
SPECIFICATION AND IMPLEMENTATION OF A BELIEF-DESIRE-
JOINT-INTENTION ARCHITECTURE FOR COLLABORATIVE

PROBLEM SOLVING

NICK R. JENNINGS

Department of Electronic Engineering, Queen Mary and Westfield College, University of London, Mile
End Road, London E1 4NS, UK.

N.R.Jennings@qmw.ac.uk

ABSTRACT

Systems composed of multiple interacting problem solvers are becoming increasingly pervasive and have
been championed in some quarters as the basis of the next generation of intelligent information systems.
If this technology is to fulfill its true potential then it is important that the systems which are developed
have a sound theoretical grounding. One aspect of this foundation, namely the model of collaborative
problem solving, is examined in this paper. A synergistic review of existing models of cooperation is
presented, their weaknesses are highlighted and a new model (called joint responsibility) is introduced.
Joint responsibility is then used to specify a novel high-level agent architecture for cooperative problem
solving in which the mentalistic notions of belief, desire, intention and joint intention play a central role
in guiding an individual’s and the group’s problem solving behaviour. An implementation of this high-
level architecture is then discussed and its utility is illustrated for the real-world domain of electricity
transportation management.

Keywords: Distributed Artificial Intelligence, Multi-Agent Systems, BDI Architecture, Joint Intentions,
Intentionality, Rational Problem Solvers.

1. Introduction

Systems composed of multiple problem solving entities, interacting with one another to
enhance their performance, are becoming an increasingly popular means of
conceptualising a diverse range of applications. This trend towards decentralised and
cooperative problem solving occurs as a consequence of the desire to: increase the level of
information integration across organisations [1, 2]; overcome the inherent limitations on
intelligence present in any finite artificial system [3, 4]; develop increasingly complex
software systems [5, 6] and provide a more natural representation of the problem being
tackled [7, 8, 9, 10].

In Distributed Artificial Intelligence (DAI) systems, agents are grouped together to form
communities which cooperate to achieve the goals of the individuals and of the system as
a whole. Agents are usually capable of a range of useful problem solving activities, have
their own aims and objectives and can communicate with others. The ability to solve some
problems alone (coarse granularity) distinguishes components of DAI systems from those
of connectionist or neural systems in which individual nodes have very simple states and

only by combining many thousands of them can problem solving expertise be recognised.

Agents in a community usually have problem solving expertise which is related, but
distinct, and which frequently has to be combined to solve problems. Such joint work is
needed because of the dependencies between agents’ actions, the necessity of meeting
global constraints and because of the fact that often no one individual has sufficient
competence to solve the entire problem alone. There are two main causes of such
interdependence (adapted from [11]). Firstly, problem partitioning may yield components
which cannot be solved in isolation. In speech recognition, for example, it is possible to
segment an utterance and work on each component in isolation, but the amount of progress
which can be made on each segment is limited. Allowing the sharing of hypotheses is a far
more effective approach [12]. Secondly, even if subproblems are solvable in isolation, it
may be impossible to synthesize their results because the solutions are incompatible or
because they violate global constraints. For instance when constructing a house, many
subproblems are highly interdependent (eg determining the size and location of rooms,
wiring, plumbing, etc.). Each is solvable independently, but conflicts which arise when the
solutions are collected are likely to be so severe that no amount of work can make them
compatible. It is also unlikely that global constraints (eg total cost less than £250,000)
would be satisfied. In such cases, compatible solutions can only be developed by having
interaction and agreements between the agents during problem solving.

An important feature of any DAI system is the model of collaboration which is used to
guide the society’s behaviour. This model can be used at many different levels: to offer a
behaviouristic explanation of problem solving communities, to prescribe the mental state
of the collaborating agents, to define agents’ actions, to help structure the knowledge
elicitation process and so on. This work concentrates predominantly on the mental state and
associated action perspectives, although the impact of these choices are also explored as a
means of structuring the elicitation process.

A comprehensive model of collaboration should specify: (i) under what circumstances
a social action should be initiated; (ii) what conditions need to be established before
cooperation can proceed; (iii) how the individual agents should behave when carrying out
their local activities related to the joint action; (iv) how (when) agents should interact with
their fellow team members; and (v) when the joint action should terminate. As agents are
often situated in evolving and unpredictable environments, and also because they have to
take decisions using partial and imprecise information, it is important that the model
specifies how to behave in exceptional as well as nominal situations [13]. In particular the
model should specify how joint actions may become unstuck, how any problems in the
collaboration can be repaired and how agents should respond to these problems both in their
local activities and with respect to their acquaintances. In addition, the model should also
have a clear path to implementation level systems.

At present there is a large chasm between the theoretical work which examines and
specifies various models of collaboration and the implemented multi-agent systems which
often use ad hoc models for social interaction. This paper seeks to bridge this gap;
synthesizing and extending the salient characteristics of several theoretical models into a

unifying structure called joint responsibility (section two), proposing a high level agent
architecture based upon the responsibility model (section three) and discussing one
realisation of this architecture in a general purpose cooperation framework called GRATE*
(section four). To highlight the utility and applicability of the model, the description of
GRATE* is couched in terms of the real-world application of electricity transportation
management [14]. Finally relationships to existing research are explored (section five) and
the seemingly clear demarcation between intentional and reactive systems is questioned
(section six).

2. Intentions and Joint Intentions

2.1 Role of Individual Intentions

Intentions are one of the most popular means of describing the behaviour of rational
problem solvers [15, 16, 17, 18, 19, 20]. They account for three important facets of an
agent’s practical reasoning process [21]. Firstly as agents are resource bounded, they
cannot continually weigh their competing desires and their associated beliefs in deciding
what to do next. At some point, the agent must just settle on one state of affairs for which
to aim, thus creating a commitment to that objective. Secondly intentions are needed to
plan future actions. Once a future action has been decided upon (intended), the agent must
make subsequent decisions within the context that it will perform the said action at the
specified time. Finally, intentions pose problems for means-end analysis as agents often
commit themselves to activities whose exact means of achievement has still to be decided
upon.

From this description of the role of intentions, two important properties can be derived.
Firstly, intentions should be both internally consistent and consistent with the agent’s
beliefs. The former means that an agent’s intentions should not conflict with one another;
the latter that if an agent’s intended actions are executed in a world in which its beliefs are
true, the desired state of affairs should ensue [16]. Secondly intentions should have a
degree of stability. If intentions were constantly reconsidered and abandoned they would
be of little use either in coordinating activity or in helping to deal with resource
limitations. However intentions should not be irrevocable because circumstances may
change and it is not always possible to correctly predict the future. These desiderata mean
that general policies (conventions [22]) for governing the reconsideration of intentions are
needed and also that agents need to monitor the achievement of their intentions. Such
tracking is necessary because agents care whether their attempts succeed; failure using
one approach means they may replan and try another.

2.2 Limitations of Individual Intention Approaches

Intentions meet some of the desiderata for a model of collaborative problem solving
which were specified in section one. They define an individual’s local behaviour when
everything is progressing satisfactorily (i.e. honour commitments) and, through the
definition of conventions, offer some insight into the types of difficulties which may arise
during problem solving (eg that the objective is already satisfied, that the objective will

never be satisfied or that the motivation is no longer valid [16]).

However intentions only define individual behaviour and, as such, are an insufficiently
rich base on which to build a principled representation of collaboration. Social acts need
representations which address higher order units of analysis (i.e. groups and teams). There
are two main limitations with the individualistic approach. Firstly, joint action is more
than just the sum of individual actions, even if the actions happen to be coordinated. For
example it would be somewhat unrealistic to claim that there is any real teamwork
involved in ordinary automobile traffic, even though the drivers act simultaneously and
are coordinated by traffic signs and rules of the road [23]. To represent the “something
else” part, formalisms and structures specifically related to collaborative activity are
needed.

Secondly there is a fundamental difference between individuals and groups. This can
be most strikingly illustrated by considering the notion of commitment. Group
commitment cannot simply be a version of individual commitment where a team is taken
to be the agent because members of teams may diverge in their beliefs whereas an
individual cannot [24]. If an individual comes to believe that a particular goal is
impossible, then it is rational for it to give it up. Similarly when the team’s overall
objective is impossible, the team must stop. In the former case the individual can drop the
goal because it knows enough to do so. However in the latter case the whole team may not
know enough to do so. For example, consider a situation in which a group of agents are
attempting to lift a table and one of them observes that it is nailed to the floor - meaning
the overall objective cannot be attained. However this observant agent cannot reasonably
assume that all the other team members have been able to make this observation and the
corresponding deduction. Hence although not every member believes that the goal is
achievable, the whole team does not yet believe that the goal is unachievable.

