
Specification and Planning of UAV Missions:
A Process Algebra Approach

Sertac Karaman Steven Rasmussen Derek Kingston Emilio Frazzoli

Abstract— Formal languages have recently come under
attention as a powerful tool to describe in a precise and
rigorous way mission specifications (i.e., mission objec-
tives and constraints) for robotic systems, and to design
planning and control algorithms that provably achieve the
specifications. In this paper, we consider Process Algebras
as a mission specification language for teams of UAVs.
The main advantage of the proposed approach is that
Process Algebra specifications are amenable to efficient
planning algorithms. In particular, a tree-search algorithm
is presented that computes a feasible plan in polynomial
time. Branch-and-bound techniques are used to compute
an optimal plan if computation time is available. Several
mission specification examples are presented, and results
from a numerical simulation are discussed.

I. INTRODUCTION
Unmanned Vehicles constitute an emerging technol-

ogy to be used in civilian and military missions in
several domains, where the tasks that need to be han-
dled are dull, dangerous, complex, or even impossible
for humans to do. Within the last decade, there has
been a considerable amount of research on designing
algorithms for high-level reasoning and coordination of
multiple Unmanned Aerial Vehicles (UAVs) [1]–[3].

This work focuses on augmenting cooperative con-
trol algorithms with a formal language to state mission
objectives and constraints (the mission specifications),
using which human operators can interface effectively
with multiple UAVs to execute complex tasks. Recently,
temporal logics were utilized for automated controller
design from complex specifications [4], [5]. Mainly
inspired by this literature, formal languages such as
Linear Temporal Logic (LTL) and Metric Temporal
Logic (MTL) had been considered for specification
purposes in optimal cooperative control, and Mixed
Integer Linear Programming (MILP) based algorithms
were utilized to generate optimal plans [6], [7].

While these languages are very expressive, they gen-
erally require computationally intensive algorithms, es-

S. Karaman is with the Department of Mechanical Engineering,
Massachusetts Institute of Technology, Cambridge, MA 02139, USA
sertac@mit.edu

S. Rasmussen is with Miami Valley Aerospace LLC
at the Control Science Center of Excellence, Air Force
Research Laboratory, Wright-Patterson AFB, OH 45433, USA
Steven.Rasmussen@wpafb.af.mil

D. Kingston is with the Control Science Center of Excellence, Air
Force Research Laboratory, Wright-Patterson AFB, OH 45433, USA
Derek.Kingston@wpafb.af.mil

E. Frazzoli is with the Department of Aeronautics and Astronau-
tics, Massachusetts Institute of Technology, Cambridge, MA 02139,
USA frazzoli@mit.edu

pecially when utilized for optimal planning purposes.
In fact, the model checking problem for, e.g., LTL, is
PSPACE-complete [8]. Moreover, MILP-based optimal
planning algorithms generally run in exponential time
and are not guaranteed to return even a feasible so-
lution within a polynomial time bound. On the other
hand, one can consider languages that, at the cost of
a more limited expressive power, allow efficient algo-
rithms for, e.g., model checking. For example, in [9],
a fragment of LTL was used for specification of tem-
poral properties in reactive robotic motion planning
problems, leading to polynomial-time algorithms. In
a similar spirit, in this paper we will consider formal
languages that may not be as expressive as LTL, but
are amenable to efficient planning algorithms, while
preserving the ability to describe a broad class of
mission specifications of practical interest.

In this paper, we consider Process Algebra (PA) [10]–
[12] as a language to describe a class of mission specifi-
cations, applicable to UAV operations. Process algebra
was first proposed to reason about concurrent software
and prove their correctness properties (see also [13] and
the references therein), and successively used in several
application contexts (see, for example, [14]–[16]). How-
ever, to our knowledge, this paper constitutes the first
application in UAV cooperative control problems. The
main advantage in using PA as a mission specification
language is that a feasible plan (i.e., a plan that meets
the mission specification) can be constructed efficiently,
in polynomial time. In this paper, we extend the tree
search algorithm in [17] to handle PA specifications.

