
This paper is included in the Proceedings of the

25th USENIX Security Symposium

August 10–12, 2016 • Austin, TX

ISBN 978-1-931971-32-4

Open access to the Proceedings of the

25th USENIX Security Symposium

is sponsored by USENIX

Specification Mining for Intrusion Detection
in Networked Control Systems

Marco Caselli, University of Twente; Emmanuele Zambon, University of Twente and

SecurityMatters B.V.; Johanna Amann, International Computer Science Institute;

Robin Sommer, International Computer Science Institute and Lawrence Berkeley National

Laboratory; Frank Kargl, Ulm University

 https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/caselli

USENIX Association 25th USENIX Security Symposium 791

Specification Mining for Intrusion Detection

in Networked Control Systems

Marco Caselli

University of Twente

m.caselli@utwente.nl

Emmanuele Zambon

University of Twente & SecurityMatters B.V.

emmanuele.zambon@secmatters.com

Johanna Amann

ICSI

johanna@icir.org

Robin Sommer

ICSI & LBNL

robin@icir.org

Frank Kargl

Ulm University

frank.kargl@uni-ulm.de

Abstract

This paper discusses a novel approach to specification-

based intrusion detection in the field of networked con-

trol systems. Our approach reduces the substantial hu-

man effort required to deploy a specification-based in-

trusion detection system by automating the development

of its specification rules. We observe that networked

control systems often include comprehensive documen-

tation used by operators to manage their infrastructures.

Our approach leverages the same documentation to auto-

matically derive the specification rules and continuously

monitor network traffic. In this paper, we implement this

approach for BACnet-based building automation systems

and test its effectiveness against two real infrastructures

deployed at the University of Twente and the Lawrence

Berkeley National Laboratory (LBNL). Our implementa-

tion successfully identifies process control mistakes and

potentially dangerous misconfigurations. This confirms

the need for an improved monitoring of networked con-

trol system infrastructures.

1 Introduction

Starting from Denning’s seminal work in 1986 [9], in-

trusion detection has evolved into a number of different

approaches. Among them, anomaly-based intrusion de-

tection and, most recently, specification-based intrusion

detection have gained attention for their potential to de-

tect previously unknown attacks (e.g., zero-day attacks).

A specification-based intrusion detection sys-

tem (IDS) leverages functional specifications of a

system to model its properties, or features, creating a

reference of correct behavior. Differently from anomaly-

based IDSs, behavior of features is not derived by a

learning phase (prone to false positives) but directly

extracted from documentation. This ensures the quality

of the generated models and improves detection. Several

research efforts in the literature confirm the accuracy of

specification-based intrusion detection [62]. However,

these approaches assume manual (human) analyses,

often focused just on network protocol documentations.

Scaling a specification-based approach to an entire in-

frastructure faces three key challenges. First, targeted

systems do not always have consistent features, and thus

constraints, that allow to describe functional rules (e.g.,

common networks do not usually guarantee stable com-

munication patterns or message timing). Second, even

when such constraints are present, bridging the semantic

gap between infrastructure properties and the low-level

features actually observable by an IDS remains hard [22].

Third, deploying a specification-based intrusion detec-

tion requires an explicit and unambiguous description of

the features’ behaviors, as well as substantial human ef-

fort in crafting the related specification rules.

This work aims to fill this last challenge by automating

specification-based intrusion detection to a fairly high

degree. We propose an approach to automatically mine

IDSs’ specification rules from available documentation.

Our approach works under the following assumptions:

• Documentation about monitored systems must be

available. No specification-based intrusion detec-

tion would be possible without relying on correct

information that describes an infrastructure’s com-

ponents, mechanisms and constraints. Documenta-

tion should be provided in an electronic form to al-

low automated knowledge extraction.

• Information retrieved from the documentation must

be linkable to what an IDS can observe. On a net-

work, information about components, mechanisms

and constraints need to map to features monitored

by the IDS (e.g., information on a whitelist of net-

work services should link to the correct IP address).

We do not claim that these principles can be gener-

ically applied to any system. However, we observe

that environments such as Networked Control Systems

792 25th USENIX Security Symposium USENIX Association

(NCSs) [20] suit this approach. NCSs are “systems

whose constituents such as sensors, actuators, and con-

trollers are distributed over a network, and their corre-

sponding control-loops are formed through a network

layer” [30]. Examples of NCSs include: industrial con-

trol systems [65], building automation systems [42] and

in-vehicle networks [31]. NCSs generally have the prop-

erties discussed above. Communications over these net-

works are quite stable [22] (e.g., neither the number of

devices nor the way data is shared change regularly).

Moreover, automation guarantees the presence of control

algorithms and consequently the existence of consistent

features that will eventually become the core of the spec-

ification rules. These features and their constraints also

represent the most attractive target for an attacker who

wants to manipulate the controlled processes [14].

The two assumptions defined above hold for NCSs.

Information related to system features are often docu-

mented in configuration files, reference books and man-

uals (e.g., “Substation Configuration Language” files

for industrial control systems, “Protocol Implementation

Conformance Statement” for building automation sys-

tems, CAN matrixes and corresponding documentation

for in-vehicle networks). Linkability is generally guar-

anteed by the absence of encryption and by the verbosity

of the adopted protocols.

In this paper, we design and discuss a specification-

based network intrusion detection system (NIDS) for

BACnet-based building automation systems to demon-

strate and investigate our concept. First, we present

specification-based intrusion detection in §2. Then, we

introduce building automation and BACnet in §3. We

outline our approach in §4. Details of the approach in

the context of building automation systems are discussed

in §5 to §7. Finally, we examine the general applicability

of our work in §8.

2 State of the Art

Ko et al. introduce specification-based intrusion detec-

tion in [34]. The authors describe their approach towards

automated detection of Unix privileged program misuses

and suggest to “specify programs’ intended behavior” by

modeling their normal execution beforehand. The pro-

posed solution works through the definition of a Program

Policy Specification Language aiming to formally define

programs’ operations by simple predicate logic and reg-

ular expressions. Later works such as [13] resume and

improve the proposed ideas. Ko et al. improve their in-

troductory research in [35] by defining a formal frame-

work used to define and detail security-relevant behav-

ior of Unix programs. In [33], the framework gets in-

tegrated into a comprehensive specification-based IDS,

called SHIM. SHIM merges several different detection

approaches that apply to both network communications

and operating system activities. Its use, together with

machine learning techniques, was shown to be an effec-

tive solution towards the development of automated in-

trusion response strategies [3]. From the previous works,

Sekar et al. continue developing the research field by

proposing complementary approaches in [52] (based on

the use of the Auditing Specification Language) and [54]

(based on a custom language called “Regular Expres-

sions for Events” or REE). The same authors, present

in [53] a hybrid approach aiming to increase the in-

formation of a specification-based IDS with the use of

anomaly-based intrusion detection techniques. The au-

thors use Extended Finite State Automata (EFSA) to

model and detail network protocol behavior. Then they

refine the set of monitored features via a learning phase

exploiting statistical analyses on the traffic traces.

Over the years, researchers customized specification-

based intrusion detection to fit different infrastructures

such as mobile ad hoc networks [60, 44, 23, 56, 61, 19]

and WLANs [16]. Furthermore, specification-based

IDSs were developed for specific use cases both for

network-based (e.g., VoIP technologies [59], carrier Eth-

ernet [26]) and host-based security (e.g., kernel dynamic

data structures [48], mobile operating systems [7]).

Specification-based intrusion detection has gained

a main role in NCSs. Works such as [8], [27],

and [37] present specification-based IDSs for Mod-

bus, Zigbee and DNP3 respectively. Hadeli et al. no-

tably apply a semi-automated specification approach

to substation automation systems employing MMS and

GOOSE [21]. The authors leverage operator input to

parse infrastructure-related documentation and derive se-

curity checks. Ultimately, Berthier et al. take this ap-

proach a step forward by modeling not just employed

protocols (in this case C12.22) but smart-meter security

constraints and policies as well [4]. This research shows

the feasibility and effectiveness of modeling high-level

infrastructure properties.

State-of-the-art research on specification-based intru-

sion detection assumes that protocol and system docu-

mentation is readily available when designing and con-

figuring the IDS. Few thoughts are spent on where and

how to retrieve this information, especially not in an au-

tomated way. Moreover, all the aforementioned works

do not explore the possibility of autonomously extracting

the information needed to build the related IDSs from

documentation, instead relying on human evaluation and

translation to rules. This possibility would allow to ef-

ficiently apply specification-based approaches to entire

infrastructures. As discussed in the introduction, our re-

search focuses on this key aspect of specification-based

intrusion detection with the aim of making its develop-

ment more time-effective and accurate.

