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Abstract—Real-time applications such as e-commerce, flight control, chemical and nuclear control, and telecommunication are

becoming increasingly sophisticated in their data needs, resulting in greater demands for real-time data services that are provided by

real-time databases. Since the workload of real-time databases cannot be precisely predicted, they can become overloaded and

thereby cause temporal violations, resulting in damage or even a catastrophe. Imprecise computation techniques address this problem

and allow graceful degradation during overloads. In this paper, we present a framework for QoS specification and management

consisting of a model for expressing QoS requirements, an architecture based on feedback control scheduling, and a set of algorithms

implementing different policies and behaviors. Our approach gives a robust and controlled behavior of real-time databases, even for

transient overloads and with inaccurate runtime estimates of the transactions. Further, performance experiments show that the

proposed algorithms outperform a set of baseline algorithms that uses feedback control.

Index Terms—Real-time and embedded systems, real-time data services, imprecise computation, feedback control, modeling

techniques.
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1 INTRODUCTION

LATELY, the demand for real-time data services has
increased in a number of applications such as manu-

facturing, Web-servers, and e-commerce. Further, they are
becoming increasingly sophisticated in their real-time data
needs [1], [2]. The data normally span from low-level
control data, typically acquired from sensors, to high-level
management and business data. In these applications, it is
desirable to process user requests within their deadlines
using fresh data. In dynamic systems, such as Web servers
and sensor networks with nonuniform access patterns, the
workload of real-time databases (RTDB) cannot be precisely
predicted and, hence, the RTDBs can become overloaded.
As a result, uncontrolled deadline misses and freshness
violations may occur during the transient overloads. To
provide reliable service quality, we propose a quality of
service (QoS) sensitive approach that guarantees a set of
requirements on the performance of the database, even in
the presence of unpredictable workloads. Further, for some
applications (e.g., Web service), it is desirable that the QoS
does not vary significantly from one transaction to another.
Here, it is emphasized that the individual QoS needs

requested by transactions are enforced and, hence, any
deviations from the QoS needs should be uniformly
distributed among the clients to ensure QoS fairness.

Imprecise computation techniques [3] have been intro-
duced to allow flexibility in operation and to provide means
for achieving graceful degradation during transient over-
loads. These techniques make it possible to trade off
resource needs for the quality of a requested service.
Imprecise computation has been successfully applied to
applications where timeliness is emphasized, but where a
certain degree of imprecision can be tolerated [4], [5], [6],
[7]. In our approach, we employ the notion of imprecise
computation on transactions as well as data, i.e., we allow
data objects to deviate, to a certain degree, from their
corresponding values in the external environment. This
combined approach of imprecise computation presents a
greater challenge, but gives better efficiency in managing
QoS and overload management.

In this paper, we present a framework for specification
and management of QoS in imprecise RTDBs. The con-
tributions of this paper are

1. a model for expressing QoS requirements,
2. an architecture based on feedback control to satisfy a

given QoS specification,
3. a new scheduling algorithm that enhances QoS

fairness, and
4. a model of the controlled system that is used to

synthesize feedback controllers.

To the best of our knowledge, this is the first paper on QoS
management of RTDBs using imprecise computations and
feedback control.

Starting with the QoS specification, the expressive power
of our QoS specification model allows a database operator
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to specify not only the desired steady-state performance,
representing the nominal system operation, but also the
transient-state performance describing the worst-case sys-
tem performance and system adaptability in the face of
unexpected failures or load variation. Continuing with the
second contribution, we notice that the main challenge with
managing QoS such that the given specification is satisfied
is the unpredictability of workload in terms of unknown
arrival patterns and inaccurate execution time estimates.
Traditional approaches for providing performance guaran-
tees [8] rely on known worst-case conditions, e.g., worst-
case execution times and worst-case arrival patterns of
tasks; this knowledge is often lacking for systems operating
in highly unpredictable environments. Using feedback
control has been shown to be very effective for a large
class of real-time systems that exhibit unpredictable work-
load [9], [10], [11], [12], [13]. Therefore, to provide QoS
guarantees without a priori knowledge of the workload, we
apply feedback control, where the performance of the RTDB
is continuously monitored and compared to the desired
performance as given by the QoS specification.

To tune feedback controllers that are efficient in
managing the performance of real-time systems, it is
necessary to have a model that accurately describes the
behavior of the controlled system [14]. As the fourth
contribution, we present a novel model that results in a
feedback loop with a significant improvement in QoS
adaptation compared to the performance achieved using a
previously presented model [11]. This result aids a system
operator in configuring RTDBs to be highly reactive to
changes in applied load and execution time estimation
errors, resulting in increased performance reliability and
enhanced QoS adaptation. Finally, we present a set of
experimental results where we evaluate the performance of
the proposed algorithms. Our studies show that the
presented algorithms ensure robust and insensitive beha-
vior, even in the presence of transient overloads. An
equally important feature of this set of algorithms is their
ability to adapt to various workloads and tolerate inaccu-
rate estimates of execution times still conforming to a given
QoS specification.

This paper is organized as follows: The detailed problem
formulation is given in Section 2. In Section 3, the assumed
database model is given. In Section 4, we present our
approach and, in Section 5, the results of performance
evaluations are presented. In Section 6, we present the
related work, followed by Section 7, where conclusions and
future work are discussed.

2 PROBLEM FORMULATION

In our model, data objects in an RTDB are updated by
update transactions, representing sensor values, while user
transactions represent user requests, e.g., complex read-
write operations. As mentioned previously, the notion of
imprecision may be applied at data object and/or user
transaction level. Starting with data imprecision, we
observe that, although a real-time database models an
external environment that changes continuously, the values
of data objects that are slightly different in age or in
precision can be used as consistent read data for user

transactions. This is due to the fact that data objects cannot,
in general, be updated continually to perfectly track the
dynamics of the real world. The time it takes to update a
data object alone introduces a time delay, which means that
the value of the data object cannot be the same as the
corresponding real-world value at all times. Hence, for a
data object stored in an RTDB and representing a real-world
variable, we can allow a certain degree of deviation
compared to the real-world value. We can then discard an
update transaction that holds a value sufficiently close to
the stored value in the RTDB. The more the values of the
data objects in the database deviate from the external
environment, as given by the values of the update
transactions, the more imprecise the data objects are. To
measure data imprecision, we introduce the notion of data
error, denoted dei, which gives an indication of how much
the value of a data object di stored in the RTDB deviates
from the corresponding real-world value given by the latest
arrived update transaction. Note that the latest arrived
update transaction is discarded if it holds a value that is
sufficiently close to the value already stored in the database.
Hence, di may hold the value of an earlier update
transaction. We say that quality of data (QoD) increases as
the data error of the data objects decreases.

Imprecision at user transaction level can be expressed in
terms of certainty, accuracy, and specificity [4]. Certainty
refers to the probability of a result being correct, accuracy
refers to the degree of accuracy of a value returned by an
algorithm (typically through a bound on the difference from
the exact solution), and specificity reflects the level of detail
of the result. For example, if filters are used in control loops,
greater accuracy is achieved. Specificity is used to define
user transaction imprecision in the context of image coding
or decoding. The imprecision of the result of a user
transaction increases as the resource available for the user
transaction decreases. For simplicity, we refer to the
imprecision of the results of the user transactions as quality
of transaction (QoT). We say that QoT increases as the
imprecision of the results of the user transaction decreases.

Usually, system developers know how much data
imprecision an application can tolerate such that the end
result is within acceptable limits. Therefore, we assume that
sufficiently precise data values stored in the database are
regarded as having no effect on the result of a transaction.
Hence, we model QoT and QoD as orthogonal entities.
System developers can then focus on finding appropriate
precision requirements and avoid modeling QoT as func-
tions of QoD. This significantly reduces the complexity of
the QoS specification process.

QoT is manipulated by adjusting the admitted user
transaction load and the admitted update transaction load.
The CPU resource allocated for each user transaction
decreases as the number of admitted user transactions
and the number admitted update transactions increase,
resulting in a decrease in QoT. The update transaction load
is reduced by discarding update transactions according to
an upper bound for the data error given by the maximum
data error, denoted mde. Note, discarding update transac-
tions reduces QoD, however, we assume that QoT is not
affected by QoD as they are modeled to be orthogonal. An
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update transaction Tj is discarded if the data error of the
data object di to be updated by Tj is less than or equal to
mde (i.e., dei � mde). If mde increases, more update
transactions are discarded, degrading the QoD. This results
in more resources available for user transactions and, hence,
an increase in QoT. Similarly, if mde decreases, fewer
update transactions are discarded, resulting in a greater
QoD and, consequently, a lower QoT. The goal of our work
consists of two parts. We want to derive: 1) algorithms for
adjusting data error using mde such that QoD and QoT
satisfy a given QoS specification and the deviation in
imprecision of user transaction results is minimized, i.e.,
QoS fairness is maximized, and 2) a feedback loop
architecture that is highly reactive and adaptive to changes
to workload characteristics. The second part implies, as
argued in Section 1, that we need to find accurate models of
the controlled system to provide efficient QoS adaptability
and performance reliability even in the presence of
unpredictable workload.

