
Specification and Verification of Artifact Behaviors in
Business Process Models�

Cagdas E. Gerede and Jianwen Su

Department of Computer Science
University of California at Santa Barbara

Santa Barbara, CA 93106
{gerede, su}@cs.ucsb.edu

Abstract. SOA has influenced business process modeling and management. Re-
cent business process models have elevated data representation to the same level
as control flows, for example, the artifact-centric business process models allow
the life cycle properties of artifacts (data objects) to be specified and analyzed.
In this paper, we develop a specification language ABSL based on computation
tree logic for artifact life cycle behaviors (e.g., reachability). We show that given a
business model and starting configuration, it can be decided if an ABSL sentence
is satisfied when the domains are bounded, and if an ABSL-core (sublanguage of
ABSL) sentence is satisfied when the domains are totally ordered but unbounded.
We also show that if the starting configuration is not given, ABSL(-core) is still
decidable if the number of artifacts is bounded with bounded (resp. unbounded
but ordered) domains.

1 Introduction

Business process modeling has received considerable attention from research commu-
nities in and related to computer science. This is a natural consequence of the trend that
computer and software systems have found rapidly increasing usage in all aspects of
business process management. The fundamental principle of service oriented architec-
ture (SOA) to design software systems based on composition of a flexible assembly of
services has already influenced many business operations today. We argue that the SOA
principle will continue to impact on several key aspects of business process manage-
ment, including business process modeling, design, integration, and evolution aspects.
This paper makes a significant step in advancing SOA techniques for business process
management by focusing on how to specify dynamic properties on data being processed,
and on how to verify these properties.

Business process modeling is a foundation for design and management of business
processes. Two key aspects of business process modeling are a formal framework that
well integrates both control flow and data, and a set of tools to assist all aspects of
a business process life cycle. A typical business process life cycle includes at least a
design phase where the main concerns are around “correct” realization of business logic
in a resource constrained environment, and an operational phase where a main objective
is to optimize and improve the realization during the execution (operation). Traditional
business process models emphasize heavily on control flow, leaving the data design in an

� Supported in part by NSF grants IIS-0415195 and CNS-0613998.

B. Krämer, K.-J. Lin, and P. Narasimhan (Eds.): ICSOC 2007, LNCS 4749, pp. 181–192, 2007.
© Springer-Verlag Berlin Heidelberg 2007



182 C.E. Gerede and J. Su

auxiliary role if not as an afterthought. Recently, it has been argued that the consideration
of data design should be elevated to the same level as control flows [14,9,4,11,1]. In our
earlier efforts [9,4], we have developed artifact centric business process models and
studied verification of ad hoc properties of the models.

Intuitively, business artifacts (or simply artifacts) are data objects whose manipu-
lations define in an important way the underlying processes in a business model. Not
only the past and current practice of business process specification naturally embodies
the artifacts, recent engineering and development efforts (e.g., at IBM Services Divi-
sion) have already adopted the artifact approach in the process of design and analysis
of business models[5,12,10]. An important distinction between artifact centric models
and traditional data flow (computational) models is that the notion of the life cycle of
the data objects is prominent in the former, while not existing in the latter.

In the initial attempt [9], our main focus was on assembling together a business
process and analyzing several execution properties including reachability. In doing so,
we essentially augmented object oriented classes with states to represent artifact classes,
and use guarded finite state automata to capture (the logic of) entities that carry out the
work in a business model. In another approach [4], we focus more on the life cycle of
artifacts and evolution of business (process) logic. In that study, we used services to
model logical activities that can be executed and a declarative approach to represent a
business model as a set of business rules. The two models are closely related but different.
A detailed comparison of two models can be found in [8].

Business analysts need to verify whether artifact-centric business process models sat-
isfy certain artifact properties. These properties reflect the requirements to meet business
needs. Currently, a business analyst takes a process model and a property, and reason
about the process model to see if the model satisfies the property. This reasoning process
is not only tedious and nontrivial but it is also repetitive and can be automated. To ad-
dress this problem, in this paper we develop a logic language based on computational
tree logic [7], called Artifact Behavior Specification Language (ABSL). We also study
the verification of properties specified in ABSL. We use the model of [9] (without finite
functions and no “new" action) as the basis for the language, expecting that ABSL and
technical results developed here be easily adapted to the model of [4].