USENIX Association 25th USENIX Security Symposium 793

Figure 1: Building automation network layout

3 Case Study: Building Automation

Building automation systems (BASs) or building man-

agement systems (BMSs) are networked infrastructures

controlling operations and services within a building (or

a group of buildings). Among other uses, building au-

tomation systems can monitor and control HVAC (heat-

ing, ventilation, and air conditioning), lighting, energy

consumption, and physical security and safety [42].

A building automation network usually follows a hier-

archical layout [28] (Figure 1). At the bottom, sensors

and actuators directly connect to the monitored phys-

ical processes and send information back and forth to

building automation controllers. Controllers communi-

cate with servers and distributed control systems (DCSs)

to coordinate high-level control procedures and policies.

Finally, operators can access and manage building au-

tomation components connecting through their worksta-

tions and human-machine interfaces (HMIs).

In the last decade, the employment of building au-

tomation solutions has constantly increased (both for

commercial and residential buildings) and its market

share is expected to grow in the following years [39]. De-

spite numerous benefits (e.g., energy efficiency, “smart

homes”, etc.) building automation makes several new

threat scenarios not just feasible but realistic [24, 17,

18, 47]. Nevertheless, only few solutions have been

proposed to improve building automation system secu-

rity [18, 6, 45].

3.1 BACnet

The “Building Automation and Control Network” (BAC-

net) protocol [1] facilitates building automation system

communication for a wide array of different devices and

different settings. While exact statistics of the prolifera-

tion of BACnet are difficult to come by, already back in

2003 there were more than 28,000 BACnet installations

in 82 countries [28].

Figure 2: BACnet interaction example

BACnet has a layered protocol architecture, similar to

the ISO/OSI model. The BACnet protocol has an appli-

cation layer, containing the actual application data pay-

load as well as a network layer that abstracts the differ-

ences of the network architectures supported by BACnet

and implements its own routing protocol. Underneath the

network layer, BACnet also specifies how it can be used

with different types of data links.

The BACnet application layer rests on two important

core concepts: objects and services (Figure 2). A Build-

ing Automation and Control System (BACS)1 includes

one or more BACnet objects that are used to represent

its functions. Objects are of a specific type, like An-

alog Input or Analog Output. BACnet supports a

wide range of high-level object types like Calendars,

Date Value objects, or Credential Data Input ob-

jects. BACnet users and vendors can define “proprietary”

objects as well to serve specific functionalities. Ob-

ject types have different attributes that are called prop-

erties, which are extensible for specific purposes. The

second core concept of the BACnet application layer

are services. While objects describe the different func-

tions that are implemented by a BACS, services define

how to communicate with the BACS, offering function-

ality such as reading object information from a device.

Their names reflect the semantics of the operation (e.g.,

ReadProperty).

Individual BACSs typically only support a small se-

lection of possible objects and services. Manufactur-

ers use a “Protocol Implementation Conformance State-

ment” (PICS) to describe which objects and services are

implemented by a specific device. The BACnet standard

implies that all BACSs shall have a PICS identifying “all

of the portions of BACnet that are implemented” [1]. In-

formation in PICS includes: a brief description of the de-

1In the remainder of this paper, we will refer to any controller im-

plementing BACnet as BACS.

794 25th USENIX Security Symposium USENIX Association

vice; a list of supported BACnet Interoperability Build-

ing Blocks (BIBBs) that define classes of BACnet ser-

vices supported by a device; and a list of supported stan-

dard and proprietary BACnet objects and properties with

their characteristics.

To complete device descriptions, operators may take

advantage of configuration files such as “Engineering

Data Exchange” (EDE) files [2]. Generally, operators

compile these documents to represent internal character-

istics of a deployed BACS. EDE files include detail infor-

mation on devices’ BACnet implementations (e.g., which

BACnet objects a device is currently using) and value

constraints (e.g., in Figure 2, Present Value of Analog

Value 7 must be less than 5.0).

3.2 Attacks on BACnet

BACnet defines a limited security architecture providing

peer and operator authentication along with data confi-

dentiality and integrity (“Clause 24 — Network Secu-

rity” [1]). However, none of this is implemented in avail-

able products [43]. This leaves BACnet infrastructures

vulnerable to numerous cyber-threats [24, 63, 58, 29].

We categorize attacks on BACnet into three main

groups: snooping, denial of service (DoS), and process

control subverting. This categorization derives from the

list of BACnet protocol threats described in [24].

Snooping attacks concern stealing information about

a specific building automation system. To achieve this

goal, these attacks require access to the building automa-

tion system network. Once inside, attackers can take

advantage of BACnet services such as ReadProperty

and ReadPropertyMultiple to gain knowledge of the

BACS. This includes device models, locations, status,

and information on their BACnet support (e.g., which

BACnet services and objects they implement). Attackers

may need this information to understand the infrastruc-

ture and pave the way to further intrusions. However,

snooping attacks do not disrupt any process of the build-

ing automation system.

Differently, DoS attacks try to interfere with control

processes by making controllers unreachable for opera-

tors. This category only considers DoS attacks that are

performed through the use of BACnet routing features

(e.g., malicious modifications to the BACnet routing ta-

bles) and leaves other kinds of DoS out of its scope.

As for the snooping attacks, DoS attacks need malicious

users to have access to the network. Moreover, this kind

of attacks requires information about the network layout.

Attackers can achieve their goal by sending BACnet mes-

sages, such as Initialize-Routing-Table, to modify

a BACS’ routing tables. In this way, operators lose vis-

ibility on single devices or even entire sections of the

building automation system.

Finally, process control subverting includes those at-

tacks that directly modify control processes and, con-

sequently, interfere with physical operation. This kind

of attacks requires more skilled attackers with sufficient

knowledge about the building automation system func-

tioning. In this scenario, attackers exploit specific con-

trollers by using several different BACnet services, such

as WriteProperty or DeleteObject, to change the

BACSs’ structures and operations. This leads to a loss

of control by the operators and, consequently, leads to

risks for components and people.

3.3 Evaluation Environments

For this work, we analyzed two different building au-

tomation installations over more than two months of con-

stant operation. The first building automation system

belongs to the University of Twente in the Netherlands

and is in charge of supervising utilities and services pro-

vided to the university campus. Its duties encompass en-

ergy consumption control, HVAC, and room monitoring

and management (e.g., pressure and temperature control,

shading, etc.). The second building automation system

belongs to the Lawrence Berkeley National Laboratory

(LBNL) and supervises several services on its premises.

The LBNL process control focuses mostly on room mon-

itoring and energy consumption for the Lab facilities.

Both infrastructures deal with hundreds of BACSs from

several different vendors.

The IDS we deployed at the University of Twente

linked to a SPAN port on a switch directly connected

with the SCADA servers monitoring the whole building

automation system. The same switch is responsible for

routing most of the traffic of the building automation net-

work. This allowed us to capture and analyze most of the

BACnet messages exchanged by BACSs. Differently, at

LBNL we could monitor only a subset of the building au-

tomation system by linking to a switch in charge of con-

necting BACSs inside one building. However, this was

sufficient to automatically gather the information needed

for our approach to craft the specification rules.

The two infrastructures generally showed similar traf-

fic patterns. Several BACSs shared the same sets of ob-

jects and used the same kind of messages to exchange

information. Furthermore, both UT’s and LBNL’s traf-

fic samples included numerous BACnet routing mes-

sages (e.g., Who-Is, I-Am, Who-Has, and I-Have) or-

ganizing communication paths within the two networks.

However, the two infrastructures presented some dif-

ferences related to communication and control strate-

gies (e.g., all BACSs deployed at UT used confirmed

services thus requiring acknowledgments from mes-

sage recipients while some devices at LBNL used just

unconfirmed ones). Particularly, the employment of

USENIX Association 25th USENIX Security Symposium 795

BACSs from different vendors led operators to employ

individual procedures implemented through the use of

ConfirmedPrivateTransfer BACnet services. Such

services are used to invoke proprietary or non-standard

routines in remote BACSs.

3.4 Setting and Threat Model

The reason to develop a network-based IDS is twofold.

First, a network-based solution is easier to deploy than

host-based ones. Secondly, this setup allows us to have

minimum impact on NCS processes. Once deployed,

we assume that our system is able to capture real-time

traffic of the monitored building automation system in

a completely passive fashion and to retrieve documen-

tation publicly available on the Internet. This allows

to gather the information we need to build specification

rules and implement effective detection.

On the other side, we assume attackers can gain full

access to the network as well. We consider this hap-

pening in a way that is similar to standard IT environ-

ments (e.g., phishing, software vulnerability exploita-

tion). Tools such as Shodan [40] show how easy it is

to find building automation networks exposing their de-

vices to the Internet. Once inside, attackers can obtain

a convenient viewpoint on the building automation con-

trol processes. Two key factors support this assumption.

First, most building automation protocols take advan-

tage of broadcast communications to exchange informa-

tion among devices (e.g., routing notifications). This al-

ready allows attackers to easily observe a large part of

the traffic. Secondly, the hierarchical structure of com-

mon building automation networks steers valuable infor-

mation messages towards servers and DCSs. By gaining

access to one of these servers, attackers can observe most

of the traffic within the building automation system.