3 DATA AND TRANSACTION MODEL

We consider a main memory database model where there is

one CPU as the main processing element. Main memory

databases have been increasingly applied to real-time data

management due to their relatively high performance,

decreasing main memory cost, fast response time (since I/O

overhead is decreased), and the emergence of embedded

systems lacking disks [15], [16]. In our data model, data

objects can be classified into two classes, temporal and

nontemporal [17]. For temporal data, we only consider base

data, i.e., data that hold the view of the real world and are

updated by sensors. A base data object di is considered

temporally inconsistent or stale if the current time is later

than the timestamp of di followed by the length of the

absolute validity interval of di (denoted avii), i.e.,

currenttime > timestampi þ avii. For a data object di, let

data error dei ¼ �ðcvi; viÞ be a nonnegative function of the

current value cvi of di and the value vi of the latest arrived

transaction that updated di or that was to update di but was

discarded. Remember an update transaction may be

discarded if its update value is close enough to the value

stored in the RTDB. Our approach does not have any

restrictions on the structure of �. For example, it may be

defined as the absolute deviation between cvi and vi, i.e.,

dei ¼ jcvi � vij, or the relative deviation as given by

dei ¼ jcvi�vij
jcvij . Update transactions arrive periodically and

may only write to base data objects. User transactions arrive

aperiodically and may read temporal and read/write

nontemporal data. User and update transactions (Ti) are

composed of one mandatory subtransaction mi and jOij � 0

optional subtransactions oi;j, where oi;j is the jth optional

subtransaction of Ti. For the remainder of the paper, we let

ti denote a subtransaction of Ti. As updates do not use

complex logical or numerical operations, we assume that

each update transaction consists only of a single mandatory

subtransaction, i.e., jOij ¼ 0.
As mentioned earlier, there are several ways of im-

plementing imprecise computations, e.g., multiple versions,

use of sieve functions, and the milestone approach [3]. The
focus of this paper is not on how to apply different
imprecise computation techniques in the context of RTDBs
since this area has already been explored, as shown in
Section 6. Previous work indicates that iterative and
recursive algorithms, generating monotonically improving
answers, can be efficiently used to solve problems in a wide
class of applications, such as, numerical algorithms, e.g.,
Newton’s method and FFT [18], graph algorithms [4], and
also query processing [6], [7]. Iterative and recursive
algorithms can easily be modeled using the milestone
approach, where the k first iterations or recursions
correspond to the mandatory part and the remainder are
given by the optional part. For this reason, we use the
milestone approach [3] to transaction impreciseness. Thus,
we divide transactions into subtransactions according to
milestones. A mandatory subtransaction is completed
when it is completed in a traditional sense. The
mandatory subtransaction gives an acceptable result and
should be computed to completion before the transaction
deadline. The optional subtransactions may be processed
if there is enough time or resources available. While it is
assumed that all subtransactions of a transaction Ti arrive
at the same time, the first optional subtransaction (if any)
oi;1 becomes ready for execution when the mandatory
subtransaction mi is completed. In general, an optional
subtransaction oi;j becomes ready for execution when
oi;j�1 (where 2 � j � jOij) completes. We set the deadline of
every subtransaction ti to the deadline of the transaction Ti.
A subtransaction is terminated if it has completed or has
missed its deadline. A transaction Ti is terminated when
oi;jOij completes or one of its subtransactions misses its
deadline. In the latter case, all subtransactions that are not
completed also miss their deadlines and are therefore
terminated as well.

We introduce the notion of transaction error (denoted

tei), inherited from the imprecise computation model [3], to

measure the imprecision of a user transaction result, Ti.

Transaction error may be modeled as a function of

completed optional subtransactions. This requires knowl-

edge about the transactions and/or the data sets they read.

Although our work does not require detailed knowledge

about the transactions, in many applications, this knowl-

edge is available to the designer and transaction error may

be derived through experiments [4], analytical expressions,

e.g., accuracy bounds for numerical iterative algorithms

[19], or the experience of designers or engineers. The exact

details of the above-mentioned methods are beyond the

scope of this paper and the reader is referred to the

appropriate literature. In applications where it is possible to

formally model the precision of the answers given by

transactions in terms of completed optional subtransactions,

we model transaction error through the use of error

functions [20]. For a transaction Ti, we use an error function

to approximate its corresponding transaction error given by

teiðjCOSijÞ ¼ ð1� jCOSij
jOij Þ

ni , where ni is the order of the error

function and jCOSij denotes the number of completed

optional subtransactions. By choosing ni, we can model and
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support multiple classes of transactions showing different

error characteristics. For example, it has been shown that,

anytime algorithms used in AI exhibit error characteristics,

ni is greater than one [4].
We assume the workload model presented by Lu et al.

[11], where update transactions have a period and user

transactions have a mean interarrival time. The estimated

load of a task is the estimated execution time of the task

divided by its relative deadline. The actual load of a task is

the actual execution time of the task divided by its relative

deadline.

4 APPROACH

Next, we describe our approach for managing the perfor-

mance of an RTDB in terms of QoT and QoD. First, we start

by defining performance metrics in Section 4.1. The QoS

specification models are described in Section 4.2. An

overview of the feedback control scheduling architecture

is given in Section 4.3, followed by the description of QoS

controllers in Section 4.4. In Section 4.5, we present the

algorithms PC-MPU (precision control miss percentage

utilization), PC-MP (precision control miss percentage),

PC-ATEHEF (precision control average transaction error

highest error first), and PC-ATEHEDF (precision control

average transaction error highest error density first). These

algorithms determine how QoD is adjusted, i.e., to what

extent the precision of the data objects is modified based on

the current system performance. In Section 4.6, we present

two models, describing the dynamics of RTDBs, which are

used to tune the QoS controllers.

4.1 Performance Metrics

In our approach, the database operator1 can explicitly

specify the required database QoS, defining the desired

behavior of the database. Long-term performance metrics

such as average deadline miss ratio are not sufficient to

specify the desired performance of real-time systems that

require stringent QoS enforcement [11]. Therefore, in this

work, we adapt both long-term performance metrics,

referred to as steady-state performance metrics, and

transient-state performance metrics. We adapt the following

notation of describing discrete variables in the time-domain:

aðkÞ refers to the value of the variable a at the time kT ,

where T is the sampling period and k is the sampling

instant.2

QoT Metrics. We consider the following metrics for

measuring QoT of admitted transactions:

. Deadline miss percentage of mandatory user

subtransactions is given by mMðkÞ ¼ 100�
jdeadlmissM ðkÞj

jtermM ðkÞj ð%Þ where jdeadlmissMðkÞj denotes the

number of mandatory subtransactions that have

missed their deadline and jtermMðkÞj is the number
of terminated mandatory subtransactions.

. Deadline miss percentage of optional user subtran-

sactions is given by mOðkÞ ¼ 100� jdeadlmissOðkÞj
jtermOðkÞj ð%Þ,

where jdeadlmissOðkÞj denotes the number of op-
tional subtransactions that have missed their dead-

line and jtermOðkÞj is the number of terminated

optional subtransactions. Note, jdeadlmissOðkÞj and
jtermOðkÞj include the optional subtransactions that

are not completed.
. Average transaction error is defined as

ateðkÞ ¼ 100�
P

i2termðkÞ tei

jtermðkÞj ð%Þ;

where termðkÞ denotes the set of terminated
transactions.

QoD Metric. The maximum data error mdeðkÞ gives the
maximum data error tolerated for the data objects (as
described in Section 2).

QoS Fairness Metric. For some applications, it is
desirable to measure QoS fairness among transactions
and, therefore, we introduce the standard deviation of
transaction error,

sdteðkÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

i2termðkÞ ð100� tei � ateðkÞÞ2

jtermðkÞj � 1

s

;

which is a measure of how much the transaction error of
terminated transactions deviates from the average transac-
tion error.

System Utilization. We measure system utilization uðkÞ
to acquire a better understanding of the performance of the
algorithms. Using the utilization of the system, we can show
whether our algorithms provide high throughput.