2.3 Joint Intentions

To overcome the limitations of individual intentions, researchers started investigating
joint intentions [23, 24, 25, 26, 27, 28, 29, 30] - indeed it has been argued that the basic
premises of commitments and conventions which are central to the joint intention work
are the basis of all coordination mechanisms [22]. Joint intentions can be intuitively
defined as a joint commitment to perform a collective action while in a certain shared
mental state [24]. This means collaboration is not an intrinsic property of the actions
themselves, rather it is dependent on the mental state of the participants. Thus two groups
of agents could be performing exactly the same actions - one could be acting
collaboratively, if they share the necessary mental state, the other not. Previous work has
addressed various aspects of this shared mental state; although no individual formulation
is anything like complete. A comprehensive review of these extant models highlighted the
list of important features given below [22]; agents must:

• agree on a common goal [24, 25, 26, 27, 28, 30]

• agree they wish to collaborate to achieve their shared aim [24, 25, 28, 30]

• agree a common means (plan) of reaching their objective [25, 26]

• acknowledge that actions performed by different agents are related [25, 26, 29]

• have criteria for tracking the rationality of their commitments [24, 25]

• have behavioural rules which define how to behave locally and towards others both
when joint action is progressing as planned and when it runs into difficulty [24, 25]

Almost all of the formulations state that joint action requires an objective the group
wishes to achieve and a recognition that they wish to achieve it in a collaborative manner.
This recognition may be through necessity (no individual is capable of solving the
problem alone) or through belief that the best means of tackling the problem is to
collaborate with others. The shared objective provides the glue to bind individuals’ actions
into a cohesive whole and the fact that it should be pursued collaboratively allows it to be
distinguished from the situation in which a collection of agents independently have a goal
which just happens to be the same. This distinction is important because the two
relationships imply different consequences in social interaction; the latter results in
cooperation and coordination whereas the former gives rise to competition if resources are
scarce. Individuals may be recruited into the group simply by making a request if agents
are benevolent towards one another or may involve persuasion and negotiation if they are
more autonomous in nature. Once a common goal has been agreed, the group becomes
committed to achieving it in a collaborative manner.

Many accounts fail to acknowledge that existence of a common aim is not sufficient to
guarantee that cooperative problem solving will ensue. Consider, for example, a country in
which both the government and its national bank have the objective of lowering inflation,
that they wish to achieve this by operating in a coordinated fashion and that they are both
mutually aware of this fact (i.e. they have a joint goal). Unless both parties are also
capable of agreeing upon a common means for achieving their objective, there will never
be joint action despite the fact that there is a joint goal. The common solution provides a
context for the performance of actions in much the same way as the shared aim guides the
objectives of the individuals. At every stage there must be a commonly agreed (partial)
solution which the agents are working undera. Explicitly including such a notion in the
definition places an additional functional role on joint intentions; namely that they will
drive the participants’ actions and behaviour towards agreement of a common solution.

This stipulation does not imply that the common solution must be developed before
joint action can commence nor that it cannot evolve over time. Rather it reflects the fact
that team members must believe that eventually they will be able to agree upon, and work
under, a common solution with respect to their shared objective. Agents must be
convinced that the group is capable of reaching an agreement and that if all goes well this
solution will be adhered to and the desired objective will ensue as a consequence of the
actions taken. At any instant in time the common solution is likely to be partial. It may be
temporally partial in that the exact ordering between some plan elements may not be

a As shown later, if an agent becomes uncommitted to the solution then this may no longer be the case; however
this situation will be ignored for the present.

specified because it does not affect the plan [18]. It can also be structurally partial
reflecting the fact that agents frequently decide upon objectives they wish to achieve,
leaving open for later deliberation questions about the means.

Developing or refining the common solution is a complex activity, possibly involving
persuasion and the resolution of conflicts. Participating agents need to augment their
individual intentions to comply with those of others because actions performed by
different agents are intertwined and therefore need to be synchronised. There are several
paradigms which may be used to generate the common plan [7, 31, 32, 33] - it may be
undertaken before any action has been started or interleaved with execution, it may be
carried out by one agent or in a collaborative fashion.

Assessment criteria and the concomitant causal link to behaviour are especially
important when agents are situated in changing and complex environments. In such
circumstances it is difficult to ensure that a group’s behaviour remains coordinated
because initial assumptions and subsequent deductions may be incorrect or inappropriate.
Therefore a comprehensive model of collaboration must provide a grounded basis from
which robust problem solving communities can be constructed. Robustness is also a prime
consideration when agents decide they will work together because they believe a team
approach is the best means of solving the problem (contrast this with situations in which
agents have to work together to solve a problem). In this case it is especially important that
the benefits of collaboration outweigh the overhead associated with coordination
activities. One way in which this can be achieved, and hence one of the advantages of
team problem solving, is to ensure that the group as a whole is more robust against failures
and unanticipated events than any of its individual constituents.

Cohen and Levesque’s work on joint intentions [23, 24] makes an initial stab at
defining criteria for tracking the rationality of commitments and of prescribing how to
behave both locally and towards others. They state that each team member should remain
committed to the common aim until it believes that one of the following is true: the
group’s objective is satisfied, the objective will never be satisfied or that the objective is
not relevant because the original motivation is no longer present. Until one of these
conditions prevail, agents have a normal achievement goal to bring about the group’s
objective. This ensures they will strive to ensure the common aim is fulfilled.

Joint responsibility [25, 34] extends these ideas to include plan states. Responsibility
specifies that each individual should remain committed to achieving the common
objective by the commonly agreed solution (individual solution commitment) until one of
the following becomes true: the desired outcome of a plan step is already available,
following the agreed action sequence does not achieve the desired consequence, one of the
specified actions cannot be carried out or one of the agreed actions has not been carried
out. Whilst in this state the agent will honour its commitments to its agreed actions.

An agent cannot simply abandon a joint action once it is no longer committed to the
shared objective or to the agreed means of attaining it because its accomplices may not
have been able to detect that there is a problem (recall the collaborative table lift example

of section 2.2). As they are still committed, they will continue to honour their
commitments and carry out the processing associated with the joint action. If one of the
team members believes that this processing is inappropriate, because it knows that it is no
longer rational to be committed to the common objective or the means of attaining it, then
it must disseminate this information as widely as possible. For this reason the
responsibility model stipulates that when a team member is no longer jointly committed to
the joint action it must endeavour to ensure that all of its acquaintances mutually believeb

that it is no longer committed and the reason for this change of state. This enables the team
to reassess the viability of the joint action and in particular the actions involving the agent
which is no longer committed. So if the joint action needs to be abandoned or refined, the
amount of wasted resource in the community is kept to a minimum because futile
activities are stopped at the earliest possible opportunity.

An important reason for distinguishing between goal and plan states becomes evident
by examining what happens after the two different types of commitment failure. In the
former case, the group’s action with respect to the particular goal is over. If the goal is
achieved, the group has satisfactorily completed its objective; if the motivation is no
longer present or the objective will never be attained, there is no point in continuing.
However if the group becomes uncommitted to the common solution there may still be
useful processing to be carried out. For instance if the plan is deemed invalid, the agents
may try a different sequence of actions which produce the same result. Similarly if the
plan is violated, agents could reschedule their activities and carry on with the same plan.
Thus dropping commitment to the common solution plays a different functional role to
that of dropping a goal. By highlighting these two distinct roles, a clearer guidance is
given to the system designer in terms of the functionality to be supported and when it is
likely to be invoked.

3. A Belief-Desire-Joint-Intention Architecture for Collaborative Problem Solving

Joint responsibility defines the role that joint and individual intentions play in the
collaborative problem solving process. They are used both to coordinate actions (future-
directed intentions [15]) and to control the execution of current ones (present-directed
intentions [15]). Examination of the formal definition of responsibility [34] also reveals
that agents need to possess other mentalistic notions - particularly prominent are beliefs
(information the agent believes to be true of itself, its acquaintances and its external
environment) and desires (what the agent wants to achieve). Architectures in which such
mental states play a central role are grouped under the generic term of Belief-Desire-
Intention (BDI) architectures [36]. Previous BDI proposals are reviewed in section five.

