interpreted as a situation where the agent must choose

between two projects, and exactly one is profitable. With perfect knowledge (k = 1), the

agent then chooses one of two (symmetric) effort allocations, which can be interpreted as

choosing one of the projects. With less than perfect knowledge, the agent will generally

hedge his bets and invest in both projects (depending on the information he receives),

but that does not affect the interpretation.14

4.2 Optimal Contract

Define

η =
2(1 − φ)ρ(1 − k2ρ) + (1 − ρ)2(1 + k2φρ)

1 − k4ρ2
. (8)

Then the following conditions are necessary and sufficient for the existence of an interior

solution for the principal’s optimal contract:

(A1) 2(1 − e)k2t2ηθ̄2 > (1 − φ)de

(A2) (1 − φ2)(1 − ρ)de + 2(1 − e)ηktθ̄2[(1 − φ)(1 − k2ρ) − (1 + φ)(1 − ρ)kt] > 0

(A3) 2(1 − e)(1 + k2ρ)ηkt[2d −
(1 + t)θ̄2] − (1 + t)(1 + ρ)[2(1 − e)ηk2t2θ̄2 − de(1 − φ)] > 0

Assumption (A1) ensures that the optimal γ in the contract is positive. Just as Condition

(a1) in the previous section, it states a lower bound for k relative to e. Assumption (A2)

ensures that for any realization of s, the agent chooses positive levels of effort for each

task. A necessary condition is that φ < 1; at the end of this subsection I explain why this

is a technical assumption that has no economic significance for the results.15 Assumption

14 Note, though, that if k < 1, then the agent’s total effort is not constant even if ρ = −1, since the

agent’s effort depends on his signals (s1, s2) (which can be both good or both bad) and not just θ. Thus,

even if ρ = −1, there is a “vertical dimension” to the agent’s choice of a in addition to the “horizontal”

allocation between tasks 1 and 2. See also the discussion at the end of Section 4.2.
15 Intuitively, if the tasks’ productivities differ considerably, or the agent’s knowledge is very good, or

the agent cares little about how he allocates his effort across the two tasks, then he will devote all effort

to task i and none to task j �= i if si > sj .
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(A3), finally, ensures that a1θ1 + a2θ2 never exceeds 1.16

Deriving the optimal contract is as straightforward as for the one-task version, but

some computations become more cumbersome:

Proposition 3 Under (A1)-(A3), the optimal contract parameters are given by

β∗ =
(1 − φ)de

4(1 − e)k2t2ηθ̄
and γ∗ =

1

2(1 − e)
− (1 − φ)de

4(1 − e)2k2t2ηθ̄2
. (9)

Proof: see the Appendix.

The intuition for this result is the same as for Proposition 1: the levels of β and γ

jointly determine the level of the agents’ effort, while the relative weights on β and γ

balance the dual objectives of getting the agent to use his knowledge (higher weight on

γ) and minimizing his rent due to limited liability (higher weight on β).

I discuss in Section 4.4 how the optimal contract depends on the parameters of the

model. Like in Section 3, it is straightforward to derive an optimal output piece rate γ∗

when output is the only available performance measure; the results are omitted.

A potential misunderstanding about Proposition 3 is the idea that the optimality of

output-based pay may depend on the agent having personal preferences over the tasks,

i.e. on φ being less than 1. For if the agent were indifferent between his tasks (φ = 1),

so the argument goes, an input-based contract with some arbitrarily small output bonus

would suffice to get the agent to act in the principal’s interest by allocating his effort

according to his private information.

Although, as mentioned, (A2) does require that φ < 1, the above argument is incorrect.

It would be valid if the agent could somehow exert a fixed amount of total effort (at a cost)

and then freely allocate it between the two tasks. Here, however, the agent’s disutility

function is convex in effort (a more natural assumption), and his (first- and second-best)

total effort is not constant but varies with θ̂, except if ρ = −1 and k = 1. Thus, the

purpose of output-based pay is to induce the agent to exert a high level of effort if and

only if he has received a signal that his effort is productive. In fact, the optimal γ is

increasing in φ, see Section 4.4.

Although (A2) ceases to hold as φ approaches 1, the analysis of this case is conceptually

straightforward and leads to a closed-form solution for the optimal contract; the resulting

16 That parameters satisfying (A1)-(A3) exist can be proven by example: take θ̄ = 1, e = .1, t = k = .5,

d = 1, ρ = 0, and φ = .5, in which case η = 1.
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expressions are more complicated than those derived below.17 The comparative-statics

analysis is more complicated, too, but leads to results very similar to those presented

below. Hence, while the case φ = 1 is ruled out in this paper to ensure an interior

solution, economically the results do not depend on the assumption that φ < 1.

4.3 The Principal’s Delegation Decision

As I argued earlier, the dispersion of important knowledge within organizations is one of

the main reasons why principal-agent relationships exist in the first place. It is therefore

natural to ask under what circumstances the principal would indeed want to delegate the

tasks in our model, i.e. the choice of actions a, to the agent, the alternative being for the

principal to perform these task by herself (equivalently, she might employ another agent

on a forcing contract at zero monitoring cost).

Unfortunately, we cannot meaningfully endogenize this decision. The main tradeoff

of interest here is that by not using an agent, the principal can save on agency costs

but forgoes the utilization of the agent’s knowledge. In addition, however, delegation

decisions are driven not only by the agent’s knowledge, but by differences between agent

and principal in productivity or the value of time as well. For example, the agent might

be generally more skilled in the tasks than the principal, corresponding to a larger θ. Or

the principal’s time might be more valuable than the agent’s, corresponding to a larger d

for the principal. A direct comparison of the two scenarios is therefore meaningless unless

we know how the principal’s and the agent’s productivity and value of time are related.

What we can do is make predictions about how changes in the model’s parameters

affect the principal’s profit under delegation, and thus the likelihood of delegation. Denote

by E(π) the principal’s expected profit as stated in (30) in the proof of Proposition 3,

with β = β∗ and γ = γ∗. Assuming that the model’s parameters can vary independently

of the corresponding parameters for the principal, any parameter change leading to an

increase in E(π) then shifts the principal’s decision towards delegation.

Thus, changes in the parameters of the model affect E(π) and hence may affect the

principal’s decision whether to delegate the tasks to an agent at all. Whenever E(π)

exceeds the principal’s non-delegation profit, however, parameter changes only affect the

optimal incentive contract. In other words, while delegating tasks to an agent requires

17 It is available in a web-Appendix at http://www.simon.rochester.edu/fac/raith/papers/Skapm5 AppB.pdf
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providing him with incentives, different job environments may give rise to different incen-

tive contracts without any difference in the assignment of tasks. This situation is likely

given for many managerial positions endowed with extensive decision rights.

4.4 The Social Value of Knowledge and Comparative Statics

I now show that how most parameters of the model affect the optimal contract and delega-

tion decision depends on how they affect what I define as the social value of knowledge.18

Subsequently, I discuss results for individual parameters.

Since the agent’s wage w is a pure transfer, the total surplus between principal and

agent is given by the output Y minus the agent’s disutility, which for given expectations

θ̂(s) is

a1θ̂1 + a2θ̂2 − d

1 + φ
(a2

1 + a2
2 + 2φa1a2). (10)

Maximization of (10) with respect to a1 and a2 leads to the first-best effort levels:

aFB
1 (θ̂) =

θ̂1 − φθ̂2

2d(1 − φ)
and aFB

2 (θ̂) =
θ̂2 − φθ̂1

2d(1 − φ)
. (11)

By substituting (25) and (11) into (10) and taking expectations over θ and s, one obtains

the expected total surplus if an agent with knowledge k uses his information optimally

according to (11). Denote this surplus by W (k); its expression is given in the proof of the

next result. Then we can define the social value of knowledge as the difference between

W (k) and the corresponding surplus if the agent had no specific knowledge, i.e. W (0).

