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Abstract: Event-B is a formal language for systems modeling, based on set theory

and predicate logic. It has the advantage of mechanized proof, and it is possible to

model a system in several levels of abstraction by using refinement. Discrete tim-

ing properties are important in many critical systems. However, modeling of timing

properties is not directly supported in Event-B. In this paper we identify three main

categories of discrete timing properties for trigger-response pattern, deadline, delay

and expiry. We introduce language constructs for each of these timing properties that

augment the Event-B language. We describe how these constructs can be mapped

to standard Event-B constructs. To ease the process of using the timing constructs

in a refinement-based development, we introduce patterns for refining the timing

constructs that allow timing properties on abstract models to be replaced by tim-

ing properties on refined models. The language constructs and refinement patterns

are illustrated through some generic examples. Event-B refinement allows atomic

events at the abstract level to be broken down into sub-steps at the refined level.

The goal of our refinement patterns is to provide an easy way to represent and cor-

rectly refine timing constraints on abstract atomic events with more elaborate timing

constraints on the refined events. This paper presents an initial set of patterns.

Keywords: Real-time System, Event-B, Event, Deadline, Delay, Expiry, Refine-

ment Patterns

1 Introduction

In Event-B [Abr10], systems are modeled formally by a collection of events (i.e. guarded actions)

that act on abstract variables. The aim in this work is to introduce an approach to formally model

the timing properties for the trigger-response pattern in control systems. This pattern is common

and useful in specification of control systems. It is natural to talk about these kinds of systems

in term of possible events of the system. For example in the trigger-response pattern, trigger and

response are both events of the control system.

One of the main advantages of Event-B method is its support for stepwise modeling by re-

finement. The other strength of this method is the mechanized proof obligation generator and

the prover which make the verification process, efficient and productive. These advantages of

Event-B, make it a suitable approach for formal modeling of critical systems.

An Event-B model has two main parts, context and machine. The context specifies the static
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part of the system and the machine models the dynamic part. In the machine, system behavior

and its properties can be modeled by using states variables, invariants and events. Variables

represent the current state of the system. Invariants specify the global specifications of the state

variables and system behaviors. Finally, events represent the transition of the system from a state

to another. Events are guarded atomic actions where guards specify the state of the machine

where the event can occur in, and actions indicate how the that event modifies the state variables.

By refining a machine it is possible to introduce new state variables and events, strengthen the

guards of the abstract events or introduce new actions on new state variables. Standard refinement

techniques are used to verify the refinement between models at different abstraction levels.

Event-B lacks explicit support for expressing and verifying timing properties. Modeling time-

critical systems, using Event-B has been investigated in several studies. What distinguish our

work, is categorizing timing constraints in three groups, introducing a systematic way of en-

coding each of them in an Event-B model, introducing patterns for refining timing constraints

and proving satisfaction of abstract timing constraint by their concrete ones. In this way, the

consistency of the system timing properties in the system specification can be proved by using

refinement feature of the language.

2 Timing Properties Categories

In order to formalize the process of adding time properties to an Event-B model, it has been

decided to categorize the mostly used time related specifications in time-critical system descrip-

tions. Hence, several time-critical system specifications like a car gear-controlling system, a

message passing algorithm in a network, a water tank level controller, etc., had been studied to

extract their timing properties. The next step was to categorize them in several groups according

to the nature of their restriction. The result was three groups of timing properties; Deadline,

Delay and Expiry. These three will be explained in more details in the following. As mentioned

before, these timing properties are essentially trigger-response patterns, and trigger and response

are naturally modeled as events. As a result, all the definitions in this work are event based,

where A is the trigger event and B is the response event.

Figure 1: Time Boundary Diagrams

Imagine a system with two events, A and B where first event A has to happen to make event B

possible to occur. The three types of timing boundaries which may be declared between event A

and event B are as follow:

• Deadline: Event B must occur within time D of event A occurring,
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• Delay: Event B cannot occur within time W of event A occurring,

• Expiry: Event B cannot occur after time E of event A occurring.

Based on the definition of these three restrictions, the deadline forces an event to happen before a

specific time, delay prevents an event from happening before a specific time and expiry prevents

an event from happening after a specific time. Accordingly, by having a deadline between two

events, it is guaranteed that by the deadline the deadline event has already occurred, by having

delay it is guaranteed that there will be a minimum gap between occurrence of two events, and

by having expiry it is guaranteed that if the restricted event has happened it was before a specific

time. In order to have a better understanding of these constraints, Figure 1 illustrates how these

boundaries restrict events.