From the mental state description of joint responsibility it is possible to identify the
associated computational processing components of a high-level agent architecture.
Section 3.1 concentrates on the role of future directed intentions in coordinating group
problem solving activity, whilst section 3.2 deals with the way in which intentions can be

b Mutual belief is the infinite conjunction of beliefs about other agents’ beliefs about other agents’ beliefs and so
on to any depth about some proposition [35]

used to monitor and control task execution. These descriptions are at a suitably high level
of abstraction to ensure there is significant leeway in how the concepts will be realised.
This is in the spirit of other knowledge level descriptions in which knowledge is
characterised entirely functionally, in terms of what it does, not structurally in terms of
physical objects with particular properties and relations [37]. Therefore the architecture
does not specify how intentions are represented, how commitment is described, what
mechanisms are used to obtain agreements nor how to develop the common solution.

3.1 Coordinating Actions

As figure 1 illustrates, an agent has to be aware of two sources of events; those which
occur locally (eg as a result of local problem solving or of changes in the environment
which the agent knowingly causes) and those which occur elsewhere in the community.
The latter may be detected directly, through receipt of a message, or indirectly through
perception or deduction. With respect to future directed intentions, the monitor-event
process has to identify when potential new objectives are raised - the same process also
plays a part in the present directed role of intentions (see section 3.2). For instance an
agent may realise there is a fault in the network and that it ought to start a diagnosis
process or it may deduce that the cause of a fault has been located and restoration
activities should commence.

In order to describe the operation of this architecture, assume an event which signifies
the potential need for fresh activity has indeed been detected by the monitor event process.
This new objective serves as input to the means-end reasoning process and the agent must
determine whether it should be met and, if it should, how best to realise it. This reasoning
process involves more than simply starting fresh activity for each new objective which is
deemed sufficiently desirable. For instance the agent may already have an active intention
which is capable of satisfying the new objective, in which case the means-end analysis
should conclude that this activity should be utilised.

When deciding whether to adopt a new objective, the agent must consider its library of
recipesc and its current intentions. The recipe library constrains the courses of action
which are available and also the type of activity required to carry them out. It indicates
whether the objective can be satisfied locally (i.e. there is a recipe whose actions can all be
performed locally), whether it necessitates social activity (i.e. there is no local recipe
which achieves the desired objective) or whether a choice between the two alternatives is
required (i.e. there is both a local recipe and one involving other agents). Existing
intentions must be taken into consideration because they reflect activities the agent has
already indicated that it will perform and therefore to which it must devote resources.
Thus if an agent is already committed to several important and time consuming tasks, it is
irrational for it to take on fresh activity which is relatively unimportant or which could be
performed elsewhere in the community. The output of the means-end reasoning is either a
decision not to pursue the objective at all, to pursue it locally or to pursue it in a
collaborative fashion.

c Recipes are sequences of actions known by an agent for fulfilling a particular objective [18].

Monitor
Events

Means-End
Analysis

Define
Individual Acts

Identify potential
participants

Compatibility
Checker

Inconsistency
Resolver

Recipe
Library

Desires

Community EventsLocal Events

New Objective

New Local
Objective New Social Act

Consistent New
Intention

In
co

ns
is

te
nt

 I
nt

en
tio

n

Modified
Intentions

Joint
Intentions

Capabilities
 of others

Coherency
Checker

Intentions

Fig. 1. Functional Agent Architecture - Future directed intentions

Data StoreProcess Note: The belief data store is not
represented explicitly, but it provides
input to each of the processes and is
modified by the event monitoring task

Key

Input Data Control

If the agent decides to pursue the objective locally, it must ensure this new intention is
compatible with its existing ones. Compatibility means that it does not conflict with
anything that the agent has already committed itself to. For example for an agent capable
of working on one task at a time, the decision to perform task t1 from time 6 to time 11 is
inconsistent with an intention to perform task t2 from time 9 to time 14. In addition to
time, consistency can be defined with respect to any scarce or non-shareable resource such
as communication bandwidth, environmental state or physical space. If there are no
inconsistencies, the new objective is added to the list of individual intentions and the agent
commits itself to performing it.

If the new objective conflicts with existing intentions, the inconsistency must be
resolved; either by modifying the existing commitments or by altering the new objective
so that it is no longer in conflict. An important consideration in such situations is the
agent’s desires. If the new task is less important (desirable) than existing ones, then it is
the one which should be modified; conversely if it is more desirable then it is the existing
one which should be adapted. Alteration may vary from delaying an intention until the
competing one is finished, to deciding that it cannot be accommodated in its present form.
In many cases, the outcome of the conflict resolution process will require a further round
of means-end analysis to be undertaken to resolve any remaining discrepancies. Any
modifications made by the resolution mechanisms to existing intentions have to be
reflected in the intention representation.

The other outcome of the initial means-end reasoning process may be that the agent
decides the new objective is best met collaboratively. In this case a social action must be
established. The first phase is to identify those agents in the community who are
potentially interested in being involved. The means by which this is achieved is not
specified at this level. So one agent may dictate to the others that they should participate
(i.e. a hierarchically controlled system) or there may be a negotiation phase if agents are
more autonomous. The process of establishing the social action will be guided by several
factors; including defining the intended organisation of the group (will it be flat or
hierarchical? will the solution be decided by one agent or a group of them?), the strategy
for group formation (eg large or small groups?) and the known capabilities of other
community members. Once the potential members have been identified a skeletal joint
intention exists in which potential participants have registered their interest but no firm
selection of either the final team or the common solution has been made.

Joint intentions cannot be executed directly, their role is to serve as an overarching
description and problem solving context which binds the actions of multiple agents
together. It is the group members who have the ability to act and hence only individual
intentions are directly related to problem solving actions. However there is a causal link in
that each team member would be expected to adopt at least one individual intention as a
consequence of its participation in a joint action. Also there must be a coherency between
the two representations. So, for example, if an individual has an intention to perform task
t1 from times 6 to 9, this must be consistent with any of the related actions in the joint
intention. Consistency between individual and joint intentions is ensured by the coherency
checker which is invoked every time a new individual or joint action proposal is made. Its

aim is to ensure that there are no conflicts between an agent’s local and social perspectives
and that the agent is in a position to honour all its commitments.

The outline proposal for team members and common recipes must then be finalised.
Decisions about the mapping between the actions to be carried out and the individuals
within the group who can undertake them must be made. This process is guided by factors
such as strategy, desired organisation and known capabilities as discussed previously. The
specification of individual acts may be done in an incremental fashion or all in one go.
Again these options are left open, allowing the designer to tailor them to best fit the
particular circumstances. The output of this process is passed onto each member of the
group and ultimately requires them to perform local means-end reasoning to fit the
primitive actions in with their existing commitments whilst satisfying the relationships
with their associated actions. Any inconsistencies which arise during this process must be
detected by the consistency checker and may require the mapping from joint to individual
intentions to be re-examined.

3.2 Monitoring and Executing Actions

As well as providing a means for coordinating actions, intentions also act as a guide for
task execution and monitoring. In this present directed role, the responsibility model
specifies that a group of agents α1... αn collaborating to achieve a joint goal σ using a
common solution Σ should behave in the following manner:

This behavioural description can be expanded to give a more detailed functional
architecture for the present directed role of joint intentions (figure 3). This architecture

Fig. 2. Joint Action Monitoring and Execution According to the Responsibility Model

JOINT-RESPONSIBILITY({α1... αn}, σ, Σ) ≡
FORALL αi ε { α1... αn}

WHILE Normal-Achievement-Goal(αi, σ) AND Individual-Solution-Commitment(αi, σ, Σ) DO

PARALLEL

Honour commitments

Monitor rationality of commitment to σ
Monitor rationality of commitment to Σ

END-PARALLEL

Suspend processing of local activities related to Σ
CASE Reason for non commitment OF

NOT Normal-Achievement-Goal(αi, σ): Abandon commitments to σ and subsequent actions in Σ
NOT Individual-Solution-Commitment(αi, σ, Σ): IF remedial action available

THEN select possible remedies

ELSE seek assistance

END-CASE

Inform other team members of lack of commitment, reason for commitment failure and remedial
action if it exists

embodies the fact that intentions are used to control the execution of actions and also the
fact that commitments must be continually monitored to ensure they are still rational.

With respect to executing actions, it is the responsibility of the control-tasks process to
ensure commitments are honoured. So if an agent commits itself to start task t1 at time 10,
when time 10 arrives, t1 must actually be started. This process may also suspend or abort
tasks to ensure commitments are kept. Control-tasks must be kept informed when related
actions have been performed, either locally or by other community members, so that its
actions can be synchronised and any relationships upheld.

