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ABSTRACT: Recent advances in the design and construction of
synthetic multicelled systems in E. coli and S. cerevisiae suggest that
it may be possible to implement sophisticated distributed
algorithms with these relatively simple organisms. However,
existing design frameworks for synthetic biology do not account
for the unique morphologies of growing microcolonies, the
interaction of gene circuits with the spatial diffusion of molecular
signals, or the relationship between multicelled systems and
parallel algorithms. Here, we introduce a framework for the
specification and simulation of multicelled behaviors that combines a simple simulation of microcolony growth and molecular
signaling with a new specification language called gro. The framework allows the researcher to explore the collective behaviors
induced by high level descriptions of individual cell behaviors. We describe example specifications of previously published
systems and introduce two novel specifications: microcolony edge detection and programmed microcolony morphogenesis.
Finally, we illustrate through example how specifications written in gro can be refined to include increasing levels of detail about
their bimolecular implementations.
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T he ability to engineer complex, synthetic, multicelled
systems could revolutionize tissue engineering, biomass

production, biosensing, and biodetection. Recent advances in
this area involve combining small genetic networks in E. coli or
S. cerevisiae with cell-to-cell signaling to produce synthetic
coupled oscillators,1 multicell logic,2,3 pattern formation,4−6

and population control.7 Although these examples are simple
compared to the multicelled behaviors found in nature, they do
begin to explore some of the basic mechanisms that synthetic
biologists must harness to make further progress: environ-
mental response,8 signaling,9 genetic network design,10 and
control of growth and apoptosis.7 To advance the field, more
work is needed in understanding and repurposing basic
molecular and cellular mechanisms, and the algorithmic
foundations of multicelled systems need to be developed to
guide how new mechanisms can be used, in what kinds of
algorithms, and with what limitations.
Design tools developed for synthetic biology are generally

focused on the behavior of single genetic circuits. They model
systems using chemical reactions, enzyme kinetics, and gene
network models.11−13 The interactions induced by signaling
and their effects on geometry have been examined in, for
example, spatial simulations of cell signaling,14 3D cell
growth,15 cell networks,16 and morphogenesis,17,18 which
combine reaction diffusion models19 with geometrical models
of cell growth and division. Typically such simulations are
geared toward modeling existing systems and not toward
designing new ones. Separately, research in computer networks,
distributed systems,20 multirobot systems,21 and stochastic self-
organization22 has become quite advanced. In particular, the
theoretical foundations for distributed systems20 and parallel

algorithms23 have enabled new algorithms and also described
the inherent limitations24,25 of distributed computation. Most
of the approaches in the distributed systems literature, however,
rely on various assumptions that do not hold in biological,
multicelled systems: that nodes have unique identifiers, that
they can send and receive arbitrary kinds of data, that they can
store data in buffers, and so on. Even work in silico on pattern
formation that uses diffusing signals26 is difficult to imagine
being implemented biologically.
Here we introduce a new tool, called gro, intended to assist

in the specification, design, and exploration of ideas for
multicelled behaviors in a 2D environment where the spatial
effects of cell growth, cell crowding, and signal diffusion
dominate. gro is an open source software package that
combines a distributed systems and parallel computing
approach with the simulation of up to a few thousand bacterial
cells growing in a 2D environment. The simulation component
is focused on E. coli-like bacterial microcolonies growing in a
single layer as would be viewed with a fluorescence micro-
scope.27 Although only around 10 generations can be grown in
this setting before crowding overwhelms the system, we
propose that controlling what happens in the initial stages of
microcolony formation is an important engineering challenge
that could lead to mechanisms for producing synthetic
multicelled systems. Our lab and several others are currently
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working to implement a variety of distributed algorithms in

exactly this arrangement.
A key difficulty in such settings is how to understand the

mapping between the local behavior of individual cells and the

global behavior of a collection of cells. To address this difficulty,

the gro framework is mainly concerned with allowing

researchers to quickly assess whether a scheme that describes

what cells should do locally behaves as expected globally. The

language is flexible enough to allow systems to be specified at
varying levels of detail.
Here, we describe the gro simulation environment, which

accounts for cell growth, division, noise, crowding and cell−cell
forces, and the production, diffusion, and sensing of molecular
signals. We compare output from the simulation with
experimental data. We introduce the gro language, describing
its main features and giving several examples. We illustrate how
gro can be used to specify systems via several examples. First,