The contributions of this paper are as follows. Firstly,
we propose process algebras for the specification of
complex tasks in UAV operations. We also provide
examples to motivate the specification language in this
application domain. Secondly, we provide a compu-
tationally effective algorithm for complex UAV opera-
tions specified via process algebra. The computational
effectiveness of the algorithm stems from the fact that
it returns a feasible plan in polynomial time and is
guaranteed to return the optimal solution in finite time.

The rest of the paper is organized as follows. Section
II introduces the basics of process algebra. In Section
III, the problem definition is given and in Section
IV the tree search algorithm is extended to handle
complex mission specifications that are expressed in
PA. A numerical example is solved in Section V and
concluding remarks are given in Section VI.

2009 American Control Conference
Hyatt Regency Riverfront, St. Louis, MO, USA
June 10-12, 2009

WeC03.2

978-1-4244-4524-0/09/$25.00 ©2009 AACC 1442

II. PROCESS ALGEBRA
Process Algebra is used in computer science to study

the behavior of software. In this context, the atomic
building blocks of behavior, called actions, are defined
as discrete events which happen instantaneously in
time, and represent the output of the software. A
behavior is a sequence of actions which have been
observed from the software over the course of time.

Within the context of UAV cooperative control, the
actions will refer to atomic individual tasks such as
target classification, sector search, or reconnaissance,
performed by exactly one UAV. Any mission plan will
refer to a temporal ordering of actions, which resembles
a behavior. Each process will encode a mission speci-
fication, and a plan will be called feasible only if the
temporal ordering of the actions is one of the behaviors
that this process can exhibit. In order to make the paper
self contained, we summarize the description of process
algebras given in [12] in this section.

A. Syntax of Process Algebra
An important element of the Process Algebra (PA) is

the set of terms, which is formally defined as follows:

Definition II.1 (Terms of Basic Process Algebra)
Given a finite set A of actions, the set T of BPA terms is
defined inductively as follows:
• each action a ∈ A is in T;
• if p, p′ ∈ T, then p + p′ ∈ T, p · p′ ∈ T, and p ‖ p′ ∈ T.

Each element of T is called a PA term.

The compositions p + p′, p · p′, and p ‖ p′ of processes p
and p′ are called the alternative, sequential, and parallel
compositions, respectively. Intuitively, the process that
is associated with the term a ∈ T, where a ∈ A, can
execute a and then terminate. The process p+p′, behaves
either like the process p or process p′, i.e., p+p′ executes
either a behavior of p or one of p′, which introduces a
logical coupling between the actions. The process p · p′,
on the other hand, first executes a behavior of process
p and then, after p terminates, executes a behavior of
p′; the process p · p′ terminates when p′ terminates.
Finally, p ‖ p′ executes the actions of p and p′ in an
interleaving manner and terminates when they both
terminate. A process which has terminated and can
execute no further actions will be denoted by

√
.

The size of a term is defined as the number of actions
and operators in it. Without loss of any generality, we
assume that each action appears at most once in a term.

B. Semantics of Process Algebra
As noted before, each term represents a process, and

thus a set of behaviors. A behavior is formalized as a
sequence of actions, referred to as a trace, that a process
can execute. Indeed, each process can be associated
with a set of traces, which describes all its behaviors,
i.e., all the traces that the process can execute. The

function that maps each one of the processes in T to a
set of traces can be defined using a process graph.

Definition II.2 (Process Graph) A process graph p0 ∈

T is a labeled transition system (Q,A,⇒) together with a
root state q0 ∈ Q, and a function π : Q→ T, where Q is a
set of states, A is a finite set of actions, ⇒⊂ Q×A×Q is a
ternary relation, π associates each state q ∈ Q with a term
t ∈ T such that q0 is mapped to p0.