Within a building automation network, attackers may

use attacks outlined in §3.2 to gain knowledge on, or

subvert, the correct functioning of the building automa-

tion system. In this last scenario, any safety feedback in

place can usually be overridden [49]. Therefore, attack-

ers can put infrastructure components under stress, pos-

sibly threatening human safety when it comes to devices

such as electrical equipment.

4 Specification Mining Approach

Our approach works towards automated development of

specification rules for network security monitoring. Set-

ting up and customizing a specification-based IDS for a

particular infrastructure requires a large amount of infor-

mation about the monitored system, implying a substan-

tial manual effort in gathering and refining the specifi-

cation rules. As details of the infrastructures are often

Figure 3: Specification-mining approach

described within specs and configuration files, especially

in many NCS environments, the process of collecting this

information—and, consequently, the development of the

actual IDS—can be automated to a fairly high degree

through the following steps (see also Figure 3):

(1) System Discovery gathers information about the

monitored NCS. In this step, our system analyzes the net-

work traffic in order to: 1) identify devices communicat-

ing on the network (e.g., models, brands); and 2) deter-

mine role and purpose of each identified device (e.g., a

device is a controller, an HMI, etc.). Every time the sys-

tem collects enough information about a specific device

it proceeds with the next step.

(2) Feature Lookup implements a set of information

retrieval techniques to gather knowledge about devices

identified during System Discovery. The purpose of this

step is to: 1) find verified information (e.g., specs, con-

figuration files) about the infrastructure’s devices; and

2) select features and constraints from the retrieved doc-

uments and arrange results in a structured form.

A successful Feature Lookup relies on the assump-

tions of availability and linkability outlined in the in-

troduction. The assumption of availability implies the

existince of documents about infrastructures and compo-

nents that are automatically retrievable. This requires the

information to be provided in electronic form and being

suitable for parsing. Also, this assumption includes an

assurance on the authenticity of the retrieved informa-

tion (e.g., by the use of reliable sources, by the employ-

ment of secure retrieval techniques). The assumption of

linkability guarantees that the information derived by the

retrieved documentation can be checked by the system

against observations within the traffic (e.g., messages,

variables, etc.). Particularly, after the identification of

network devices and the successful retrieval of their re-

lated constraints from the documentation, the assump-

tion of linkability enables assigning effective specifica-

tion rules to the right targets.

(3) Rule Definition uses the knowledge obtained in

the Feature Lookup to craft the specification rules. To

achieve this goal, the system needs to: 1) select identi-

fied information from Feature Lookup; 2) translate this

information to specification rules.

796 25th USENIX Security Symposium USENIX Association

We focus our specification-based intrusion detection on

controllers (e.g., BACSs for building automation sys-

tems, Programmable Logic Controllers or PLCs for

ICSs, Electronic Control Units or ECUs for in-vehicular

networks). This decision comes from the key role these

components have within NCSs: Controllers are involved

in any monitoring and control operation of the infrastruc-

ture either autonomously or accessed by operators. Fur-

thermore, controllers are likely targets for attackers (as

illustrated in §3.2).

We observe that NCS controllers share a number of

properties. First, every controller employs a limited set

of variables to fulfill its function. These variables can

go from simple memory addresses to complex objects

but often have predetermined types. Moreover, all con-

trollers use a limited set of methods (or services) to ac-

cess and manipulate variables of other controllers. Fi-

nally, each variable can assume a limited range of val-

ues according to its type or the physical characteristic it

represents. We leverage these shared properties to define

a set of general constraints, or abstract rules, checking

NCS variables’ types, values and access methods. These

abstract rules are the seeds we use to automatically gen-

erate specialized specification rules. To achieve this, we

define a mechanism that maps information retrieved in

the Feature Lookup step to the abstract rules. This pro-

cess automatically completes the abstract rules and, as a

result, customizes detection for the monitored NCS.

Once a rule is defined, it becomes active and, thus,

part of the detection mechanism. During detection, an

active rule verifies if its related constraint is fulfilled or

not. When this last condition becomes true, the system

triggers an alert for the user.

Having presented the phases in a generic way, we now

describe our experimental setup and, then, how we have

instantiated them to build a specification-based IDS for

BACnet-based building automation systems.

Implementation background We implement our ap-

proach using the Python programming language [51]

and Bro [46]. Bro is a network traffic analyzer em-

ployed in different domains such as network security

monitoring and performance measurement. The sys-

tem comes with comprehensive built-in functionalitiy

for traffic analysis and supports several network proto-

cols ranging from standard (e.g., HTTP, FTP) to domain-

specific (e.g., Modbus [41], DNP3 [10]). Bro provides a

Turing-complete scripting language that allows users to

select and analyze network events (e.g., connection es-

tablishments). We choose to describe specification rules

through the “Bro scripting language” because of its ef-

ficiency and expressiveness. We developed a BACnet

parser for Bro using Spicy [55], a parser generator whose

specification language allows users to define a protocol’s

syntax and semantics at a high level. We publish the

BACnet parsing code for Spicy, as well as the Python

scripts , as open source software.2 However, we cannot

open-source the Bro code containing the rule checks due

to privacy agreements with the two building automation

system sites.

5 System Discovery

To identify BACSs we implement three different tech-

niques that we term: “BACnet Device Object anal-

ysis”, “BACnet Address linking”, “BACnet Property

set fingerprinting”. The first technique directly fol-

lows from the protocol standard and relies on the

mandatory presence of a Device object in every BACS

device. The Device object defines “a standardized

object whose properties represent the externally vis-

ible characteristics of a BACnet device”. Among

these properties there are: Object Name, Vendor Name,

Vendor Identifier, Model Name, Firmware Re-

vision, Application Software Version, Loca-

tion, and Description. Most of these prop-

erties are set by vendors and provide informa-

tion on a device’s identity (e.g., Model Name) and

role (e.g., Description). BACnet services such as

ReadProperty and ReadPropertyMultiple can ac-

cess those properties. As these services are widely em-

ployed by user interfaces and logging servers to automat-

ically update data related to infrastructure’s components,

information on Device objects regularly passes through

the network and, thus, is available to System Discovery.

As the Object Identifier property of a Device ob-

ject is a parameter that uniquely identifies a device in a

BACnet network, a message such as the one in Figure 4

allows us to identify a BACS and understand its purpose.

In the Wireshark screenshot example, BACS with identi-

fier “17001” is a “Blue ID S10 Controller”.

For BACnet objects of other types, since no infor-

mation can be extracted from the IP address (multiple

BACnet devices may share the same IP address), a fur-

ther parameter allows to identify message sources and

destinations: the BACnet address. As for the Device

object’s Object Identifier, the BACnet address (to-

gether with the Network Identifier) is unique within

a BACnet network. In the “BACnet Address linking”

technique, the BACnet address bridges the gap between

a known Device object and any BACnet object included

in the same BACS. Figure 5 shows an example of this

analysis. When “device 4001” is known (as a result of

the previous technique), any message carrying both the

related Device object’s Object Identifier and the

2https://github.com/specification-mining-paper-

usenix-2016/specification-mining

USENIX Association 25th USENIX Security Symposium 797

Figure 4: “BACnet Device Object analysis” example

(a) I-Am message

(b) ReadProperty message

Figure 5: “BACnet Address linking” example

BACnet Address allows us to link the two parameters

(Figure 5a). Any later message then carrying the BACnet

address along with a further object (e.g., “Analog Value

171”) enables linking to the corresponding device (Fig-

ure 5b). This technique works well because I-Am mes-

sages pass the network frequently to ensure visibility of

all BACnet objects.3

Finally, if no information can be extracted from

Device objects or BACnet addresses, System Discov-

ery can benefit from observations of the BACnet prop-

erties. As discussed in §3.1, the BACnet property set is

3The technique can also directly use messages carrying Device ob-

ject information if the source BACnet address is present in the header.

However, for this kind of messages, having the BACnet Address fields

is not mandatory.