Proposition 4 The social value of knowledge v, defined as W (k) − W (0), is given by

v =
ηk2t2θ̂2

2d(1 − φ)
. (12)

It is increasing in θ̄, k and t, decreasing in d and increasing in φ.19Also, v is decreasing

in ρ if and only if

k2φ(1 − ρ2)(1 − k4ρ2) + 2(1 − k2)[φ(1 − k2ρ2) − ρ(1 − k2)] ≥ 0, (13)

There exists ρ̃ ∈ (0, 1) such that (13) holds if and only if ρ ≤ ρ̃. A sufficient condition

for (13) to hold is that a∗
1(θ) is larger when the agent obtains a bad signal on task 2 than

when he obtains a good signal.

18 I would like to thank Meg Meyer for suggesting this generalization.
19 Recall from (8) that η depends on k, ρ and φ.
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Proof: see the Appendix.

I will explain the intuition for the different parts of Proposition 4 below after Propo-

sition 5. Both the optimal contract and the principal’s delegation decision are closely

connected to the social value of knowledge. From (9) and (12) we immediately obtain

β∗ =
eθ̂

8(1 − e)v
and γ∗ =

1

2(1 − e)
− e

8(1 − e)2v
. (14)

Equation (14) shows that most parameters changes affect the optimal contract through

a change in the value of information v. Notice also that changes in v lead to changes in

β∗ and γ∗ in opposite directions. This allows us to make unambiguous predictions about

the optimal relative weights placed on input and output performance measures for all

parameters except e.

The principal’s expected delegation profit (30), too, can be restated as a function of

the value of knowledge:

E(π) =
1

d
[β∗ + (1− e)γ∗]{θ̄ − [β∗ + (1− e)γ∗]} − e

2
γ∗ + 2[1− (1− e)γ∗](1− e)γ∗v. (15)

We then obtain:

Proposition 5 (a) γ∗ is increasing in k, θ̄, t and φ. It is decreasing in d, decreasing

in e if ∂E(y)/∂e ≥ 0, and decreasing in ρ if and only if (13) holds.

(b) β∗ is decreasing in k, θ̄, t and φ. It is increasing in d and e, and increasing in ρ if

and only if (13) holds.

(c) The principal’s delegation profit E(π) is increasing in k, θ̄, t and φ. It is decreasing

in d and e, and decreasing in ρ if and only if (13) holds.

Proof: see the Appendix.

The results for γ∗ are exactly the same if only output-based compensation is feasible;

the details are omitted. Except for the results for e, Proposition 5 is based on Proposition

4 and equations (14) and (15). This means that there is a common intuition for almost

all results: Any change in a parameter that increases the social value of the agent’s

information leads to a shift towards more output-based pay, and makes delegation more

likely. Conversely, any parameter change that leads to (say) an increase in output-based

pay can be explained by an increase in the value of the agent’s information as a result of

the parameter change. This is straightforward in the case of the agent’s knowledge k but

also holds for the other parameters.
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For instance, since θ̄ scales the productivity of effort, a higher value of θ̄ is associated

with a higher value of the agent’s knowledge about how to allocate his effort. It follows

that the relative weight on output-based pay and the delegation profit are increasing

in θ̄. A higher t implies a greater variance of the tasks’ productivities, which makes it

more valuable for the principal to rely on the agent’s knowledge about them, similar to

Prendergast’s (2002) main result. As for ρ, if the productivities of the tasks are not already

highly correlated, then the lower ρ, the higher the value of the agent’s information, since

it is more likely that the agent should focus his effort on one task rather than both. The

parameter φ, in turn, measures how substitutable the two tasks are from the agent’s point

of view. The higher φ, the less strongly the agent cares about what tasks he works on, and

hence the more the agent allocates his effort according to his private information rather

than his personal preferences. It is then optimal to put a larger weight on output-based

compensation.

The results for environmental risk (e) are not based on Proposition 4 but are familiar

from standard agency models (see also Footnote 12): the greater the noise in measur-

ing output, the lower the optimal weight on output in the incentive contract, and the

lower the principal’s delegation profit. The optimal contract depends on e although the

social value of information does not: risk affects measured output y but not true output

Y ; consequently, first-best effort and hence v do not depend on e. To understand the

qualifying condition for γ∗ in part (c), notice that a change in e affects the variance of y,

but therefore also (as in any model with only two possible outcomes) its expected value.

Clearly, other things equal, the principal would want to decrease γ if E(y) increases, and

vice versa. The question then is what happens when ∂E(y)/∂e = 0. Part (a) states

that in this case, an increase in e unambiguously leads to a decrease in γ. This effect is

reinforced for higher values of e, where E(y) is increasing in e, whereas for smaller values

it may be outweighed by the upward adjustment of e because of a decrease in E(y).

Part (c) of Proposition 5 states the intuitive result that delegation is more profitable

the larger the agent’s information advantage as measured by k. In contrast, other models

of delegation usually assume that the agent has specific knowledge, but do not study

variations in the quality of knowledge (see e.g. Dessein 2002, Prendergast 2002). More

importantly, in my model incentive contracting plays a central role, and the delegation de-

cision itself depends on the delegation profits attainable under the optimal contract. Part

(c) confirms a central conjecture of Jensen and Meckling (1992) that if local knowledge is
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important and costly to transfer (i.e. specific), firms will assign decision rights to agents

who have the relevant knowledge to make those decisions. For recent evidence supporting

this prediction, see e.g. Christie, Joye and Watts (2003), Colombo and Delmastro (2004),

and Abernethy et al. (2004).

Section 5.1 below draws on the results of Proposition 5 for e and t. A much more

detailed discussion of the implications of Proposition 5 appears in Section 6.

5 A Common Explanation for Empirical Puzzles

In his survey on incentives in firms, Prendergast (1999) concluded that while there is little

doubt that people respond to incentives, the evidence that contracts are designed in the

way theory predicts is less convincing. Prendergast himself (2002) argued that the role

of specific knowledge may explain why most empirical studies fail to find the negative

risk-incentives relation predicted by standard theory.

In this section, I take Prendergast’s insight one step further. Empirical research on

incentives has produced several puzzles other than the risk-incentives relation. All of

the puzzles relate to predictions derived from the Informativeness Principle (Holmström

1979), and I argue that all of them can be explained by the role of specific knowledge. I

first revisit the risk-incentives relation in the model studied here, and subsequently turn

to predictions based on informativeness.

5.1 Uncertainty vs. Incentives Revisited

A central prediction of principal-agent theory is that a risk-neutral principal provides

weaker incentives to a risk-averse agent the noisier the measure on which the agent’s

compensation is based. However, empirical evidence of an inverse relation between risk

and incentives is scarce. Although studies supporting this prediction (e.g. Aggarwal and

Samwick 1999) are well known, Prendergast (2002) concludes that they are greatly out-

numbered by studies finding a positive or insignificant relation between risk and incen-

tives. This discrepancy between theory and evidence, also observed by Zabojnik (1996)

and Lafontaine and Slade (2000), has attracted much interest in recent research.