On the process graph of a given process, a transition
from a state q1 ∈ Q to q2 ∈ Q with action a ∈ A, denoted
by q1

a
==⇒ q2, exists if and only if (q1, a, q2) ∈⇒. If there

is a transition q1
a

==⇒ q2 such that π(q1) = p1, π(q2) = p2,
then process p1 is said to evolve to p2 after executing
Action a, denoted as p1

a
−→ p2. If there is a set of actions

a1, . . . , ak ∈ A and a set of processes p0, . . . , pk ∈ T

such that pi−1
ai
−→ pi for all i ∈ {1, . . . , k}, then process

p0 is said to evolve to process pk after executing the
sequence (a1, a2, . . . , ak) of actions. The corresponding
sequence of transitions is denoted as p0

a1
−→ p1

a2
−→

. . .
ak
−→ pk. Formally, a trace of a PA term p is a sequence

γ = (a1, a2, . . . , an) of actions, for which a corresponding
sequence (p1, p2, . . . , pn) of processes exists such that
pi ∈ T and pi

ai
−→ pi+1 for all i ∈ {1, 2, . . . ,n}. The set of

all traces that p ∈ T can execute will be denoted as Γp.
Operational semantics can be used to define the process
graph of each process via a finite set of transition rules
defined as follows.

Definition II.3 (Transition Rule) A transition rule ρ is
an expression H

π , where H is a set of transitions p a
−→ p′,

called the positive premises of ρ, and π is a transition
p a
−→ p′, called the conclusion of ρ, where p, p′ ∈ T.

Intuitively, if the set H of premises are possible tran-
sitions, then so is π. A set of transition rules will be
referred to as a transition system specification.

Definition II.4 (Operational Semantics of PA) The
operational semantics of the process algebra is given by the
following transition system specification:

a a
−→
√

p1
a
−→
√

p1 + p2
a
−→
√

p1
a
−→ p′1

p1 + p2
a
−→ p′1

p2
a
−→
√

p1 + p2
a
−→
√

p2
a
−→ p′2

p1 + p2
a
−→ p′2

p1
a
−→
√

p1 · p2
a
−→ p2

p1
a
−→ p′1

p1 · p2
a
−→ p′1 · p2

p1
a
−→
√

p1‖p2
a
−→ p2

p1
a
−→ p′1

p1‖p2
a
−→ p′1‖p2

p2
a
−→
√

p1‖p2
a
−→ p1

p2
a
−→ p′2

p1‖p2
a
−→ p1‖p′2

where a ∈ A and p1, p′1, p2, p′2 ∈ T

1443

The definition above yields a process graph for each
process in T. Notice that, by the first rule, the process
a ∈ T where a is an action, i..e, a ∈ A, can only execute
the action a and then terminate. The rest of the rules
similarly define the semantics of alternative, sequential,
and parallel composition operators.

C. Parse Trees of Process Algebra Terms
Process algebra terms can either be single actions, or

be composed of other terms, called subterms. Thus, a
term can be represented as a tree, called a parse tree,
where each branch of the tree represents a term. Given
two branches which correspond to terms p1 and p2, one
of the operators from +, ·, or ‖ can be used to bind these
two branches to build up the process p1 + p2, p1 · p2, or
p1‖p2, respectively. The parse tree of this process can be
represented as a tree, which has the binding operator
in the root and the two branches corresponding to p1
and p2 as the left and right children.

Consider, for example, the term p = (a + (b · c)) ‖ d,
where a, b, c, d ∈ A. The corresponding parse tree is
given in Figure 1. As better seen from the parse tree,
p1 = (a + (b · c)), p2 = d, p3 = a, p4 = (b · d), p5 = b, and
p6 = d are subterms of p, where p1 and p2 are bound by
‖. Similarly, p3, p4, p5, and p6 are subterms of p1, etc.

Fig. 1. The parse tree of the term (a + (b · c))‖d.

III. PROCESS ALGEBRA SPECIFICATIONS OF
MULTIPLE-UAV MISSIONS

In this section, PA is used to address a class of
mission specifications for multiple UAVs. It is also
pointed out through examples that complex tasks can
be built from simpler ones in an hierarchical manner,
thus possibly simplifying the creation and readability
of mission specifications by human operators.