Table 1: University of Twente - BACS device list

of devices Vendor Model Role

5 Kieback&Peter DDC4000 DCS

15 Priva HX 80E Router

7 Priva Compri HX Controller

25 Priva Compri HX 3 Controller

36 Priva Compri HX 4 Controller

12 Priva Compri HX 6E Controller

85 Priva Compri HX 8E Controller

2 Priva Blue ID S10 Controller

16 Priva Comforte CX HMI

2 Delta Controls eBCON Controller

3 Siemens PXG80-N Controller

3 Siemens PXC64-U Controller

3 Siemens PXC128-U Controller

3 Siemens PXR11 Controller

3 Siemens PXC00-U + PXA30-RS Controller

1 Unknown Unknown -

Table 2: LBNL - BACS device list

of devices Vendor Model Role

23 Automated Logic LGR Router/Gateway

14 Automated Logic ME Controller

11 Automated Logic SE Controller

159 Automated Logic ZN Controller

1 Automated Logic WebCTRL HMI

9 Johnson NAE Controller

1 Johnson NIE Controller

4 Paragon Controls Inc. EQ Controller

4 Sierra BTU Meter Energy meter

4 Sierra FFP Controller

1 Tracer UC400 Controller

2 Niagara AX Station SCADA server

7 Unknown Unknown -

extensible. Every object of a BACS has a set of stan-

dard and proprietary properties that form a “fingerprint”

of that object and device. The third technique assumes

that two objects sharing the same fingerprint are likely to

be of the same kind. During System Discovery, it is pos-

sible to create a database of identified fingerprints each

one pointing to the corresponding BACS (identified with

the previous two techniques). Whenever an unknown ob-

ject presents a property set already in the database, the

system infers the most likely related device.

Experiments Previous work by us shows that tradi-

tional fingerprinting techniques are usually ineffective on

most NCSs [5]. In our tests, tools such as Nmap [38] and

P0f [64] were able to identify just a limited number of

Windows and Linux workstations. The techniques pre-

sented above proved more effective. Thanks to frequent

ReadPropertyMultiple, our system was able to gather

information on most BACSs. Moreover, BACnet address

linking and BACnet property set fingerprinting allowed

the system to link most of the observed BACnet objects

to identified devices. At the end of System Discovery,

we gathered information on ∼15k BACnet objects be-

longing to the 445 devices shown in Tables 1 and 2.

Thanks to the information from the operators, we

798 25th USENIX Security Symposium USENIX Association

know that we correctly identified 98.2% of the BACSs

actually deployed (445 out of 453 devices). Eight devices

did not link to any useful BACnet message or identifi-

able property set. However, these devices convey almost

no information over the network (a few hundreds BAC-

net messages over two months of capturing compared to

an average of tens of thousands) and did not involve any

notable equipment. Identifying the aforementioned 445

devices took just a few hours of monitoring.

6 Feature Lookup

Searching for documentation on identified BACSs is pos-

sible because the two assumptions of availability and

linkability hold for BACnet-based building automation

systems. Verified information about BACSs is avail-

able within PICSs and EDE files. This information in-

cludes BACSs’ vendors, models and even refers to spe-

cific BACnet objects, thus is linkable to what we ob-

served over System Discovery.

Feature Lookup targets both online and offline doc-

umentation. On the one hand, we use Google APIs to

search and retrieve publicly available documents such as

PICSs on the Internet. On the other hand, we retrieve

EDE files from private repositories in the installations.

Both cases allow for document authenticity. In the for-

mer case, we narrow the search to a subset of reliable

sources such as vendors’ websites and reputable third

parties (e.g., BACnet International Laboratories4). In the

latter case, we assume a secure connection to a trusted

dataset managed by the operators.

Once a BACS links to one or more of these documents,

our system parses the documents looking for useful in-

formation. According to BACnet specifications, a PICS

has a standard template and we observe that most PICSs

are closely modeled to it. Figure 6 shows three extracts

from the PICS of the “Blue ID S10 Controller” men-

tioned in the previous section.

As outlined in §3.1, each PICS provides a description

of the related BACS and the BIBBs it implements (Fig-

ure 6a). Moreover, PICSs include information about sup-

ported BACnet objects and properties, as well as their

characteristics (Figures 6b and 6c).

EDE files also follow a standard template but they

use a simpler “comma-separated values” (CSV) format.

Each EDE file presents details of a specific BACS (Fig-

ure 7 shows an extract of Device 4001 EDE file). Data

includes all implemented BACnet objects (e.g., “device

4001” owns “Analog Value 171”, “Multi-state Value 15”,

etc.) and their descriptions. Furthermore, EDE files in-

clude information about Present Value properties with

4http://www.bacnetinternational.org/

(a) PICS excerpt 1

(b) PICS excerpt 2

(c) PICS excerpt 3

Figure 6: PICS example

Figure 7: EDE file example

value ranges (e.g., “Analog Value 171” can vary from

min-present-value 0 to max-present-value 100).

Experiments The program we implemented to search

for online documentation uses the outputs of System

Discovery (vendors and models) and further keywords

such as “PICS” to retrieve information about identified

BACSs. The system ranks Google results coming from

public repositories (e.g., www.bacnetinternational.net)

and the web by quantifying the presence of the key-

words in document titles. For example, the “Blue ID

S10 Controller” links to a PDF document titled “BAC-

net PICS Blue ID S10 Controller.pdf” (Figure 6). With

this technique we identified a PICS for 99.3% of the de-

USENIX Association 25th USENIX Security Symposium 799

vices deployed in the two building automation systems

(442 out of 445 among the devices identified in the Sys-

tem Discovery step). Two ‘Siemens PXR11’ and one

‘Paragon Controls Inc. EQ’ were the only devices that

did not link to any PICS. However, we could not find the

related PICSs even by a manual search either.

Offline research targeted specific devices directly.

While online documentation always provides general in-

formation about BACSs of a certain kind (e.g., all “Blue

ID S10 Controller”), offline repositories provide detailed

information related only to devices deployed in the mon-

itored building automation system. For this reason, in-

stead of vendors and models we searched through the

available documents using device Object Instances.

For example, starting from “Device object 4001” from

System Discovery, we found an EDE file titled “Con-

troller 4001 EDE.csv”. While LBNL did not provide

any configuration file, operators from the University of

Twente shared with us 10 files of this kind. While they

confirmed that there was indeed an EDE file for every de-

ployed device, they could not grant us unlimited access

to all of them due to information sensitivity. For this rea-

son, the operators chose the 10 files based on roles and

purposes of the related devices. Each file we obtained

described a BACS identified over System Discovery.

The aforementioned privacy concerns refer to the ini-

tial manual analysis we had to perform over the EDE

files and would not hamper the applicability of our ap-

proach. In an ideal deployment, one would have a se-

cure connection between the IDS and the machine stor-

ing the EDE files, without any human activity involved

for retrieval operations and processing. However, both

University of Twente and LBNL operators store infras-

tructure documentation on computers also used for other

purposes than building automation, and direct connec-

tions to those resources were infeasible.

Finally, we implemented two programs to parse PICSs

and EDE files respectively. In the first case, the program

goes from document’s top to bottom guided by the dia-

gram shown in Figure 8. For every available PICS, the

program first selects all implemented BIBBs and BAC-

net objects (Figures 6a and 6b). Each object can be cre-

atable/deletable and this information follows the object

as a “yes/no” or equivalent symbols (Figure 6b). Finally,

for every object, the script selects a list of properties that

can be writable or not (Figure 6c). Figure 9 shows pars-

ing results of the “Blue ID S10 Controller” coming from

the PICS showed in Figure 6.

Most of the retrieved PICS did not have any infor-

mation about property values. Instead, this information

was included in the EDE files. A further program went

through all EDE files selecting Present Value mini-

mum and maximum values for every listed object. This

new information was structured as shown in Figure 10.

Figure 8: PICS parsing diagram

Figure 9: Parsing PICS example results

Figure 10: Parsing EDE example results

7 Rule Definition and Detection

Next we describe how the information gathered in previ-

ous steps is used to define specification rules. In §4, we

motivated our focus on variables’ types, values and re-

lated access methods as basis for our specification rules.

From this, we derive three abstract rules: 1) a “Type”

rule checks if a variable of a specific type is allowed;

2) a “Value” rule checks which values a variable may

assume; and 3) a “Method” rule checks which methods

can be used to access a specific variable. All rules have

the same structure: each element (type, value, method)

is evaluated against a set of allowed possibilities. For ex-

ample, in the “Type” rule, a variable’s type is evaluated

against all the allowed types of variable a controller may

implement (Algorithm 1).

We use a Python program to automate the process of

mapping information retrieved over Feature Lookup to

the abstract rules. In the following, we discuss how we

map these abstract rules into specification rules for mon-

itoring for each type.

Type Rule: The “Type” rule checks which BACnet ob-

jects and properties each BACS can use. This informa-

tion comes from the PICSs (Figures 6b and 6c) and, thus,

is included in the results of Feature Lookup (Figure 9).

Therefore, a script selects allowed objects and properties

of each identified BACS and transforms the “Type” rule

into the two specification rules shown in Algorithm 2.

In the case of the “Blue ID S10 Controller”, the

800 25th USENIX Security Symposium USENIX Association

Algorithm 1 Abstract “Type” rule

1: if Variabletype /∈ ControllerAllowedVariableTypes then

2: Alert(“Variable type not permitted”)

3: end if

Algorithm 2 BACnet “Type” rules

1: if BACnet Object /∈ ControllerAllowedObjectTypes then

2: Alert(“Forbidden Object”)

3: end if

1: if BACnet Property /∈ ControllerObjectAllowedPropertyTypes
then

2: Alert(“Forbidden Property”)

3: end if

ControllerAllowedObjectTypes set contains objects Accumu-

lator, Analog Input, etc. In the same way, the

ControllerAccumulatorAllowedPropertyTypes
set of a “Blue ID S10

Controller” contains properties Object Identifier,

Object Name, etc. Whenever the system captures a

BACnet message including an object and some prop-

erty, the two rules check object and property types re-

spectively and alert if these types are not included in the

defined sets. This allows the system to detect snooping

attacks and any other attack dealing with unexpected ob-

jects and properties.