One reason for the discrepancy may be that agents have knowledge about uncertain

events and must be given incentives to use it.20 In Prendergast’s (2002) model, the agent

20 See also Demsetz and Lehn (1985): “In less predictable environments, however, managerial behavior
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has better information than the principal about the profitability of different available

projects. Prendergast shows that an increase in the riskiness of the projects’ payoffs

increases the value of the agent’s information and makes it more likely that the principal

wants to delegate the choice of the project to the agent.

The present model formalizes somewhat more literally the idea that agents must be

given incentives to respond to unforeseen events appropriately. It makes clear that whether

one should expect to see a positive or a negative relation between incentives and risk

depends on the source of uncertainty. According to Proposition 5, e affects the optimal

incentive contract and delegation profit in ways familiar from standard agency models

(see also Footnote 12): the greater the noise in measuring output, the lower the optimal

weight on output in the incentive contract, and the lower the principal’s delegation profit.

An increase in t, on the other hand, implies a greater value of the agent’s knowledge

and increases the principal’s delegation profit (part c), which is similar to Prendergast’s

(2002) main result. On its own, it leads to Prendergast’s prediction that risk and incentives

are likely to be positively related if delegation decisions are not controlled for (e.g. if

company-owned and franchised outlets of a chain are pooled), whereas controlling for

delegation, they should be negatively related for the usual reasons. Parts (a) and (b) of

the proposition, however, make clear that the picture is more complicated: even if the

delegation of authority is taken as given, which is an appropriate assumption for most

managerial occupations, the relation between incentives and uncertainty may be positive.

Two factors are responsible for the positive relation between technological uncertainty

and (output-based) incentives: first, θ influences the agent’s individually optimal choice

of effort. This condition is necessary because exposing the agent to risk is always costly

for the principal and leads to lower-powered incentives unless the realized state of nature

is relevant for agent’s actions. Second, the agent’s information pertains to the true pro-

ductivity of his effort and thus affects his first-best optimal effort. Even though the agent

cares about measured performance y and not actual output Y , θ affects y only through its

effect on Y . Thus, the agent’s use of his private information always benefits the principal.

If, in contrast, the agent’s information pertains to measured performance instead of

true productivity, it may affect the agent’s individually optimal action but not his first-

best action. For instance, if the agent receives information that measured performance

... figures more prominently in a firm’s fortunes... Hence, noisier environments should give rise to more

concentrated ownership structures.”
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will be low, the agent has little incentive to exert effort even if the effect on the principal’s

payoff is large. Baker (1992) and Baker, Gibbons and Murphy (1994) show that under this

assumption, an increase in the variance of the objective performance measure may lead

to lower optimal incentives placed on it. More generally, whether or not an agent’s use of

his information is beneficial for the principal depends on the precise correlation structure

between the agent’s information, the productivity of effort, and measured performance.21

The above discussion suggests that there are serious obstacles to studying the empirical

relation between incentives and risk, consistent with the current state of the literature.

One problem is that it may be difficult to determine whether a manager’s knowledge

pertains more to his measured performance or to true productivity, although one might

expect that information about market conditions falls in the latter category. The main

problem, however, is that while technological and environmental uncertainty are treated

as independent parameters in this (reduced-form) model, in reality they are likely to

be correlated. For example, for the CEOs of oil companies, oil price fluctuations may

call for appropriate actions based on the CEOs’ expertise, but also affect the companies’

performance for reasons unrelated to any actions taken. Whether incentives ought to be

negatively or positively related to a certain source of risk thus depends on how important

responses to that risk are, which is bound to be difficult to determine for researchers22

5.2 The Use of Aggregate Performance Measures

One implication of the Informativeness Principle is that if both noisy and less noisy mea-

sures of an agent’s performance are available, greater weight should be given to less noisy

performance measures, other things equal. In terms of the input-output terminology used

here, this means that preference should be given to input measures since (by definition)

21 See also Lizzeri, Meyer and Persico (2002), who show that providing interim performance evaluations

to an agent are generally harmful for the principal when the agent’s productivity is known, and hence

the evaluation only informs the agent about measured performance rather than socially optimal actions.

In contrast, interim evaluations can be useful when there is uncertainty about the agent’s productivity.
22 An attempt to resolve this problem is offered by Shi (2005), who argues that firm- and industry-

specific risk is more likely to be “respondable” than market-wide risk because CEOs are likely to have

specific knowledge (relative to e.g. shareholders and analysts) about their firm and the industry, whereas

they have little or no information advantage with regard to market risk. Consistent with the conjecture,

Shi finds that CEO incentives are negatively related to market risk but positively to firm- and industry-

specific risk. For a similar conjecture and results on managerial ownership, see Demsetz and Lehn (1985).
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they are more closely related to the agent’s actions.

This prediction is rarely borne out in the evidence. In a wide range of occupations,

be it sales people, franchisees or executives, incentive pay is based largely on aggregate

financial data and only partly on e.g. operational measures or other measures of “input”.

One reason for using output-based pay, of course, may be a lack of good input mea-

sures. If important dimensions of an agent’s performance are difficult to measure, dys-

functional responses are likely if compensation is based on more easily available input

measures, see Holmström and Milgrom (1991). Extending this argument, Baker (2002)

has pointed out that principals often face a tradeoff between noisy performance measures

that are closely correlated with the principal’s payoff (i.e. output measures) and less noisy

but distorted input measures. It follows that unless the agent’s input can be measured

rather well, there may be little choice but to base compensation on output measures.

And yet this does not seem to be the whole story if we want to understand the preva-

lence of output-based pay. Firms nowadays often have an abundance of information that

about the minutiae of their employees’ activities, through the use of activity-based costing,

balanced scorecards, and integrated information systems. While multitask measurement

problems continue to matter in many occupations, substantial progress has been made in

devising ways to measure performance in almost all relevant dimensions of, for instance,

sales people or managers.

But even firms that go to great trouble to measure employees’ inputs find it difficult to

use these measures in their compensation plans. The main problem is that of determining

the optimal weights for each measure in a compensation plan. As it turns out, firms

simply do not know very well how their employees’ actions contribute to firm performance,

whereas the employees often have an information advantage. The best option then is to

base compensation on the principal’s objective rather than measures of the agent’s actions

(see Murphy, 1999, and Ittner et al., 2003).

The present model captures precisely this problem, and Proposition 3 confirms the

above conclusion: even if effort can be observed without noise, partly output-based com-

pensation is optimal, and its weight increases with the importance of the agent’s spe-

cific knowledge. The paper thus explains why firms base their managers’ compensation

on aggregate financial measures even when detailed measures of managerial activity are

available.
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5.3 Paying Agents for “Luck”

The Informativeness Principle implies that an optimal incentive contract uses all infor-

mation that leads to a more precise measurement of the agent’s effort. In particular, if a

performance measure is influenced by factors outside the agent’s control (such as fluctu-

ations in demand), these influences should be filtered out of the performance measure in

order to obtain a more precise measure of the agent’s effect on it.

In a well-known paper, Bertrand and Mullainathan (2001) document that this predic-

tion appears to violated in the U.S. oil industry. They observe that the performance of

oil companies varies systematically with the market price of oil, which in turn is easy to

measure. Theory would then predict that the influence of the oil price on firm perfor-

mance should be filtered out of the performance measure on which a CEO’s compensation

is based. Instead, Bertrand and Mullainathan find that CEO compensation responds as

much to changes in firm performance due to oil price shocks as to general changes in firm

performance. They interpret this finding as evidence of the CEOs’ power to extract rents

from shareholders, an idea that has gained some popularity recently (see Section 6, point

8).