In this section delay, deadline and expiry have been introduced informally. In the following

we explain how they are formalized.

3 Modeling Timing Properties In Event-B

In order to explicitly represent timing properties we extend the Event-B syntax with constructs

for deadlines, delays and expiries. These timing properties place a discrete timing constraint

between trigger events and response events. A typical pattern is a trigger followed by one of a

choice of responses thus our timing constructs specify a constraint between a trigger event A and

a set of response events Bx. The syntax for each of these constructs is as follows:

• Deadline(A, {B1,..,Bn}, t),

• Delay(A, {B1,..,Bn}, t),

• Expiry(A, {B1,..,Bn}, t).

The property Deadline(A, {B1,..,Bn}, t) means that one of the response events Bx must occur

within the time t of trigger event A occurring. In the case of delay, if any of the events in the

response set happens it has to happen after its declared delay. Finally in the case of expiry, if any

of the events in the expiry set happens it has to happen before the specified expiry time.

Now a specification consists of an Event-B machine consisting of variables, invariants and

events, together with a list of timing properties using the above syntax. Having the annotations

standardizes the process of specifying discrete timing properties in Event-B models and allows

us to define patterns for refining timing properties as we show in Section 4.

We give a semantic to our timing constructs by translating them into Event-B variables, invari-

ants, guards and actions that are added to the machine to which the timing properties belong. The

effect of additions to the Event-B machine will be to add clock increment event and constrain

further the order between events. In particular they constrain the order between trigger, response

and clock increment events. For example, the additional Event-B elements that a deadline prop-

erty give rise to will prevent more than t clock increments occurring in between a trigger event

and a corresponding response event.

We define rules for encoding each of the three timing constructs in Event-B in turn. In each

case we assume there is already a partial order between the trigger event and the corresponding
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response events, that is, we assume that the response events are only enabled after the corre-

sponding trigger event has occurred. This ordering assumption is encoded using boolean flags

as shown in Figure 2(a). As shown in Figure 2(a), event A sets the boolean variable A as one of

its actions, so when variable A has the value of T RUE, it shows event A has happened. Also, in

event Bx the flag of event A will be checked to see if event A has already happened. Other than

checking the flag and setting the flag, in their guard, Xgrds represents the other possible guards

of the event and in the action section Xacts represent the other possible actions of the event.

Note we do not assume that the trigger and response events will occur only once. Typically the

trigger and response events will be part of an iterative loop and the ordering flags will be reset at

the end of each iteration of the loop by an appropriate event.

3.1 Modeling Delay

In this section we explain how delay is encoded in an Event-B model. As mentioned before,

in order to have discrete time in Event-B a natural number variable is declared to represent the

current time in the machine and an event is added to model the progress of time.

In order to explain how delay is encoded in Event-B, we will go through the process, for a

generic trigger event A and some generic alternative response events B1 . . .Bn.

EVENT A =̂
WHERE

A = FALSE

Agrds

THEN

A := T RUE

Aacts

END

EVENT Bx =̂
WHERE

A = T RUE

Bx = FALSE

Bxgrds

THEN

Bx := T RUE

Bxacts

END

(a) Event A and Bx without delay

EVENT A =̂
WHERE

A = FALSE

Agrds

THEN

A := T RUE

tA := time

Aacts

END

EVENT Bx =̂
WHERE

A = T RUE

Bx = FALSE

time ≥ tA+ t

Bxgrds

THEN

Bx := T RUE

Bxacts

END

EVENT Tick Tock =̂
THEN

time := time+1

END

(b) Event A and Bx with delay

Figure 2: Events A and Bx in 2(a) along with the Delay property will implicitly define the model

in 2(b)

There are two steps in order to add a delay constraint which is defined as follow to an Event-B

model:

Delay(A,{B1, ..,Bn}, t). (1)

First the occurrence time of the trigger event is recorded in a variable (tA). Then in the event

which should be delayed (event A), a guard is needed which forces the event to be eligible to

occur after the stated delay period has been passed from the occurrence of the trigger event. In

Figure 2 a general pattern of delayed trigger-response and the event which progress the time
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(Tick Tock), in an Event-B model, has been shown. As explained in this section, it is possible to

add a delay to a standard Event-B model.