Value Rule: The “Value” rule checks which values

BACnet properties may assume. This information comes

from the EDE files (Figures 7 and 10) and, thus, is auto-

matically mapped to the concrete rule as shown in Algo-

rithm 3.

Algorithm 3 BACnet “Value” rule

1: if BACnet Property value /∈ Controller(Object,Property)AllowedPropertyValues
then

2: Alert(“Forbidden Value”)

3: end if

For example, when it comes to “Device 4001”, the sys-

tem alerts if “Analog Value 171” is below 0 or above 100.

This rule protects the infrastructure against process con-

trol subverting scenarios, and thus attacks attempting to

modify parameters of the physical and control processes.

Method Rule: The “Method” rule validates the BAC-

net services each BACS can use. This information comes

from the PICSs in the form of a list of BIBBs (Figures 6a)

and is included in the results of Feature Lookup (Fig-

ure 9). BIBBs can be replaced with corresponding ser-

vices by a simple lookup operation. Therefore, Algo-

rithm 4 checks if a BACnet service belongs to the set of

allowed services.

In the case of the “Blue ID S10 Controller”, the

ControllerAllowedServices includes services from BIBBs

DS RP A (ReadProperty Request), DS RP B

Algorithm 4 BACnet “Method” rule

1: if BACnet Service /∈ ControllerAllowedServices then

2: Alert(“Forbidden Service”)

3: end if

(ReadProperty Response), etc. This rule allows the

system to detect attackers misusing BACnet services to

fulfill their goals.

Furthermore, we use the “Method” rule to check

which BACnet object is creatable/deletable and which

BACnet property is writable. Following the standard,

we compile three sets of BACnet services with services

that create objects, that delete objects, and that write

properties respectively. Then, the system uses the infor-

mation from Feature Lookup to define checks on non-

creatable/deletable objects and non-writable properties

by using Algorithm 5.

Algorithm 5 BACnet additional “Method” rules

1: if BACnet Service ∈ CreateObjectServices then

2: Alert(“Forbidden object creation”)

3: end if

1: if BACnet Service ∈ DeleteObjectServices then

2: Alert(“Forbidden object deletion”)

3: end if

1: if BACnet Service ∈ WritePropertyServices then

2: Alert(“Forbidden property writing”)

3: end if

For example, the first two rules alert the presence

of services attempting to create or delete Accumulator

objects belonging to a “Blue ID S10 Controller”.

The third rule reports any service attempting to write

to a non-writable property, such as Accumulator’s

Object Identifier.

Experiments Our system filled the abstract rules with

the information coming from Feature Lookup crafting

hundreds of specification rules. To improve efficiency

we arrange the specification rules in an order that avoids

meaningless checks (e.g., we do not want to check a

BACnet property if we already know that the BACnet

object it belongs to is not allowed). For every captured

BACnet message, the system checks if the BACnet ser-

vice is allowed; then, if involved BACnet objects can be

used, created or deleted; then, if involved BACnet prop-

erties are allowed and writable. Finally, the system ex-

amines properties’ actual values. Only a small set of

specification rules are of this last type due to the limited

number of EDE files that operators provided us with.

As outlined in §3.3, we tested our approach against

more than two months of real traffic. Over the two

months of capturing, our system triggered 237 unique

alerts; 226 at the University of Twente and 11 at LBNL.

USENIX Association 25th USENIX Security Symposium 801

Table 3: Detection results

Abstract Rule Specification Rule # Alerts

Type Rule
Forbidden object 2

Forbidden property 234

Value Rule Forbidden value 0

Method Rule

Forbidden service 0

Forbidden object creation 0

Forbidden object deletion 0

Forbidden property writing 1

Figure 11: Unexpected object ReadProperty Request

The two results differ because of the different views

we achieved over the two infrastructures (as already de-

scribed, at LBNL we could monitor only a subset of the

building automation system and thus a subset of the traf-

fic). Table 3 shows the three abstract rules, the corre-

sponding specification rules and whether or not a rule

raised an alert.

We did not find any evidence of malicious activities

over the time span of the captures. However, our ap-

proach still provided interesting insights. At the Univer-

sity of Twente, the system raised alerts on two BACSs

using forbidden objects. Both cases involved a “pro-

prietary” object never described within the PICS. Ac-

cording to the available documentation, the two devices

(two Siemens controllers PXC128-U) should not include

anything that was not defined within the BACnet stan-

dard. Nevertheless, a device probed the two controllers

(Figure 11) and received back correct BACnet responses

about an unknown object. A meeting with the operators

revealed that this object is vendor-defined and gathers in-

formation on parameters of the BACSs recognizable and

understandable by vendors only. Operators confirmed

that vendors have access to the building automation sys-

tem to monitor their devices, and use of an unknown

BACnet object happens even though the documentation

does not mention this possibility because of its internal

nature. However, operators did not know that involved

BACSs provide specific functionalities and attackers can

potentially exploit such circumstances.

Detection on BACnet properties provided the highest

number of alerts (all alerts at LBNL were of this kind).

Our system generated several alerts on ReadProperty

and ReadPropertyMultiple messages attempting to

retrieve non-existing properties. As a matter of

fact, these properties were not defined by the PICSs

and, for most cases, we could eventually confirm the

(a) Unexpected property ReadProperty Request

(b) ReadProperty Response confirmation of the alert

Figure 12: Unexpected property read operation

non-existence of these properties by observing some

BACnet errors carried in the responses to those read re-

quests (Figure 12).

A BACS asking for unimplemented properties is not

necessarily a violation of the specs. In fact, all PICSs

define what a BACS implements without defining what

other BACSs may ask for. A situation in which a BACS

sends back a BACnet-error response to warn about a

non-existing property (Figure 12b) is in line with the

specs and should be of no harm for the system. However,

the reason to alert on situations of this kind is twofold.

First, this situation may be of interest from a security per-

spective. Despite being handled by the BACnet protocol,

these circumstances may hide a “network discovery” sce-

nario where an attacker tries to gain knowledge of the in-

frastructure by randomly probing BACSs. As described

in §3.2, snooping is one plausible attack in building au-

tomation systems. Secondly, the same situation shows a

common side-effect of the joint use of different BACnet

software solutions. As servers and workstations do not

usually know in advance which BACSs they will con-

nect to, predefined BACnet discovery messages exist in

order to gather general information of building automa-

tion components. These messages do not consider which

BACnet properties are defined for each device and sim-

ply use large sets of them. This consequently generates

several error responses on the network.

To dig deeper into property-related issues, we ex-

tended the “unknown property” specification rule to also

check if properties enforced by PICSs were always im-

plemented. Therefore, we created a further instance of

“Type” rule checking all BACnet error messages to de-

tect missing properties that were supposed to be used by

the BACSs. The system revealed several messages re-

porting “unknown-property” errors about properties de-

clared to be part of devices’ BACnet implementations.

802 25th USENIX Security Symposium USENIX Association

Figure 13: Unexpected property write request

All these mismatches between implementation and spec-

ification are particularly relevant for what concerns inter-

operability. In fact, software solutions that define their

interactions with a BACS based on its public documen-

tation can incur into inconsistencies caused by incorrect

or lacking implementations.

Finally, the system triggered an alert correspond-

ing to an unexpected write operation on a BACnet

property supposed to be readable only. A Priva con-

troller received a BACnet WriteProperty request on

the Exception schedule of an object Schedule (Fig-

ure 13). Despite what we knew from the related PICS,

the BACS sent back a SimpleACK message, acknowl-

edging the success of the operation (the actual writing

was confirmed by later read operations). These kinds

of situations are especially dangerous due to the unpre-

dictability of their results. As no indication is provided

by the vendor, the write operation can either succeed or

fail, and may generate a response or not (even indepen-

dently from the actual modification of the value within

the property). Meeting with the operators revealed that

this write operation was due to a human mistake during

the configuration of the Priva controller. However, the

same situation could fit the “process control subverting”

scenario described in §3.2.

8 Discussion

Performed experiments confirm the feasibility of the ap-

proach within building automation systems and pave the

way for its application to different domains.