Steady-State and Transient-State Performance Metrics.
The desired performance of the system is given by a set of
references specifying the desired level of the controlled
variables, which represent the actual system performance.
We consider the following transient-state performance
metrics (see Fig. 1a). Overshoot Mp is the worst-case system
performance in the transient system state and it is given in the
percentage by which a controlled variable overshoots its
reference. Settling time Ts is the time for the transient
overshoot to decay and settle around the steady state
performance and it is a measure of system adaptability, i.e.,
how fast the system converges toward the desired perfor-
mance. Hence, the performance of the controllers is
distinguished by how well they force a controlled variable
yðkÞ to follow or track a desired level given by a reference
yrðkÞ, despite the presence of disturbances in the controlled
system. It is therefore interesting to measure the difference
between yrðkÞ and yðkÞ over a period of time, which is
obtained using the functions Ja ¼ 1

N

PN
k¼1 jyrðkÞ � yðkÞj and

Js ¼ 1

N

PN
k¼1 yrðkÞ � yðkÞð Þ2, where N is the number of

samples taken. The lower Js and Ja are, the better a
controller is able to keep y near yr and, also, the faster y

converges toward yr.

4.2 QoS Specification Models

The maximum data error provides a direct measure of the
precision of the data objects and, hence, we express QoD in
terms of mde. An increase in QoD refers to a decrease in
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mde, i.e., an increase in data precision. In contrast, a
decrease in QoD refers to an increase in mde. We consider
two alternative ways of defining QoS, below referred to as
QoS specification type A and type B, where they differ in
the way QoT is expressed.

QoS Specification Type A. In the case when it is not
possible to model transaction error using error functions,
we have to express QoT by other means. We know that
the more optional subtransactions we complete before the
deadline, the smaller the transaction error will be.
Therefore, the deadline miss ratio of optional subtransac-
tions qualifies as an approximate measure of the true
transaction error and, hence, we define QoT in terms of
mO. QoT decreases as mO increases (similarly, QoT
increases as mO decreases). The database operator can
specify steady-state and transient-state behavior for mM ,
mO, u, and mde. The specification for u is given by a
lower bound ul for u. A QoS requirement can be
specified as the following: mM

r ¼ 1% (i.e., reference of
mM ), mO

r ¼ 10%, mder ¼ 2%, ul ¼ 80%, Ts � 60s, and
Mp � 30%. This gives the following transient-state per-
formance specifications: mM � mM

r � ðMp þ 100%Þ ¼ 1:3%,
mO � 13%, and mde � 2:6%.

QoS Specification Type B. Having error functions to
describe the transaction error, we can directly define QoT in
terms of average transaction error (ate). QoT decreases as
ate increases (similarly, QoT increases as ate decreases). The
database operator can specify steady-state and transient-
state behavior for ate and mde. A QoS requirement can be
specified as the following: ater ¼ 20% (i.e., reference of ate),
mder ¼ 5%, Ts � 60s, and Mp � 30%. This gives the follow-
ing transient-state performance specifications: ate � ater �
ðMp þ 100%Þ ¼ 26% and mde � mder � ðMp þ 100Þ ¼ 6:5%.

4.3 QoS Management Architecture

The architecture of our QoS management scheme is shown
in Fig. 1b. Admitted transactions are placed in the ready
queue. The transaction handler manages the execution of
the transactions. We choose mM , mO, and u as controlled
variables when the QoS is specified according to QoS
specification type A, while ate is the controlled variable
when QoS specification type B is used. At each sampling
instant, the controlled variable(s) (i.e., mM , mO, and u, or

ate) is monitored and fed into the QoS controller, which
compares the performance reference (i.e., mM

r and mO
r or

ater) with the controlled variable to get the current
performance error. Based on the result, the controller
computes a change, denoted �lER, to the total estimated
requested load. We refer to �lER as the manipulated
variable. Based on �lER, the QoD manager changes the
total estimated requested load by adapting the QoD (i.e.,
adjusting mde). The precision controller discards an update
transaction writing to a data object di having an error less
than or equal to the maximum data error allowed, i.e.,
dei � mde. However, the update transaction is executed if
the data error of di is greater than mde. In both cases, the
timestamp of di is updated. The portion of �lER not
accommodated by the QoD manager, denoted �lnew, is
returned to the admission controller (AC), which enforces
the remaining load adjustment. The transaction handler
provides a platform for managing transactions. It consists of
a freshness manager (FM), a unit managing the concurrency
control (CC), and a basic scheduler (BS). The FM checks the
freshness before accessing a data object, using the time-
stamp and the absolute validity interval of the data. We
employ two-phase locking with highest priority (2PL-HP)
[21] for concurrency control. 2PL-HP is chosen since it is
free from priority inversion and has well-known behavior.
We use three different scheduling algorithms as basic
schedulers:

Earliest Deadline First (EDF). Transactions are pro-
cessed in the order determined by their absolute deadlines;
the next transaction to run is the one with the earliest
deadline (for an elaborate discussion on EDF, see, e.g., [8]).

Highest Error First (HEF). Transactions are processed in
the order determined by their transaction error; the next
transaction to run is the one with the greatest transaction
error.

Highest Error Density First (HEDF). Transactions are
scheduled according to their transaction error density given
by tedi ¼ tei

atiþrdi�currenttime
, where ati and rdi denote the

arrival time and relative deadline of the transaction Ti,
respectively, and where the transaction with the highest
transaction error density is processed first.

Note that HEF andHEDF cannot be used in the case when
error functions for transactions are not available as they are
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error-cognizant and require knowledge of tei. For all three
basic schedulers (EDF, HEF, and HEDF), the mandatory
subtransactions have higher priority than the optional
subtransactions and, hence, are scheduled before them.

4.4 QoS Controllers

Depending on the algorithms used, we apply different
feedback control loops to control QoT in the presence of
unpredictable workload and inaccurate execution time
estimates. PC-MPU employs one utilization controller and
two miss percentage controllers, i.e., one controller to adjust
the utilization u according to a reference ur and two
controllers to adjust mM and mO according to the references
mM

r and mO
r , respectively. Transactions in RTDBs often

make unpredictable aborts or restarts due to data and
resource conflicts. Further, the execution time of the
transactions depends on their data needs, which may vary
over time. This makes the deadline miss percentages prone
to overshoot. To avoid overshoots greater than Mp, the load
of the system is constantly changed according to a linear
increase/exponential decrease scheme. Initially, the utiliza-
tion reference ur is set to ul. As long as the miss percentages
are below their references, ur is increased by a certain step.
As soon as one of the miss percentages is above its
reference, ur is reduced exponentially according to
urðkþ 1Þ ¼ urðkÞþul

2
ð%Þ, where urðkþ 1Þ is the new utiliza-

tion reference. This way, we are certain that the system is
not underutilized, while, at the same time, great deadline
miss ratio overshoots are avoided. This approach is self-
adapting and does not require any knowledge about the
underlying runtime estimates. PC-MP uses two deadline
miss percentage control loops, one for each of the controlled
variables mM and mO. The algorithms PC-ATEHEF and
PC-ATEHEDF use a single average transaction error control
loop to control ate (i.e., the controlled variable). Here, ate is
monitored and fed into the controller, which computes �lER

according to ate and ater.
Using several controllers raises the question of integra-

tion of the signals from each controller. In case PC-MP,
where miss percentage controllers are used, we need to
integrate the signals from the mandatory and the optional
subtransaction miss percentage controllers. Further, in
PC-MPU, where a combination of miss percentage and
utilization controllers is used, an integrated signal from
both the miss percentage and the utilization controllers is
computed and returned. Let �lM denote the control signal
computed by the mM controller, �lO denote the control
signal computed by the mO controller, and �lu denote the
control signal computed by the u controller. The integrated
control signal from both miss ratio controllers �lMP is
computed as follows: If both miss percentage control
signals are negative (i.e., �lM < 0 ^ �lO < 0), we set �lMP ¼
�lM þ �lO to the sum of both control signals. This is
necessary since both miss percentages are above their
references and both signals must be considered to compen-
sate for miss percentage overshoots. If the above does not
hold, we set �lMP ¼ minð�lM ; �lOÞ to the minimum of the
control signals. If one of the control signals is negative (due
to an overshoot), we return the negative one to reduce the
miss percentage of the corresponding subtransaction type.
If both are positive, the min operator provides a smooth

transition between low and high miss percentages among
mandatory and optional subtransactions [11]. In the case
when only miss percentage controllers are used, we set �lER

to �lMP . However, when a utilization controller is used as
well, we derive �lER by taking the minimum of �lMP and �lu.
This is necessary for similar reasons as those mentioned
above.