Instead, I argue that Bertrand and Mullainathan’s findings can be explained by in-

corporating specific knowledge into the theory of incentives, without resorting to an al-

together different explanation based on governance failure. To make this argument more

precise, I now examine how optimal incentives are affected when the principal has infor-

mation about the uncertain production technology θ.

To simplify the analysis and facilitate a comparison with standard agency models, I

assume here that there is only one task (as in Section 3), and that compensation can be

based only on output. Suppose expected output is given by E[Y ] = aθ, with θ ∈ {θH , θL}.
If the agent knows θ but the principal does not, the optimal piece rate γ∗ is given by

Proposition 2 for k = 1. If, in contrast, the principal can condition the contract on

information about θ, she will choose a piece rate γH if θ = θH , and γL if θ = θL, with

γH > γ∗ > γL. Thus, compared to the case of an uninformed principal, the agent will face

stronger incentives in good states of the world and weaker incentives in bad states. These

incentives give rise to a convex pay-performance relation, consistent with the evidence of

Garvey and Milbourn (2003).

Now suppose that the productivity of effort is negatively related to θ. Of course, in

the model they are positively related (θ is the productivity), which is without loss of
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generality since values of θ can always be appropriately relabeled. For any given proxy

of θ, however, the relation is not so obvious. For instance, if θ is a measure of market

demand, it depends on the particular circumstances whether the value of effort is highest

when demand is high, or when it is low. If optimal effort is negatively related to θ,

then incentives are strongest in the bad state of the world, which is the opposite of the

conclusion above.

If the principal does not know how optimal effort and a given θ are related, she cannot

make use of information about θ at all. The same is true when different states of the world

call for different optimal actions, but in a way that cannot be associated with “high” or

“low” effort. Specifically, suppose that expected output is given by a1θ1 + a2θ2 as in the

main model, with ρ = −1. In this case, (first-best-)optimal effort takes only two values,

depending on whether τ = (1,−1) or τ = (−1, 1). Again, there is no scope for using

information about θ in the incentive contract, unless compensation can be conditioned

on input measures as well.

Ideally, the principal would still like to insure the agent against income risk resulting

from fluctuations in θ, but the scope for doing so is very limited. In the present setting, for

instance, the principal might want to include a term −δθ with δ > 0 in the agent’s wage

function. But with limited liability that is not possible since the agent’s main bonus γy

can always end up being zero due to bad luck; the same is true if environmental risk and

technological uncertainty are correlated. Thus, the only way for the principal to insure

the agent against risk is through partially input-based pay. In a model with risk aversion

instead of risk neutrality with limited liability, these conclusions would probably be less

stark but similar.

The above discussion implies that observable shocks outside the agent’s control will not

be filtered out of the performance measure if the agent is expected to respond to them. Or,

in the language of Bertrand and Mullainathan (2001), compensation will generally depend

as much on a “lucky dollar” as on a “general dollar”, just as Bertrand and Mullainathan

find.23 As I discuss below in Section 6, the present model may also explain their finding

that firms are more likely to reward a “lucky dollar” the worse they are governed.

23 Bertrand and Mullainathan argue that if specific knowledge were the explanation, one would expect

to see only unusually successful CEOs rewarded for luck, contrary to the data. But this counterargument

does not hold in the present model, since even if the average CEO is no better able than others to forecast

changes in market conditions, he is still likely to have specific knowledge of how best to respond to them.
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5.4 The Scarce Use of Relative Performance Evaluation

As mentioned above, the Informativeness Principle implies that factors outside an agent’s

control should be filtered out of his performance measure. Often these factors are best

measured by using the performance of other agents as a benchmark, which is the basic

logic of relative performance evaluation (RPE), see Holmström (1982). A puzzle that has

intrigued empirical researchers for quite some time now is why RPE appears to be used to

a much lesser extent in practice than theory would suggest (Prendergast, 1999; Murphy,

1999). I argue that, once again, the role of specific knowledge may explain the scarce use

of RPE; the argument is very similar to that of Section 5.3.

In the case of pure technological risk, the conclusions of Section 5.3 apply without

change. When the performance of both firm A and firm B is positively related to θ,

then B’s performance can be used as a proxy for θ. When in addition optimal effort in

both firms is positively related to θ, then firm A’s optimal contract is one in which the

incentives for A’s agent (not just the level) vary positively with B’s performance. The

reverse holds when optimal effort in both firms is negatively related to θ. Finally, when

optimal actions depend on θ but overall effort and performance do not, then information

about B’s performance is of no use to A.

These observations imply that the scope for RPE is very limited when agents’ perfor-

mances are linked through events to which agents the must respond. In reality, technolog-

ical and environmental risk are likely to be correlated as they may be driven by the same

random events. Overall, then, the usefulness of RPE therefore depends on the importance

of agents’ responses, or in the terminology of this paper, to what extent uncertainty is

technological or environmental.24

6 Implications and Predictions

Proposition 5 leads to many empirical predictions and other implications. The predictions

relate incentive contracts and delegation decisions to characteristics of the agent’s job, the

relationship between agent and principal, properties of the firm or the firm’s environment,

and are discussed below in that order. Since the main novelty of the paper lies in pointing

24 See also Meyer and Vickers (1997), who point out that in the presence of career concerns, the

usefulness of RPE depends on the relative size of the correlations of time-invariant and transient influences

on agents’ performances.

26



out the role of specific knowledge for incentive contracting (whereas it is familiar for

delegation decisions), I place a greater emphasis on predictions about incentives and

performance measurement in what follows.

Most predictions are derived from different interpretations of the knowledge parameter

k. Note that k measures the agent’s knowledge relative to that of the principal. Thus,

Proposition 5 implies that delegation and the relative weight on output-based pay are

positively related to the gap between agent and principal in knowledge pertaining to the

agent’s job.25

1. Knowledge gap: The results in Proposition 5 for k imply that we should expect

to see stronger incentives, a greater weight on output-based pay, and a greater extent

of delegation, the better the agent’s specific knowledge about his job is relative to the

principal’s knowledge. One way to test this prediction is to directly attempt to measure

the gap in job-specific knowledge between agent and principal. This has been done with

some success in accounting research using survey data. For instance, Abernethy et al.

(2004) and Bouwens and van Lent (2005) use a six-item scale developed by Dunk (1993)

to measure the extent of information asymmetry between profit center managers and their

superiors.26

The measure obtained is strongly correlated with “harder” proxies of specific knowl-

edge such as the manager’s experience (in years) in his current position, his age, and the

ratio of industry experience between manager and superior (the difference in education

backgrounds would be another possible proxy). Abernethy et al. (2004) find that delega-

tion is more likely the greater the informational asymmetries, consistent with Proposition

25 It is more difficult to make predictions about the overall strength of incentives because that will

depend on the principal’s and agent’s absolute, not just relative, levels of knowledge. For example, an

increase in the principal’s knowledge should in the context of the present model be interpreted as a

decrease in k, leading to shift towards input-based pay. On the other hand, it is possible that a better

informed principal would also want to provide stronger overall incentives to the agent, which may explain

the apparent contradiction between Proposition 5 and the result of Baiman, Larcker and Rajan (1995)

that “the compensation risk imposed on the business manager generally increases with the principal’s

relative expertise” (p.206).
26 This involves literally including questions on the survey such as “Compared to your superior, who

is more familiar with the input-out relationships inherent in the internal operations of your organiza-

tional unit?” and “Compared to your superior, who is more familiar technically with the work of your

organizational unit?”
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5 (c). Bouwens and van Lent (2005) find that the weight in managers’ compensation

placed on aggregate accounting measures of division profit (=output), as opposed to

disaggregated metrics or non-financial measures (=inputs), increases with measures of

managers’ authority. A untested prediction is that even controlling for managers’ au-

thority, the weight on output-based pay should increase with the extent of informational

asymmetries. For other ways to measure specific knowledge directly, see Christie, Joye

and Watts (2003)).