8.1 Analysis of the Results

By construction, our IDS is able to detect events that do

not match the specifications coming from retrieved doc-

umentation. This aspect leads to two considerations:

• On the one hand, an alert raised by the system does

not necessarily refer to a security-relevant event

as the related mismatches may not directly harm

the monitored devices. However, all findings re-

vealed network activities otherwise invisible to op-

erators. Over the two months of analysis, every alert

identified either an actual mismatch between device

documentation and implementation (e.g., unimple-

mented BACnet Properties) or an operator mistake

(e.g., the unexpected writing operation). As already

discussed, these issues can cause significant gaps in

the knowledge operators have about their infrastruc-

tures and may potentially lead to dangerous miscon-

figurations of the involved systems. The meeting

with the operators at the University of Twente con-

firmed that employed HMIs were not able to signal

any of the misconfigurations found or even notify

the users on generated BACnet errors. As a result,

the University of Twente asked to deploy our sys-

tem into the building automation system continu-

ously and let operators receive notifications of the

generated alerts. So while our datasets did not in-

clude actual attacks, we were able to reliably detect

notable deviations from the specifications at zero

false-positives. This result is in line with the work

of Uppuluri et al. [62] showing that specification-

based intrusion detection works towards optimal de-

tection rate while substantially decreasing the num-

ber of false positives compared to anomaly-based

detection.

• On the other hand, our approach does not necessar-

ily detect all possible attacks threatening the mon-

itored infrastructure. In fact, any attack operating

within the boundaries defined by employed spec-

ifications would not be caught by our IDS. How-

ever, our solution substantially narrows down what

a malicious user can do and covers most of the at-

tack scenarios defined within the categories listed

in §3.2. Furthermore, our solution does not exclude

the use of other approaches such as pure anomaly-

based intrusion detection either improving the ob-

tained rule set or working in parallel.

Each one of the implemented phases effectively

achieved the defined goals. Thanks to the numerous read

operations, System Discovery took just a few hours of

network sniffing to gather all the information needed to

describe the whole set of BACSs. With this information,

our approach was able to rapidly and automatically iden-

tify available sources of information and craft effective

specification rules.

Feature Lookup focused just on structured documents

such as PICSs and EDE files. In some of the tests, we

further extended online research to documents such as

BACS user manuals. Our system was able to down-

load 10 manuals related to components deployed in the

monitored infrastructures. However, we decided to not

further employ manuals because an analysis showed

they were fullly overlappig with the information found

in the PICSs. Nevertheless, one way to improve our

USENIX Association 25th USENIX Security Symposium 803

specification-mining approach is to enable handling het-

erogeneous documentation and, especially, unstructured

information. To this regard, we observe that Feature

Lookup should abstract from domain-specific parsing

scripts and generalize the process of mining and struc-

turing infrastructure features. Correctly selecting infor-

mation can take advantage of standard data mining and

natural language processing. Our work did not present a

general approach to this activity. However, works such

as [57, 15, 50] may fulfill this goal. With more general

techniques capable of extracting knowledge from het-

erogeneous documentation, the effort of deploying the

system completely converges on mapping retrieved in-

formation to the abstract rules. According to the mon-

itored infrastructures, operators should identify the re-

lated concepts of variable type, value and access method

and, eventually, let the system interpret data coming from

Feature Lookup and instantiate the specification rules.

Even without such a general approach, our solution

drastically reduced the time needed to deploy intrusion

detection into a BACnet-based building automation sys-

tem. Obtaining the same set of specification rules by

hand would have required substantial effort, making it

infeasible for larger infrastructures. Furthermore, the ob-

tained system comes with the intrinsic capability to up-

date according to the changes of the monitored infras-

tructure. In fact, whenever new BACSs are deployed, our

system transparently reads the new information over the

network and goes through the three steps all over again.

In the end, this solution makes the implemented system

directly applicable to any other BACnet infrastructure

with no further effort on configuration or deployment.

The proposed approach works likewise for different

building automation technologies. As discussed, this

would mostly require a modification of the mapping pro-

cess linking retrieved information and abstract rules but

would leave the core concept unchanged. Other build-

ing automation infrastructures such as KNX [32] and

LonWorks [11] also meet the requirements of availabil-

ity and linkability. These widely used protocols present

characteristics similar to the ones observed for BACnet.

Moreover, both KNX and LonWorks promote and sup-

port the use of documents describing protocol implemen-

tation details (although not as formal as BACnet PICS).

To show the generality of our approach beyond

building automation systems we outline how the same

specification-mining technique applies to two different

domains of NCSs, namely ICS and in-vehicle networks.

8.2 Industrial Control Systems

ICS is a term generally used to indicate several types

of control systems (e.g., Supervisory Control And Data

Acquisition or “SCADA”) used in industrial production

for monitoring and controlling physical processes. ICSs

work over several domains such as energy, water treat-

ment, manufacturing, etc. and embrace a wide family of

technologies. Among them, Modbus [41], MMS [25],

IEC104 [12], and DNP3 [10] are some of the most used

protocols and standards deployed for industrial control.

Specification-based intrusion detection for ICSs is not

new. Works such as [4] show the effectiveness of this

approach applied to electrical grids. However, applying

a set of specification rules to a real deployment still re-

quires manually crafting all parameters on specific needs.

Again, our research can improve the use of specification-

based intrusion detection by leveraging available infor-

mation of the deployments. For example, in the smart

grid scenario, we would focus on Programmable Logic

Controllers (PLCs) and Remote Terminal Units (RTUs),

as these play a main role in the infrastructure. We

would analyze variables handled by these controllers,

their types, values and access methods and then use the

abstract rules defined in §7.

Regarding the assumption of §6, verified information

about the smart gird is available within configuration

files that use the “Substation Configuration Language”

(SCL). SCL files usually provide formal representations

of modeled data and communication services. The infor-

mation included in these files is linkable thanks to the in-

cluded detail descriptions of the involved infrastructures

(e.g., “Substation Configuration Description” files). Be-

sides SCL files, operators usually store additional doc-

umentation describing physical and control processes as

in the building automation use case. An IDS can lever-

age this documentation to gather further information and

derive specification rules.

The three steps of the approach remain unchanged.

System discovery will passively gather data about de-

vices communicating over the ICS network. According

to the verbosity of the involved protocols, an IDS will

eventually collect enough information to identify infras-

tructure components and start the Feature Lookup step.

Once information about PLCs and RTUs functioning is

retrieved, Rule Definition will use it to define the actual

specification rules.

8.3 In-Vehicle Networks

Similar argumentation can be applied to communication

of Electronic Control Units (ECUs) over automotive bus

systems like the “Controller Area Network” (CAN) or

FlexRay found in all of today’s cars.

CAN is a network where connected ECUs communi-

cate by means of small messages with a payload of only

8 bytes. CAN uses content-based addressing where mes-

sages only carry a 11 (or 21) bit message identifier, and

receiving ECUs will select messages relevant to them

804 25th USENIX Security Symposium USENIX Association

based on this message identifier. Message identifiers

also serve as prioritization, as the employed CSMA/CR

medium access scheme will always grant priority to the

message with the lowest message identifier avoiding col-

lisions on the bus. Transport layer protocols such as

ISO-TP allow for transfer of longer messages fragmented

into smaller network packets and more complex forms of

addressing crossing gateways connecting multiple CAN

segments.

In order to maintain and manage the assignment and

semantics of message identifiers, the design phase of an

automotive network involves setup of a so-called CAN-

Matrix that lists exactly which ECU is supposed to sent

which message identifier, which ECUs will receive mes-

sages of certain type and also the payload syntax and se-

mantics. This design is done using sophisticated tools

like Vector Informatics CANOe.5 The data provided by

such tools is a perfect data source for specification-based

IDS and for our approach, so the criteria of availabil-

ity is met. linkability is more of a concern, as messages

per se do not contain information on their source or type

and a recipient needs to know (part of) the CAN matrix

to identify how to decode a certain message ID. How-

ever, with the CAN matrix, we do have information on

the types of ECUs available and can therefore conduct

System discovery. This information can then be used

to conduct Feature Lookup. A lot of relevant informa-

tion (which messages are supposed to be seen on which

bus segment) is again contained in the CAN matrix. Un-

fortunately, documentation in vehicular networks is not

as standardized as the PICSs are in BACnet. So feature

lookup would probably require more detailed investiga-

tions and more complex document parsing. Rule defini-

tion is then straightforward. However, having no source

or destination addresses in packets, one would have to

focus on message IDs, bus segments, and payload for

detection.

While specification-based intrusion detection has been

proposed many times especially for CAN-based net-

works [36, 31], a structured approach to rule-mining is

missing in this domain so far and we see this as a promis-

ing field of application for our approach.

9 Conclusion

As networked control technologies are rapidly emerg-

ing, the need for securing these systems faces the key

challenge of quickly scaling up to a multitude of het-

erogeneous devices. Our research aims to automate the

deployment of effective security solutions, as well to

adapt them in parallel with the monitored systems’ life-

cycle. More concretely, we present a novel approach to

5http://vector.com/vi_canoe_en.html

specification-based intrusion detection for NCSs. While

state-of-the-art solutions exploit manually-crafted spec-

ification rules, we discuss the feasibility of automati-

cally mining these rules from available documentation.