Figure 1. (A) The gro main loop. In each iteration of the gro main loop, the states of the cells are updated and cell divisions are processed, then
cell deaths are accounted for, the diffusion and degradation dynamics of signals are numerically integrated, and finally the cell-to-cell forces due to
growth are numerically integrated. (B) Cell division semantics. When a cell divides, the values of the variables of the parent and daughter cells are
reassigned. Numerical variables have their states approximately divided in two while variables of other types remain fixed during division. The
Boolean variables just_divided and daughter are assigned just after division for programs to detect the division event.

Figure 2. The underlying physics of the gro simulator mimic the growth of bacteria in a single layer. (A) A snapshot of the simulator showing a
small microcolony. As the cells grow and divide, they push each other away. Also illustrated is the stochasticity of the copy number of a fluorescent
marker. (B) Microcolony growth. The volume and the number of cells change over time. Since cell division sizes are random, the number of cells
increases stochastically, while the volume increases more smoothly. (C and D) The same data as in panels A and B, but for actual E. coli expressing
GFP and growing under a fluorescence microscope sandwiched between glass and agar. The growth rate in panel B is set to 0.0081 fL/min, which
was obtained by fitting the cell count data in panel D to an exponential growth model. Note that, due to the time-resolution of sampling, not all cell
divisions appear as they are in panel B.
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to ground the user in a familiar example, we describe a simple
specification of transcription and translation in a growing
microcolony. Second, we introduce a novel specification of a
microcolony edge detection behavior that uses stochasticity and
diffusing molecular signals. Third, we describe a novel
specification of a class of developmental programs that use
finite state machines to determine microcolony morphology.
Finally, we describe how gro can be used to specify a system at
several levels of abstraction, by specifying and simulating a
bacterial population control system previously described in the
literature7 using an informal refinement process to increase the
fidelity of the specification.
The examples presented in this paper are intended to

illustrate the main features of the gro framework. They
represent a growing list of examples that we and various initial
users of gro at our institution and elsewhere have devised.
Many more examples ranging from the specification of mixed
consortia of cells to bacterial chemotaxis are included with the
online distribution of the gro software.

■ RESULTS AND DISCUSSION

Simulation. gro provides a realistic simulation of bacterial
microcolony formation that is intended to mimic the behavior
of E. coli cells when they are grown as a monolayer and viewed
under a microscope. In separate but integrated processes, gro
models growth, division, contact forces between the cells, and
small molecule diffusion, as described in Figure 1A. The result
is similar to actual bacterial growth as observed in the lab and
illustrated in Figure 2.
Cells are assumed to be approximately cylindrical, with radius

r = 0.5 μm and an initial length of l = 2.0 μm. The time
resolution of each subprocess of the simulation is controlled by
the time step parameter dt, which can be adjusted in gro
programs to reduce inaccuracies due to numerical errors. The
volume of a cell in gro is initially V = πr2·l = 1.57 fL. Its
growth rate, k, can be varied. The default value of 0.0081 fL/
min results in a doubling time of 85 min, which is close to what
we observed in the microscope, as shown in Figure 2. Growth
in each cell is modeled according to the differential equation

=

V

t
kV

d

d

which is numerically integrated by gro, using the time-step dt,
in parallel with the simulation of other subprocesses described
below. The volume of a microcolony thus grows exponentially
over time, as illustrated in Figure 2B. The volume change
qualitatively matches actual E. coli growth shown in Figure 2D.
Each cell grows until it has approximately doubled in size, at

which point it divides approximately in two (Figure 1B). The
mean μ and variance σ2 of the division size are also parameters
that can be set in gro. By default, μ = 3.14 fL and σ