Before presenting the details, let us note the follow-
ing notation. Given a set S, a (finite) sequence σ of
(distinct) elements from S is a function which maps
{1, 2, . . . ,K} to S, where K ∈ N and σ(i) = σ(j) implies
that i = j. The number K, denoted by |σ|, is called
size of the sequence σ. For convenience, σ is denoted
as σ = (σ(1), σ(2), . . . , σ(K)). An element s ∈ S is said
to appear in the sequence σ, denoted by s ∈ σ with
an abuse of notation, if there exists some k such that
σ(k) = s. Element s1 is said to precede element s2 in
σ if s1, s2 ∈ σ and σ−1(s1) < σ−1(s2). Given a sequence
σ = (σ(1), . . . , σ(K)), any sequence σ̃ = (σ(1), . . . , σ(l)),
where l < K, is called a prefix of σ.

A. Atomic Objectives

An atomic objective is an abstraction of a generic
individual task, which is very similar to the task
abstraction given in [18], which we will use in the
following. Every atomic objective is represented by two
spatial and one temporal parameter: the entry and exit
points, and the duration of the task. Intuitively, the
entry point is a point in the two dimensional plane
which the UAV has to get to in order to start executing
the task. Similarly, the exit point refers to the point
where the UAV will be after executing the task. The
duration indicates the time required to execute the task.
Also, each atomic objective is associated with a set
of vehicles which are capable of executing it. More
formally, an atomic objective o refers to the tuple([

xi
yi

]
o
,

[
x f
y f

]
o
,Te

o,Uo

)
,

where first two elements are in R2, Te
o ∈ R≥0, Uo ⊆ U.

From a practical point of view, these parameters can
be UAV dependent, i.e., each one of the three param-
eters can vary for different UAV types. This approach
can easily be extended to cover such cases.

Examples of atomic objectives include the classifi-
cation, attack, and verification tasks as well as object
tracking, reconnaissance, area search, etc. (see [18]).

B. Complex Objectives

This section presents two examples of hierarchical
specification in UAV cooperative control problems via
objectives, followed by the formal problem definition.

1) The Target Engagement Scenario: Consider a sce-
nario with n targets and m UAVs, where each target
has to be (i) classified, (ii) attacked, and (iii) verified for
damage inflicted, in this order. The problem is to assign
these tasks to UAVs in such a way that (i) all three
tasks are executed on each target and (ii) the cost of
the resulting plan is minimized (see for example [17]).

Let ci, ai, and vi be the atomic objectives for clas-
sify, attack, and verify tasks on Target i. Then, the
set of atomic objectives O is identified as O =
{c1, a1, v1, c2, a2, v2, . . . , cn, an, vn}. Even though this sce-
nario is simple enough to write the specification im-
mediately from the atomic objectives, let us consider a
middle layer, in which engaging a target is specified
as a complex objective, ti. More precisely, ti has the
set {ci, ai, vi} of children objectives and PA term ti =
ci · ai · vi. Then, the specification p for this problem
can be written as follows: p = t1 ‖ t2 ‖ . . . ‖ tn, which,
in turn, can be written in terms of atomic objectives as:
s = c1 · a1 · v1 ‖ c2 · a2 · v2 ‖ . . . ‖ cn · an · vn.

In this approach, at different levels the task spec-
ification can be changed rather easily. Consider, for
example, the case in which there exists an attack option
with a powerful UAV that does not require a verifica-
tion task. However, assume that this attack option is

1444

available for only some of the targets. Let us denote
this attack option with āi, which is indeed an atomic
objective. Next, introducing a new complex objective
t̄i such that the corresponding term is defined as ti =
ci · (ai · vi + āi), the specification p can be rearranged as:
p = t1 ‖ t2 ‖ . . . ‖ tk ‖ t̄k+1 ‖ . . . ‖ t̄n.