The main technical results in this paper include:

1. The temporal logic based language ABSL for specifying life cycle properties of
artifacts.

2. Decidability results of ABSL for a given operational model and a starting configu-
ration for bounded domains.

3. Decidability results of ABSL-core (a sublanguage of ABSL) for a given operational
model and a starting configuration for unbounded but ordered domains (i.e., with a
total order).

4. Decidability results of ABSL (ABSL-core) for a given operational model and a
bound for the number of artifacts, with bounded (resp. unbounded ordered) domains.

This paper is organized as follows. In Section 2, we overview artifact-centric op-
erational model proposed in [9]. In Section 3, we propose a language for specifying
artifact behaviors (ABSL). In Section 4.1, we show the decidability results of ABSL
for bounded domains. In Section 4.2, we show the decidability results of ABSL-core
for unbounded but ordered domains. In Section 4.3, we show the decidability results
of ABSL (ABSL-core) for bounded (resp., unbounded ordered) domains. We conclude



Specification and Verification of Artifact Behaviors 183

CS
Department

International
Office

Graduate
Division

pending processing

ready

rejected

approved

Change Request Artifact

States
Attributes

- Student Name
- Request
- Reason
- DepartmentSignature
- GraduateSignature
- InternationalOfficeSignature
…

pending process ing

ready

rej ected

approved

pending process ing

ready

rej ected

approved

Immigration Document 
Artifact

- Name
- Type
- Expiration
…

pending process ing

ready

rej ected

approved

pending process ing

ready

rej ected

approved

- Perm No
- Amount
- Date
…

Process Payment Record
ArtifactWork 

Description

Triggers state 
change

pending processing

ready

reject ed

approved

pending processing

ready

reject ed

approved

Artifact

Artifact Flow

read/updates

Fig. 1. An artifact-based view of a process model

the paper in Section 5. Due to space limitations, the detailed proofs and some technical
definitions are omitted. More detailed discussion can be found in [8].

2 Overview: Artifact-Centric Operational Models

In this section, we briefly describe the terminology and the constructs in artifact-centric
modeling. More formal and detailed discussion can be found in [8]. Artifact-centric
models consist of 3 key constructs: Business artifacts, business work descriptions, and
repositories [13] (In this study, the term task type and the term task are renamed to work
description, and work).

Definition 1. A (business) artifact type T is a tuple (V, P,M) such that

– V is a set of attributes of primitive types (such as String, real, or artifact ids).
– P is a set of methods with distinct names.
– M is a finite state machine and its transitions are labeled with method names from
P .

– A method in P is a tuple (name, I, O, body) where I (input paremeters) and O
(output parameters) are pairwise disjoint set of variables of primitive types, and the
body is a sequence of statements each is of the form x := y where x ∈ V ∪ O,
y ∈ V ∪ I .



184 C.E. Gerede and J. Su

An artifact a is an instance of an artifact type and it contains the current state of the
artifact and the values of the attributes. It also has a unique id.

Repository: A repository describes a waiting shelf or a storage for an artifact.

Work Description: A (business) work description describes the work acting upon an
artifact by which a business role adds measurable business value to this artifact.

Definition 2. A work description W is a tuple (V , M ) where

– V is a set of variables of primitive types (e.g., String, real, or artifact ids) and artifact
types.

– M = (Σ, S, s0, Sf , δ, l) is a deterministic finite state machine where:
• Σ is a finite set of statements (actions) where a statement has one of the follow-

ing forms:

- R.checkOut(x) - R.checkIn(x)
- R.checkOut(x) with id = y - x.m(z1, ..., zk �→ z′1, ..., z

′
n)

- read(u) - reset

where R is a repository, m is a method name, and x, y, zi, z
′
j, u ∈ V such that

x is a variable of an artifact type, y is a variable of an artifact-id type, zi’s are
variables of primitive types and constants, z′j’s are variables of primitive types,
u is a variable of scalar types, and k ≥ 0, n ≥ 0.