4.5 QoD Management Algorithms

We recall that settingmdeðkþ 1Þ greater thanmdeðkÞ results
in more discarded update transactions and, hence, a
decrease in update transaction load. Similarly, setting
mdeðkþ 1Þ less than mdeðkÞ results in fewer discarded
update transactions and, hence, an increase in update
transaction load. To compute mdeðkþ 1Þ given a certain
�lERðkÞ, we use a function fð�lERðkÞÞ that returns, based on
�lERðkÞ, the corresponding mdeðkþ 1Þ. The function f holds
the following property: If �lERðkÞ is less than zero, then
mdeðkþ 1Þ is set such that mdeðkþ 1Þ is greater than
mdeðkÞ, i.e., QoD is degraded. Similarly, if �lERðkÞ is greater
than zero, then mdeðkþ 1Þ is set such that mdeðkþ 1Þ is less
than mdeðkÞ, i.e., QoD is improved. We will discuss the
function f in more detail later in this section.

The algorithms PC-MPU and PC-MP control QoT by
monitoring mM , mO, and u and adjusting mde such that a
given QoS specification according to QoS specification
type A is satisfied. Here, we use EDF as a basic scheduler.
The algorithms PC-ATEHEF and PC-ATEHEDF are error-
cognizant and control QoT by monitoring ate and adjusting
mde such that a QoS specification in terms of QoS
specification type B is satisfied. Furthermore, PC-ATEHEF

and PC-ATEHEDF are designed to enhance QoS fairness
among transactions (i.e., decrease the deviation in tei
among admitted transactions). We use the same feedback
control policy for PC-ATEHEF and PC-ATEHEDF, but use
different basic schedulers, i.e., PC-ATEHEF schedules the
transactions using HEF and PC-ATEHEDF schedules the
transactions using HEDF. The details of the algorithms are
given below.

PC-MPU. The system monitors the deadline miss
percentages and the CPU utilization. At each sampling
instant, the CPU utilization adjustment, �lERðkÞ, is
derived. If �lERðkÞ is greater than zero, upgrade QoD as
much as �lERðkÞ allows. However, when �lERðkÞ is less
than zero, degrade QoD, i.e., increase mde according to
�lER, but not greater than the highest allowed mde (i.e.,
mder � ðMp þ 100Þ). Degrading the data further would
violate the upper limit of mde, given by the QoS specifica-
tion. When �lERðkÞ is less than zero and mde equals
mder � ðMp þ 100Þ, no QoD adjustment can be issued and,
hence, the system has to wait until some of the currently
running transactions terminate. An outline of PC-MPU is
given in Fig. 2a.

PC-MP. In PC-MPU, the miss percentages may stay
lower than their references since the utilization is exponen-
tially decreased every time one of the miss percentages
overshoots its reference. Consequently, the specified miss
percentage references (i.e., mM

r and mO
r ) may not be

satisfied. In PC-MP, the utilization controller is removed
to keep the miss percentages at the specified references. One
of the characteristics of the miss percentage controller is
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that, as long asmO is below its reference (i.e.,mO � mO
r ), the

controller output �lER is positive. Due to the characteristics

of f (i.e., �lERðkÞ > 0 ) mdeðkþ 1Þ < mdeðkÞ), a positive

�lER is interpreted as a QoD improvement. Consequently,

even if mO is just below its reference, QoD remains high.
It is desirable to let mO, which corresponds to QoT,

increase and decrease together with QoD given by mde. For

this reason, mde is set considering both �lER and mO. When

�lER is less than zero (i.e., mO overshoots), mde is set

according to f . However, when �lER is greater than or equal

to zero, mde is set according to the moving average of mO,

c omputed by mO
MAðkÞ ¼ �mOðkÞ þ ð1� �ÞmO

MAðk� 1Þ,
where � (0 � � � 1) is the forgetting factor [22]. The

moving average is used to reduce large deviations from

one sampling period to another. Setting � close to 1 results

in a fast adaptation, but also captures any high-frequency

changes of mO, whereas setting � close to 0 results in a slow

but smooth adaptation. When mO
MA is relatively low

compared to mO
r , mde is set to a low value relative to

mder. As mO
MA increases, mde is increased, but to a

maximum value of mder � ðMp þ 100Þ since a further

increase violates the given QoS specification. The outline

of PC-MP is given in Fig. 2b.

PC-ATEHEF and PC-ATEHEDF. These algorithms are
two variants of PC-MP, but where QoT is measured in
terms of ate, instead of mO. Hence, we replace the miss
percentage control loops for a single average transaction
error control loop. Here, mde is adjusted based on the
control signal �lER and the moving average of ate, denoted
ateMAðkÞ. We do not provide full algorithm descriptions for
PC-ATEHEF and PC-ATEHEDF, but refer instead to Fig. 2b,
where mO

MA is replaced with ateMA.
The precision of thedata is controlled by theQoDmanager

by settingmde depending on the system behavior. When f is
used to compute mdeðkþ 1Þ based on �lERðkÞ, the following
scheme is used: Discarding an update results in a decrease in
CPU load, which we refer to as the gained load. Let

glðkÞ ¼ 1

T

X

Ti2discardedðkÞ
eeti

be the sum of the estimated execution time of the discarded
update transactions divided by the sampling period T ,
where discardedðkÞ is the set of discarded update transac-
tions and eeti is the estimated execution time of the update
transaction Ti. In our approach, we profile the system and
measure gl for varying mde and linearize the relationship
between them. During each sampling period, glðkÞ is
monitored and �ðkÞ ¼ mdeðkÞ

glðkÞ and its moving average
�MAðkÞ are computed. Consequently, the relation between
mde and gl is updated to capture the current state of the
system. Having the relationship between gl and mde, we
introduce the help function,

hð�lERðkÞÞ ¼ min �MAðkÞ � ðglðkÞ � �lERðkÞÞ;ð
mder � ðMp þ 100Þ

�

:

Since mde is not allowed to overshoot more than
mder � ðMp þ 100Þ, we use the min operator to enforce this
requirement. Further, since mde by definition cannot be less
than zero, we apply the max operator on h and obtain
mdeðkþ 1Þ ¼ fð�lERðkÞÞ ¼ maxðhð�lERðkÞÞ; 0Þ.

4.6 System Modeling

To tune feedback controllers that are efficient inmanaging the
desired performance and that react rapidly to changes in
workload, it is necessary to have a model that accurately
describes the behavior of the controlled system [14]. The
particular formof themodelsweconstruct, i.e., linearmodels,
enables us to use a set of powerful analyticalmethods that are
available in control theory, e.g., root locus [14]. For analysis
purposes, we apply the principles ofZ-transform theory [14].
Using Z-transforms enables us to reduce the complexity of
large dynamic systems into the simpler representation by
Z-transforms. Further, Z-transforms are used in many
controller tuning procedures, e.g., root locus [14]. We adopt
the following notation, where AðzÞ denotes the Z-transform

of the variable aðkÞ. The goal is to derive a transfer function
describing the relation between the manipulated variable,
i.e., �LERðzÞ, and the controlled variables, i.e., MMðzÞ,
MOðzÞ, ATEðzÞ, and UðzÞ. In this section, we first present
the STA model, previously presented [11], where some
dynamic relations are approximated by static relations
(hence, the name STA referring to statics). Then, we propose
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a newmodel, called DYN, which generalizes the STAmodel
[11] by capturing additional system dynamics (the name
DYN refers to dynamics).

4.6.1 STA

The estimated requested workload of admitted user
transactions lER in the next sampling period is changed
through the manipulated variable �lER, given by

lERðkþ 1Þ ¼ lERðkÞ þ �lERðkÞ: ð1Þ

Hence, lER is the integration of the control input �lER. Now,
the estimated admitted workload of user transactions lE
may differ from lER since external load applied on the
database may not be sufficient to satisfy lER or the admitted
workload is decreased due to deadline misses and,
consequently, early termination of transactions. Here,
however, we approximate the estimated load of admitted
transactions by lER, i.e., lE ¼ lER (in DYN, we take a
different approach).

The actual workload, denoted lAðkÞ, may differ from
lEðkÞ due to incomplete knowledge about the controlled
system, e.g., unknown execution times of the transactions
and data conflicts. Therefore, we get lAðkÞ ¼ gAðkÞlEðkÞ,
where the workload ratio gAðkÞ represents the workload
variation in terms of actual total requested workload. For
example, gAðkÞ equal to two means that the actual workload
is twice the estimated workload. It is obvious that gAðkÞ
cannot be deterministically modeled.3 However, by profil-
ing the controlled system, we can compute gAðkÞ for each
sampling and form the average of gAðkÞ, denoted gA, which
is then used in our model to describe the relation between
lE and lA in the average case, i.e.,

lAðkÞ ¼ gAlEðkÞ: ð2Þ

The relationship between the actual workload lA and the
utilization u is nonlinear due to saturation, as given by the
following:

uðkÞ ¼ lAðkÞ; lAðkÞ � 100%

100%; lAðkÞ > 100%:

�

ð3Þ

When lAðkÞ is less than or equal to 100 percent, i.e., the CPU
is underutilized, uðkÞ is outside its saturation zone and
equals lAðkÞ. However, when uðkÞ is within its saturation
zone, i.e., lAðkÞ is greater than 100 percent, then uðkÞ
remains at 100 percent, despite changes to lA.