2. Job complexity: Several empirical researchers have studied the effects of job

complexity on e.g. the level and structure of compensation.27 In the model, job complexity

is captured both by k and by ρ. First, the more complex the agent’s job is, the better

the agent probably knows what actions are value-maximizing relative to the principal,

which corresponds to a higher value of k. Second, the smaller ρ, the more likely the θi

and hence the efficient effort levels for each task will be different. A job with smaller ρ

is thus more complex in the sense that the optimal allocation of total effort across tasks

is more difficult to specify in advance. Both ways of thinking about job complexity lead

to the same prediction that the weight on output-based incentives and the principal’s

profit under delegation should vary positively with measures of job complexity.28 The

findings of Ortega (2003) and Christie, Joye and Watts (2003) confirm this prediction for

delegation decisions. The relation between job complexity and the choice of performance

measures has to my knowledge not yet been investigated.

It can be shown that parameter changes leading to more output-based pay also lead

to a higher expected wage for the agent. We then obtain the prediction that wages are

positively related to job complexity, consistent with the evidence of Van Ophem et al.

(1993) and Pekkarinen (2002). To explain this, Van Ophem et al. (1993) argue that a

more complex job requires greater effort or in other ways increases a worker’s disutility,

for which a worker needs to be compensated. Here, instead, a wage increase associated

with greater complexity results from a greater reliance on output-based pay, whereas (as

27 See e.g. Van Ophem, Hartog and Vijverberg (1993), Drago and Garvey (1998), Pekkarinen (2002)

and Ortega (2003).
28 This definition of complexity differs from Kremer’s (1993), who assumes that tasks are complemen-

tary and measures complexity by the number of tasks. In particular, here the tasks are independent

in the sense that the cross-partial derivatives of a1 and a2 in the expected value of Y are zero.. My

conjecture, though, is that in a suitably extended model with n tasks, γ∗ and the delegation profit would

also be positively related to n.
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numerical simulations suggest) the direct effect of complexity on the agent’s utility before

adjusting the contract is only small.

3. Subjective performance evaluations: A common way for firms to deal with

distortions created by the use of objective performance measures is to base e.g. bonus

payments on subjective performance evaluations. The usefulness of such evaluations,

however, hinges on the ability of superiors to evaluate their subordinate managers’ per-

formance. But if managers have specific knowledge about how to do their job, their supe-

riors’ evaluations are likely to be based more on observable actions than on the managers’

true contributions to the firm. Subjective evaluation then becomes an input measure, in

contrast to its role in, say, Baker, Gibbons and Murphy (1994), where it is assumed to

produce an unbiased measure of output.

Under this new interpretation, the purpose of subjective evaluations is to shield a

manager from the noise contained in other, objective performance measures (“your unit

had a bad year but we know you worked hard”. Consistent with this view, Gibbs et al.

(2003a) find that firms are more likely to pay bonuses based on subjective evaluation in

periods with losses.

Thinking of subjective evaluations as input measures also leads to predictions about

the use of subjective vs. objective performance measures. For example, it is plausible

that the knowledge gap between CEOs and boards in a company is greater than that

between lower-level executives and the superiors who evaluate them. One then obtains

the prediction that subjective evaluations are more likely to be used for lower-level exec-

utives than CEOs, which is what Murphy and Oyer (2003) find (their own, also plausible,

explanation is a lack of reliable objective measures at lower levels). The limited usefulness

of subjective evaluations when evaluators are less well informed than their agents may

also explain the prevalence of objective measures in executive compensation plans.

4. Congruence: The parameter φ measures how substitutable the two tasks are

from the agent’s point of view. According to Propositions 4 and 5, a higher value of φ

is associated with a higher value of the agent’s information and accordingly stronger and

more output-based incentives and a greater likelihood of delegation.

A way to interpret this result is that the larger φ, the better the agent’s and the

principal’s interests are aligned since the agent is more likely to allocate his effort in the

way the principal would prefer (if she had the same information). The role of φ in this

model is thus reminiscent of that of “congruence” parameters in delegation models such
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as those of Aghion and Tirole (1997) and Dessein (2002), which measure the probability

with which principal and agent prefer the same project. Part (c) of Proposition 5 for φ is

in this sense similar to Dessein’s result that delegation is more likely the more congruent

the agent’s preferences are with the principal’s.

5. Value of effort: Standard models of incentive contracting predict, like the result of

Proposition 5 (a), that optimal incentives are increasing in the value of managerial effort θ.

In addition, Proposition 5 predicts that a higher value of effort is associated with a higher

likelihood of delegation and, conditional on delegation, a greater weight on output-based

pay. Different ways to measure the value of effort are discussed in Lafontaine and Slade

(2000) in the context of franchise decisions. These include measures of labor intensity,

a manager’s experience in the industry, or in retail gasoline, a measure distinguishing

full from self service. In all studies reported that find a statistically significant relation

between the measure chosen and the franchise decision, the value of managerial effort has

a positive effect on the decision to franchise out a business unit.

6. Group-based vs. individual incentives: Employees such as division managers

agents are often compensated based on their own unit’s performance but also the perfor-

mance of the group (which may be the entire firm) they are part of; see Ittner and Larcker

(1998) and Murphy (1999). Between these two types of incentives, measures of individual

performance are inputs, while group performance measures output. Group-based incen-

tives are typically interpreted as an optimal response to externalities between different

units of a firm, see e.g. Bushman, Indjejikian and Smith (1995) and Keating (1997) for a

discussion and empirical analysis.

The present model suggests an alternative motivation for group-based pay. Even if

individual (unit) performance can be measured well, and even in the absence of exter-

nalities, group-based pay is optimal if a manager has specific knowledge about how his

unit contributes to group performance.29 Parts (a) and (b) of Proposition 5 can then be

used to derive predictions about the relative weights of individual vs. group incentives in

managers’ compensation plans.

For instance, interpreting job complexity as a proxy for k (see above), it follows that the

weight on group-based incentives should be increasing in job complexity, while the weight

29 This argument can be developed formally in a variation of the main model in which two managers

exert effort on one task each to produce a group output. For details, contact the author for a previous

version of the paper.
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on individual incentives should be decreasing. That is precisely what Ortega (2003) finds

in his study of the determinants of incentive compensation from survey data on European

employees. As Ortega points out, the first result is consistent with a standard agency

model, but the second is not.

7. Growth options: Smith and Watts (1992) have suggested that both the level of

compensation and the incentives provided to executives should be positively related to

a firm’s growth opportunities. They argue that the greater the growth options, the less

shareholders are able to evaluate a CEO’s decisions, and hence the more they will want

to tie compensation directly to firm value by placing a larger weight on stock-based pay.

The present model cannot shed light on Smith and Watts’ basic hypothesis, but offers

an analytical foundation of their conclusion. Under Smith and Watts’ hypothesis, better

growth options are associated with a larger value of k (or t) since k measures the knowledge

gap between shareholders and a CEO. We then obtain the prediction that firms with better

growth options place a relatively larger weight on stock-based pay, consistent with the

evidence of Smith and Watts (1992) and Gaver and Gaver (1993). For similar evidence

on delegation decisions, see Christie, Joye and Watts (2003). Conversely, older firms and

firms in more mature industries should be expected to place relatively less emphasis on

stock-based pay due to a smaller knowledge gap between board and CEO.