• S is a set of states, Sf ⊆ S is a set of final states,
• s0 ∈ Sf denotes the “initial" state,
• δ, the transition relation, is a subset of (S × (Σ − {reset}) × S) ∪ (Sf ×
{reset} × {s0}),

• l : δ → G is a labeling function where G is a set of guards.
• A guard is defined inductively as follows: false, true are guards; for everyx ∈ V

of scalar type (such as String, real), and a constant c, every scalar comparison
between x, c is a guard (such as x > c, x = c, x �= c); for every x, y ∈ L of
scalar type, every scalar comparison between x, y is a guard (such as x > y,
x = y, x �= y; R.nonempty is a guard for every repository R; and g1 ∧ g2 is a
guard for every pair of guards g1 and g2.

The type of actions in a work description and their intuitive meaning is provided below:

– R.checkOut(x): check out a (random) artifact from repository R;
– R.checkOut(x) with id = y: check out an artifact from repository R with id y;
– R.checkIn(x): check an artifact in repostory R;
– x.m(z1, . . . , zk �→ z′1, . . . , z

′
n): invoke the method m of the artifact held by the

variablexwith the input parameters z1, . . . , zk and expect the output in the variables
z′1, . . . , z

′
n;

– read(u): read a scalar value (such as String, real) from external environment;
– reset : uninitialize the values of all variables.

A work w (an instance of a work description) contains the values of work description
variables, and the current state of the work. There is one work for each work description
at run time.



Specification and Verification of Artifact Behaviors 185

Operational Model: An (artifact-centric) operational model O is a tuple (T, R, W)
whereT is a set of artifact types,R is a set of repositories,W is a set of work descriptions.

A configuration of an operational model can be thought as a snapshot of the process
at runtime, and it contains a set of artifacts, a set of work, and a set of repositories. Let
C, C′ be two configurations. We say C′ can be derived from C, denoted as C′ → C, if C′
can be produced as a result of a work executing an action.

A root configuration is a configuration where all the artifacts are in the repositories,
and each work is in its initial state.

An execution graph with respect to a root configuration C0 is a Kripke structure
(G0, G,H) where G0 = {C0} is the initial state, G is the set of configurations, and H
is the transition relation such that (C, C′) ∈ H if C → C′.

Example 1. The scenario in Figure 1 describes an operational model for the processing
of the Student Change Request Artifact. This artifact is used by students to request vari-
ous changes such as the addition of an emphasis to the student’s degree, or a committee
member addition, or extension of a degree deadline. The approval of this artifact requires
the signatures of the student’s department, the graduate division, and the international
office if the student holds a student visa. The processing of this artifact requires the pay-
ment of a processing fee which is tracked through Processing Payment Record Artifact.
In addition, if the student holds a student visa, then the international office requires the
verification of the student’s the Immigration Document Artifact before they approve the
change request. In addition, the graduate division and international office partially rely
on the decision of the department, therefore, they require the student’s department to
process the artifact first.

Based on the specification, some of the desirable properties of this process can be
enumerated as follows:

– Every approved change request artifact must have Department and Graduate Divi-
sion signatures. Every change request artifact submitted by international students
requires a signature from International Office.

– International Office and Graduate Division should not sign a change request artifact
until Department signs it.

– Every change request artifact that Department does not approve should not be ap-
proved by Graduate Division or International Office.

– Every change request artifact by students under 18 requires her parents’ signature.
– If a change request artifact is rejected by one authority, then the artifact shouldn’t

be processed any further by any authority.
– Every change request artifact by international students requires an encounter with

the student’s immigration document artifact at International Office.
– The approval of every change request artifact requires an encounter with a paid

processing payment record artifact at Graduate Division.
– When a change request artifact is approved, the next action on the artifact should be

the delivery to the student.

The verification of an artifact-centric process model at design time is crucial to avoid
higher costs of breakdown, debugging and fixing during runtime. The verification re-
quires a formalism to describe artifact-centric models, and a specification language to
describe the properties the model should have. Therefore, in the next section, we pro-
pose a language to specify artifact behaviors. We show how to verify an artifact-centric
process model with respect to artifact behavior specifications.