From classical scheduling theory, it is possible to
determine whether a set of tasks can be scheduled such
that no deadline misses occur [8]. Turning to the case of the
miss percentages, we define the schedulable threshold for
mandatory subtransactions, denoted lMth ðkÞ, and optional
subtransactions, denoted lOthðkÞ, as the load threshold in the
kth sampling period for which no deadline miss can be
observed for the respective type of subtransaction. When
the miss percentages are saturated, i.e., they are inside the
saturation zones given by lAðkÞ � lMth ðkÞ and lAðkÞ � lOthðkÞ,
no deadline misses are observed. At this condition,
adjustments of �lER and, consequently, lAðkÞ will not affect

the miss percentages until the actual load becomes greater
than the threshold and miss percentages start increasing.
However, when outside the saturation zones, i.e., lAðkÞ >
lMth ðkÞ or lAðkÞ > lOthðkÞ, the miss percentage for either
subtransaction increases nonlinearly. Note, since manda-
tory subtransactions have a higher priority than optional
subtransactions, the schedulable threshold for mandatory
subtransactions is greater than the threshold for optional
subtransactions, i.e., lMth ðkÞ > lOthðkÞ.

Since feedback control relies on linear systems, we
linearize the relationship between lA and mM by deriving
the ratio between lA and mM in the vicinity of the miss ratio
reference mM

r . Similarly, we form the linear relationship
between lA andmO by deriving the ratio between lA andmO

in the vicinity of the miss ratio reference mO
r , giving the

equations,

gMm ¼ mM

lA
; mM ¼ mM

r ; ð4Þ

gOm ¼ mO

lA
; mO ¼ mO

r : ð5Þ

We model the average transaction error similarly to the
miss percentages. The relationship between lA and ate is
nonlinear due to saturation. We define the precisely
schedulable threshold lATEth ðkÞ as the load threshold in the
kth period for which all admitted subtransactions meet
their deadlines. The average transaction error becomes
saturated when it is within its saturation zone, given by
lAðkÞ � lATEth ðkÞ. When the average transaction error is
saturated, ate remains zero despite changes to �lER and,
hence, lA. However, when outside the saturation zones, i.e.,
lAðkÞ > lATEth ðkÞ, the average transaction error increases
nonlinearly. We linearize the relationship between lA and
ate by taking the ratio between lA and ate in the vicinity of
the reference ater, i.e.,

gate ¼
ate

lA
; ate ¼ ater: ð6Þ

From (1)-(6), we can derive a transfer function for each of
the controlled variables when they are outside their
saturation zones. Hence, under the condition lA � 100%,
there exists a transfer function GSTA;UðzÞ ¼ gA

z�1
from the

control input �LERðzÞ to CPU utilization UðzÞ. Similarly,
under the conditions lMth ðkÞ < lA, l

O
thðkÞ < lA, and lateth ðkÞ < lA,

the transfer functions

GM
STA;mðzÞ ¼

gAg
M
m

z� 1
; GO

STA;mðzÞ ¼
gAg

O
m

z� 1
; GSTA;ateðzÞ ¼

gAgate

z� 1

relate the control input �LERðzÞ to the controlled variables
MMðzÞ, MOðzÞ, and ATEðzÞ, respectively.

4.6.2 DYN

In DYN, we extend the model STA to include additional
system dynamics. In STA, we assumed that there are static
relations between lER, u, m

M , mO, and ate. We here show
that, in fact, there are dynamic relations between these
variables and STA fails to capture them. Starting from the
model input �lERðkÞ, we compute lERðkÞ according to (1).
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Given a certain lERðkÞ, the estimated workload of admitted
user transactions,

lEðkÞ ¼ gL minðlERðkÞ; �lElEðkÞÞ; ð7Þ

is the product of the requested load factor gL and the
minimum of the estimated requested load and the
maximum estimated load �lElEðkÞ that can be made available.
The upper limit of the admitted load, given by �lElEðkÞ, makes
the relationship between lERðkÞ and lEðkÞ nonlinear due to
saturation. lEðkÞ becomes saturated when it is within its
saturation zone, given by lER > �lElEðkÞ. However, when
outside the saturation zone, lEðkÞ increases linearly with
lERðkÞ. Furthermore, even though outside the saturation
zone, the estimated admitted workload lEðkÞ may be lower
than the estimated requested workload lERðkÞ due to early
termination of the tasks caused by deadline misses. To
capture this difference, we derive the ratio between lERðkÞ
and lEðkÞ in the vicinity of lEðkÞ corresponding tomO

r or ater
and we obtain requested load factor gL.

Now, under the condition lER < �lElE , it can be observed
that, given a certain increase in estimated requested
workload lER, it takes some time before the estimated load
lE and, hence, the utilization u reach lER. The time it takes
for lE to reach lER is determined by the amount of workload
submitted to the system �lElE or, more specifically, the arrival
rate of the transactions submitted to the system. The greater
�lElE is, the faster we can fill up the workload, reaching lER

earlier. Similarly, a decrease in lER does not result in an
immediate decrease in lE since currently running transac-
tions have to terminate. Hence, an increase/decrease in lER

does not result in an immediate increase/decrease in lE
and, consequently, we have a dynamic relation between lER

and lE . The relation between lE and lA is linearized
according to (2), i.e., we describe the actual workload in
terms gA.

Furthermore, we argue that the relation between lA and
mM , mO, ate is nonstatic. We give the rationale only for the
case of lA and a miss ratio m, as the dynamics of the
relationship between lA and ate is described by the same
line of argument. Given a certain lA, the time it takes for m
to reach gmlA, shown in (4), depends on the actual basic
scheduler used. Under EDF scheduling, newly admitted
transactions are placed further down in the ready queue
since they are less likely to have earlier deadlines than
transactions admitted earlier. This means that an actual
change to m is not noticed until the newly admitted
transactions are executing, which may take a while until the
older ones have terminated. Consider the example given in
Fig. 3, where the execution time of the transactions is two
time units. We want to increase the number of deadline
misses during interval ½kT ; ðkþ 1ÞT � and, hence, at sam-
pling k, we increase the load by raising the admission rate
of transactions, which are scheduled to be executed later
than the already admitted transactions, i.e., in interval
½ðkþ 1ÞT; ðkþ 2ÞT �. As shown in Fig. 3, the number of
deadline misses does not increase in the interval
½kT ; ðkþ 1ÞT �, instead it increases in the interval
½ðkþ 1ÞT; ðkþ 2ÞT �, which causes a delay between the
issuing of load increase and the observed increase in
number of deadline misses. Under HEF scheduling, newly

arrived transactions are more likely to have higher priority

than old transactions (since they have greater transaction

error) and, hence, they are placed at the front of the ready

queue. The set of newly admitted transactions are therefore

executed instantaneously and, hence, a change to m is

noticed earlier than compared to EDF scheduling. Hence,

under HEF scheduling, the controlled variable is more

responsive to changes in the manipulated variable as m

converges faster toward gmlA.
We have now established that, given a certain change in

lER, it takes some time before the controlled variables u,

mM , mO, and ate reach their final values uS , m
M
S , mO

S , and

ateS in the steady-state. The speed by which a controlled

variable reaches its final values is determined by the time

constant of the system. Let T denote the sampling period,

and Tu, T
M
m , TO

m , and Tate denote the time constants of u,mM ,

mO, and ate, respectively. To give a concise statement of the

modeling, we only examine the case for mM as the

dynamics of u, mO, and ate are modeled similarly. The

difference equation,

mMðkþ 1Þ ¼ T ðmM
S ðkÞ �mMðkÞÞ

TM
m

þmMðkÞ; ð8Þ

relates mM and its final value mM
S such that it takes a

number of samples for mM to reach mM
S . Initially, when the

difference between mM
S and mM is large, mM converges

rapidly toward mM
S . However, the speed of convergence

decreases as the difference between mM
S and mM decreases.

It shows that the speed of convergence is determined by

TM
m , i.e., an increase in TM

m results in a slower convergence.