8. Corporate governance: A substantial amount of recent research examines the

connections between corporate governance and CEO compensation. A new view has

become popular that holds that CEO pay is determined in a process in which, as it were,

the roles of board and CEO as principal and agent are reversed (see Bebchuk and Fried,

2004). A growing body of evidence documents that the worse companies are governed

(using a variety of measures), the more money their CEOs make (see e.g. Core et al., 1999,

or Bertrand and Mullainathan, 2001). This has been interpreted as evidence that CEOs

are able to extract rents from shareholders when directors lack the ability or incentive

to exert stronger control, or worse, when they believe to owe the CEO a favor in return

for their appointment to the board. In support of this view, its proponents argue that if

conventional theory were valid, we should not expect to see strong relations between the

quality of governance and the level and structure of CEO pay.

In contrast, the present model makes clear that once one recognizes that CEOs typ-

ically have specific knowledge about how to do their job, it is very natural that both

structure and level of CEO compensation would depend on the quality of corporate gov-
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ernance. Specifically, the results of Proposition 5 for k imply that the greater is the

knowledge gap between a CEO and the company’s board, the stronger the CEO’s incen-

tives and the larger the weight on output(=stock)-based pay will be. As mentioned above

(see point 2. in this section), a larger value of k is also associated with a higher expected

wage for the agent. The knowledge gap, in turn, depends on the characteristics of both

principal and agent.

It follows that CEO pay should vary with measures of corporate governance to the

extent they are correlated with how well the board understands (or has an incentive to

understand) the CEO’s job. Core et al. (1999), for instance, find that the level of CEO

pay is positively related to the share of outsiders on the board. This finding is somewhat

unexpected from the perspective of the “managerial power” view outlined above, since

outsiders on the board are less likely to owe the CEO a favor, which is normally interpreted

as leading to more effective governance. A different interpretation, however, is that outside

directors also understand the firm less well, leading to a larger knowledge gap between

board and CEO.30.

The purpose of this discussion is not to argue against the managerial power view

of CEO compensation. Instead, it is to show that the theory presented here predicts

connections between corporate governance and CEO compensation previously considered

outside the domain of the theory of incentives. These connections include some that have

been cited in support of an altogether different view of the process by which CEO pay

is determined. More refined tests than previously employed, therefore, are necessary to

distinguish the two contrasting views on how CEO pay is determined.

9. Product market competition: The value of managerial effort θ̄ depends in

part on a firm’s competitive environment. In Raith (2003), I argue that greater product

market competition implies a higher marginal value for firms of improving their compet-

itive position (relative to others) through cost reductions or quality improvements. Since

managerial effort is required to implement such changes, greater competition therefore

implies a higher value of managerial effort. Proposition 5 then predicts that, other things

equal, greater product market competition should be associated with more output-based

30 Two broad trends, not previously connected, are also consistent with the argument that governance

and CEO pay are linked through specific knowledge: a trend towards better corporate governance, brought

about for instance by greater outsider presence on boards (cf. Hermalin 2003, Murphy and Zabojnik 2003);

and a trend towards greater use of non-financial performance measures (cf. Ittner and Larcker 1998)
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pay and a greater extent of delegation. Consistent with these predictions, Slade (1998)

finds that oil companies are more likely to delegate pricing decisions to gas stations the

greater the price and cross-price elasticities of demand. Kole and Lehn (1999) find that

deregulation in the U.S. airline industry was followed by substantial increases in CEO

pay as well as a shift towards more stock-based compensation. More directly pertinent to

the prediction of Proposition 5, Karuna (2005) finds in a cross-sectional study that more

competitive industries provide stronger stock-based incentives relative to earnings-based

incentives.

10. Technological uncertainty: Previous research on the relation between uncer-

tainty and incentives has sought to find evidence for the negative relationship predicted by

standard theory; findings of a positive relation were seen as an anomaly. An alternative

and novel approach would be to do the opposite; i.e., to examine whether incentives and

delegation are positively related to proxies of technological uncertainty (t in the model).

A candidate for such a proxy is the concept of “industry clockspeed” developed by

Mendelson and Pillai (1998) as a quantitative measure “that gauges the velocity of change

in the external business environment and sets the pace of ... firms’ internal operations”.

It is a composite of three variables: product life (the duration of the product life cycle),

product “freshness”, measured by the share of total revenues due to products introduced

over the previous 12 months, and the rate of change in input prices. Although all of

these variables affect both technological and environmental risk, they are highly decision-

relevant, suggesting that clockspeed may be a suitable proxy for t. We then obtain

the prediction that the strength of incentives, the weight on output measures and the

likelihood of delegation should be positively related to clockspeed. Evidence suggesting

that clockspeed has a positive effect on the value of decentralized decision-making is

reported in Mendelson (2000).

7 Conclusion

Standard agency models assume that a principal cannot observe her agent’s actions but

knows what these actions should be. Yet in many of the most important occupations, the

problem is the opposite one: “the reason shareholders entrust their money to selfinter-

ested CEOs is based on shareholder beliefs that CEOs have superior skill or information in

making investment decisions” (Murphy 1999, p.2521), whereas the observability of those
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decisions is a less salient problem. Incorporating specific knowledge in the theory of in-

centives has been difficult because extensions of workhorse principal-agent models quickly

prove to be analytically intractable.

A different strand of the literature recognizes the importance of an agent’s knowledge,

but focuses almost entirely on the question of when a principal should delegate tasks to

an agent (see the references in footnote 2), while ignoring incentives. Although both the

theory of incentives and the literature on delegation shed light on agency relationships

within firms, their perspectives on them are very different and without overlap.

This paper combines both perspectives. I study the effects of specific knowledge on

optimal incentives, performance evaluation and delegation in a model that leads to simple,

closed-form solutions and intuitive comparative statics. The main formal result is that

when an agent has specific knowledge about how his actions contribute to the principal’s

objectives, the principal must provide incentives based on “output” measures correlated

with those objectives rather than on measures correlated with the agent’s actions.

I develop two sets of implications. First, in the model, the Informativeness Principle

of standard agency theory no longer holds. It follows that all predictions based on the

informativeness principle may fail empirically when agents have specific knowledge. I

illustrate this conclusion with reference to several puzzles in the empirical literature, and

argue that all of them can be resolved with the same explanation. Second, the formal

results lead to a wide range of empirical predictions and other implications. Some of

the predictions are already supported by evidence, some suggest a reinterpretation of

previous findings, and some are yet to be tested. In particular, the paper suggests an

“input-output” distinction as a new way to categorize performance measures, which in

conjunction with a focus on the role of specific knowledge will hopefully prove fruitful

both for empirical research and the practical design of compensation plans.
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Appendix: Proofs

Proof of Proposition 1: The principal’s expected profit conditional on (θ, s) is

π = Y (θ, s) − w(θ, s) = Y (θ, s) − βa(s) − γ
[
e

2
+ (1 − e)Y (θ, s)

]
= [1 − γ(1 − e)]Y (θ, s) − βa(s) − γe

2
. (16)

We want to compute the expected value of (16) over (θ, s). For Y , we have

Y (θ, s) = a(s)θ = [β + (1 − e)γθ̂(θ, s)]θ = βθ + (1 − e)γθ̂(θ, s)θ. (17)

From θ = 1 + tτ and θ̂ = 1 + kts, we have E(θ̂θ) = E[(1 + kts)(1 + tτ)]. Using E(s) =

E(τ) = 0, this expression simplifies to 1 + kt2E(τs). Finally, we have τs = 1 if τ = s and

−1 otherwise; and the relation Pr(s = τ) = (1 + k)/2 implies that the prior probabilities

of the events τ = s = ±1 are (1+k)/4 while the probabilities of events τ �= s are (1−k)/4.