With respect to monitoring commitments, the responsibility model provides a clear
separation between identification of the reasons why a joint action ought to be modified or
terminated and the choice of actions which should be taken in such circumstances. The
“reasons for modification” component provides a domain-independent characterisation of
collaborative problem solving; defining conditions under which joint actions should be
terminated or re-examined based on the responsibility model (eg objective has been
satisfied, goal motivation no longer present, plan invalid, etc.). These criteria can be
explicitly modelled and enable the agent’s tracking and subsequent recovery to be based on
a firm theoretical grounding.

Joint
Intentions

Match

Select

Control Tasks

Associated
Action

Reasons for
modification

Local Problem Solving
Community

Inform Others
of changes

Local

Modifications

Intentions
to modify

Fig. 3. Functional Agent Architecture - Present Directed Intentions

Monitor
Events

Intentions

Related Acts

Once the match process has identified joint intentions which need to be re-examined, the
agent must decide which remedial actions, if any, should be taken. Such actions may
include rescheduling the plan, entering a replanning phase or abandoning the joint action
completely. The “associated action” model describes appropriate activities for whole
classes of events. For example when an agent drops its commitment to the commonly
agreed solution, it must stop processing any of its associated local actions, inform others
that it is no longer committed and then enter a replanning phase. There may be many
different types of event which cause commitment to the common solution to be dropped,
but using the responsibility model they can be grouped together since they require the agent
to respond in a similar manner. If commitment to the overall goal is dropped, the agent must
again stop all its associated current and planned actions and ensure that the other team
members are informed immediately.

4. GRATE*: Realising the Belief-Desire-Joint-Intention Architecture

The functional architectures of the previous section define the computational processes
necessary to support the responsibility model. As with all high-level architecture
proposals there are a number of potential realisations of which GRATE* is but one. This
section describes GRATE*’s implementation architecture (§ 4.1) and deals with the
mappings with the schemes of figures one (§ 4.2) and three (§ 4.3). Then the
implementation of the consistency checking component is dealt with (§ 4.4).

4.1 Implementation Architecture

GRATE* agents have two clearly identifiable components - a cooperation and control
layer and a domain level system (see figure 4). The latter solves problems for the
organisation; be it in the domain of industrial control, finance or transportation. Problems
are expressed as tasks - atomic units of processing when viewed from the cooperation layer.
The cooperation layer is a meta-level controller which operates on the domain level system.
Its objective is to ensure that the agent’s domain level activities are coordinated with those
of others within the community. It decides which tasks should be performed locally,
determines when social activity is appropriate, receives requests for cooperation from other
community members and so on.

The cooperation layer has three main problem solving modules. Each module is
implemented as a separate forward-chaining production system with its own inference
engine and local working memory. Communication between the modules is via message
passing. The rules built into each problem solving module are generic and have been used
to control cooperative activity in a broad class of industrial applications [14, 38, 39, 40].
The control module is the interface to the domain level system and is responsible for
managing all interactions with it. The situation assessment module makes decisions which
affect both of the other two modules. It decides which activities should be performed
locally and which should be delegated, which requests for cooperation should be honoured,
how requests should be realised, what actions should be taken as a result of freshly arriving
information and so on. It issues instructions to, and receives feedback from, the other
modules. Typical requests to the cooperation module include “get information X” and “get

task Y executed by an acquaintance”. Requests to the control module are of the form “stop
task T1” and “start task T2”. The cooperation module is responsible for managing the
agent’s social activities, the need being detected by the situation assessment module. These
activities can be divided into three distinct categories. Firstly, new social interactions have
to be established (e.g. find an agent capable of supplying a desired piece of information).
Secondly, ongoing cooperative activity must be tracked (see section 3.2). Finally
cooperative initiations from other agents must be responded to (e.g. if a request is received
for information i, then the agent must determine whether it is both capable and willing to
carry out the necessary processing to produce it).

The remaining components provide support functions. The information store is a
repository for all the data which the underlying domain level system has generated or which
has been received as a result of interaction with others. Acquaintance and self models are
representations of other agents and the local domain level system respectively. They
represent information about the state, capabilities, intentions, evaluations, etc. of the agent
being modelled [14]. The communication manager sends messages to and receives
messages from others in the community. The following key primitives were used to support
the GRATE* implementation of the responsibility model; all messages are automatically
stamped with a sender, a unique identifier and a time.

Acquaintance
Models

Self
Model

Fig. 4. GRATE* implementation architecture

SITUATION
ASSESSMENT

MODULE

COOPERATION

MODULE

Information
 Store

Task 1 Task 2 Task n

Inter-agent
communication

CONTROL MODULE

Communication Manager

Domain Level
System

INTERFACE

Cooperation &
Control Layer

• (PROPOSE-GROUP <name> <motive> <potential-participants>
<importance> <expected-outcome>)

Sent by the agent which detects the need for collaborative problem solving to
acquaintances it believes will be interested in being involved. Indicates the name
of the joint action, why it is proposed to carry out the action, other agents who are
being contacted, a measure of the action’s importance and the results which can
be expected. Recipients respond by registering their interest or stating that they
do not wish to be involved.

• (CONTRIBUTION-PROPOSAL <name> <action> <time> <context>)

This message is sent once the individual actions and the agents who will execute
them have been decided upon. It informs each agent of the actions it has been
chosen to perform, the time at which they should be executed and their execution
context (relationships which must be satisfied before the action can be started).
Recipients can either accept the proposal or suggest a different (later) time which
fits in better with their existing commitments.

• (FINAL-AGREEMENT <name> <participants> <solution>)

Once all the actions have been assigned times and actors, the final agreed
solution for the joint action is sent to all the relevant participants.

• (INFORM <information>)

Used to convey information deemed relevant by the sender to the recipient.
Examples include the fact that a particular information has been produced or that
a particular task has finished executing.

• (COMMITMENT-FAILURE <name> <reason> <remedy>)

Indicates that something has gone wrong with the joint action and that the sender
is no longer committed, specifies the reason for this change of state (according to
the responsibility model definition) and gives the proposed remedy if it exists.

The following functional architecture components of figure 1 are mapped into
GRATE*’s situation assessment module: monitor events, means-end analysis,
compatibility checker, inconsistency resolver, consistency checker and defining individual
acts. The cooperation module is responsible for identifying the potential participants. An
agent’s recipe library, intentions, joint intentions and desires are stored in the self model
and the capabilities of others are stored in the acquaintance models. In terms of figure 3,
the match and select processes are present in the situation assessment module, the control
of local activities in the control module and the informing of others in the cooperation
module.

4.2 Establishing Joint Action

 To establish joint activity, one or more agents must firstly recognise the need - the
agent which does this is deemed the organiser or leader. Each social action has one
organiser and at least one team member (an acquaintance who has (tentatively) agreed to
participate). The leader’s role involves contacting all the acquaintances which it would
like to be involved in the joint action, deciding upon the common solution recipe,
assigning the actions to team members and determining when the actions will be
performed. Any community member has the potential to be an organiser and there is no
restriction on the number of joint actions which can be active at any one time.

The need to start fresh activities is detected by the organiser’s situation assessment
module. As figure 1 shows, the organiser’s first concern is to determine whether it will be
able to complete the act alone or whether it requires assistance from others. This decision
is taken by computing the number of tasks from the chosen recipe which the agent is
unable to complete by itself. There are three potential outcomes of this analysis; joint
action is definitely needed, the action can be solved entirely locally or that some assistance
is required (e.g. sharing of information and processing capabilities) but not sufficient to
warrant a full-scale joint action. The rationale for the last option is that it may not be worth
incurring the overhead associated with a distributed planning approach [13] in order to
satisfy a small number of interdependencies. In this case assistance will be asked for as
and when it is required.

Once the need for joint action has been ascertained, the responsibility model requires
the following conditions to be fulfilled before a social can commence; (i) other community
members who are willing to participate must be identified; (ii) the fact that a common
solution is required needs to be acknowledged; (iii) adherence to the responsibility
convention must be agreed; and (iv) the common solution by which the group’s objective
will be attained must be developed. Rather than having a protracted protocol in which
each precondition is agreed upon separately, a more concise version in which several
conditions are settled in a single message interchange is more appropriate for industrial
control domains. In other applications, however, it may be perfectly legitimate and
desirable to go through each phase separately. GRATE* uses a two phase protocol to
satisfy these preconditions. The first phase establishes the common recipe, the agents who
will participate and the ground rules which they must adhere to; the second phase specifies
the detailed actions and their timings.