The Z-transform of (8) is given by

GM
D;MðzÞ ¼ T

TM
m

1

z� 1þ T
TM
m

: ð9Þ

A step function with amplitude mM
S applied on (9) gives the

time domain solution,

mMðkÞ ¼ mM
S 1� 1� T

TM
m

� �k
" #

:

Here, it is clearly shown that the greater TM
m is, the more

time it takes for mM to reach the final value mM
S , i.e., the

slowermM reacts to changes inmM
S . Let us now examine the

step response of the controlled system from lER to mM and

measure the time, �Mm , it takes for mMðkÞ to reach

ð1� e�1ÞmM
S , i.e., approximately 63 percent of the final

value of mMðkÞ. At time �Mm , we have that
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mMðkÞ ¼ mM �Mm
T

� �

¼ ð1� e�1ÞmM
S

¼ mM
S 1� 1� T

TM
m

� �

�Mm
T

2

4

3

5

and solving for TM
m gives

TM
m ¼ T

1� e
� T

�Mm

: ð10Þ

Hence, we compute TM
m according to (10), where, given a

step on lER, �
M
m is the time it takes formM to reach 63 percent

of the final value. We now give the following results, based
on (7)-(9).

Under the conditions lER � �lElE and lA � 100%, there
exists a transfer function,

GDYN;uðzÞ ¼
gLgATT

�1
u

ðz� 1Þðz� 1þ TT�1
u Þ ;

from the control input �LERðzÞ to UðzÞ, where lER and u

are dynamically related. Under the conditions lER � �lElE ,
lMth ðkÞ < lA, lOthðkÞ < lA, and lATE

th ðkÞ < lA, the transfer
functions

GM
DYN;mðzÞ ¼

gLgAg
M
mT ðTM

m Þ�1

ðz� 1Þðz� 1þ T ðTM
m Þ�1Þ

GO
DYN;mðzÞ ¼

gLgAg
O
mT ðTO

mÞ
�1

ðz� 1Þðz� 1þ T ðTO
mÞ

�1Þ

GDYN;ateðzÞ ¼
gLgAgateTT

�1
ate

ðz� 1Þðz� 1þ TT�1
ate Þ

relate the control input �LERðzÞ to the controlled variables
MMðzÞ, MOðzÞ, and ATEðzÞ, respectively.

Aspresented above,wehave extended the STAmodel and
the new model, DYN, captures additional dynamics of the
controlled system, by giving more accurate time-domain
relations between the control input �lER and the outputs u,
mM ,mO, and ate.We have also described how to compute the
models parameters gL, gA, g

M
m , gOm, gate, Tu, T

M
m , TO

m , and Tate.

5 PERFORMANCE EVALUATION

In this section, a detailed description of the performed
experiments is given. The goal and the background of the
experiments are discussed and, finally, the results are
presented.

5.1 Performance Evaluation Goals

Considering the goal of our work, stated in Section 2, the
two objectives of the performance evaluation are 1) to
determine if the presented algorithms can provide QoS
guarantees according to a QoS specification and 2) to
determine the suitability of the proposed model DYN for
describing the performance of RTDBs. Considering our first
objective, we have studied and evaluated the behavior of
the algorithms under various conditions, where a set of
parameters have been varied. They are: 1) Load (load) as
computational systems may show different behaviors for
different loads, especially when the system is overloaded.
For this reason, we measure the performance when

applying different loads to the system. 2) Execution time
estimation error (esterr) as, often, exact execution time
estimates of transactions are not known. To study how
runtime error affects the algorithms, we measure the
performance considering different execution time estima-
tion errors. The second objective is investigated by
comparing the controller tuned using DYN with the
controller tuned using STA with regard to performance
reliability and performance adaptation.

5.2 Simulation Setup

The simulated workload consists of update and user
transactions, which access data and perform virtual
arithmetic/logical operations on the data. We have used a
workload based on the analysis of the NYSE stock trades
and commercial databases [23]. Update transactions occupy
approximately 50 percent of the workload. In our experi-
ments, one simulation run lasts for 10 minutes of simulated
time. For all the performance data, we present the average
of 10 simulation runs. We have derived 95 percent
confidence intervals based on the samples obtained from
each run and using the t-distribution [24]. The workload
model of the update and user transactions is described as
follows: We use the following notation, where the attribute
xi refers to the transaction Ti and xi½ti� is associated with the
subtransaction ti of Ti.

Data and Update Transactions. The DB holds 1,000 tem-
poral data objects (di), where each data object is updated by a
stream (Streami, 1 � i � 1; 000).4Theperiod (pi) is uniformly
distributed in the range (100ms, 50s), i.e., U : ð100ms; 50sÞ,
and estimated execution time (eeti) is given by
U : ð1ms; 8msÞ. The actual execution time of an update is
given by the normal distribution N : ðeeti;

ffiffiffiffiffiffiffiffi

eeti
p Þ. The

average update value (avi) of each Streami is given by
U : ð0; 100Þ. The actual value (vi) of an update is set according
to N : ðavi; avi � varfactorÞ, where varfactor is uniformly
distributed in (0, 1). The deadline is set to arrivaltimei þ pi.
Wedefine data error as the relative deviation between cvi and
vi as given by dei ¼ 100� jcvi�vij

jcvij ð%Þ.
User Transactions. Each Sourcei generates a transaction

Ti, consisting of one mandatory subtransaction, mi, and jOij
(1 � jOij � 10) optional subtransaction(s), oi;j (1 � j � jOij).
jOij is uniformly distributed between 1 and 10. The estimated
(average) execution time (eeti½ti�) of the mandatory and the
optional subtransactions is given by U : ð5ms; 15msÞ. The
execution time estimation error factor esterr is used to
introduce execution time estimation error in the average
execution time given by aeti½ti� ¼ ðesterrþ 1Þ � eeti½ti�.
Further, upon generation of a transaction, Sourcei associates
an actual execution time to each subtransaction ti, which is
given by N : ðaeti½ti�;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aeti½ti�
p

Þ. The deadline is set to
arrivaltimei þ eeti � slackfactor. The slack factor is uni-
formly distributed according to U : ð20; 40Þ. Transactions
are evenly distributed in four classes representing error
function orders of 0.5, 1, 2, and 5 (e.g., 25 percent of the
transactions have an error order of 1).

We use the QoS specifications
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QoSSpecA ¼ fmM
r ¼ 1%;mO

r ¼ 10%;mder ¼ 2%;

Ts � 60s;Mp � 30%g

for PC-MPU and PC-MP, and

QoSSpecB ¼ fater ¼ 20%;mder ¼ 5%; Ts � 60s;Mp � 30%g

for PC-ATEEDF, PC-ATEHEF, and PC-ATEHEDF.

5.3 Baselines

To the best of our knowledge, there has been no earlier

work on techniques for managing data imprecision and

transaction imprecision aimed at satisfying specific QoS or

QoD requirements. For this reason, we have developed two

baseline algorithms, Baseline-1 and Baseline-2, to study the

impact of the workload on the system. In our performance

evaluation, we also include PC-ATEEDF, which is working

as a reference algorithm in addition to the baselines. We

choose EDF since it is optimal in minimizing deadline

misses and has well-known behavior. The algorithm outline

of Baseline-1 and Baseline-2 is given below. Depending on

the given QoS specification type, let � be either mO or ate.

Baseline-1. If � (i.e.,mO or ate) is greater than its reference,

the utilization is lowered by discarding more update

transactions, i.e., increasing mde. Consequently, the precise-

ness of the data is adjusted based on �.mde is set according to

mdeðkþ 1Þ ¼ minð�ðkÞ
�r

mder;mder � ðMp þ 100ÞÞ. A simple

AC is applied, where a transaction (Ti) is admitted if the

estimated utilization of admitted subtransactions and eeti is

less or equal to 80 percent.
Baseline-2. To prevent a potential overshoot, we increase

mde as soon as � is greater than zero. In Baseline-1, a

significant change in mde may introduce oscillations in �.

This is avoided in Baseline-2 by increasing and decreasing

mde stepwise. If �ðkÞ is greater than zero, increase mdeðkÞ
stepwise until mder � ðMp þ 100Þ is reached (i.e. ,

mdeðkþ 1Þ ¼ minðmdeðkÞ þmdestep;mder � ðMp þ 100ÞÞ). If

�ðkÞ is equal to zero, decrease mdeðkÞ stepwise until zero is

reached (i.e., mdeðkþ 1Þ ¼ maxðmdeðkÞ �mdestep; 0Þ). The

same AC as in Baseline-1 is used.