3.2 Modeling Expiry

Modeling expiry is similar to the delay. Again the first step is to record the occurrence time of the

trigger event and the next step is to guard the restricted event according to the recorded time and

the specified expiry period. Suppose, we want to force timing property 2 to the trigger-response

pattern which is shown in Figure 3(a), how the model should be changed to contain the timing

property is shown in Figure 3(a).

Expiry(A,{B1, ..,Bn}, t) (2)

EVENT A =̂
WHERE

A = FALSE

Agrds

THEN

A := T RUE

Aacts

END

EVENT Bx =̂
WHERE

A = T RUE

Bx = FALSE

Bxgrds

THEN

Bx := T RUE

Bxacts

END

(a) Event A and Bx without ex-

piry

EVENT A =̂
WHERE

A = FALSE

Agrds

THEN

A := T RUE

tA := time

Aacts

END

EVENT Bx =̂
WHERE

A = T RUE

Bx = FALSE

time ≤ tA+ t

Bxgrds

THEN

Bx := T RUE

Bxacts

END

EVENT Tick Tock =̂
THEN

time := time+1

END

(b) Event A and Bx with expiry

Figure 3: Events A and Bx in 3(a) along with the expiry property will implicitly define the model

in 3(b)

As shown in Figure 3, in order to have expiry for an event, an action is needed to record the

occurrence time in the trigger event (event A), and a guard in the restricted event to prevent it

from happening if the expiry period has been passed.

3.3 Modeling Deadline

In order to encode expiry and delay, just the trigger and the response events are involved. But,

this is not the case for modeling deadline. In order to model a deadline the Tick Tock event is

involved as well, because if the trigger event has happened, we want to force the response event to

occur, before passing the deadline. Guardin the Tick Tock event is a possible way to enforce one

of the events B1 to Bn to occur before the deadline passes. As it will be explained in Section 6

guarding the clock in order to model deadline has been used in several timed specifications

theories and tools.
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Suppose, a deadline has been declared by our timing annotation as follow:

Deadline(A,{B1, ..,Bn}, t). (3)

In order to model this restriction in an Event-B model, first the occurrence time of event A should

be recorded by adding a new action. Then a guard on the Tick Tock event is needed, to enforce

the deadline. In Figure 4 how deadline 3 can be added to a standard Event-B model is shown in

detail.

EVENT A =̂
WHERE

A = FALSE

Agrds

THEN

A := T RUE

Aacts

END

EVENT Bx =̂
WHERE

A = T RUE

Bx = FALSE

Bxgrds

THEN

Bx := T RUE

Bxacts

END

(a) Event A and Bx without

deadline

EVENT A =̂
WHERE

A = FALSE

Agrds

THEN

A := T RUE

tA := time

Aacts

END

EVENT Bx =̂
WHERE

A = T RUE

Bx = FALSE

Bxgrds

THEN

Bx := T RUE

Bxacts

END

EVENT Tick Tock =̂
WHERE

A = T RUE∧
(B1 = FALSE ∧ ..∧
Bn = FALSE)⇒
time+1 ≤ tA+ t

THEN

time := time+1

END

(b) Event A and Bx with deadline

Figure 4: Events A and Bx in 4(a) along with the deadline property will implicitly define the

model in 4(b)

Multiple deadline constraints may be added to a model. In this case, a deadline guard similar

to what has been shown in Figure 4(b) should be added to the Tick Tock event for each deadline

constraint.

It is possible to cause a deadlock by declaring a longer delay between two events than an

existing deadline between them. There are two approaches to detect this kind of deadlock, either

by running a model checker (e.g. ProB) and then check the uncovered events or by declaring an

invariant which implies if a deadline guard is not true (current time is equal to the deadline and

none of the restricted event has yet occurred) then one of the restricted events should be eligible

to occur. As a result, if there is a deadlock, the invariant will not be proved for the Tick Tock

event.

4 Some Patterns to Refine Deadline, Delay and Expiry and Their

Uses

In this section, some patterns of refining the introduced types of timing boundaries will be ex-

plained and their uses in order to synchronize different events will be shown by explaining some
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general examples. In this section Event Refinement Diagrams [But09] are used to present the

order between events of a refinement and also their relations with their abstract events. As a

result the Event Refinement Diagram notation will be explained briefly in the next section.