2) The Rescue Mission: A rescue mission scenario,
which involves logical and temporal constraints, was
presented in [6]. Let us study a similar example using
the hierarchical task specification framework.

In this scenario, a friendly infantry unit is pinned
down by enemy in a certain location. There are three
targets, T1, T2, and T3, that needs to be neutralized
for the friendly unit be rescued. Two of the targets,
T1 and T2, are protected by missile sites, S1 and S2,
respectively. There are two friendly bases: Base B1 and
Base B2. There are three types of friendly UAVs: the
first type, V1, can only engage the targets, the second
type, V2, can only engage the missile sites, and the third
one, V3, can engage any of them, but it is a relatively
low-speed asset. A map of this scenario can be seen
in Figure 2. In order to successfully accomplish this
mission, the infantry unit can either escape to Base
B1, by the targets T1 and T3 being neutralized, or to
Base B2 after the UAVs neutralize targets T2 and T3.
Moreover, if the latter option is chosen a V3 type UAV
has to head to B2 with necessary medical equipment,
even if it does not engage any target along the way.

T1

T3

T2
S2S1

B1 B2

Fig. 2. Map of the Rescue Mission. Infantry unit is shown in blue.

Let p be the mission specification, which states that
the infantry unit must be rescued by either escaping to
Base B1 or Base B2, i.e., p = oB1 + oB2, where oB1 and
oB2 are complex objectives. Noting that both targets T1
and T3 have to be engaged in order to accomplish the
objective oB1, we can write oB1 = oT1 ‖ oT3, where oT1 and
oT3 denote the objectives of neutralizing targets T1 and
T3 respectively. Similarly, oB2 = oT2 ‖ oT3 ‖ oV3@B2, where
oT2 is the objective of neutralizing Target T2 and oV3@B2
is the objective of moving a V3 type vehicle to Base
B2 with the necessary health equipment. Even though
oV3@B2 is an atomic objective, notice that oT1, oT2, and
oT3 are still complex objectives that need to be identified
in terms of atomic objectives. As noted before there are
two possible ways of neutralizing Target T1: (i) either
the missile site S1 can be attacked by a vehicle of type
V2 after the neutralization of T1 by a vehicle of type V1,
(ii) or T1 can be neutralized directly using a vehicle of
type V3. Hence, oT1 = (oV2@S1 ·oV1@T1)+oV3@T1. Similarly,
oT2 = (oV2@S2 · oV1@T2) + oV3@T2. Noting that Target T3 is
not protected by any missile sites, oT3 = oV1@T3 + oV3@T3.

C. Problem Definition
Let us fix a set O = {o1, o2, . . . , on} of atomic objectives

and a set U = {u1,u2, . . . ,um} of UAVs. Given a speci-
fication p expressed as a PA term, the task assignment
problem for PA specifications is, informally, to assign
a necessary number of atomic objectives from O to the
UAVs inU such that the “temporal ordering” of atomic
objectives in the resulting assignment is a trace of p,
and a given cost function is minimized.

More formally, let Tt
u,oi,o j

be time it takes for UAV u
to travel from the exit point of oi to the entry point of
o j. Then, a single UAV schedule σu for a UAV u ∈ U
is a sequence of atomic objective and execution time
pairs, σu = ((o1, to1), (o2, to2), . . . , (ol, tl)), such that oi ∈ O,
ti ∈ R≥0 for i ∈ {1, 2, . . . , l}, and toi +Te

oi
+Tt

u,oi,oi+1
≤ toi+1 for

i ∈ {1, 2, . . . , l−1}. Notice that the execution time toi of oi
must be chosen such that the UAV has time to complete
the previous atomic objective oi−1 and fly to the entry
point of oi. Each single UAV schedule σu is naturally
associated with a completion time, denoted by τc

σu
,

which refers to the completion time of the last atomic
objective assigned in σu, i.e., τc