Therefore,

E(τs) = 2
1 + k

4
1 + 2

1 − k

4
(−1) = k.

Putting everything together, the expected value of (17) is

β + (1 − e)(1 + k2t2)γ. (18)

Moreover, using (4), the expected value of a(s) is simply β + (1 − e)γ. Substitute this

expression and (18) into (16) to obtain the principal’s expected profit:

E(π) = [1 − γ(1 − e)][β + (1 − e)γ(1 + k2t2)] − β[β + γ(1 − e)] − γe

2
. (19)

Differentiating (19) with respect to β and γ leads to the first-order conditions

1 − 2(1 − e)γ − 2β = 0 and (20)

−e

2
+ (1 − e)[1 − 2(1 − e)γ](1 + k2t2) − 2(1 − e)β = 0 (21)

The solution of (20) and (21) for β and γ is stated in the proposition. It is straightforward

to establish that (19) is strictly concave in β and γ and so the solution of (20) and (21)

is indeed a maximum. Moreover, it is straightforward to verify that γ∗ in (9) is positive

if and only if Condition (a1) holds.

Finally, we need to make sure θa does not exceed 1. It attains its largest value when

τ = s = 1. Using (4) and θ̂ = (1 + kts), we obtain

Y (1, 1) = (1 + t)[β + (1 − e)γ(1 + kt)]

=
(1 + t)[2kt(1 + kt) − e(1 + 2kt + 2k2t2)]

4(1 − e)kt
(22)
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Subtracting the numerator in (22) from the denominator leads to the left-hand side of

Condition (a3). Thus, under (a3), (22) does not exceed 1.

Proof of Proposition 2: The agent’s individually optimal effort vector is given by (4)

with β set to 0. Consequently, the principal’s profit is also given by (19) with β set to 0:

E(π) = [1 − γ(1 − e)](1 − e)γ(1 + k2t2) − γe

2
.

Differentiation with respect to γ leads to the stated expression. Parameter conditions

similar to (a1) and (a2) guarantee an interior solution.

Proof of Proposition 3: In stage 4 of the game, the agent chooses his effort a as a

function of beliefs θ̂ about θ. Assuming an interior solution for all endogenous variables,

the agent’s expected utility is

β(a1 + a2) + γ{e/2 + (1 − e)[θ̂1a1 + θ̂2a2]} − d

1 + φ

(
a2

1 + a2
2 + 2φa1a2

)
, (23)

cf. (3). This expression is strictly concave in a, and maximization with respect to a leads

to

a∗
i (θ̂) =

β

2d
+

(1 − e)(θ̂i − φθ̂j)γ

2d(1 − φ)
(24)

for i = 1, 2; j �= i, which is an affine function of θ̂.

Let us next determine θ̂. For τi ∈ {−1, 1}, we have τ1τ2 = 1 if τ1 = τ2 and τ1τ2 = −1

otherwise. Since Pr(τ1 = τ2) = (1 + ρ)/2, it follows that for τ ∈ {−1, 1}2, we have

Pr(τ ) = (1 + ρτ1τ2)/4. Moreover, since Pr(si = τi) = (1 + k)/2 and since the conditional

distributions si|τi are independent, it follows that for any (τ, s) ∈ {−1, 1}4, the probability

of s conditional on τ is given by Pr(s|τ ) = (1 + ks1τ1)(1 + ks2τ2)/4. The unconditional

probability of s ∈ {−1, 1}2 is then given by Pr(s) =
∑

τ∈{−1,1}2 Pr(s|τ ) Pr(τ ), which

simplifies to (1 + k2ρs1s2)/4. The expected value of τ conditional on s is therefore given

by

E(τ |s) =
∑

τ∈{−1,1}2

τ
Pr(s|τ ) Pr(τ )

Pr(s)
,

which reduces to

E(τi|s) =
k(si + ρsj)

1 + k2ρs1s2

for i = 1, 2 and j �= i. We therefore have

θ̂i(s) =

[
1 + t

k(si + ρsj)

1 + k2ρs1s2

]
θ̄ for i = 1, 2 and j �= i. (25)

In particular, for k = 0 we have θ̂i = θ̄, whereas for k = 1, θ̂i = θi irrespective of ρ and

sj, which follows because si ∈ {−1, 1}.
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As in the one-task model, what remains is to substitute (24) and (25) into the prin-

cipal’s profit function and take expectations over all joint realizations of τ and s. The

principal’s expected profit conditional on (θ, s) is

π = Y (θ, s) − w(θ, s)

= Y (θ, s) − β(a1(s) + a2(s)) − γ
[
e

2
+ (1 − e)Y (θ, s)

]
= [1 − γ(1 − e)]Y (θ, s) − β(a1(s) + a2(s)) − γe

2
. (26)

To obtain the expected value of (26) over (θ, s), we need to evaluate the expected values

of a1(s) + a2(s) and Y (θ, s). First, notice from (24) that

a1 + a2 =
1

2d
{2β + (1 − e)[θ̂1(s) + θ̂2(s)]γ},

where the expected value of θ̂1(s)+ θ̂2(s) over s is 2θ̄. Hence, the expected value of a1 +a2

in (26) over s is given by
β + γ(1 − e)θ̄

d
. (27)

Next, we have

Y (θ, s) = a∗
1(s)θ1 + a∗

2(s)θ2

=
β

2d
(θ1 + θ2) +

(1 − e)γ

2d(1 − φ)

[
θ1(θ̂1 − φθ̂2) + θ2(θ̂2 − φθ̂1)

]
(28)

(arguments of θ̂i omitted). The expected value of θ1 +θ2 in the first term is 2θ̄. Obtaining

the expected value of the term in []- brackets requires evaluating the term for each of

the 16 permutations of (θ1, θ2, s1, s2) and weighting it with the corresponding probability

of the permutation, given by (1 + ks1t1)(1 + ks2t2)(1 + ρt1t2)/16. The computation is

complex, but the result is very simple, it is 2(1 − φ + k2t2η)θ̄2, with η as defined in (8).

Thus, the expected value of (28) is

θ̄β

d
+

(1 − e)γθ̄2

d(1 − φ)
(1 − φ + k2t2η) (29)

Substitute (27) and (29) into (26) to obtain the principal’s expected profit:

E(π) = [1 − γ(1 − e)]

[
θ̄β

d
+

(1 − e)γθ̄2

d(1 − φ)
(1 − φ + k2t2η)

]
− β

β + γ(1 − e)θ̄

d
− γe

2
. (30)

Differentiating (30) with respect to β and γ leads to the first-order conditions

[1 − 2(1 − e)γ]θ̄ − 2β

d
= 0 and (31)
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−e

2
+

(1 − e)θ̄
{
[1 − 2(1 − e)γ](1 − φ + k2t2η)θ̄ − 2(1 − φ)β

}
d(1 − φ)

= 0 (32)

The solution of (31) and (32) for β and γ is stated in the proposition. Since

∂2E(π)

∂β2
= −2

d
< 0,

∂2E(π)

∂γ2
= −2(1 − e)2(1 − φ + k2t2η)θ̄2

d(1 − φ)
< 0, and

∂2E(π)

∂β2

∂2E(π)

∂γ2
−
(

∂2E(π)

∂β∂γ

)2

=
4(1 − e)2ηk2t2θ̄2

d2(1 − φ)
> 0,

E(π) is strictly concave in β and γ and so the solution of (31) and (32) is indeed a

maximum. What remains to be shown is that under (A1)-(A3), the interior solution

obtained here is indeed valid. Three conditions must be satisfied:

1. The expression for γ∗ in (9) must be positive; otherwise we obtain a corner solution

with γ∗ = 0. It is straightforward to verify that this condition is equivalent to (A1).