To provide a firm basis for the discussions of this section, the concepts will be
illustrated using the real world problem of electricity transportation management [14]. The
exemplar scenario involves three agents; the alarm analysis agent (AAA) which acts as the
organiser, the blackout area identifier (BAI) and the control system interface (CSI). This
group of agents collaborate to detect and locate faults - a more detailed description of their
interactions is presented in [41]. The CSI continually receives status information about the
electricity network which is analysed to determine whether a disturbance has occurred. If
so, this information is passed onto the AAA and BAI which attempt to locate the fault
using different perspectives of the data and to differing levels of accuracy. The AAA

performs a two phase diagnosis, a fast approximate one which turns up a large number of
potential hypotheses and then a detailed case by case examination. This continues until the
element at fault is located. The BAI can only locate the approximate region out of fault,
however if this information is supplied to the AAA in a timely fashion then it can be used
to reduce the number of hypotheses which need to be considered in the detailed diagnosis
phase. Meanwhile the CSI continues to monitor the evolving state of the network and pass
results on to the other two agents.

After establishing the desirability of cooperation, the organiser instantiates a
representation of the joint intention in its self model (figure 5). The motivation slot
indicates the reason for carrying out the joint intention - in this example only one motive is
shown, the fact that there is a fault in the network, but in practice there may be several
such reasons. The recipe is a series of actions which need to be performed, together with
some partial ordering constraints, to produce the desired outcome. A more detailed
specification of the primitives of the recipe language is contained in [42]. The recipe
indicates what is to be done, not whom is to do it nor the time at which it should be done.
The detailed timings and duration of the action are left until the second phase of the
protocol.

Name: (DIAGNOSE-FAULT)
Motivation: ((FAULT-IN-NETWORK))
Recipe:

(((START-OFF (IDENTIFY-INITIAL-BOA ?INITIAL-ELTS-OUT-OF-SERVICE)))
((START-OFF (GENERATE-TENTATIVE-DIAGNOSIS

?DISTURBANCE-DETECTION-MESSAGE
?BLOCK-ALARM-MESSAGES
?INITIAL-FAULT-HYPOTHESES)))

((START-OFF (MONITOR-DISTURBANCE)))
((START (PERFORM-FINAL-HYPOTHESIS-DIAGNOSIS

?INITIAL-ELTS-OUT-OF-SERVICE
?INITIAL-FAULT-HYPOTHESES))))

Start Time: - Maximum End Time: -
Duration: - Priority: 20
Status: ESTABLISHING-GROUP Outcome: (VALIDATED-FAULT-HYPOTHESES)
Participants: ((SELF PROPOSER AGREED-OBJECTIVE)

(CSI TEAM-MEMBER AGREEING-OBJECTIVE)
(BAI TEAM-MEMBER AGREEING-OBJECTIVE))

Bindings: NIL
Proposed Contribution:

((SELF ((GENERATE-TENTATIVE-DIAGNOSIS) (YES))
((PERFORM-FINAL-HYPOTHESIS-DIAGNOSIS) (YES)))

(BAI ((IDENTIFY-INITIAL-BOA) ?))
(CSI ((MONITOR-DISTURBANCE) ?)))

 Fig. 5. Representation of joint intention in AAA’s self model

The priority slot indicates the local agent’s assessment of the importance of the
intention and is used as the basis for computing its desirability. Values must be positive
integers and the higher the value the more desirable the action. Priorities have two
components; an intrinsic (static) value associated with each recipe and a dynamic
component which reflects the current problem solving context. The intrinsic priority of the
diagnose fault recipe is 10. The second component is used to provide flexibility and takes
into account the agent’s current problem solving state (e.g. whether it is working on a local
action, a joint action or a social request). Each distinct type of action has an associated
desirability rating, set by the system developer (e.g. local action = 15, joint action = 10,
social request = 2), which is combined with the intrinsic value to give the intention’s
desirability. Thus as the diagnose fault intention is invoked as a joint action it has priority
20 (10 for the intrinsic value and 10 for being used in the context of a joint action). If an
intention has more than one motivation (e.g. part of a joint goal and part of a social action
request), then both context values are added to the intrinsic one. There is a straightforward
mapping from the priority of a joint action to that of its constituent components. If the
joint intention has priority X and it is composed of N tasks, then each will be assigned
priority X / N. Thus identify black out area, generate tentative diagnosis and so on will
each have a priority of 5 (20 / 4).

Status refers to the current phase of the distributed planning protocol and can take on
the value “establishing-group”, “developing-solution” or “executing-joint-action”. The
outcome slot enumerates the expected results of performing the intention. The participants
slot indicates the organisational structure of the group and the current stage of each agent’s
involvement. In the diagnose fault joint action, there is one team organiser (AAA) and two
other potential team members (BAI and CSI). The AAA has acknowledged that it is
interested in fulfilling the objective, since it was the one who suggested it in the first place,
and is in the process of establishing whether the other two wish to joint it. The bindings
slot is used exclusively in the second phase of the protocol.

Proposed contribution records those agents who are adjudged, by the organiser, to be
capable of contributing to the joint act and whether or not they have agreed to make that
contribution. It can be seen that the AAA has consented to contribute by performing the
“generate tentative diagnosis” and “final diagnosis” recipes. The BAI and CSI have not
yet agreed, or even been asked, to contribute anything, though the organiser has already
defined privately what roles it would like them to play. In this example there is only one
agent indicated per task, although this need not always be the case. The organiser may
establish whether several agents are interested in contributing to a particular activity and
then decide between them at a later stage when more information is available.

 Having identified the need for joint action, the process of establishing it can
commence. The first phase of the protocol is to ascertain which acquaintances are ready
and able to participate (figure 6). Firstly the organiser’s situation assessment module
informs its cooperation module that a social act is required (action 1). The cooperation
module identifies those acquaintances who it believes can contribute to actions which are
part of the recipe, based on capability knowledge represented in its acquaintance models.
The strategy guiding this process is to identify the maximum number of agents who are

capable of participating so that the organiser is able to take better decisions in the second
phase of the protocol. After the potential contributors have been identified, they are each
sent a propose-group message requesting their participation in the joint action (act 2).

Each participant receives the proposal in its cooperation module and checks that it
understands the request. This involves ensuring the agent is willing to accept new requests
and that it has the potential to carry out the requested activity. If the request is rejected, a
negative response is prepared (action 3’) and passed back to the group organiser.
Assuming the request is accepted at the cooperation module level, it is then passed to the
situation assessment module (action 3) to see whether the agent has sufficient resources to
tackle the problem. This involves analyzing existing commitments to ensure the proposal
is consistent and can be accommodated successfully - this process is elaborated upon in
section 4.4. The result of this evaluation, either yes or no, is returned to the cooperation
module (action 4) which passes the answer back to the organiser (action 5). If the agent
does wish to participate, it sets up a joint intention description in its self model.

By answering affirmative to the group initiation response, agents acknowledge that
they are interested in participating in the collaborative fault diagnosis, that a common
solution is needed to solve the problem and that they will obey the responsibility
convention for that action. These criteria are not communicated explicitly because all
agents have a common understanding of the semantics of performing a joint action.

This phase of the planning protocol identifies those agents who, in the opinion of the
team organiser, are potentially able to contribute something useful. This is achieved by
contacting a chosen subset of the community about specific activities, an approach which
works well when the organiser has a good model of other agents in the community. In
industrial control applications the community is fairly static and hence capability
knowledge, such as which agents are able to perform which actions, can be assumed to be
accurate and comprehensive. However in more open environments in which agents enter
and leave the community frequently this approach may be less appropriate.

Fig. 6. Establishing a joint action

Joint Action Organiser

SITUATION ASSESSMENT

CONTROL MODULE

DOMAIN LEVEL

Potential Team Member

Detect need
joint action

Inform potentially
interested agents

COOPERATION MODULE

 Check
plausibility

Evaluate Interest

 Indicate
response

1

2

3

4

5

3’

Once all the community members who were identified as potential participants have
replied, the second phase of the planning protocol is entered into. In this phase the fine
details of the common solution, including the exact action timings, are agreed upon. The
organiser updates the joint action’s status slot to “developing-solution” and modifies the
participants slot to reflect the fact that the group is now in the solution planning phase.

From the agents who are willing to participate, the organiser selects those it wishes to
be in the team and the contributions it would like them to make. The criteria upon which
selection is based, in this instance, is to minimise the number of group members. This
strategy was chosen because the fewer agents there are in the team the lower the
likelihood of one of them defaulting, since its individual loss would be greater. This
strategy also reduces the coordination overhead because messages need to be sent to fewer
agents. In other instances it may be desirable to have the maximum number of agents in
the team to balance the load throughout the community or to select the most competent
agent to perform each task. The team leader updates its proposed contribution slot to
indicate those agents which were selected and those which were not.