186 C.E. Gerede and J. Su

3 A Language for Specifying Artifact Behaviors: ABSL

Given an operational model O = (T,R,W), the set of symbols of ABSL consists of,
in addition to the standard logical symbols (, ),∧,¬, ∀, and constants:

– variables (each is associated with a type in T or with a scalar type such as String,
real );

– propositions, one for each state of a work description
– unary predicate symbols:

• one for each work description (W(x) if x is checked out by W);
• one for each repository (R(x) if x is checked out by R);
• one for each state of each artifact type;
• two for each attribute

* a read-predicate, (ReadA(x) if the attribute A of artifact x is read);
* a defined-predicate (DefinedA(x) if the value of the attributeA of artifact
x is defined);

– binary predicates Equal,NotEqual,GreaterThan, LessThan (e.g., Equal
(x, y) if x, y are not undefined, and x equals to y);

– 0-ary function symbols one for each work description variable;
– unary function symbols:

• one for each attribute (A(x) is the value of the attribute A of artifact x);
• ID (ID(x) is id of artifact x).

A term is a constant, or a variable, or an expression of the form v, or ID(x1), orA(x2)
where v is a 0-ary function symbol,A is a unary function symbol, x1 is a variable of an
artifact type, x2 is a variable of an artifact type containing an attribute A.

An atomic formula is an expression of the following forms:
true qstate R(x) W(x)
pstate(x) ReadA(x) DefinedA(x) Equal(t1, t2)
NotEqual(t1, t2) GreaterThan(t1, t2) LessThan(t1, t2)

where qstate is a proposition corresponding to the state of a work description; pstate

is a unary predicate corresponding to the state of an artifact type; x is a variable of an
artifact type; t1, t2 are terms.

An artifact centric model describes the behaviors of all artifacts related to the un-
derlying business operations that is being designed[13]. The artifact-centric approach
reflects itself in the way the desirable process model behaviors are described, and these
descriptions “focus" on behaviors of individual artifacts. To capture this requirement in
ABSL, we propose a temporal operators based on computational tree logic (CTL) [7]
operators (also inspired by the clock operator of the temporal language Sugar[3]):

– EN@aψ (“Next" w.r.t a): requires that the formulaψholds the next time the artifact
a is involved;

– EG@a ψ (“Globally" w.r.t. a) : requires that the formula ψ holds every time the
artifact a is involved,

– Eψ1 U@a ψ2 (“Until" w.r.t. a): requires that there is a time when a is involved and
ψ1 holds, and at all preceeding times that a is involved, ψ2 holds.

The family of formulas in ABSL is the set of expressions such that if ψ1 and ψ2 are
formulas, then so are



Specification and Verification of Artifact Behaviors 187

ψ1 ∧ ψ2, ¬ψ1, ∀x1 ψ1, EN@xψ1, Eψ1U@xψ2, EG@xψ1

where x, x1 are variables, and the type of the variable x is an artifact type.
The notion of free and bounded variables are defined in the standard manner. A

sentence is a formula without any free variables.

Example 2. ABSL can formulate all the properties described in Example 1. Here we
illustrate some of them. We use F @xψ to mean true U@xψ.

– Every approved change request artifact must have the department signature.
∀x¬EF @x (approved(x) ∧ ¬DefinedDeptSignature(x))

– Any change request artifact that Department does not approve should not be approved by
Graduate Division.
∀x¬EF @x(AtDept(x)∧Equal(decision,“reject”)∧EF @xDefinedDeptSignature(x)).

– International Office should not sign a form until Department signs it.
∀x ¬E ¬DefinedDeptSignature(x) U@xDefinedIntOfficeSignature(x)

– Any form by international students requires an encounter with the student’s immigration
document at International Office. Let ψ1 ∨ ψ2 represent ¬(¬ψ1 ∨ ψ2) and ∃y represent
¬∀¬y.
∀xEqual(international(x),“false”) ∨ (EF @xAtIntOff(x) ∧ ∃yAtIntOff(y) ∧
Equal(immigrationDoc(x), ID(y))) ∨ (∃yEF @yAtIntOff(x) ∧ AtIntOff(y) ∧
Equal(immigrationDoc(x), ID(y)).

Definition 3. ABSL-core is a sub-language of ABSL consisting of formulas using only
variables of artifact types.