4.1 Refinement and Event Refinement Diagram

Usually, a real world system has a complex specification with a lot of details. If we want to

model all the details of a system specification in a single stage, the complexity and the size of

the model can cause a lot of difficulties. One solution is to model systems, step by step by using

refinement. The system specification should be broken to different levels of abstraction. Then,

the first step will be the modeling of the most abstract specification of the system. Then by each

refinement more details of the system specification will be added to the model. By this approach,

the model will be a more explicit representation of the target system by each refinement.

In Event-B refinement process, it is possible to introduce new events which do not exist in the

abstract machine. Other events extend abstract events or refine them. Those events which do

not exist in the abstraction, refine skip. They model the pre-steps or post-steps of abstract events

which are not visible in the abstraction in order to reduce the complexity. Although they do not

refine any abstract event, they are related to abstract events.

In order to simplify tracking the relations between abstract and concrete events, refinement

diagrams have been introduced by Butler in [But09]. In a refinement diagram there is a tree

structure in which the abstract event is positioned as the root of the tree, and its concrete events or

events which are new but model the pre/post-steps of the abstract events are represented as leaves.

The other characteristic of this notation is that the concrete events which exist in the abstract

machine and refine abstract events, are connected to their corresponding abstract event by solid

lines and the new events which model the pre/post-steps of abstract events are connected by to

their related abstract events by dash lines. Figure 5 is an event refinement diagram, illustrating

Figure 5: Refinement Diagram Example

that abstract event P is refined by a combination of concrete event A followed by concrete event B.

Event A is a pre-step of event B that refines skip, while event B refines event P.

By this introduction to the Refinement Diagram, how the elicited timing properties can be

refined, will be explained in the following.

4.2 Refining a Deadline to Sequential Sub-Deadlines

Consider an abstract model of a system where there is a deadline between event A and event B.

As shown in Figure 7, event B can only occur if event A has already happened. The deadline
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properties for this level of abstraction, is shown in Figure 7(a). In the next refinement event B

will be broken to two steps, as shown in Figure 6. By breaking event B to B1 followed by B2, its

related deadline needs to be broken too. Also the other important issue is that, the abstract event

has been refined by the second step, because the accomplishment of the second step is equivalent

to accomplishment of abstract event(B). So the first step should refine skip.

Figure 6: Refining an abstract deadline to two sub-deadlines

Deadline(A,{B}, t).

EVENT A =̂
WHERE

A = FALSE

Agrds

THEN

A := T RUE

Aacts

END

EVENT B =̂
WHERE

A = T RUE

B = FALSE

Bgrds

THEN

B := T RUE

Bacts

END

(a) Event A and B

Deadline(A,{B1}, t1)
Deadline(B1,{B2}, t2)
Where

t1+ t2 ≤ t

EVENT B1 =̂
WHERE

A = T RUE

B1 = FALSE

B1grds

THEN

B1 := T RUE

B1acts

END

EVENT B2 re f ines B =̂
WHERE

B1 = T RUE

B2 = FALSE

B2grds

THEN

B2 := T RUE

B2acts

END

(b) Event B1 and B2

Figure 7: Events A and B in abstract Machine in 7(a) and events B1 and B2 in the concrete

machine in 7(b)

Now, in order to respond to the trigger, two steps have to be accomplished where each of them

has its own deadline. In the concrete level, the trigger event of deadline constraint for event B1

is event A and the trigger event for the deadline of event B2 is event B1. Hence, the abstract

deadline should be broken as shown in Figure 7(b) where the sum of new deadlines does not

violate the abstract deadline.

The relation between the concrete states and the abstract ones is expressed by a gluing invari-

ant [ABH+10] in Event-B, in order to verify the refinement. Two kinds of gluing invariants are

needed in order to prove that the concrete deadlines satisfy their abstraction. The first type is

required to clarify the relation between the order of the abstract and concrete events which are

involved in the deadline. The other type is needed to specify the relation between the new dead-

lines in the concrete machine and the abstract deadline. In the explained pattern these invariants

should be as follow:

• The relation between abstract events and its refining events (B2 and B are the boolean
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variables which act as the occurrence flag of events B2 and B):

B2 = B, (4)

• The order between concrete events:

B1 = T RUE ⇒A = T RUE, (5)

• The relation between the abstract deadline trigger time and its concrete one (tA is an integer

variable which records the occurrence time of event A and tB1 does the same thing for

event B1):

B1 = T RUE ⇒ tB1 ≤ tA+ t1, (6)

A = T RUE ∧ time > tA+ t1⇒B1 = T RUE. (7)

Invariant (4) specifies that the occurrence of event B2 is equivalent to the occurrence of event

B. Invariant (5) specifies that event B1 must occur after event A. Invariant (6) shows the relation

between occurrence time of even B1 and the trigger time of abstract deadline and Invariant (7)

specifies the deadline for occurrence of event B1 which is the trigger for occurrence of event B2.