2 = 0.005
fL2. gro simulates a simple N step counting process tuned to
result in the desired division size statistics. Thus, although the
volume of a microcolony grows smoothly, the number of the
cells increases according to a discrete stochastic process, as
illustrated in Figure 2B and compared to actual E. coli growth
shown in Figure 2D.
Because cells are constrained to a single layer, the physics of

their growth and contact forces can be modeled using a simple
2D physics engine.28 No attempt was made to estimate actual
contact forces in real microcolony growth, and the effect is
intended to be only qualitatively similar to the actual process. In
particular, the cells are modeled as 2D polygons; friction

between the cells and the environment is set high enough that
the dynamics of their motion is essentially first order; contact
forces between the cells are set so that they slide, slightly,
relative to each other and produce the characteristic crowding
geometry seen in real microcolony growth. In each step of the
main loop of the gro simulation, the volumes (and therefore
the lengths) of the cells are adjusted according to the above,
and then the physics engine is called to simulate the resulting
contact forces and produce motion for dt simulated minutes.
Cell to cell communication via small molecules is simulated

using the finite element method with a 2D grid of square
elements, the resolution of which can be specified in gro. The
dynamics are simulated using Euler integration, with the same
time step of dt minutes as is used in growth and motion. When
a new signaling molecule is declared, its diffusion and
degradation rates can be specified. Cells can emit, sense, and
absorb small molecules. For example, two cells in the
simulation in Figure 5B are emitting different signals, and the
cells between them are programmed to grow only when they
receive both signals, which incidentally always results in a
microcolony with the blue cell on one side and the green cell
on the other (see below for details).
In addition to E. coli cells, gro provides an interface for

developers to define new types of cells using whatever
geometry and physics they desire. The level of detail and
realism of such simulations is left to the discretion of the
programmer. Finally, gro simulates a chemostat mode (see
Figure 6), reminiscent of that used by Hasty’s group for their
work on coupled oscillators,1 in which cells grow in a chamber
past the bottom of which nutrients flow at a high enough
velocity that cells are swept away if they move too close. The
population control system described below uses the chemostat
mode.

Guarded-Command Programming. Each cell in the
simulation runs a program written in the gro programming
language. The language is designed to allow behaviors to be
expressed at whatever is the most useful level of abstraction for
the current design phase. For example, a program written at a
high level of abstraction might state that a cell should emit a
signaling molecule at a certain rate. On the other hand, a
program encoding a more detailed description of the same
process might state that a certain gene should be stochastically
transcribed and translated to produce an enzyme that converts
a precursor metabolite into a signaling molecule that diffuses
through the cell membrane at a rate proportional to the
difference between the intracellular and extracellular concen-
trations. For example, the system on population control
described below and in Figures 6 and 7 can be specified at
three different levels of abstraction, depending on what details
are of interest.
gro is a strongly typed, interpreted programming language.

Variable types include integers, floats, Booleans, strings, lists,
records, lambda expressions, and recursive functions. gro can
be easily interfaced with other programming languages and via
this mechanism provides function libraries for math and I/O,
for example. Most of the details of gro are standard and are
described in the online reference manual. Only what makes
gro unique and especially relevant for the specification of
highly parallel and stochastic behaviors in multicelled systems is
described here.
To model parallelism, gro programs consist of sets of

unordered guarded commands29,30 of the form g:c where g, the
guard, is a Boolean expression and c, the command, is a list of
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statements that can be either assignments or function calls. For
several examples, see the gro programs in Figures 3B, 4B, and
6B, which are explained in more detail below. The meaning of a
guarded command is as follows: in each step of the simulation,
each guard is evaluated. If it evaluates to true, then the
associated command is evaluated. The intention is that each
guarded command specifies a distinct process in the cell and
that all such processes occur effectively simultaneously.
Following a standard approach in modeling parallelism,23

guarded commands are executed in an unspecified order
despite being listed in a particular order on the page.
To model stochastic events in the cell, gro provides a

special function rate that takes one argument and returns
true or false randomly. In particular, the expression rate (r)

returns true upon a given evaluation with probability r·dt and
false the rest of the time, where dt is the simulation time step.
Thus, the rate function allows gro programs to approximate
the Master Equation with Euler integration (as in, for example,
Figure 3). The use of Gillespie’s Stochastic Simulation
Algorithm31 is unfortunately not practical due to the necessity
to concurrently simulate growth, geometry, and signal
dynamics.
Note that any chemical reaction network or gene network