Before we explain the semantics of ABSL, we would like to mention the technical
differences of ABSL from computational tree logic (CTL) [7] and the temporal language
Sugar [3]. In ABSL, differently from CTL, we have the focus operator @. The focus
operator may sound similar to the clock operator of Sugar; however there is a big semantic
difference. The clock operator in Sugar causes the projection of execution paths with
respect to a clock (causes to consider only the configurations at which the clock holds).
On the other hand, the focus operator doesn’t modify the original execution path but
allows to skip configurations which are not focused.

3.1 Semantics

In order to describe the semantics of ABSL, we extend the concept of a configuration with
two more pieces of information. First, we record the artifact an action on which leads to
this configuration. This is used to point out the “artifact-focused" configurations. Second,
we record the attributes that are read. Intuition behind this is to allow the formulation of
the properties about the “usefulness" of attributes during the processing of the artifacts

These are formalized as follows:

Definition 4. (Extended Configuration) For a configuration C of an operational model
O, an extended configuration of O is a tuple D = (C, α, θ) where α is a subset of
{(a, A) | a is an artifact in C andA is an attribute of a}, θ is a constant partial function,
and if is defined it is an artifact in C (Conceptually α represents the set of attributes that
are read, and θ represents the artifact such that the configuration is reached as a result
of an action on that artifact). An extended root configuration D0 = (C, α, θ) of O is an
extended configuration of O such that C is a root configuration of O, and α is empty,
and θ is not defined.



188 C.E. Gerede and J. Su

Given two configurations C1, C2 such that C2 can be derived from C1, we say C2 focuses
on the artifact a, if the derivation is due to an action on a (i.e., a check-in or check-out
of a, or a method invocation on a).

Next we extend the concept of derivation to extended configurations. An extended
configurationD2 = (C2, α2, θ2) can be can be derived from D1 = (C1, α1, θ1), denoted
as D1 → D2, if the configuration C2 can be derived from the configuration C1, and α2

is the union of α1 and the set of attributes which are read in the derivation, and θ2 is
defined and equals to the artifact that the derivation C1 → C2 focuses on We say the
derivation D1 → D2 focuses on the artifact a, if θ equals to a.

An extended configuration D is reachable from another extended configuration D′
if there exists a finite positive number of extended configurations D1, . . . ,Dk such that
D → D1, D1 → D2, . . . , Dk−1 → Dk, Dk → D′.

Next we describe the semantics of terms of the language with an example.

Example 3. For an extended configuration D, we describe the semantics of formulas
containing no path and temporal operators on a simple example formula ∀x ready(x)
∧ AtStudent(x) → ∃y Equal(DeptSignature(x), y) ∧ ReadReason(x). Assuming
that the type of x is a change request artifact, and the type of y is String, x ranges over all
change request artifacts in D, and y ranges over all String value domain. Then, for every
artifact a, ready(a) is true when the state of a is “ready";AtStudent(a) is true if a is
in the repository AtStudent; DeptSignature(a), if defined, evaluates to the value of
the attribute DeptSignature of a; Equal is true there exists a String value that equals
to DeptSignature of a; ReadReason(a) is true if Reason attribute of a is in the read
set. D satisfies the formula if the formula evaluates to true.

Definition 5. An extended execution graph E of an operational modelOand an extended
root configuration D0 is a Kripke structure (G0, G,H) where G0 = {D0} is the initial
state, G is the set of extended configurations, and H is the transition relation such that
(D,D′) ∈ H if D → D′, and (D,D) ∈ H if ¬∃ D′ s.t. D → D′. A path ρ in E is
an infinite sequence of extended configurations D1,D2, . . . such that for every i ≥ 0,
(Di,Di+1) ∈ H .

Next, we informally describe the semantics of formulas containing temporal operators.
Let E be an extended execution graph of an operational model O, and an extended root
configuration D0. Also, let D be an extended configuration in E , and a be an artifact in
D. Then, (E ,D) satisfies

– EN@aψ1 if there is a path from D in E on which the next a-focused extended
configuration satisfies ψ1.

– EG@aψ1 if there is a path fromD in E s.t. every a-focused extended configuration
on the path satisfies ψ1.

– Eψ1U@aψ2 if there is a path from D in E s.t. there is an extended configuration
satisfies ψ2, and ψ1 is true at all preceeding extended configurations.