5.4 Experiment 1: Results of Varying Load

We apply loads from 50 percent to 200 percent. The
execution time estimation error factor is set to zero (i.e.,
esterr ¼ 0). Controllers tuned using STA are used. Fig. 4a
shows the performance of PC-MPU and PC-MP and Fig. 4b
shows the performance of PC-ATEHEF, PC-ATEHEDF, and
PC-ATEEDF. Dash-dotted lines indicate references. For
clarity of presentation, we do not include the baselines in
Fig. 4b.

mM has been observed to be zero5 for all four algorithms
and, therefore, this has not been included in Fig. 4a. The
specified miss percentage reference (mM

r ) has been set to
1 percent and this is not reached. This is due to the higher
priority of mandatory subtransactions compared to optional
subtransactions. According to our investigations, the miss
percentage of mandatory subtransactions starts increasing
when the miss percentage of optional subtransactions is
over 90 percent. Consequently, since the miss percentage of
optional subtransactions does not reach 90 percent, the miss
percentage of mandatory subtransactions remains at zero.

Turning to mO, the 95 percent confidence intervals for all
algorithms are less than ½mO � 3:4%;mO þ 3:4%�. For Base-
line-1 and Baseline-2, the miss percentage of optional
subtransactionsmO increases as the load increases, violating
the reference miss percentage, mO

r , at loads exceeding
150 percent. In the case of PC-MPU,mO is near zero at loads
150percent and200percent. Even though themisspercentage
is low, it does not fully satisfy the QoS specification. This is in
line with our earlier discussions regarding the behavior of
PC-MPU. The low miss percentage is due to the utilization
controller attempting to reduce potential overshoots by
reducing the utilization, which, in turn, decreases the miss
percentage. PC-MP, on the other hand, shows a better
performance. The averagemO at 150 percent and 200 percent
is 8:5� 0:1%, which is fairly close tomO

r .
The 95 percent confidence intervals of ate are less than

½ate� 2:1%; ateþ 2:1%�. For Baseline-1 and Baseline-2, the
ate increases as the load increases, violating the reference,
ater, at loads exceeding 175 percent. In the case of
PC-ATEEDF, ate reaches the reference at 150 percent of
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Fig. 4. Experiment 1: Average performance when varying load. (a) PC-MPU and PC-MP. (b) PC-ATE.

5. We have not observed any deadline misses.



applied load. For PC-ATEHEF and PC-ATEHEDF, ate

reaches the reference at 175 percent. All PC-ATE algorithms
provide a robust performance since ate is kept at the
specified reference during overloads.

Considering sdte, the 95 percent confidence intervals for
all algorithms are less than ½sdte� 1:92%; sdteþ 1:92%�. For
all algorithms, sdte increases as load and ate increase. At
200 percent load, the corresponding sdte for PC-ATEEDF,
PC-ATEHEDF, and PC-ATEHEF is 34.1 percent, 25.2 percent,
and 18.2 percent, respectively. Consequently, deviation of
transaction error isminimizedwhenHEF scheduling is used.
It isworthmentioning that, underHEFscheduling, sdte is less
as resources are allocated with regard to transaction errors,
while, under EDF scheduling, resources are distributed with
regard to deadlines. Under EDF scheduling, two transactions
withdeadlinesnear eachothermay receivedifferent amounts
of resources and, hence, theymay terminatewith a significant
deviation in transaction error, while, in the same case, under
HEF scheduling, the resources are divided such that both
transactions terminate with transaction errors close to each
other.

The 95 percent confidence intervals of mde are less than
½mde� 0:13%;mdeþ 0:13%�. Starting with Fig. 4a, the
average mde for Baseline-1 and Baseline-2 violates the
reference mde set to 2 percent. In contrast, in the case of
PC-MPU, mde is significantly lower than mder. Since the
miss percentages are kept low at all times, they are not
likely to overshoot. Consequently, the control signal from
the miss percentage controllers is likely to be positive,
which is interpreted by the QoD manager as a QoD upgrade
and, hence, mde will not reach the level of mder. This is
further explained in Section 5.6, where the transient
performance of the algorithms is discussed. PC-MP pro-
vides an averagemde closer tomder, given by 1:78� 0:024%

at loads 150 percent and 200 percent. However, mde does
not reachmder sincemde is set according tomO (which does
not reach mO

r ). Turning to Fig. 4b, the 95 percent confidence
intervals of mde are less than ½mde� 0:5%;mdeþ 0:5%�. The
average mde for Baseline-1 and Baseline-2 violates the
referencemde set to 5 percent at applied loads of 175 percent
and 130 percent, respectively. In contrast, in the case of
PC-ATEEDF, PC-ATEHEF, and PC-ATEHEDF, mde is at the
reference during overloads.

The experiments have shown that PC-MPU produces a
miss percentage significantly lower than the specified miss
percentages and, hence, it does not fully satisfy the given
QoS specification. PC-MP, on the other hand, produces miss
percentages close to the given references and, consequently,
the given QoS specification is satisfied with regard to
steady-state performance. We have also seen that
PC-ATEHEF, PC-ATEHEDF, and PC-ATEEDF are robust
against varying applied loads. Moreover, PC-ATEHEF

outperforms the other algorithms with regard to QoS
fairness of admitted transactions.

5.5 Experiment 2: Results of Varying esterr

We apply 200 percent load and vary the execution time
estimation error according to esterr = 0.00, 0.25, 0.50, 0.75,
and 1.00. Controllers tuned using STA are used. Fig. 5a and
Fig. 5b show the performance of PC-MPU, PC-MP,
PC-ATEHEF, PC-ATEHEDF, and PC-ATEEDF. Dash-dotted
lines indicate references.

As in Experiment 1, mM is zero for all approaches and
esterr. Turning to mO, the 95 percent confidence intervals
for all algorithms are less than ½mO � 2:7%;mO þ 2:7%�. As
expected, Baseline-1 and Baseline-2 do not satisfy the QoS
specification, whereas PC-MPU and PC-MP are insensitive
against varying esterr, as mO and mde do not change
considerably when varying esterr. Studying ate, we note
that Baseline-1 and Baseline-2 do not satisfy the QoS
specification as ate reaches 52 percent when esterr equals
1. The 95 percent confidence intervals for PC-ATE algo-
rithms are less than ½ate� 0:3%; ateþ 0:3%�. PC-ATEEDF,
PC-ATEHEF, and PC-ATEHEDF are insensitive against
varying esterr as ate and mde do not change with varying
esterr. From the above, we can conclude that PC-MPU,
PC-MP, PC-ATEHEF, and PC-ATEHEDF are insensitive to
changes to execution time estimation and, hence, they can
easily adapt when accurate runtime estimates are not
known.

5.6 Experiment 3: Transient Performance

Studying the average performance is often not enough
when dealing with dynamic systems and, therefore, we
study the transient performance of PC-MPU, PC-MP,
PC-ATEHEF, PC-ATEHEDF, and PC-ATEEDF. We set load

to 200 percent and esterr to 1.
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Fig. 5. Experiment 2: Average performance when varying execution time estimation error. (a) PC-MPU and PC-MP. (b) PC-ATE.



5.6.1 Results of Controllers Tuned Using STA

Fig. 6a, Fig. 6b, and Fig. 6c show the transient behavior of
PC-MPU, PC-MP, and PC-ATEEDF with controllers tuned
using STA. We refer to Table 1 for a summary of the
performance of PC-ATEHEF, PC-ATEHEDF, and PC-ATEEDF

with controller tuned using STA and DYN. The dash-dotted
line indicates the reference, while the dotted line indicates
maximum overshoot. For all algorithms, mO and ate

overshoots decay faster than 60s, which is less than the
settling time requirement given in the QoS specification.
Starting with PC-MPU, we can note that mO is kept low at
all times. This is expected since the average mO was shown
to be low. The reader may have noticed that mde is greater
than zero in the interval 20-150, wheremO is zero. Sincemde

is greater than zero, it is clear that �lER may become
negative during that period. This is due to the behavior of
the utilization controller. Initially, the utilization is below
the reference (ur). As the utilization increases and no miss
percentage overshoots are observed, ur increases linearly
until a miss percentage is observed (one of the miss
percentage controllers takes over), in which case, ur is
reduced exponentially. In PC-MPU, ur is increased only if
the utilization controller has taken over. Our investigations
show that the utilization controller takes over once the
utilization overshoots ur, resulting in a negative �lER and,
hence, ur being increased too late. Consequently, the
negative �lER leads to an increase in mde. PC-MP shows a
more satisfying result as both mO and mde increase and
decrease together. Both mO and mde are kept around mO

r

and mder, respectively. Although the average mO is close
to mO

r , we can see that mO often overshoots its reference.
This is due to disturbances in load due to data conflicts,
resulting in restarts or aborts of transactions, and
inaccurate execution time estimations. The highest over-
shoot for PC-ATEEDF has been noted to 42.38 percent at
time 15. For PC-ATEHEF, the highest overshoot was noted

to 32.31 percent at time 15 and, finally, the highest
overshoot for PC-ATEHEDF was observed to be 37.11
percent at time 15. As we can see, the algorithms do not
satisfy the overshoot requirements given in the QoS
specification (i.e., ate � 26%). It is worth mentioning that
data conflicts, aborts, or restarts of transactions and
inaccurate runtime estimates contribute to disturbances in
an RTDB, complicating the control of ate (note that we have
set esterr to one).