model has a trivial mapping to a guarded command program.
Thus, gro specifications form a (strict) superset of master

equation models, which are reasonably well accepted as models
of the parellel execution of chemical reactions in the cell. At the
same time, since gro allows for arbitrary expressions in guards
and commands, considerably more concise specifications of
behavior than could be obtained with sets of chemical reactions
can be built.
In detail, the interpretation of a gro program proceeds as

follows. After a gro file is parsed and type-checked, the
programs associated with cells are initialized, meaning that any
commands outside of guards are executed. The initial locations
and orientations of cells are also initialized at this time. Next, as
illustrated in Figure 1A, the simulation repeatedly performs the
following steps:

• The volume and guarded command program of each cell
is updated, and division conditions are checked. If the
cell divides, the variables in the mother and daughter cell
are adjusted, and a copy of the program and its internal
state are associated with the daughter cell.

• Dead cells are removed.

• The concentrations of signaling molecules are updated
according to a numerically integrated reaction/diffusion
process.

• Growth dynamics and contact forces are numerically

integrated by the underlying 2D physics engine.

Figure 3. Specification of GFP production in a growing microcolony of E. coli. (A) GFP production in which a single gene is transcribed to produce
mRNA, which is translated to produce the GFP protein. (B) A gro program encoding the model. Physical constants are declared first. Then the
program p() is defined and includes two variable initializations and four guarded commands that encode production and degradation reactions.
Finally, the program is associated with a single cell. (C) The initial cell grows and divides. The copy numbers of the mRNA and GFP molecules
change over time due to stochastic gene expression and stochasticity in cell division. Each different colored trace represents the GFP/volume of a
different single cell. The black line represents the average of the GFP/volume taken over all the cells.
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A cell divides when a random condition set with the cell-
specific division_size_mean and division_si-

ze_variance parameters, described above, is met. When
division occurs, the volume of the parent cell is cut
approximately in half. The program associated with the cell is
copied and associated with the daughter cell. Importantly,
values of all numeric local variables in the programs are cut
approximately in half and apportioned to the mother and
daughter cells as well, modeling the discrete noise induced by
division on copy number,32 as shown in Figure 1B. Note that to
protect variables from being cut in half upon division, gro
programs often hide numeric variables inside records (as with,
for example, r.t in Figure 4A), allowing specifications to state
that cells must pass state information unchanged to their
progeny.
Examples. Programs can affect their host cell’s behavior in a

variety of ways. As mentioned above, they can set the growth
rate of the cell and can cause the cell to emit or sense signals. In
addition, programs can force the cell to divide (no matter what
its size) or to undergo apoptosis (Figure 6), and of course,
because gro allows one to write arbitrarily complex programs,
any internal logic, dynamics, memory, data structures, or
stochastic processes can be constructed.
We illustrate the expressivity of gro with three examples.

First, to ground the reader in a familiar example, we illustrate

how gro can be used to specify transcription and translation at
a high level. Second, we introduce a novel microcolony edge
detection behavior. Third, we describe a novel approach to
determining microcolony morphology. The complete code
listings and videos of the simulations are included in the
Supporting Information.
Figure 3 illustrates how gro might be used to build a simple

model of the transcription and translation of a protein, here
GFP, in E. coli as shown in Figure 3A. It is common, for
example, to write a Master Equation describing transcription
and translation as well as the degradation and dilution of
mRNA and protein.33 Although the ability of gro to predict
microcolony shape and cell−cell variability is not strictly
necessary in this case, we believe the example nicely illustrates
how standard models of gene expression are easily expressed in
the guarded-command formalism. The gro program in Figure
3B encodes the reactions. In lines 4−10, parameters for
production and degradation are defined. Next, a program p()

is defined with two variable declaration/instantiations (lines 8
and 9) and four guarded commands (lines 11−14). The
guarded commands define the rates and effects of transcription,
mRNA degradation, translation, and protein degradation,
respectively. Note that because the volume of the cells running
this program will be increasing, dilution is not specified directly
by the program but is a side effect of the cell’s increase in