(O,D0) satisfies a formula ψ, denoted as (O,D0) |= ψ, if (E ,D0) satisfies ψ.

4 Verification of Artifact Behaviors

Verifying artifact behaviors such as reachability is proven to be undecidable with the
ability of creating new artifacts[9]. Although decidability result was obtained there when



Specification and Verification of Artifact Behaviors 189

the ability of creating new artifacts is removed, extending the result to ABSL is not
obvious because of two main reasons. First, the domains of the artifact attributes, and
work description variables can be unbounded. Second, even the number of these attributes
and variables are bounded, the work descriptions can read external values and invent
infinite number of new values during the computation.

In the following sections, we develop decidability results for different cases.

4.1 Bounded Domains

The main result of this section is:

Theorem 1. For an operational modelO, an ABSL sentenceψ, an extended root config-
uration D0 of O, it is decidable to check whether (O,D0) satisfies ψ, when the domains
are bounded.

The rest of this section is devoted to prove this result.

Step 1: Given an ABSL sentence, we first eliminate the variables in the sentence. As an
example, let our sentence be ∀x pending(x) ∧ ∀y ¬Equal(signature(x), y) where
x quantifies over artifacts, and y is over scalar domain Eq (e.g. Strings). Let the ex-
tended root configuration contains three artifacts a1,a2,a3, and let Eq contains two
elements c1, c2. Then, we eliminate x by replacing it with all possible values, and we
take the conjunction of the expression since x is universally quantified. We can elimi-
nate y similarly. The variable eliminated version of the sentence becomes

∧
c1,c2

∧
a1,a2

pending(ai)∧¬Equal(signature(ai), cj). The approach is extended to the other ex-
pressions. The following can be proven:

Lemma 1. For an operational model O, an extended root configuration D0 of O, and
an ABSL sentence ψ, (O,D0) satisfies ψ iff (O,D0) satisfies the variable eliminated
version of ψ.

Step 2: For a variable eliminated sentence, we define a set of propositions. This set
depends on the formula, the operational model, and the root configuration. For instance,
for each repository R, for each artifact a appearing in the extended root configuration,
we have a proposition p[R(a)] and this proposition is true in an extended configuration
if a is located in R in the configuration. For every attribute A, every artifact a, and
every constant c appearing in the formula or in a work description of the operational
model we have a proposition p[A(a) = c] (and p[A(a) < c] if the domain of A is
ordered). p[A(a) = c] is true in an extended configuration if the value of A of a in
the configuration equals to c (resp., if it is less than c). Also, for every artifact a, we
have a proposition p[a] and it is true in an extended configuration if the configuration is
a-focused. The approach is extended to other predicates including artifact states, work
description states, and work description variables.

Step 3: We translate a variable eliminated ABSL sentence to a propositional branching
temporal logic (CTL) formula. We assume some familiarity with CTL [6]. We, first,
replace each atomic formula by a propositional formula. For example, if the atomic
formula isR(a)whereR is a predicate corresponds to a repository, andais an artifact, then
we replace it with the proposition p[R(a)]. The same technique is naturally extended to the
other atomic formulas involving unary predicates and binary predicates. For each atomic



190 C.E. Gerede and J. Su

formula involving a binary predicate, we replace the binary predicate with a propositional
formula. For instance, Equal(A1(a1), A2(a2)) is replaced by p[DefinedA1(a1)] ∧
p[DefinedA2(a2)] ∧ p[A1(a1) = A2(a2)].

For the path and temporal operators, we do the following translation:

– EN@a ψ ⇒ E X E¬p[a] U (p[a] ∧ ψ)
– EG@a ψ ⇒ (p[a] ∧ ψ ∧ EXEG(p[a] → ψ)) ∨

(¬p[a] ∧ (EXE¬p[a]U(p[a] ∧ ψ)) ∧ (EXEG(p[a] → ψ)))
– E ψ1 U@x ψ2 ⇒ E (p[a] → ψ1) U (p[a] ∧ ψ2)

As a result, we obtain a propositional CTL formula. Then, we create a labeled version
of the extended execution graph such that each extended configuration D in the graph
is labeled with the set of propositions that hold in D.