Proposed Contribution:

((SELF ((GENERATE-TENTATIVE-DIAGNOSIS) (YES SELECTED))

((PERFORM-FINAL-HYPOTHESIS-DIAGNOSIS) (YES SELECTED)))

(BAI ((IDENTIFY-INITIAL-BOA) (YES SELECTED)))

(CSI ((MONITOR-DISTURBANCE) (YES SELECTED))))

The organiser then makes an initial proposal for the timings of the individual actions
which is represented in the bindings slot. Start, end and duration times are also filled in.

Bindings: ((BAI (IDENTIFY-INITIAL-BOA) 19)

(SELF (GENERATE-TENTATIVE-DIAGNOSIS) 20)

(CSI (MONITOR-DISTURBANCE) 21)

(SELF (PERFORM-FINAL-HYPOTHESIS-DIAGNOSIS) 36))

The proposal takes into account the fact that some time is required to agree the solution.
Work cannot commence immediately because for each action which needs to be
performed by an acquaintance at least two messages must be sent to establish its start time.
Associated with each of these messages is a communication delay while they are sent and
a delay before they are processed by the recipient. A final delay is caused by the fact that a
final-agreement message must be sent to all community members when the final
timings are agreed upon.

Due to the complexities of the application and the agents, the team leader cannot have a
complete picture of all activities within the community - it has bounded rationality [43]. In
particular the team leader does not know the existing commitments and desires of all its
potential team members, so exact timings cannot be dictated. To avoid chaotic oscillations
and many iterations, the organiser takes each action in the recipe in a temporally
sequential order and agrees with the agent concerned the appropriate time at which it

should be performed. Thus the BAI is contacted first, about the identify initial blackout
area task, and a time is agreed which fits in with its existing obligations. Then the AAA is
contacted about the generate tentative diagnosis task and a time agreed, and so on for each
of the actions.

Upon receipt of a contribution-proposal message, the team member evaluates
it to determine whether it is acceptable. If there is no conflict, the agent adopts the
intention and sets up an individual intention descriptiond in its self model (figure 7). It
then returns a message indicating its acceptance to the organiser.

Name: (ACHIEVE (IDENTIFY-INITIAL-BOA))

Motivation: (SATISFY-JOINT-ACTION (DIAGNOSE-FAULT)))

Recipe: (IDENTIFY-INITIAL-BOA)

Start Time: 19 Maximum End Time: 34

Duration: 15 Priority:5

Status: PENDING Outcome: (Black-Out-Area)

Fig. 7. Individual intention representation for BAI agent

If the suggested time is unacceptable the recipient proposes a (later) time at which the
action can be fitted in with its existing commitments, makes a tentative commitment for
this time and returns the suggestion to the team leader. If the modified time is acceptable,
the organiser will make appropriate adjustments to the solution bindings and will proceed
with the next action. If the modified time proposal is unacceptable, the organiser will look
for another agent to perform the action from its list of proposed contributors.

The process of agreeing a time for each action continues until all of them have been
successfully dealt with. At this point the common solution is agreed upon and the
organiser sends out a final-agreement message to all team members and the joint
action becomes operational. The organiser changes the status of the social action to
“executing-joint-action” and the participants slot is updated to indicate that all team
members are now in the process of executing the joint action. All the necessary
preliminaries for joint action have been satisfied and the group can begin its problem
solving in earnest.

4.3 Monitoring Joint Action

Once a joint action has been established, the tracking aspect of the responsibility model
comes to the fore. The match process of figure 3 takes place in the situation assessment
module and identifies reasons for terminating a joint action. Such circumstances may arise
as a result of local problem solving:

d There are two slight differences between this representation and that of joint intentions. Firstly, the recipe slot
contains the name of a local recipe rather than a list of actions and their relationships. Secondly, the status is
simply “executing” or “pending” since there is no distributed planning phase.

if a local task has finished execution and

it has produced the outcome of the overall joint action

then the objective of the joint action has been met

if a plan is unattainable and

the plan is part of a joint action

then the joint action is unattainable

or as a consequence of events occurring elsewhere in the community:

if social action component has been delayed and

delayed component is related to a local act

then joint action plan violation has occurred

These rules take events which have occurred locally or elsewhere in the community and
determine whether they mean that the collaborative action has become unsustainable in its
present form (according to the model of joint responsibility) - respectively the result of a
task satisfies the overall objective, the unattainable plan is part of a joint action and the
delayed component is related to a local act. If fired, they identify a joint action which needs
modification.

Once intentions which require attention have been identified, the agent must decide
upon the appropriate course of action. This decision is achieved, in the agent’s situation
assessment module, by matching the reasons for failure against the possible courses of
action and picking the most appropriate remedy. Examples of corresponding repair actions
for the rules cited above are as follows:

if objective of joint action has been satisfied

then inform cooperation module joint act successfully finished

abandon all associated local activities

if a joint action is unattainable

then suspend local activities associated with joint act

inform cooperation module joint act unattainable

if a joint action component has been violated and

it has been successfully rescheduled

then suspend current activities associated with joint act

reset the descriptions and timings of the joint action

inform cooperation module of violation & give new times

As well as taking actions locally, such as suspending or rescheduling tasks, the
responsibility model stipulates that the other team members must be informed when an
individual’s commitment is compromised. This aspect of the model is realised by the
cooperation module, based on information provided by the situation assessment module. In

the above cases, the assessment module indicates that the joint action has been obtained,
that it is unattainable or that the solution has been violated. It is then up to the cooperation
module to ensure that the other team members are informed by sending out a
commitment- failure message.

if joint action has been successful

then inform all other members of successful completion

see if results should be disseminated outside the team

if receive local indication that joint action is unattainable

then inform other members of need to abandon it

if local joint action violation has occurred

then inform other team members of violation & new timings

4.4 Honouring Commitments and Ensuring Consistency

An important aspect of the responsibility model’s functional architecture is the notion
of consistent intentions and ensuring that any new proposals fit in with existing
commitments. In GRATE*, time is the sole criteria on which consistency is judged. Two
intentions are deemed inconsistent if the times for which they are scheduled overlap, they
are consistent if they are distinct. So if the BAI agent has two intentions, say check
restoration premises and update network topology, they will be represented in its self model
as shown in figure 8. They are consistent because the times at which they are to be carried
out, 19-29 and 38-44, do not intersect.

Name: (CHECK-RESTORATION-PREMISES)

Motivation: ((SATISFY-LOCAL-GOAL (CHECK-RESTORATION-PREMISES)))

Chosen Recipe: CHECK-RESTORATION-PREMISES

Start Time: 19 Maximum End Time: 29

Duration: 10 Priority: 6

Status: PENDING Outcome: (RESTORATION-PREMISES)

Name: (UPDATE-NETWORK-TOPOLOGY)

Motivation: ((SATISFY-LOCAL-GOAL (UPDATE-TOPOLOGY-USING-SNAPSHOTS)))

Chosen Recipe: UPDATE-NETWORK-TOPOLOGY-USING-SNAPSHOTS

Start Time: 38 Maximum End Time: 44

Duration: 6 Priority: 3

Status: PENDING Outcome: (UPDATED-NETWORK)

Fig. 8. BAI’s existing intentions

Assume a new intention to identify the initial black out area is proposed by the BAI’s
situation assessment module (figure 9). The situation assessment module’s compatibility
checker has to determine whether the new proposal is consistent with the agent’s existing

intentions. As a result of its analysis, the compatibility checker will indicate that the new
intention is inconsistent, since the BAI cannot identify the initial black out area and check
the restoration premises at the same time.

Name: (ACHIEVE (IDENTIFY-INITIAL-BOA))

Motivation: ((SATISFY-JOINT-ACTION (DIAGNOSE-FAULT)))

Chosen Recipe: (IDENTIFY-INITIAL-BOA)

Start Time: 20 Maximum End Time: 35

Duration: 15 Priority: 7

Status: PENDING Outcome: (INITIAL-ELTS-OUT-OF-SERVICE)

Fig. 9. New intention proposal

The consistency resolver is invoked in order to make the two intentions compatible. It
makes use of the agent’s desires, represented by priority values, for each of the intentions
in order to reschedule its activities. In this case, identification of the black out area is
marginally more important than checking the restoration premises - ratings of 7 and 6
respectively. Therefore the BAI adopts the intention of identifying the initial black out area
from time 20 to 35; meaning that the intention to check the restoration premises has been
violated and must be modified. The inconsistency resolver process will propose, based on
the model of associated repair actions depicted in figure 3, that the best means of remedying
this violation is to reschedule the actions. Therefore it attempts to move the check
restoration premises recipe to after the black out area has been produced (i.e. from time 36
to time 46). However this conflicts with the agent’s intention to update its network topology
model. Again the consistency resolver computes its preferences for these two actions and
decides that checking the restoration premises is more desirable. Thus it commits itself, all
other things being equal, to check the restoration premises from time 36 to time 46. The
updating network topology recipe is violated by this rescheduling and so has to be made
consistent. It is moved to after the restoration premises have been checked; starting at time
47. Now there are no conflicts and all the BAI’s intentions are again consistent, at least until
its beliefs change!