From the discussions in Section 4.6.2, we understood
that, under HEF scheduling, the controlled variable is more
responsive to changes in the manipulated variable. Now,
from feedback control theory, we know that delays in
systems (low responsiveness of controlled variables) pro-
mote oscillations and may even introduce instability [14].
Given this, we can conclude that, under EDF scheduling, we
should observe more oscillations in ate than compared with
HEF scheduling, which is consistent with the data pre-
sented in Table 1. We recall from Section 4.1 that a decrease
in Js and Ja implies an improvement in control of
performance and QoS. As we can see from Table 1,
PC-ATEHEF produces fewer ate oscillations around ater
than PC-ATEEDF. Further, PC-ATEHEF is less prone to
overshoot.

5.6.2 Results of Controllers Tuned Using DYN

For simplicity, we refer to controllers tuned using the model
STA as STA controllers and controllers tuned using the
model DYN as DYN controllers. The control signal �lER of
the STA controller varies between�13 percent to 30 percent,
whereas the control signal of the DYN controller varies
between �1 percent to 7 percent. In other words, the
STA controller controls the RTDB more aggressively,
resulting in greater deviations between ate and ater. Since
the STA controller computes �lER according to a statical
relation between lER and ate, the controller does not
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Fig. 6. Experiment 3: Transient performance. (a) PC-MPU. (b) PC-MP. (c) PC-ATEEDF.

TABLE 1
Js and Ja with 95 Percent Confidence Intervals



consider the dynamics of the controlled system. Hence, it
does not consider that, given a certain �lER, it may take a
few samples until the corresponding ate is reached. There-
fore, the STA controller persists with changing the load
until the desired ater is reached, at which point, ate

overshoots due to aggressive control. This is handled more
efficiently with the DYN controller as it is tuned according
to a dynamic model and, hence, the controller is more
gentle when controlling the system.

Table 1 gives a summary of the performance of the
controllers with respect to Js and Ja, which show how
closely the controlled variable ate follows its reference ater.
The performance of PC-ATEEDF and PC-ATEHEDF is
significantly improved when using DYN for tuning con-
trollers. However, the performance improvement for
PC-ATEHEF is too small to be considered significant. From
the results and discussions in this section, we learned that
the scheduling policy of EDF induces a certain delay
between a change in the load and ate, whereas the delay is
less for the HEF scheduling policy. The delay caused by
EDF is compensated for by the DYN controller as opposed
to the STA controller, which does not compensate for
delays, and, hence, we achieve almost the same perfor-
mance as PC-ATEHEF, where a DYN controller is used. The
experiments show that feedback controllers for PC-ATEEDF

and PC-ATEHEDF tuned using DYN outperform controllers
tuned using STA.

5.7 Summary of Results and Discussion

Our experiments show that PC-MPU, PC-MP, PC-ATEHEF,
and PC-ATEHEDF are robust against inaccurate execution
time estimations as mO, ate, and mde remain unaffected for
varying execution time estimation errors. PC-MPU keeps
mO less than its reference and is able to efficiently suppress
deadline miss percentage overshoots. PC-MPU should,
therefore, be applied to RTDBs where deadline miss
percentage overshoots cannot be tolerated. PC-MP provides
an mO near its reference, but generates overshoots greater
than the maximum allowed overshoot. The experiments
show that PC-MP is particularly useful when mO must be
near its reference, but where overshoots are accepted. It was
observed that PC-ATEHEF provides a lower sdte compared
to other algorithms, lowering the deviation of transaction
error among terminated transactions. This property is
useful in applications where QoS fairness among transac-
tions is emphasized. Further, we saw that the control
performance is greatly enhanced when using DYN as
compared to STA [11]. This aids a system operator in
configuring RTDBs that are highly reactive to changes in
applied load and execution time estimation errors, provid-
ing increased performance reliability and enhanced
QoS adaptation.

6 RELATED WORK

Liu et al. [3] and Hansson et al. [25] presented algorithms
for minimizing the total error and total weighted error of a
set of tasks. Their approaches require the knowledge of
accurate processing times of the tasks, which is often not
available in RTDBs. Bestavros and Nagy have presented
approaches for managing the performance of RTDBs, where

the execution time of the transactions is unknown [26]. Each
transaction contributes with a profit when completing
successfully. An admission controller is used to maximize
the profit of the system. The work by Liu et al. Hansson
et al., and Bestavros and Nagy focuses on maximizing or
minimizing a performance metric (e.g., profit). These
previous approaches cannot be applied to our problem
since, in our case, we want to control a set of performance
metrics such that they converge toward their references as
given by a QoS specification.

Lu et al. have presented a feedback control scheduling
framework where they propose algorithms for managing
the miss percentage and/or utilization [11]. In comparison
to the proposed algorithms in this paper, they do not
address the problem of maximizing QoS fairness among
admitted tasks. Further, their model statically relates
estimated requested load, deadline miss ratio, and utiliza-
tion. In this paper, we have extended their model to capture
the dynamic relationships between these variables. Parekh
et al. use feedback control scheduling to control the length
of a queue of remote procedure calls (RPCs) arriving at a
server [10]. In contrast to their work we have chosen
deadline miss percentage, utilization, and average transac-
tion error as the controlled variables.

Kang et al. use feedback control scheduling to manage
the deadline miss ratio of transactions and freshness
requirements of data objects [23]. In contrast to the work
by Kang et al., we have, in this paper, described a set of
algorithms for managing QoS based on feedback control
scheduling and imprecise computation, where QoS is
defined in terms of transaction and data preciseness.
Further, we have introduced QoS fairness, a set of novel
QoD management algorithms including two new schedul-
ing algorithms (HEF and HEDF), and a dynamic model
giving a more accurate description of the controlled system.
Kuo and Ho have introduced the notion of similarity [27],
where a similarity relation gives whether two transactions
produce similar results. However, the work by Kuo and Ho
does not address unknown workload characteristics.

Davidson and Watters proposed a method for generating
monotonically improving answers in RTDBs and distrib-
uted RTDBs [28]. A query processor, APPROXIMATE [7],
produces an approximate answer if there is not enough time
available. The accuracy of the improved answer increases
monotonically as the computation time increases. The
relational database system proposed in [29], can produce
approximate answers to queries within certain deadlines.
Lee et al. studied the performance of real-time transaction
processing in broadcast environments [30]. In contrast to
the approaches above, we have introduced precision at the
transaction level and the data object level and manage QoS
using feedback control.

7 CONCLUSIONS AND FUTURE WORK

In this paper, we have argued for the need for increased
adaptability of applications that provide real-time data
services, while operating in highly unpredictable environ-
ments. Typically, transactions cannot be subject to exact
schedulability analysis given the lack of a priori knowledge
of the workload, making transient overloads inevitable.
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Furthermore, these systems are becoming larger and more
complex and, at the same time, they are being used in
applications where performance guarantees are needed. To
address these issues, we have proposed a QoS-sensitive
approach based on imprecise computation [3] applied on
transactions and data objects.

The expressive power of our QoS specification model
allows a database operator to specify not only the desired
steady-state performance, representing the nominal system
operation, but also the transient-state performance describ-
ing the worst-case system performance and system adapt-
ability in the face of unexpected failures or load variation.
To provide QoS guarantees without a priori knowledge of
the workload, we apply feedback control, where the
performance of the RTDB is continuously monitored and
modified according to the given QoS specification. The
algorithms PC-MPU and PC-MP address QoS specifications
given in terms of deadline miss percentage of optional
subtransactions, while PC-ATEHEF and PC-ATEHEDF ad-
dress specifications based on the notion of transaction error.
Our performance evaluation shows that, given a QoS
specification, the four algorithms PC-MPU, PC-MP,
PC-ATEHEF, and PC-ATEHEDF give a robust and controlled
behavior of RTDBs in terms of transaction and data
precision, even for transient overloads and with inaccurate
runtime estimates of the transactions. The proposed
algorithms outperform the baseline algorithms and
PC-ATEEDF, where transactions are scheduled with EDF
and feedback control.

We will extend our work to manage QoS of derived data
and service differentiation. In this work, we have consid-
ered the milestone approach to imprecise computation. We
plan to apply other types of imprecise computation
techniques.
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