σu
= tol + Tol where ol is

such that σu(|σu|) = (ol, tol). A complete schedule S is a set
of schedules such that there exists a unique single UAV
schedule σu ∈ S for all u ∈ U. A complete schedule can
be associated with a cost function in several ways. Two
of the commonly used cost functions are the minimum
mission time and the cumulative execution time, which can
be written in terms of completion times respectively as

max
uk∈U

τc
σuk
, or

∑
uk∈U

τc
σuk
. (1)

An atomic objective is said to be scheduled in a
complete schedule S if there exists a single UAV sched-
ule σu ∈ S such that (o, t) appears in σu for some
t ∈ R≥0. Each schedule is associated with a set of
temporal orderings through the notion of observation.
An observation of a complete schedule S is a sequence
π = (o1, o2, . . . , ol) of atomic objectives such that (i) an
atomic objective o appears in π if and only if it is
scheduled in S, (ii) for all i = 1, 2, . . . , l, there exists
τi ∈ R≥0, for which τi ≤ τi+1, ti ≤ τi ≤ ti + Toi , and for
any i, j ∈ {1, 2, . . . , l} if τi < τ j then oi precedes o j in π.
Intuitively, each o that appears in π is assigned a time
τi, which is within the execution interval of oi in S and
the atomic objectives oi are ordered in π according to
the natural ordering of their corresponding τi.

Notice that the observation of a complete schedule
does not have to be unique in general. Let us denote
the set of all observations of a given complete schedule
S by ΠS. Then the task assignment problem for PA
specifications can be stated formally as follows:

Problem III.1 Given a set O of atomic objectives, a set U
of UAVs, and a PA specification p, find a complete schedule
S such that (i) any observation π of S is a trace of p, i.e.,
ΠS ⊆ Γp, (ii) one of the cost functions in (1) is minimized.

1445

IV. OPTIMAL PLANNING FOR PROCESS ALGEBRA
SPECIFICATIONS

The task assignment algorithm proposed in this pa-
per builds the schedule that solves Problem III.1, in
stages. Starting with a schedule S0 in which no atomic
objective is assigned, intuitively, at stage L + 1 the
algorithm extends the schedule SL of the previous stage
by choosing an atomic objective o to be assigned, a UAV
u which the task is assigned to, and an execution time to
for o such that after the assignment (i) any observation
of the resulting schedule SL+1 is a prefix of some trace
of p, (ii) the completion time of σu is minimized in SL+1.
In this manner, the algorithm extends the tree search
algorithm given in [17] to handle PA specifications.

Each PA specification p represents a different tree
structure, every node of which is labeled with an
atomic objective and UAV pair. The nodes are con-
nected such that any path on the tree corresponds to
a trace of p and for all traces there is a corresponding
path on the tree. For example, the tree structure of the
rescue mission of Section III-B.2 is shown in Figure 3.

Fig. 3. The tree structure of the rescue mission

For effectiveness purposes, however, the structure
of the tree should be constructed “on the fly” while
executing the search algorithm. That is, given a
node of the tree one has to efficiently determine
the set of children nodes, in other words, the set of
atomic objectives that can be assigned in the next
stage. For the case of PA specifications, an algorithm
that runs in time linear with respect to the size
of the specification is given in Algorithm 1. This

algorithm takes a specification p and returns a set
of pairs of PA terms and atomic objectives such that
(p′, o) ∈ Next(p) if and only if p o

−→ p′. The correctness
of the algorithm is clear from the semantics of PA.

switch p do1

case p1 + p22

return Next(p1) ∪Next(p2)3

case p1 · p24

return
{
(p′1 · p2, o) | (p′1, o) = Next(p1)

}
5

case p1 ‖ p26

return
{
(p′1 ‖ p2, o) | (p′1, o) = Next(p1)