Figure 4. Specification of an edge detection behavior. (A) A timed automaton specification of the edge detection system. (B) The edge() program in
gro. Cells either stochastically start waves or propagate waves. If the concentration of the signal is below a the threshold some number of minutes
after propagating a wave, the cell is likely near the edge of the microcolony. (C) The first wave, initiated in the middle of a microcolony, propagates
to the edge. Cells detecting the edge condition turn red. (D) A more mature microcolony in which cells have already detected the edge. Spontaneous
wave behavior continues, reinforcing edge detection.
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volume over time. The last line of the program associates the
program with a single simulated E. coli cell at the center of the
simulated environment. Running this program results in a
growing microcolony of cells as shown in Figure 3C. Initially
there is one cell. By 200 min there are hundreds of cells. Note
that gro interprets the variable gfp as green fluorescent
protein and renders the cell with which it is associated in green
using an intensity proportional to the concentration of GFP in
that cell. As can be seen in the figure, the amount of GFP
molecules per unit volume fluctuates for a given cell; is initially
correlated with the parent cell after division and becomes
uncorrelated over time; and stabilizes in mean and variance
over time.
Figure 4 illustrates that, through signaling, cells in a

microcolony can sense some aspects of the geometry of their
environment. In particular, we show that cells can detect
whether or not they are near the edge of the growing
microcolony. A timed automaton34 that specifies a novel edge
detection behavior is shown in Figure 4A, and its translation
into a gro program is shown in Figure 4B. The system behaves
as follows. With low probability, an arbitrary cell emits a pulse
of a signaling molecule, here suggestively called ahl (lines 9−
11). Cells that sense that their local concentration of ahl has
increased beyond a threshold emit a pulse as well and then
enter a refractory period where they do not emit signals (lines
13−16). The result is a wave of increased signal concentration
that travels from within the microcolony outward toward the
edge. To detect whether it is close to an edge, a cell can use the
fact that neighboring cells, if there are any, will signal
immediately after it does; so if the signal level is below some
threshold value immediately after a signal is sent, the cell must
be near the edge (lines 18−20). Cells that have sensed they are
near the edge produce RFP (code not shown), while other cells
actively degrade it, acting as a simple low pass filter of the
Boolean edge condition. The behavior is illustrated in Figure
4C, which shows the random initiation of the first pulse by one
of the cells and the effect on edge cells. Figure 4D shows the
microcolony sometime later, after many such pulses.
Figure 5A describes a specification of a developmental

program, encoded in gro, that produces microcolonies with a
specific structure: three bands of cells each expressing a
different reporter. The specification is given by a finite state
machine (the gro code for which is left to the Supporting
Information). Each state of the program specifies a growth rate,
a reporter protein, and whether to emit a given signal.
Transitions occur either upon cell division, in which case they
are mother-daughter35 specific, or after timers have elapsed. In
state 1, the cell grows at a rate of 0.01 fL/min. When it divides,
one of the cells (arbitrarily called the mother cell36) continues
in state 2, while the other cell continues with a copy of the state
machine in state 3. In states 2 and 3, the cells emit cyan and
magenta signals, respectively, and continue to grow. In
addition, when a cell in state 2 (or 3) divides, one of the
resulting cells continues in state 2 (or 3) and the other
continues in state 4. Cells in state 4 express RFP, and their
growth rates are high only if they receive both the cyan and
magenta signals (denoted by the ∧ symbol). This condition
allows only RFP cells that are located between the cells in states
2 and 3 to grow, and it pushes the signal-emitting cells in states
1 and 2 apart. Finally, after a specified amount of time (T1),
cells in states 1 and 2 switch to states 5 and 6, where they
continue to grow, do not emit signals, and express the state-
specific reporters GFP and CFP, respectively. After another

timer elapses, cells in states 5 and 6 switch to state 7, where all
activity stops. Because the ancestors of the GFP and CFP cells
were pushed apart by the RFP cells, the GFP and CFP cells
grow on the ends of the microcolony, resulting in the desired
three-band pattern. One run of the program is shown in Figure
5B, and Figure 5C shows the results of nine more runs,
demonstrating that the three-band structure is approximately
achieved in each case, but with some variation due to the
stochastic effects of cell division and growth.