Invariant (7) is required in order to prove Invariant (6) for event B1, because it specifies that B1

must occur before tA+ t1.

It should be mentioned that the abstract deadline can be broken into more than two sub-

deadlines either by successive refinement steps or by refining the abstract event with more than

two sub sequential events in one refinement step.

4.3 Refining An Abstract Deadline to Alternative Sub-deadlines

Often, when a process has to finish by a specific time there is a recovery scenario which will

guarantee that by the deadline either the desired response or some recovery response will be

achieved. So by the deadline either the normal or the recovery scenario has been accomplished.

For example, consider, instead of refining event B in the example of Section 4.2, by two sequen-

tial sub steps, it has been refined by breaking it into two alternative events, B1 and B2. So, after

occurrence of event A either event B1 or event B2 should happen. How event B and the abstract

timing property are refined is shown Figure 8.

Figure 8: Refining an event to two possible events

As shown in Figure 9, in the refinement event B has been broken to event B1 (normal response)

and event B2 (recovery response) and both of them refine the abstract event. As a result the

deadline will be refined as shown in Figure 9(b). As explained in Section 3.3 by declaring a
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deadline which has more than one member in its deadline set, we specify the behavior where,

after occurrence of event A, before passing the deadline time, either process will be accomplished

by occurrence of event B1 or event B2.

Deadline(A,{B}, t)

EVENT A =̂
WHERE

A = FALSE

Agrds

THEN

A := T RUE

Aacts

END

EVENT B =̂
WHERE

A = T RUE

B = FALSE

Bgrds

THEN

B := T RUE

Bacts

END

(a) Event A and B

Deadline(A,{B1,B2}, t)

EVENT A =̂ . . .

EVENT B1 re f ines B =̂
WHERE

A = T RUE

B1 = FALSE

B1grds

THEN

B1 := T RUE

B1acts

END

EVENT B2 re f ines B =̂
WHERE

A = T RUE

B2 = FALSE

B2grds

THEN

B2 := T RUE

B2acts

END

(b) Event B1 and B2

Figure 9: Events A and B in abstract Machine in 9(a) and events B1 and B2 in the concrete

machine in 9(b)

In this case the only kind of invariant which is required is the one which connected the concrete

events occurrences to their abstract one. In the above example the required invariants will be as

follow:

B2 = T RUE ∨B1 = T RUE ⇔B = T RUE. (8)

Based on invariant 8 occurrence of event B is equivalet to the occurrence of event B1 or event B2.

4.4 Refining Alternative Sub-Deadlines by Sequential Sub-Deadlines and Expiries

We now present a pattern for refining an abstract deadline by some alternative deadlines and then

refine these by sequential deadlines.

In order to explain this pattern, the example of Section 4.3 will be continued. So, in the current

state, we have a trigger event A and two alternative responses, event B1 and B2. The deadlines

of each level of abstraction, are shown in Figure 9.

In the next refinement, each of the events B1 and B2 will be refined to two sequential steps

and their deadline will be refined to two sequential deadlines, same as the pattern shown in

Section 4.2 (event B1 will be broken to events B1 1 and B1 2 and event B2 will be broken to

events B2 1 and B2 2). In this system, the first response case is desirable (modeled by event

B1), but if its first step (modeled by event B1 1) has not been accomplished by t4, the second

response case (modeled by event B2) will be activated and its first step (modeled by event B2 1)

has to happen before the specified deadline (t1). As a result by the first deadline in the concrete

machine, either the first response case has been activated or the second one (by occurrence of

their first steps). For the next step, event B1 1 triggers event B1 2, and event B2 1 triggers event

B2 2 as shown in Figures 10 and 11. The other specification of this system is that the deadline

between the first (B1 1) and the second (B1 2) steps of the first response case (B1) is greater than
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Figure 10: Refining each of the possible scenarios to two steps