2. The agent’s effort must be positive for each realization of s for (24) to be valid.

There are two candidates for the lowest value of a1(s), namely a1(−1, 1) and a1(−1,−1).

Using (24) and (25), the sign of the difference a1(−1,−1)−a1(−1, 1) can be computed as

φ(1 − k2ρ2) − ρ(1 − k2). (33)

If (33) is negative, the smallest value of a1 is given by

a1(−1,−1) =
(1 + k2ρ)β + (1 − e)γθ̄[(1 − k)(1 − kρ) + k(1 − t)(1 + ρ)]

2d(1 + k2ρ)
,

which is always positive. If (33) is positive, the smallest value of a1 is given by a1(−1, 1).

Using (24) and substituting for θ̂ from (25) and for β and γ from (9), one can verify that

the condition for a1(−1, 1) to be positive is given by (A2).

3. Finally, θ1a1 + θ2a2 must not exceed 1. The largest value of θ1a1 + θ2a2 is attained

when τ = s = (1, 1), and using (24) and (25) leads to

Y ((1, 1), (1, 1)) =
(1 + t)θ̄

d

{
β + (1 − e)

[1 + k2ρ + (1 + ρ)kt]θ̄γ

1 + k2ρ

}
,

which is less than 1 as long as

d(1 + k2ρ) > (1 + t)θ̄[(1 + k2ρ)β + (1 − e)(1 + k2ρ + (1 + ρ)kt)θ̄γ). (34)

Substituting for β and γ in (34) from (9), and using (8), leads to condition (A3).

Proof of Proposition 4: 1. Substituting (11) into E[Y ] = a1θ1 + a2θ2, the expected

output is given by
1

2d(1 − φ)

[
θ1(θ̂1 − φθ̂2) + θ2(θ̂2 − φθ̂1)

]
. (35)
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The term in square brackets in (35) is the same as the one in (28), whose expected value

over θ and s was already determined as 2(1 − φ + k2t2η)θ̄2 in the proof of Proposition 3.

Next, using (11), into the agent’s disutility d
1+φ

(a2
1+a2

2+2φa1a2) as a function of first-best

effort is given by
θ̄2

4d(1 − φ)

[
θ̂2
1 + θ̂2

2 − 2φθ̂1θ̂2

]
. (36)

Now, the difference between the terms in square brackets in (35) and (36) is

θ̂1(θ̂1 − θ1) + θ̂2(θ̂2 − θ2) − φθ̂1(θ̂2 − θ2) − φ(θ̂1 − θ1),

the expected value of which over θ and s is zero, since the expected value of each term

θ̂i(θ̂j − θj) with i, j ∈ {1, 2} can be shown to be zero. It follows that the expected value

of the term in square brackets in (36) is again 2(1 − φ + k2t2η)θ̄2. Collecting terms, the

expected total surplus is θ̄2

2d(1−φ)
(1 − φ + k2t2η). Finally, the social value of knowledge is

the difference between this expression for the actual k and for k = 0, which is v as stated

in the proposition.

2. Since η depends only on k, ρ and φ, v is obviously increasing in θ̄ and t, decreasing

in d, and independent of e. Next, v is increasing in k if and only if k2η is increasing in k.

That is the case, since substituting from (8) one can compute

∂(k2η)

∂k
=

2k [(1 − ρ)2(1 + k2ρ)2 + 2ρ(1 − φ)(1 − k2)(1 − k2ρ2)]

(1 − k4ρ2)2
> 0.

Next, v decreasing in ρ if and only if η is decreasing in ρ. The derivative of η with respect

to ρ is

−k2φ(1 − ρ2)(1 − k4ρ2) + 2(1 − k2)[φ(1 − k2ρ2) − ρ(1 − k2)]

(1 − k4ρ2)2
,

which is negative if the numerator (i.e. the expression in (13)), is positive. The l.h.s. of

(13) equals φ(2 − k2) > 0 for ρ = 0, equals −2(1 − φ)(1 − k2)2 < 0 for ρ = 1, and its

derivative of the l.h.s. of (13) with respect to ρ is

−2[(1 − k2)2 + φρk2(3 − 2k2 + k4(1 − 2ρ2))],

which is always negative. This establishes the existence of critical value ρ̃ ∈ (0, 1) such that

(13) holds for all ρ ≤ ρ̃. To establish the sufficient condition mentioned the proposition,

notice that a1(1,−1) > a1(1, 1) holds if and only if (33) is positive. Subtracting 2(1− k2)

times (33) from (13) yields k2φ(1 − ρ2)(1 − k4ρ2), which is positive. This means that

whenever a1(1,−1) > a1(1, 1), (13) also holds, implying that v is decreasing in ρ.

Finally, v is increasing in φ if and only if η/(1−φ) is increasing in ρ. This is the case,

since (using (8)) the derivative of η/(1−φ) with respect to ρ is (1−ρ)2/[(1−φ)2(1−k2ρ)].
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Proof of Proposition 5: Parts (a) and (b): for k, θ, t, d, φ and ρ the results follow

immediately from Proposition 4 and (14). The positive effect of e on β∗ follows from

inspection of (9). The derivative of γ∗ with respect to e is

1

2(1 − e)2
− d(1 + e)(1 − φ)

4(1 − e)3k2t2ηθ̄2
,

which is negative if and only if

d(1 + e)(1 − φ) − 2(1 − e)k2t2ηθ̄2 > 0. (37)

Next, use (7) and (29) to obtain the (ex-ante) expected value of y as function of β and γ:

E(y) =
e

2
+ (1 − e)

{
θ̄β

d
+

(1 − e)γθ̄2

d(1 − φ)
(1 − φ + k2t2η)

}
. (38)

The derivative of E(y), evaluated at β∗ and γ∗ has the same sign as

d(1 − φ)[e(1 − φ) + 2ηk2t2] − 4(1 − e)k2t2η(1 − φ + k2t2η)θ̄2. (39)

The difference 2(1 − φ + k2t2η) times (37) minus (39) is

d(1 − φ)[2(1 − φ) + e(1 − φ + 2k2t2η)] > 0,

which means that γ∗ is decreasing in e whenever E(y) is increasing in e, proving part (a)

for e.

Part (c): Except for d and e, the profit (15) depends on the model’s parameters only

through v; we can ignore any effects on β∗ or γ∗ because of the envelope theorem. The

derivative of (15) with respect to v is positive since (1 − e)γ∗ < 1. The results for k,

θ, t, φ and ρ then follow from Proposition 4 and (15). For d, we first have that v is

decreasing in d. Moreover, the partial derivative of (15) with respect to d has the same

sign as −[θ̄ − β∗ − (1 − e)γ∗θ̄], which upon substituting for β∗ and γ∗ from (9) reduces

to −θ̄/2. Hence both the direct and the indirect (through v) effect of d on the profit are

negative. For e, differentiate (30) with respect to e and plug in β∗ and γ∗, to obtain an

expression that is negative if and only if (A1) holds.
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Figure 1: Illustration of production, informational assumptions and performance mea-

surement for a standard single-task agency model (panel a) and the scenario considered

in this paper (panel b).
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