Refinement. An advantage of using a first-class program-
ming language over, for example, chemical reactions to specify
cell behavior is that it allows systems to be specified at whatever
level of abstraction is convenient. To illustrate this point, we
examine several increasingly refined specifications of the
population control circuit in Figures 6A and 7A, devised by
You et al.,7 in which a gene that induces cell-death (ccdB) was
placed under the control of a quorum sensing promoter. In the
original system, the LuxI enzyme synthesizes the signaling
molecule AHL, and the transcription factor LuxR acts as an
activator when bound by AHL. As the cell density increases, the
concentration of AHL also increases, and the downstream
promoter is activated, resulting in increased apoptosis, leading
to lower AHL concentration. The result is a negative feedback
loop that stabilizes the population at a low density.
A simple and elegant specification of this behavior is shown

in Figure 6B. Lines 5−7 cause the cells to continually emit a
signal, which diffuses through the environment, shown in cyan
in Figure 6D. Lines 9−11 cause the cells to lyse probabilisti-
cally, at a rate proportional to the concentration of the signal.
The specification is parametrized by the diffusion rate of the
signal (k1), the degradation rate of the signal (k2), the rate at
which the signal is emitted (k3), and the rate constant for lysis
(k4). Figure 6C and D shows the effect of varying, for example,
k2 as was done by adjusting the acidity of the media in the
original paper.

Figure 5. Programmed morphology. (A) An example finite state
machine that guides the behavior of a given cell to produce bands.
Cells start in the center state and switch to new states based on
whether they are mother cells or daughter cells after division or if
timers have gone off. (B) An example run of the specification in panel
A. Starting with a single cell, the cells divide and take on different roles
eventually forming the three desired bands of fluorescent protein
expressing cells. (C) Several example runs, highlighting the stochastic
nature of the system’s behavior.
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A simple specification can be useful for exploring whether an
idea is sound without getting into the details of how the idea is
implemented. The next step is to fill in those details. Figure 7B
shows one such refinement, in which the second guarded
command in Figure 6B is replaced by a set of guarded
commands that implement the production and degradation of
CcdB, as well as making the lysis rate proportional to the level
of CcdB, instead of to the signal concentration directly. A
further refinement is shown in Figure 7C where the production
and sensing of the signal is governed by the luxR/luxI system.
The resulting system behaves similarly to the specification in
Figure 6B, as is shown in Figure 7D, which shows, as an
example, that the sensitivity of the system’s behavior to the rate
constant k2 is maintained, even though the interpretation of the
constant is slightly different in each system.
Conclusion. We have described a framework for the

simulation of high-level specifications of multicelled behaviors
in 2D environments with diffusing molecular signals. Our main
goal is to provide a framework in which the global geometrical
behavior resulting from a specification of the local behaviors of
cells can be explored. We have focused on examples in which
geometry and signaling are important, such as with the
microcolony edge detection and morphogenesis examples. A
host of other simulation and modeling environments are readily

available for exploring bulk behaviors in well mixed environ-
ments where gro may not be appropriate.
Central to our approach is the concept of abstraction: a

system’s behavior and how it is implemented can be treated
separately. This observation has been made in, for example,
models of osmo-adaptation37 in yeast in which a simple second
order system with a few parameters abstracts away tens of
biochemical reactions that actually implement the reaction in
the cell. Similarly, specifications of behaviors made during the
design phase should capture the overall functionality of a
system allowing the engineer to test whether the logic of a
communication scheme is sound and produces the desired
results before work implementing the low-level details is begun.
For example, in designing the edge detection example we did

not start with gene networks or biochemical reactions, we
started with a simple idea: a random event triggers a burst of a
signal molecule that is propagated through the microcolony.
Coupled with the detection of the signal concentration after a
delay, this basic capability produces the desired effect. Similarly,
in the developmental example, we specified the system using a
finite state machine to test whether the logic it specifies actually
would reliably produce banded microcolonies.
The microcolony edge detection and the microcolony

morphogenesis example specifications are written at a high
level so that whether they produce the desired global behavior