Deadline(A,{B1 1,B2 1}, t1),
Expiry(A,B1 1, t4)
Deadline(B1 1,{B1 2}, t2),
Deadline(B2 1,{B2 2}, t3)
where

t1+ t2 > t ∧ t4+ t2 ≤ t

t1+ t3 ≤ t

EVENT B1 1 =̂
WHERE

A = T RUE

B1 1 = FALSE

B1 1grds

THEN

B1 1 := T RUE

B1 1acts

END

EVENT B1 2 re f ines B1

=̂
WHERE

A = T RUE

B1 1 = T RUE

B1 2 = FALSE

B1 2grds

THEN

B1 2 := T RUE

B1 2acts

END

(a) Events B1 1 and B1 2

EVENT B2 1 =̂
WHERE

A = T RUE

B2 1 = FALSE

B2 1grds

THEN

B2 1 := T RUE

B2 1acts

END

EVENT B2 2 re f ines B2 =̂
WHERE

A = T RUE

B2 1 = T RUE

B2 2 = FALSE

B2 2grds

THEN

B2 2 := T RUE

B2 2acts

END

(b) Events B2 1 and B2 2

Figure 11: Events B1 1 and B1 2 in 11(a) and events B2 1 and B2 2 in 11(b)

the equivalent deadline for the second alternative response case (B2). So according to the system

specification the concrete deadlines should be as shown in Figure 11.

By the concrete deadlines, the abstract deadline will not be satisfied for the first response case

(t1+ t2 > t). This problem is caused by the nature of deadline constraint. In the deadline we

just guarantee that by passing the deadline time, at least one of the events of the deadline set has

already happened.

As mentioned above, event B1 1 has an expiry constraint too. So after a specific time, it can-

not happen anymore and the only possible response will be the second response case. According

to the system specification, event B1 1 can just happen before t4 time units since event A occur-

rence. Hence, by enforcing this constraint by declaring an expiry as shown in Figure 11(a), the

concrete timing properties will satisfy their abstract ones. It has been guaranteed in the model

that if event B1 1 happens, at most t4 time units have been passed from event A occurrence.

From that time, event B1 2 has t2 time units to happen. As a result, the abstract deadline is
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satisfied. This pattern shows how combination of deadline and expiry can be useful in modeling

and refining the timing properties of a time-critical system.

One question that can be raised here is why we do not use two disjunctive deadlines instead

of a deadline and an expiry for this case. To explain it, we will apply this approach on a similar

pattern. Suppose we want to encode these timing properties by two disjunctive deadlines, and

we were to allow those to be declared as follow:

Deadline(A,{B1}, t1)∨Deadline(A,{B2}, t2) Where t2 > t1. (9)

To encode this in an Event-B model, the guard on Tick Tock event could be as follow:

A = T RUE ∧B1 = FALSE ⇒ time+1 ≤ tA+ t1 ∨ (10)

A = T RUE ∧B2 = FALSE ⇒ time+1 ≤ tA+ t2,

Since t2 > t1 is easy to show that Guard (11) is equivalent to the guard we would use for the

following deadline specification:

Deadline( A, { B1, B2 }, t2).

Intuitively, this is because guard (11) can be satisfied if the B1 event occurs after t1 time unit

since occurrence of event A. As a result by having two disjunctive deadlines, the expiry constraint

on event B1 will not be enforced.

In this section some approaches have been introduced in order to refine our three groups of

timing properties. These patterns do not contain all the possible cases of refining timing proper-

ties and we are still working on other possible refinement patterns. In the following section how

this research can be improved will be discussed briefly.

5 Future Work

We would like to develop a Plug-in for the Rodin tool-set in order to add time to a standard

Event-B model automatically, based on the timing constraints declared in the form of deadline,

delay and expiry which are expressed by the introduced annotations.

One of the features which has been added to Rodin [SPHB10], is decomposition. By using

this feature, it is possible to break a machine in an Event-B model, to several independent ma-

chines where each machine represents one of the sub-components of the system. In this way

it is possible to refine each sub-component independently. As a result, the complexity of the

model will be decreased. Based on that, the other possible area to improve our pattern to add

timing properties to an Event-B model, is to investigate the effect of decomposition on timing

specification. It will strengthen the approach by eliciting the possible issues and challenges in

decomposing a timed Event-B machine. What can be studied more about the decomposition

are how the universal clock should be handled after the decomposition, how the time passing

event should be decomposed, or how time related guards and actions will be separated between

different machines in a decomposition.