We can prove the following:

Lemma 2. For an operational model O, an extended root configurationD0 of O, Let E
be the extended execution graph of O and D0. For a variable eliminated ABSL sentence
ψ, (E ,D0) satisfiesψ iff (E L,D0) satisfies the CTL version ofψ, where E L is the labeled
version of E .

Coming back to Theorem 1, the proof idea is as follows: Since the domains are bounded,
the size of the extended execution graph is finite. Due to Lemma 1 and Lemma 2, the
problem of checking if an extended execution graph satisfies an ABSL sentence can
be translated to a CTL model checking problem. The size of the extended execution
graph is finite, and the decidability of model checking on finite structures is known[6];
therefore, the verification of an ABSL sentence is decidable.

4.2 Unbounded Domains

The main result of this section is:

Theorem 2. For an operational model O, an ABSL-core sentence ψ, an extended root
configuration D0 of O, it is decidable to check whether (O,D0) satisfies ψ, when the
domains are unbounded.

The rest of this section is devoted to prove this result.
Given an ABSL-core sentence and an extended root configuration, similar to the

bounded domains case, we eliminate the variables from the sentence and obtain a CTL
formula. Note that the CTL formula we obtain has a finite length, because the quantifiers
in the ABSL-core sentences can only be used over artifact variables and the number of
artifacts in the extended root configuration is finite.

The following can be proven:

Lemma 3. For an operational model O, an extended root configuration D0 of O, Let
E be the extended execution graph of O and D0. For a variable eliminated ABSL-core
sentence ψ, (E ,D0) satisfies ψ iff (E L,D0) satisfies the CTL version of ψ where E L is
the labeled version of E .

It is not straightforward to obtain a result like Theorem 1, because the domains are not
bounded and therefore the size of the extended execution graph is not finite. Interestingly



Specification and Verification of Artifact Behaviors 191

we show that we can obtain a finite abstraction of the infinite space and verify a given
sentence on this finite abstraction. In order to do this, we use an approach similar to the
region approach used for the decidability results of timed-automata [2]. Timed-automata
were introduced to model the behavior of real-time systems, which annotates state-
transition graphs with timing constraints using finitely many real-valued clock variables.
While in timed-automata, the infiniteness results from incrementing the clocks, in our
model, it results from reading values from external environment.

We first define a binary relation among extended configurations. For an extended root
configuration D0, let RD0 be a binary relation over extended configurations such that
two extended configurations are in the relation if they have the same set of artifacts with
D0, and they satisfy the same set of propositions (Conceptually, two configurations obey
the same total ordering of the artifact attribues and work description variables).

Lemma 4. For an extended root configuration D0, RD0 is an equivalence relation.

The equivalence class[7] of an extended configurationD, denoted as [D]D0 , with respect
to an extended root configuration D0 and the relation RD0 , is defined in the standard
manner. Note that the number of such equivalence classes is finite.

Lemma 5. For every pair of extended configurations D,D′ with [D]D0 = [D′]D0 , it
is true that for every extended configuration D′ that satisfies D → D′, there exists an
extended configuration D′

1 that satisfies both D′ → D′
1 and [D′]D0 = [D]D0 .

Definition 6. For an extended execution graph E = ({D0}, G,H), the region graph of
E is a Kripke structure ({D0}, G′, H ′) whereG′ andH ′ is defined inductively as follows:
D0 is in G′; for every D1 ∈ G′, and for every D2 such that (D1,D2) ∈ H , if there does
not exist D3 such that (D1,D3) ∈ H ′ and [D2]D0 = [D3]D0 , then (D1,D2) ∈ H ′ and
D2 ∈ G.

The size of the region graph is finite, because the number of equivalence classes is finite.
We extend the region graph to a labeled region graph by labeling its configurations with
the set of atomic propositions that hold in that configuration.

Based on Lemma 4 and Lemma 5, we can show that there is a bisimulation relation[7]
between every labeled execution graph and its corresponding labeled region graph.

Lemma 6. Given an extended root configurationD0,RD0 forms a bisimulation relation
between D0’s (labeled) extended execution graph and D0’s (labeled) region graph.