Figure 6. High-level specification of the population control circuit introduced by You et al.7 (A, B) Cells emit a signal, which diffuses through the
environment. The cells undergo lysis at a rate proportional to concentration of the signal. The parameters k1−k4 can be tuned to produce a variety of
effects. (C) By varying the degradation rate k2 of the signal, different population densities can be achieved. The plot shows the number of cells in a
fixed volume microchemostat versus time. (D) Snapshots of the population control system running in gro’s chemostat mode, using different values
of the degradation rate parameter.
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can quickly be assessed through simulation. How these
specifications might be implemented using existing signaling
molecules, enzymes, and/or transcription factors is of course a
difficult and open question beyond the scope of this paper.
However, we believe that many of the prerequisites have been
demonstrated in the literature: noise generation,38 concen-
tration detection and filtering,4,39 state control,40,41 Boolean
logic,2 and signaling.1 In fact, the composition of these
mechanisms into more complex systems is the subject of
intense research in the synthetic biology community.
It is interesting to note that most specifications reuse a few

basic ideas: that cell−cell signaling can be tuned; that cells can
control their growth rates; that cells can undergo apoptosis;
that signals can be filtered and thresholded; that randomness
can be harnessed; that asymmetries after cell division can be
amplified; and that the passage of time can to some extent be

monitored. By combining such low-level capabilities in new
ways, a variety of behaviors may be obtainable. To the extent
that gro becomes a useful design tool, it may be used to
simultaneously guide the exploration of reliable implementa-
tions of the above primitives as well as their composition into
increasingly complex programs that guide construction of novel
multicelled behaviors.

■ METHODS

The gro language is based on CCL30 and is implemented in
lex, yacc, and C++. The rigid body dynamics and growth of
cells is implemented using the chipmunk28 2D physics library of
functions, which includes primitives for 2D polynomials,
contact forces, and friction. Signals are implemented with a
custom finite element simulation, with a grid size and extent
that can be controlled from the gro language. The graphics in

Figure 7. Two refinements of the population control specification p0 described in Figure 5. (A) A model of autonomous population control
involving three proteins: LuxI synthesizes AHL, the LuxR transcription factor is activated by AHL and activates pLuxI promoter, and CcdB triggers
cell apoptosis. (B) The section of the original specification p0 that causes apoptosis has been replaced by reactions describing production and
degradation of the protein CcdB. The rate of lysis has been changed to be proportional to the amount of the CcdB protein. (C) A further refinement
in which the production and sensing of the signal are controlled by the LuxI and LuxR proteins, respectively. New levels of detail require more
parameters, in this case k5−k10. (D) The refinements produce, qualitatively, the same behavior as does the original specification, as shown in this plot
of number of cells (in a fixed volume microchemostat) versus time for different values of k2.
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the simulation and the user interface is implemented with Qt.
The gro system has been compiled for Mac OS X and
Windows and can be obtained online. Data is output from gro
to standard output and piped into comma separated value files
that are then read by Mathematica or similar software for
analysis and presentation.
E. coli strain MG1655 was transformed with a mini-F plasmid

encoding the lacIq allele, and a high copy plasmid (colE1
origin) encoding gfp under the control of a synthetic promoter
with dual lac operator sites (BioBrick R0011). Individual
colonies were grown at 37 °C to saturation in M9CA glucose
media (M8010, Teknova) supplemented with 34 μg/mL
chloramphenicol and 100 μg/mL ampicillin. The culture was
then diluted 200:1 in the same media and incubated for 1 h at
37 °C. A small volume of the culture was added to a glass-
bottomed microscopy dish (GWSB-3512, WillCo Wells BV),
and the cells were immobilized to the glass surface by a 1%
nutrient agar slab prepared with M9CA glucose media, 34 μg/
mL chloramphenicol and 100 μg/mL ampicillin. Cell samples
were then transferred to a Nikon Ti-S inverted microscope
(Nikon Instruments) equipped with a 12-bit Coolsnap-EZ
camera (Roper Scientific) and an environmental chamber (In
Vivo Scientific). Time lapse movies were created by capturing
phase contrast images of the growing microcolonies every 10
min, and GFP images every 20 min over a 10 h incubation
period at 32 °C. Colony size was determined using Matlab by
summing the number of pixels in an area resulting from
thresholding the phase contrast images, followed by a
morphological closing operation. The number of cells was
counted manually.
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