}
∪7 {

(p1 ‖ p′2, o) | (p′2, o) = Next(p2)
}

otherwise8

return {(
√
, p)}9

end10

end11

Algorithm 1: Computation of Next(p) for given p ∈ T

Moreover, at each stage, the newly assigned atomic
objective o has to be associated with its execution time
to. To achieve a minimum time complete schedule,
intuitively, o must be assigned an execution time that
is as early as possible. However, one must consider
two constraints: firstly, the execution time must be such
that the UAV it is assigned has time to complete its
previous atomic objective and fly to the entry point of
o, secondly, all observations of the resulting schedule
must be a prefix of a trace of p. Regarding the latter
constraint, the to is chosen such that it is later than all
the assigned predecessors of o. Formally speaking, an
atomic objective ō is said be a predecessor of an atomic
objective o in term p, if (i) there exists a trace γ of p such
that ō precedes o in γ and (ii) there is no trace of p in
which o precedes ō. An equivalent characterization is
as follows. Consider the parse tree of p. It can be shown
that ō precedes o in p if and only if there is a node in
the parse tree that binds two subterms p1 and p2 with a
sequential operator, i.e., p1 ·p2, where p1 contains ō and
p2 contains o. Let Predp(o) be the set of all predecessors
of o in p. A naive algorithm to compute Predp(o) for each
o ∈ O would be to consider every atomic objective and
determine whether or not it precedes o via the above
characterization. Note that such an algorithm runs in
polynomial time; moreover, it can be executed before
starting the tree search algorithm.

Following the discussion above, let o be the atomic
objective which is to be assigned to a UAV u at stage
L + 1. Let SL be the schedule in the previous stage.
Then, the execution time of ti is chosen such that ti :=
max(τc

σu
, τc

Predp(o)), where τc
σu

is the completion time of σu

in SL and τc
Predp(o) is maximum of the completion times

of atomic objectives which are predecessors of o and
are assigned in SL, i.e., τc = max{t̄ | ō ∈ Predp(o),∃u ∈
U.(ō, t̄) ∈ σu}. Notice that, the execution time ti of oi is
chosen to be the earliest possible in the sense that, if
ti < τc

σu
then u would not be able to execute o, and if

1446

ti < τc
Predp(o) then there would be an observation of SL+1,

which is not a prefix of any trace of p.
The schedules constructed in this manner are feasible

in the sense that any observation of such schedules
are prefixes of some trace of p. Moreover, the tree
search algorithm eventually terminates with the opti-
mal solution. The proofs of these statements will not
be discussed here for the sake of brevity.

For effectiveness, a best-first search heuristic en-
hanced with a branch-and-bound scheme is used for
the simulation, which will be presented in the next
section. The best-first search heuristic returns a feasible
solution to the problem in time polynomial with re-
spect to the size of the specification. Using branch-and-
bound, the tree structure is explored effectively leading
to the optimal solution.

V. SIMULATIONS
Let us consider a simple scenario where two UAVs

are required to first attack six targets and then search
for possible new targets in the same area. Let od and os
denote objectives for the engagement of six targets and
the search mission respectively. Then, the specification
of the mission is p = od · os. The objective od is equal to
od1 ‖ od2 ‖ od3 ‖ od4 ‖ od5 ‖ od6, where odi denotes the atomic
objective of attacking the target i for i = 1, 2, . . . , 6.
The objective os, on the other hand, requires searching
the there regions in parallel, i.e., os = os1 ‖ os2 ‖ os3 ‖ os45,
where os1, os2, os3 denote the atomic objectives for
searching the regions s1, s2 and s3, respectively. To
make the matters more complicated, let it be the case
that searching either area s4 or s5 is adequate for
accomplishing s3, but not both, i.e., os45 = os4+os5, where
os4 and os5 are the atomic objectives corresponding to
searching the regions s4 and s5, respectively. A solution
of this problem instance is presented in Figure 4, which
was generated in less than a second of computation
time, after exploring 1000 nodes of the tree.

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

 0

 2000

 4000

 6000

 8000

10000

12000

14000

16000

18000

12

13 14

15

16

17 18

19

20

21 22

23

24

25

26

27

35

36

37

38

3940

41

42

43

44

V1

V2

d1

d2

d3

d4

d5

d6

s1

s2

s3

s4

s5

Fig. 4. Scheduling that satisfies p = od · os.