Coming back to Theorem 2, the proof idea is as follows: As it is given in Lemma 6,
there is a bisimulation relation between a labeled execution graph and its labeled region
region graph. Therefore, a CTL formula is satisfied by a labeled execution graph iff it
is satisfied by its labeled region graph[6]. The size of a region graph is finite, and the
decidability of the the model checking on finite structures is known. This is combined
with Lemma 3 concludes that the verification of an ABSL-core sentence with unbounded
domains is decidable.

4.3 Verification with Bounded Number of Artifacts

An extended root configuration D0 is k-bounded if the number of artifacts in D0 is at
most k, where k is a positive integer. For an operational model O, and a positive integer



192 C.E. Gerede and J. Su

k, (O, k) satisfies an ABSL(-core) sentence ψ, if for every extended root configuration
D0, (O,D0) satisfies ψ.

The following can be proven:

Theorem 3. For an operational model O, a positive integer k,

– it is decidable to check whether (O, k) satisfies an ABSL sentence ψ with bounded
domains;

– it is decidable to check whether (O, k) satisfies an ABSL-core sentence ψ with
unbounded domains.

5 Conclusion

In this paper, we proposed a logic language based on computational tree logic [7],
to specify artifact behaviors in artifact-centric process models. We showed decidability
results of our language for different cases. While we provide key insights on how artifact-
centric view can affect the specification of desirable business properties, extensions and
refinements of our language and results will be beneficial.

References

1. Aalst, W., Weske, M., Grnbauer, D.: Case handling: a new paradigm for business process
support. Data and Knowledge Engineering 53, 129–162 (2005)

2. Alur, R.: Timed automata. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633,
pp. 8–22. Springer, Heidelberg (1999)

3. Beer, I., Ben-David, S., Eisner, C., Fisman, D., Gringauze, A., Rodeh, Y.: The temporal logic
sugar. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, Springer,
Heidelberg (2001)

4. Bhattacharya, K., Gerede, C.E., Hull, R., Liu, R., Su, J.: Towards formal analysis of artifact-
centric business process models. Business Process Management (BPM) (2007)

5. Bhattacharya, K., Guttman, R., Lymann, K., Heath III, F.F., Kumaran, S., Nandi, P., Wu, F.,
Athma, P., Freiberg, C., Johannsen, L., Staudt, A.: A model-driven approach to industrializing
discovery processes in pharmaceutical research. IBM Systems Journal 44(1), 145–162 (2005)

6. Clarke, E., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press, Cambridge, Massa-
chusetts (2000)

7. Emerson, E.A.: Temporal and modal logic. In: Leeuwen, J. (ed.) Handbook of Theoretical
Computer Science, vol. B,ch. 7, pp. 995–1072. North Holland, Amsterdam (1990)

8. Gerede, C.E.: Modeling, Analysis, and Composition of Business Processes. PhD thesis, Dept.
of Computer Science, University of California at Santa Barbara (2007)

9. Gerede, C.E., Bhattacharya, K., Su, J.: Static analysis of business artifact-centric operational
models. In: SOCA. IEEE International Conference on Service-Oriented Computing and Ap-
plications, IEEE Computer Society Press, Los Alamitos (2007)

10. Kumaran, S., Nandi, P., Heath, T., Bhaskaran, K., Das, R.: Adoc-oriented programming. In:
Symposium on Applications and the Internet (SAINT) (2003)

11. Liu, R., Bhattacharya, K., Wu, F.Y.: Modeling business contexture and behavior using business
artifacts. In: CAiSE. LNCS, vol. 4495, Springer, Heidelberg (2007)

12. Nandi, P., Kumaran, S.: Adaptive business objects a new component model for business
integration. In: Int. Conf. on Enterprise Information Systems (2005)

13. Nigam, A., Caswell, N.S.: Business artifacts: An approach to operational specification. IBM
Systems Journal 42(3), 428–445 (2003)

14. Wang, J., Kumar, A.: A framework for document-driven workflow systems. In: Business
Process Management, pp. 285–301 (2005)


	Specification and Verification of Artifact Behaviors in Business Process Models
	Introduction
	Overview: Artifact-Centric Operational Models
	A Language for Specifying Artifact Behaviors: ABSL
	Semantics

	Verification of Artifact Behaviors
	Bounded Domains
	Unbounded Domains
	Verification with Bounded Number of Artifacts

	Conclusion
	References