Name: (ACHIEVE (IDENTIFY-INITIAL-BOA))

Motivation: ((SATISFY-JOINT-ACTION (DIAGNOSE-FAULT)))

Chosen Recipe: (IDENTIFY-INITIAL-BOA)

Start Time: 20 Maximum End Time: 35

Duration: 15 Priority: 7

Status: PENDING Outcome: (INITIAL-ELTS-OUT-OF-SERVICE)

Name: (CHECK-RESTORATION-PREMISES)

Motivation: ((SATISFY-LOCAL-GOAL (CHECK-RESTORATION-PREMISES)))

Chosen Recipe: CHECK-RESTORATION-PREMISES

Start Time: 36 Maximum End Time: 46

Duration: 10 Priority: 6

Status: PENDING Outcome: (RESTORATION-PREMISES)

Name: (UPDATE-NETWORK-TOPOLOGY)

Motivation: ((SATISFY-LOCAL-GOAL (UPDATE-TOPOLOGY-USING-SNAPSHOTS)))

Chosen Recipe: UPDATE-NETWORK-TOPOLOGY-USING-SNAPSHOTS

Start Time: 47 Maximum End Time: 53

Duration: 6 Priority: 3

Status: PENDING Outcome: (UPDATED-NETWORK)

Fig. 10. Final consistent intentions

5. Relationship with Other Work

Many DAI systems do not embody a principled model of collaboration upon which
agents can base their decisions and subsequent actions about cooperation. This
shortcoming is one of the reasons why there are so few-real size applications employing
DAI technology [13, 34]. Also the theoretical work on developing models of collaboration
is, in general, a considerable distance from implementation level systems because of the
unrealistic assumptions which are employed. However there is some other work which is
trying to bridge this great divide against which GRATE* can be compared.

Bratman et al. have proposed a high-level agent architecture in which the mentalistic
notions of beliefs, desires and intentions play a pivotal role [36]. Their architecture is
based on Bratman’s discursive accounts of intentions [15, 21] and the role they play in
coping with an agent’s inherent resource boundedness. Their proposal is similar to that
part of the responsibility agent architecture which deals with individual intentions.
However their intention override mechanism is not as well defined since it does not
enumerate conditions under which a joint action may fail - it merely recognises that in
some instances an agent may wish to reconsider the rationality of its commitments.
Although acknowledging that intentions must be tracked, their proposal offers no high
level design for this process. Also their proposal concentrates on defining the behaviour of
an individual in an asocial situation. There are also no provisions for collaborative activity
and no joint intentions.

Burmeister and Sundermeyer have defined and implemented a generic agent model
based upon intentions and desires [44]. Their agents are characterised by their perceptive
capabilities, the actions they can undertake, their intentions and the resources needed for
executing the different types of behaviour. They identify two types of intention - long term
ones which correspond to high level objectives and desires and tactical intentions which
are intimately related to actions. However their implementation is not based on a well
founded theory of intentionality. Although using notions of commitment and long term
intentions the semantics of these terms are not rigorously defined (either formally or
discursively). Their agents are explicitly designed to operate in environments containing
other entities, however they do not represent joint intentions. Interaction between agents is
mediated by individual intentions and hence the level of sophistication in collaboration
which can be attained by their architecture is limited.

Shoham’s work on agent-oriented programming offers a different perspective on the

problem [45]. Agents are specialised objects which consist of components called beliefs,
choices, capabilities and commitments. This mental state is captured formally in an
extension to standard epistemic logic in which the knowledge and belief operators are
temporalised. These well-defined and theoretical notions are then used as the basis of a
declarative programming regime in which agents and their interactions can be specified.
This approach has the advantage that any theoretical model of collaboration expressed in
this language can automatically be translated into executable code. This contrasts with the
responsibility model definition which first had to be mapped from dynamic and temporal
logic into production rules before it could be executed. As it represents a programming
language there is no explicit model of either individual or joint intentions. Such a model
would have to be constructed from the basic primitives, which, given their fine level of
granularity, would require considerable effort.

6. Conclusions

This paper has specified a high-level agent architecture for collaborative problem
solving in which intentions and joint intentions play a central role. The inherent
limitations of individual intentions for describing collaborative activity have been exposed
and a review of existing formalisms for joint intentions has been presented. This review
synthesizes and extends a number of these existing formalisms into a unifying framework
which clearly identifies and specifies the role of individual and joint intentions in
cooperative problem solving. The responsibility model identifies preconditions which
must be fulfilled before joint action can commence and prescribes how cooperating agents
should behave, in terms of their own activity and their interactions with others, both when
the joint action is progressing satisfactorily and when it runs into difficulty. From the
mental state description of responsibility, the computational processes required to
implement the model are identified and presented in a generic high-level agent
architecture. The GRATE* realisation of this architecture is then described in detail with
illustrative examples taken from the real-world domain of electricity transportation
management.

A series of experiments have been undertaken as a means of assessing the benefits of
the approach advocated in this paper. A GRATE* community was compared with one in
which interacting agents did not form explicit groups. In the latter, agents exchanged
information, shared processing and had individual intentions but there were no joint
intentions. These experiments showed that: (i) the responsibility community behaves in a
more coherent manner, especially when agents are situated in complex and dynamic
environments; (ii) implementing responsibility does not require large amounts of resource
to be made available for coordination [13].

The view that intentionality is the key component of cooperating agents is contradicted
by the reactive planning school of thought [46, 47]. In reactive systems, agents merely
respond to situations and do not reason about the world (i.e. they do not explicitly
represent mental states such as belief, desires and intentions). Usually both the agents and
the actions are relatively simple and global properties are seen as emerging from the
interaction of behaviours. The advantage of this approach is that because of their lack of

explicit reasoning, agents are fast and can respond to changing environmental conditions
so long as they have a predefined stimulus-response pairing.

As a consequence of this seemingly contradictory view, there has been a vigourous
debate between proponents of the intention based (reflective) approach and those of the
reactive system approach [48, 49]. However, here it is hypothesised that reactive agents
merely exhibit a special type of intentionality. Each individual has a number of fixed,
simple intentions which are specified by the system designer and are implicitly available
to the agent. Thus when the designer defines an agent’s behaviour he is in fact installing its
intentions, the means-end reasoning undertaken at runtime in reflective systems is set
through the stimulus conditions. These fixed intentions (pre-compiled behaviours) can
then be invoked automatically whenever their conditions for activation are satisfied.
Compliance with this viewpoint means that reactive and reflective systems are just
opposite ends of a spectrum rather than fundamentally different technologies. Similar
reasoning is carried out by both types of system, although at different stages of the
development process - run time for reflective systems and design time for reactive ones.
Following on from this hypothesis, there should be problems which can be solved by
reflective systems but not by reactive ones, since the former are a superset of the latter.
There is some evidence to support this view: reactive systems have difficulty solving
recursive problems and can fail in environments which contain dead ends [50]. Also the
observation that coordination among interacting plans must be done by the programmers
of reactive systems when they are designing appropriate actions [51] (rather than by the
run-time reasoning mechanisms) is further supporting evidence.

Acknowledgments

The work described in this paper has been partially supported by the ESPRIT II project
ARCHON (P2256) whose partners are: Atlas Elektronik, Framentec-Cognitech, Labein,
QMW, IRIDIA, Iberdrola, EA Technology, Amber, Univ. of Athens, Univ. of Amsterdam,
Volmac, CERN and Univ. of Porto.

References

[1] M. P. Papazoglou, S. C. Laufman and T. K. Sellis, An Organisational Framework for
Cooperating Intelligent Information Systems, Int. Journal of Intelligent and Cooperative
Information Systems 1 (1992) 169-202.

[2] J. Y. C. Pan and J. M. Tenenbaum, An Intelligent Agent Framework for Enterprise
Integration, IEEE Trans. on Systems Man and Cybernetics 21 (1991) 1409-1419.