Also, we would like to investigate the possibility of generalizing the introduced timing con-

straints in order to decrease the redundancy during the timing properties specification process in

future.
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6 Related Work

Many studies have been dedicated to formalizing and verifying timing properties of real-time

systems. Delay, deadline and expiry can be seen in many of those works, sometimes with dif-

ferent names. In real-time calculus TCCS of Wang [Yi90] there is a delay construct ε(d) ·P,

which enforce the model to wait for d time units and then behave as process P and time cannot

proceed if d time-units passed and process P has not started yet. Same mechanism has been used

in Timed Modal Specification of Cerans et al [CGL97] to model maximal progress assumption

where there is a must modality which enforces the maximum delay to the model. Delay in TCCS

and maximal progress in Timed Modal Specification present the same constraint as deadline in

our work. Also, what is called a loose delay in Timed Modal Specification forces the same be-

havior as a delay does in our work. Besides, Urgent Event in Evans and Schneider work [ES00]

has been encoded by preventing the time proceeding, if an urgent event is eligible to occur. This

behavior of urgent event is the same as deadline events when current time is equal to the deadline

and none of the deadline events have occurred yet. In Timed CSP [Sch99] time-out presents the

same constraint as expiry does in our work and a delay in Timed CSP causes a similar behavior

to what can be enforced by combining introduced delay and deadline in our work.

Modeling time-critical systems by using Event-B has been investigated in several studies.

Butler et al. in [BF02] explained how it is possible to model discrete time in B (which is the

root of Event-B), by having a natural number variable which represents the current time and

an operation which increases it. In that study a deadline has been modeled by preventing the

progress of time if the current time is equal to the deadline. This work does not investigate

different kinds of timing constraint and timing constraint refinement have not been investigated.

Cansell and Rehm in [CMR07] have modeled a message passing algorithm in Event-B by using

similar principle, having a natural number variable, represents the current time, and an event

which forwards the time, guarded by a set of activation times. Again in here, other kinds of

timing constraints have not been mentioned, but more importantly, it is not possible to refine a

timing constraint to several sub-timing constraints by this approach. Because, in order to do that,

some new values should be added to the activation set in the refinement which is not possible

without declaring a new activation set. The problem will be specifying the relation between the

new activation set and its abstract one. Bryans et al. in [BFRR10] has introduced an approach

to keep track of timing boundaries between different events in a model by adding them to a

set and guarding events by them. In their study, deadline cannot be modeled. Similar to the

previous approach, refining the timing constraint will be an issue because of tracking the timing

constraints by a set for this approach too.

7 Conclusion

According to the gear controller case study[LPY01] which has been done in Even-B, and some

other experiences, it seems that these three kinds of timing constraints can be used to model

most of the timing properties of a time-critical system. In our case study we managed to first

model the system without time, then declare the required timing constraints by using introduced

annotations. In the end, according to the declared timing constraints, we added time to the

13 / 15 Volume 46 (2011)



model. All the refinements’ proof obligations which have been generated for relation between

the concrete timing constraints and their abstractions have been discharged. If we manage to

develop a plug-in which can add the required guards, actions, invariants and Tick Tock event

in order to add time to an Event-B model, based on declared timing properties, the process of

modeling time-critical systems will be the same as modeling a non-time-critical system by using

Event-B.

There are some similarities between our approach and the existing approaches to model time-

critical systems. How we encoded deadline, delay and expiry is similar to the approach that

timed automata [Alu99] verifiers use, like guarding state transitions (system events) or forcing

timing properties to the global clock of the model. In timed automata, it is possible to check

the temporal properties [Eme95] of a system. In this approach, the temporal properties can be

checked by using refinements where a temporal property is modeled by an abstract invariant and

by refinement how it will be gained by detailed behavior of the system will be modeled and

verified. For example, in the abstraction we say, a gear-change request should be responded by

an error message or a successful change, then by several refinements how system will manage to

satisfy it will be modeled and verified.

Our approach is based on modeling discrete timing properties of reactive systems according

to their events and through several levels of refinement. But it was not an isolated work, and

we tried to develop an approach to add time to an Event-B model by learning from the existing

works.
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