The tests performed on real building automation systems

show the effectiveness of the obtained systems and con-

firm the time improvement in their development and de-

ployment.

10 Acknowledgments

The authors would like to explicitly thank Dina

Hadžiosmanović and Andreas Peter for the insightful

discussions that gave rise to this research. Furthermore,

the authors would like to acknowledge the work of Geert

Jan Laanstra, Henk Hobbelink, Vincent Stoffer and Chris

Weyandt at the University of Twente and the Lawrence

Berkeley National Laboratory.

This research has been partially supported by the Eu-

ropean Commission through project FP7-SEC-607093-

PREEMPTIVE funded by the 7th Framework Program.

This work has also been supported by the U.S. National

Science Foundation under Award CNS-1314973. Any

opinions, findings, and conclusions or recommendations

expressed in this material are those of the authors or orig-

inators, and do not necessarily reflect the views of the

sponsors.

References

[1] ANSI/ASHRAE STANDARD 135-2012. A data communica-

tion protocol for building automation and control networks, 2012.

[2] BACNET INTEREST GROUP EUROPE. Engineering data ex-

change template for BACnet systems - “description of the EDE

data fields”, 2007.

[3] BALEPIN, I., MALTSEV, S., ROWE, J., AND LEVITT, K. N.

Using specification-based intrusion detection for automated re-

sponse. In Recent Advances in Intrusion Detection, 6th Interna-

tional Symposium, RAID 2003, Pittsburgh, PA, USA, September

8-10, Proceedings (2003), pp. 136–154.

[4] BERTHIER, R., AND SANDERS, W. H. Specification-based

intrusion detection for advanced metering infrastructures. In

17th IEEE Pacific Rim International Symposium on Dependable

Computing, PRDC 2011, Pasadena, CA, USA, December 12-14

(2011), pp. 184–193.

[5] CASELLI, M., HADŽIOSMANOVIĆ, D., ZAMBON, E., AND

KARGL, F. On the feasibility of device fingerprinting in in-

dustrial control systems. In Critical Information Infrastructures

Security - 8th International Workshop, CRITIS 2013, Amster-

dam, The Netherlands, September 16-18, Revised Selected Pa-

pers (2013), pp. 155–166.

[6] ČELEDA, P., KREJČÍ, R., AND KRMÍČEK, V. Flow-based se-

curity issue detection in building automation and control net-

works. In Information and Communication Technologies - 18th

EUNICE/ IFIP WG 6.2, 6.6 International Conference, EUNICE

2012, Budapest, Hungary, August 29-31, Proceedings (2012),

pp. 64–75.

USENIX Association 25th USENIX Security Symposium 805

[7] CHAUGULE, A., XU, Z., AND ZHU, S. A specification based

intrusion detection framework for mobile phones. In Applied

Cryptography and Network Security - 9th International Confer-

ence, ACNS 2011, Nerja, Spain, June 7-10, Proceedings (2011),

pp. 19–37.

[8] CHEUNG, S., DUTERTRE, B., FONG, M., LINDQVIST, U.,

SKINNER, K., AND VALDES, A. Using model-based intrusion

detection for SCADA networks. In Proceedings of the SCADA

Security Scientific Symposium, Miami Beach, Florida, USA, 7

December (2007), pp. 1–12.

[9] DENNING, D. E. An intrusion-detection model. In Proceedings

of the 1986 IEEE Symposium on Security and Privacy, Oakland,

California, USA, April 7-9 (1986), pp. 118–133.

[10] DIST-1815-WG. IEEE standard for electric power systems

communications-distributed network protocol (DNP3), 2012.

https://standards.ieee.org/findstds/standard/

1815-2012.html.

[11] ECHELON CORPORATION. LonTalk protocol specification

v3.0, 1994. http://www.enerlon.com/JobAids/Lontalk%

20Protocol%20Spec.pdf.

[12] EQUIPMENT, IEC TELECONTROL. Systems—part 5-104:

Transmission protocols - network access for IEC 60870-5-101

using standard transport profiles.

[13] FORREST, S., HOFMEYR, S. A., SOMAYAJI, A., AND

LONGSTAFF, T. A. A sense of self for Unix processes. In IEEE

Symposium on Security and Privacy, Oakland, CA, USA, May 6-8

(1996), pp. 120–128.

[14] FOVINO, I. N., CARCANO, A., MUREL, T. D. L., TROM-

BETTA, A., AND MASERA, M. Modbus/DNP3 state-based intru-

sion detection system. In 24th IEEE International Conference on

Advanced Information Networking and Applications, AINA 2010,

Perth, Australia, April 20-13 (2010), pp. 729–736.

[15] GILDEA, D., AND JURAFSKY, D. Automatic labeling of seman-

tic roles. Computational Linguistics 28, 3 (2002), 245–288.

[16] GILL, R., SMITH, J., AND CLARK, A. J. Specification-based in-

trusion detection in WLANs. In 22nd Annual Computer Security

Applications Conference (ACSAC 2006), Miami Beach, Florida,

USA, 11-15 December (2006), pp. 141–152.

[17] GRANZER, W., KASTNER, W., NEUGSCHWANDTNER, G.,

AND PRAUS, F. Security in networked building automation sys-

tems. Tech. rep., 2005.

[18] GRANZER, W., PRAUS, F., AND KASTNER, W. Security in

building automation systems. IEEE Trans. Industrial Electron-

ics 57, 11 (2010), 3622–3630.

[19] GRÖNKVIST, J., HANSSON, A., AND SKÖLD, M. Evaluation

of a specification-based intrusion detection system for AODV. In

The Sixth Annual Mediterranean Ad Hoc Networking Workshop

(2007), pp. 121–128.

[20] GUPTA, R. A., AND CHOW, M. Networked control system:

Overview and research trends. IEEE Trans. Industrial Electronics

57, 7 (2010), 2527–2535.

[21] HADELI, H., SCHIERHOLZ, R., BRAENDLE, M., AND

TUDUCE, C. Leveraging determinism in industrial control sys-

tems for advanced anomaly detection and reliable security config-

uration. In Proceedings of 12th IEEE International Conference

on Emerging Technologies and Factory Automation, ETFA 2009,

Palma de Mallorca, Spain, September 22-25 (2009), pp. 1–8.

[22] HADŽIOSMANOVIĆ, D., BOLZONI, D., ETALLE, S., AND

HARTEL, P. H. Challenges and opportunities in securing indus-

trial control systems. In Complexity in Engineering, COMPENG

2012, Aachen, Germany, June 11-13 (2012), pp. 1–6.

[23] HASSAN, H. M., MAHMOUD, M., AND EL-KASSAS, S. Secur-

ing the AODV protocol using specification-based intrusion de-

tection. In Q2SWinet’06 - Proceedings of the Second ACM Work-

shop on Q2S and Security for Wireless and Mobile Networks, Ter-

romolinos, Spain, October 2 (2006), pp. 33–36.

[24] HOLMBERG, D. G., AND EVANS, D. BACnet Wide Area Net-

work Security Threat Assessment. US Department of Commerce,

National Institute of Standards and Technology NIST, 2003.

[25] ISO. Industrial automation systems – manufacturing message

specification – part 2: Protocol specification, 2003.

[26] JIEKE, P., REDOL, J., AND CORREIA, M. Specification-based

intrusion detection system for carrier ethernet. In WEBIST 2007 -

Proceedings of the Third International Conference on Web Infor-

mation Systems and Technologies, Volume IT, Barcelona, Spain,

March 3-6 (2007), pp. 426–429.

[27] JOKAR, P., NICANFAR, H., AND LEUNG, V. C. M.

Specification-based intrusion detection for home area networks

in smart grids. In IEEE Second International Conference on

Smart Grid Communications, SmartGridComm 2011, Brussels,

Belgium, October 17-20 (2011), pp. 208–213.

[28] KASTNER, W., NEUGSCHWANDTNER, G., SOUCEK, S., AND

NEWMAN, M. H. Communication systems for building automa-

tion and control. Proceedings of the IEEE 93, 6 (2005), 1178–

1203.

[29] KAUR, J., TONEJC, J., WENDZEL, S., AND MEIER, M. Secur-

ing BACnet’s pitfalls. In ICT Systems Security and Privacy Pro-

tection - 30th IFIP TC 11 International Conference, SEC 2015,

Hamburg, Germany, May 26-28, Proceedings (2015), pp. 616–

629.

[30] KIM, K., AND KUMAR, P. R. The importance, design and

implementation of a middleware for networked control systems.

Springer Lecture Notes in Control and Information Sciences 406,

1 (2010), 1–29.

[31] KLEBERGER, P., OLOVSSON, T., AND JONSSON, E. Security

aspects of the in-vehicle network in the connected car. In IEEE

Intelligent Vehicles Symposium (IV), 2011, Baden-Baden, Ger-

many, June 5-9 (2011), pp. 528–533.