VI. CONCLUSIONS
This paper proposed and studied Process Algebra

as a formal language to state mission specifications

for multiple-UAV systems. The task assignment prob-
lem with PA specifications was proposed and some
problem instances of interest were pointed out. The
problem was solved using a computationally effective
algorithm, which returns a best-first feasible solution
to the problem in polynomial time and terminates with
the optimal solution in finite time.

Future research directions include addressing similar
problems with a timed process algebra using which
quantitative properties of time can be expressed.

VII. ACKNOWLEDGMENTS
The authors would like to acknowledge Corey Schu-

macher for several inspiring discussions. This work
was supported in part by the Michigan/AFRL Col-
laborative Center on Control Sciences, AFOSR Grant
#FA9550-07-1-0528. Any opinions, findings, and conclu-
sions or recommendations expressed in this publication
are those of the authors and do not necessarily reflect
the views of the supporting organizations.

R
[1] J. Bellingham, M. Tillerson, A. Richards, and J.P. How. Multi-

task allocation and path planning for cooperating UAVs. In
S. Butenko, R. Murphey, and P.M. Pardalos, editors, Cooperative
Control: Models, Applications and Algorithms. Kluwer Academic
Publishers, 2001.

[2] C. Schumacher, P. Chandler, and S. Rasmussen. Task allocation
for wide area search munitions. In ACC, 2002.

[3] C. Schumacher, P.R. Chandler, M. Pachter, and L.S. Patcher.
Optimization of air vehicles operations using mixed-integer
linear programming. Journal of the Operational Research Society,
58:516–527, 2007.

[4] P. Tabuada and G.J. Pappas. Linear time logic control of discrete-
time linear systems. IEEE Transactions on Automatic Control,
51(12):1862–1877, 2006.

[5] M. Kloetzer and C. Belta. A fully automated framework for
control of linear systems from temporal logic specifications.
IEEE Transactions on Automatic Control, 53:287–297, 2007.

[6] S. Karaman and E. Frazzoli. Complex mission optimization for
multiple-UAVs using linear temporal logic. In ACC, 2008.

[7] S. Karaman and E. Frazzoli. Optimal vehicle routing with metric
temporal logic specifications. In CDC, 2008.

[8] P. Schnoebelen. The complexity of temporal logic model check-
ing. In 4th Workshop on Advences in Modal Logics, 2002.

[9] H. Kress-Gazit, G.E. Fainekos, and G.J. Pappas. Where’s waldo?
sensor-based temporal logic motion planning. In IEEE Conf. on
Robotics and Automation, 2007.

[10] R. Milner. Communication and Concurrency. Prentice Hall, 1989.
[11] J.M.C. Baeten. Process Algebra. Cambridge University Press,

1990.
[12] W. Fokkink. Introduction to Process Algebra. Springer, 2000.
[13] J.M.C. Baeten. A brief history of process algebra. Theoretical

Computer Science, 335:131–146, 2005.
[14] J.A. Bergstra and C.A. Middelburg. Process algebra for hybrid

systems. Theoretical Computer Science, 335(2-3):215–280, 2003.
[15] G. Salaun, L. Bordeaux, and M. Schaerf. Describing and reason-

ing on web services using process algebra. International Journal of
Business Process Integration and Management, 1(2):116–128, 2006.

[16] P. Adao and P. Mateus. A process algebra for reasoning about
quantum security. Electronic Notes in Theoretical Computer Science,
170:3–21, 2007.

[17] S.J. Rasmussen and T. Shima. Tree search algorithm for assign-
ing cooperating UAVs to multiple tasks. International Journal of
Robust and Nonlinear Control, 18:135–153, 2008.

[18] S.J. Rasmussen and D. Kingston. Assignment of heterogeneous
tasks to a set of heterogenous unmanned aerial vehicles. In
AIAA Guidance, Navigation, and Control Conference and Exhibit,
2008.

1447