[3] E. H. Durfee, The Distributed Artificial Intelligence Melting Pot, IEEE Trans. on Systems
Man and Cybernetics 21 (1991) 1301-1306.

[4] M. Minsky, The Society of Mind (Simon & Schuster, 1985).

[5] N. R. Jennings and T. Wittig, ARCHON: Theory and Practice, in Distributed Artificial
Intelligence: Theory and Praxis, eds. N. M. Avouris and L. Gasser (Kluwer Academic Press,

1992) 179-195.

[6] R. Neches, R. Fikes, T. Finin, T. Gruber, R. Patil, T. Senator and T. Swartout, Enabling
Technology for Knowledge Sharing, AI Magazine (1991) 36-56.

[7] S. Cammarata, D. McArthur and R. Steeb, Strategies of Cooperation in Distributed Problem
Solving, Proc. Int. Joint Conference on Artificial Intelligence, Karlsruhe, Germany (1983)
767-770.

[8] F. Hayes-Roth, Towards a Framework for Distributed AI, SIGART Newsletter (1980) 51-52.

[9] M. N. Huhns, U. Mukhopadhyay, L. Stephens and R. Bonnell, DAI for Document Retrieval in
Distributed Artificial Intelligence, ed. M. N. Huhns (Pitman Publishing 1988) 249-284.

[10] V. R. Lesser and D. D. Corkill, The Distributed Vehicle Monitoring Testbed: A Tool for
Investigating Distributed Problem Solving Networks, AI Magazine (1983) 15-33.

[11] R. G. Smith and R. Davis, Frameworks for Cooperation in Distributed Problem Solving,
IEEE Trans. on Systems Man and Cybernetics 11 (1981) 61-70.

[12] V. R. Lesser and L. D. Erman, An Experiment in Distributed Interpretation, IEEE Trans. on
Computers 29 (1980) 1144-1163.

[13] N. R. Jennings and E. H. Mamdani, Using Joint Responsibility to Coordinate Collaborative
Problem Solving in Dynamic Environments, Proc. of Tenth National Conference on Artificial
Intelligence, San Jose, USA (1992) 269-275

[14] N. R. Jennings, E. H. Mamdani, I. Laresgoiti, J. Perez and J. Corera, GRATE: A General
Framework for Cooperative Problem Solving, IEE-BCS Journal of Intelligent Systems
Engineering 1 (1992), 102-114.

[15] M. E. Bratman, Two Faces of Intention, Philosophical Review 93 (1984) 375-405.

[16] P. R. Cohen and H. J. Levesque, Intention is Choice with Commitment, Artificial Intelligence
42 (1990) 213-261.

[17] D. C. Dennett, The Intentional Stance (MIT Press, 1987).

[18] M. E. Pollack, Plans as Complex Mental Attitudes, in Intentions in Communication, eds. P. R.
Cohen, J. Morgan and M. E. Pollack (MIT Press, 1990) 77-105.

[19] J. Searle, Intentionality: An Essay in the Philosophy of Mind (Cambridge University, 1983).

[20] E. Werner, Cooperating Agents: A Unified Theory of Communication and Social Structure, in
Distributed Artificial Intelligence Vol II, eds. L. Gasser and M. N. Huhns (Pitman Publishing,
1989) 3 -36.

[21] M. E. Bratman, What is Intention?, in Intentions in Communication, eds. P. R. Cohen, J.

Morgan and M. E. Pollack (MIT Press, 1990) 15-33.

[22] N. R. Jennings, Commitments and Conventions: The Foundation of Coordination in Multi-
Agent Systems, The Knowledge Engineering Review 8 (1993).

[23] H. J. Levesque, P. R. Cohen and J. H. Nunes, On Acting Together, Proc. of Eighth National
Conference on AI, Boston, USA (1990) 94-99.

[24] P. R. Cohen and H. J. Levesque, Teamwork, Nous 25 (1991) 487-512.

[25] N. R. Jennings, On Being Responsible, in Decentralised AI 3, eds. E. Werner and Y.
Demazeau (North Holland Publishers, 1992) 93-102.

[26] K. E. Lochbaum, B. J. Grosz and C. L. Sidner, Models of Plans to Support Communication,
Proc. of Eighth National Conference on AI, Boston, USA (1990) 485-490.

[27] A. S. Rao, M. P. Georgeff and E. Sonenberg, Social Plans: A Preliminary Report, in
Decentralised AI 3, eds. E. Werner and Y. Demazeau (North Holland Publishers, 1992) 57-76.

[28] J. Searle, Collective Intentions and Actions, in Intentions in Communication, eds. P. R.
Cohen, J. Morgan and M. E. Pollack (MIT Press, 1990) 401-416.

[29] M. P. Singh, Group Ability and Structure, Proc. Modelling An Autonomous Agent in a Multi-
Agent World, Saint-Quentin en Yveslines, France (1990) 87-100.

[30] R. Tuomela and K. Miller, We-Intentions, Philosophical Studies 53 (1988) 367-389.

[31] D. D. Corkill, Hierarchical Planning in a Distributed Environment, Proc. Sixth Int. Joint
Conference on AI, Tblisi, Georgia (1979) 168-175.

[32] E. H. Durfee, Coordination of Distributed Problem Solvers (Kluwer Academic Press, 1988).

[33] M. P. Georgeff, A Theory of Action for Multi-Agent Planning, Proc. of Second National
Conference on Artificial Intelligence, Austin, USA, (1984) 125-129.

[34] N. R. Jennings, Towards a Cooperation Knowledge Level for Collaborative Problem Solving,
Proc. Tenth European Conference on AI, Vienna, Austria (1992) 224-228.

[35] J. Y. Halpern and Y. O. Moses, Knowledge and Common Knowledge in a Distributed
Environment, in Theoretical Aspects of Reasoning about Knowledge, ed. J. Y. Halpern
(Morgan Kaufmann, 1984) 50-61.

[36] M. E. Bratman, D. J. Israel and M. E. Pollack, Plans and Resource Bounded Practical
Reasoning, Computational Intelligence 4 (1988) 349-355.

[37] A. Newell, The Knowledge Level, Artificial Intelligence 18 (1982) 87-127.

[38] N. R. Jennings, L. Z. Varga, R. P. Aarnts, J. Fuchs and P. Skarek, Transforming Standalone

Expert Systems into a Community of Cooperating Agents, Int. Journal of Engineering
Applications of Artificial Intelligence 6 (1993).

[39] L. Z. Varga, N. R. Jennings and D. Cockburn, Integrating Intelligent Systems into a
Cooperating Community for Electricity Distribution Management, Expert Systems with
Applications 7 (1994).

[40] G. Stassinopoulos and E. Lembessis, Application of a Multi-Agent Cooperative Architecture
to Process Control in the Cement Factory, ARCHON Technical Report 43/3-93, 1993.

[41] R. P. Aarnts, J. Corera, J. Perez, D. Gureghian and N. R. Jennings, Examples of Cooperative
Situations and their Implementation, Vleermuis Journal of Software Research 3 (1991) 74- 81.

[42] N. R. Jennings, Cooperation in Industrial Multi-Agent Systems (World Scientific Press, 1994).

[43] H. A. Simon, Models of Man (Wiley, 1957)

[44] B. Burmeister and K. Sundermeyer, Cooperative Problem Solving Guided by Intentions and
Perception, in Decentralised AI 3, eds. E. Werner and Y. Demazeau (North Holland
Publishers, 1992) 77-92.

[45] Y. Shoham, Agent-Oriented Programming, Artificial Intelligence 60 (1993) 51-92.

[46] R. A. Brooks, Intelligence without Representation, Artificial Intelligence 47 (1991) 139-159.

[47] P. Maes, ed., Designing Autonomous Agents (MIT Press, 1991).

[48] Y. Demazeau and J. P. Muller, eds., Decentralized AI (Elesevier Science Publishers, 1990).

[49] Y. Demazeau and J. P. Muller, eds., Decentralized AI 2 (Elesevier Science Publishers, 1991).

[50] J. Feber and A. Drogoul, Using Reactive Multi-Agent Systems in Simulation and Problem
Solving, in Distributed Artificial Intelligence: Theory and Praxis, eds. N. M. Avouris and L.
Gasser, (Kluwer Academic Press, 1992) 53-80.

[51] A. L. Lansky, A Perspective on Multi-Agent Planning, SRI International, Technical Note 474,
Center for Study of Language and Information, Stanford University, 1989.