[32] KNX ASSOCIATION. KNX Standard, 2011. https://www.

knx.org.

[33] KO, C., BRUTCH, P., ROWE, J., TSAFNAT, G., AND LEVITT,

K. N. System health and intrusion monitoring using a hierarchy

of constraints. In Recent Advances in Intrusion Detection, 4th

International Symposium, RAID 2001 Davis, CA, USA, October

10-12, Proceedings (2001), pp. 190–204.

[34] KO, C., FINK, G., AND LEVITT, K. N. Automated detection

of vulnerabilities in privileged programs by execution monitor-

ing. In 10th Annual Computer Security Applications Conference,

ACSAC 1994, Orlando, FL, USA, 5-9 December (1994), pp. 134–

144.

[35] KO, C., RUSCHITZKA, M., AND LEVITT, K. N. Execution

monitoring of security-critical programs in distributed systems:

A specification-based approach. In IEEE Symposium on Security

and Privacy, Oakland, CA, USA, May 4-7 (1997), pp. 175–187.

[36] LARSON, U. E., NILSSON, D. K., AND JONSSON, E. An ap-

proach to specification-based attack detection for in-vehicle net-

works. In IEEE Intelligent Vehicles Symposium (IV), 2008, Eind-

hoven, the Netherlands, June 4-6 (2008), pp. 220–225.

[37] LIN, H., SLAGELL, A. J., MARTINO, C. D., KALBARCZYK,

Z., AND IYER, R. K. Adapting Bro into SCADA: Building a

specification-based intrusion detection system for the DNP3 pro-

tocol. In Cyber Security and Information Intelligence, CSIIRW

’13, Oak Ridge, TN, USA, January 8-10 (2013), p. 5.

806 25th USENIX Security Symposium USENIX Association

[38] LYON, G. F. Nmap network scanning: The official Nmap project

guide to network discovery and security scanning. Insecure,

2009. https://nmap.org/.

[39] MANYIKA, J., CHUI, M., BUGHIN, J., DOBBS, R., BISSON,

P., AND MARRS, A. Disruptive technologies: Advances that

will transform life, business, and the global economy. Tech. rep.,

2013.

[40] MATHERLY, J. C. SHODAN: the computer search engine, Jun

2016. http://www.shodanhq.com/.

[41] MODBUS-IDA. Modbus application protocol specification

v1.1b3, 2012. http://www.modbus.org.

[42] NATIONAL JOINT APPRENTICESHIP & TECHNICAL COMMIT-

TEE. Building Automation: Control Devices and Applications.

American Technical Publishers, Inc., 2008.

[43] NEWMAN, M. BACnet: The Global Standard for Building Au-

tomation and Control Networks. Momentum Press, 2013.

[44] ORSET, J., ALCALDE, B., AND CAVALLI, A. R. An EFSM-

based intrusion detection system for ad hoc networks. In Au-

tomated Technology for Verification and Analysis, Third Inter-

national Symposium, ATVA 2005, Taipei, Taiwan, October 4-7,

Proceedings (2005), pp. 400–413.

[45] PAN, Z., HARIRI, S., AND AL-NASHIF, Y. B. Anomaly based

intrusion detection for building automation and control networks.

In 11th IEEE/ACS International Conference on Computer Sys-

tems and Applications, AICCSA 2014, Doha, Qatar, November

10-13 (2014), pp. 72–77.

[46] PAXSON, V. Bro: A system for detecting network intruders in

real-time. In Proceedings of the 7th USENIX Security Sympo-

sium, San Antonio, TX, USA, January 26-29 (1998).

[47] PEACOCK, M. D., AND JOHNSTONE, M. N. An analysis of

security issues in building automation systems.

[48] PETRONI, N. L., FRASER, T., WALTERS, A., AND ARBAUGH,

W. A. An architecture for specification-based detection of se-

mantic integrity violations in kernel dynamic data. In Proceed-

ings of the 15th USENIX Security Symposium, Vancouver, BC,

Canada, July 31 - August 4 (2006).

[49] SALSBURY, T. I. The smart building. In Springer Handbook of

Automation. Springer, 2009, pp. 1079–1093.

[50] SANEIFAR, H., BONNIOL, S., LAURENT, A., PONCELET, P.,

AND ROCHE, M. Terminology extraction from log files. In

Database and Expert Systems Applications, 20th International

Conference, DEXA 2009, Linz, Austria, August 31 - September 4,

Proceedings (2009), pp. 769–776.

[51] SANNER, M. F. Python: a programming language for software

integration and development. J Mol Graph Model 17, 1 (1999),

57–61. https://www.python.org/.

[52] SEKAR, R., CAI, Y., AND SEGAL, M. A specification-based

approach for building survivable systems. In Proceedings of the

National Information Systems Security Conference (NISSC’98)

(1998), pp. 338–347.

[53] SEKAR, R., GUPTA, A. K., FRULLO, J., SHANBHAG, T., TI-

WARI, A., YANG, H., AND ZHOU, S. Specification-based

anomaly detection: A new approach for detecting network intru-

sions. In Proceedings of the 9th ACM Conference on Computer

and Communications Security, CCS 2002, Washington, DC, USA,

November 18-22 (2002), pp. 265–274.

[54] SEKAR, R., AND UPPULURI, P. Synthesizing fast intrusion pre-

vention/detection systems from high-level specifications. In Pro-

ceedings of the 8th USENIX Security Symposium, Washington,

D.C., August 23-26 (1999).

[55] SOMMER, R., AMANN, J., AND HALL, S. Spicy: A unified deep

packet inspection framework dissecting all your data. Tech. rep.,

ICSI, 2015. TR-15-004.
[56] SONG, T., KO, C., TSENG, C. H., BALASUBRAMANYAM,

P., CHAUDHARY, A., AND LEVITT, K. N. Formal reasoning

about a specification-based intrusion detection for dynamic auto-

configuration protocols in ad hoc networks. In Formal Aspects

in Security and Trust, Third International Workshop, FAST 2005,

Newcastle upon Tyne, UK, July 18-19, Revised Selected Papers

(2005), pp. 16–33.

[57] STRZALKOWSKI, T. Natural language information retrieval. Inf.

Process. Manage. 31, 3 (1995), 397–417.

[58] SZLÓSARCZYK, S., WENDZEL, S., KAUR, J., MEIER, M.,

AND SCHUBERT, F. Towards suppressing attacks on and im-

proving resilience of building automation systems - an approach

exemplified using BACnet. In Sicherheit 2014: Sicherheit, Schutz

und Zuverlässigkeit, Beiträge der 7. Jahrestagung des Fachbere-

ichs Sicherheit der Gesellschaft für Informatik e.V. (GI), 19.-21.

März 2014, Wien, Österreich (2014), pp. 407–418.

[59] TRUONG, P., NIEH, D., AND MOH, M. Specification-based in-

trusion detection for H.323-based voice over IP. In Proceedings

of the Fifth IEEE International Symposium on Signal Processing

and Information Technology (ISSPIT 2005), Athens, Greece, De-

cember 18-21 (2005), pp. 387–392.

[60] TSENG, C., BALASUBRAMANYAM, P., KO, C., LIMPRASIT-

TIPORN, R., ROWE, J., AND LEVITT, K. N. A specification-

based intrusion detection system for AODV. In Proceedings of

the 1st ACM Workshop on Security of ad hoc and Sensor Net-

works, SASN 2003, Fairfax, Virginia, USA (2003), pp. 125–134.

[61] TSENG, C. H., SONG, T., BALASUBRAMANYAM, P., KO, C.,

AND LEVITT, K. N. A specification-based intrusion detection

model for OLSR. In Recent Advances in Intrusion Detection, 8th

International Symposium, RAID 2005, Seattle, WA, USA, Septem-

ber 7-9, Revised Papers (2005), pp. 330–350.

[62] UPPULURI, P., AND SEKAR, R. Experiences with specification-

based intrusion detection. In Recent Advances in Intrusion Detec-

tion, 4th International Symposium, RAID 2001 Davis, CA, USA,

October 10-12, Proceedings (2001), pp. 172–189.

[63] WENDZEL, S., KAHLER, B., AND RIST, T. Covert channels

and their prevention in building automation protocols: A pro-

totype exemplified using BACnet. In 2012 IEEE International

Conference on Green Computing and Communications, Confer-

ence on Internet of Things, and Conference on Cyber, Physical

and Social Computing, GreenCom/iThings/CPSCom 2012, Be-

sancon, France, November 20-23 (2012), pp. 731–736.

[64] ZALEWSKI, M. P0f: Passive OS fingerprinting tool, 2006.

lcamtuf.coredump.cx/p0f3/.

[65] ZHANG, P. Industrial Control Technology: A Handbook for En-

gineers and Researchers. William Andrew Inc., 2008.

