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Abstract. Formal specifications can help with program testing, opti-
mization, refactoring, documentation, and, most importantly, debugging
and repair. Unfortunately, formal specifications are difficult to write man-
ually, while techniques that infer specifications automatically suffer from
90–99% false positive rates. Consequently, neither option is currently
practical for most software development projects.

We present a novel technique that automatically infers partial correct-
ness specifications with a very low false positive rate. We claim that ex-
isting specification miners yield false positives because they assign equal
weight to all aspects of program behavior. By using additional informa-
tion from the software engineering process, we are able to dramatically
reduce this rate. For example, we grant less credence to duplicate code,
infrequently-tested code, and code that exhibits high turnover in the
version control system.

We evaluate our technique in two ways: as a preprocessing step for
an existing specification miner and as part of novel specification infer-
ence algorithms. Our technique identifies which input is most indicative
of program behavior, which allows off-the-shelf techniques to learn the
same number of specifications using only 60% of their original input. Our
inference approach has few false positives in practice, while still find-
ing useful specifications on over 800,000 lines of code. When minimizing
false alarms, we obtain a 5% false positive rate, an order-of-magnitude
improvement over previous work. When used to find bugs, our mined
specifications locate over 250 policy violations. To the best of our knowl-
edge, this is the first specification miner with such a low false positive
rate, and thus a low associated burden of manual inspection.

1 Introduction

Debugging, testing, maintaining, optimizing, refactoring, and documenting soft-
ware are costly and time-consuming processes, yet they remain critically im-
portant: deployed programs with incorrect behavior cost billions of dollars and
multiple lives each year [28]. Modifying existing code, correcting defects, and oth-
erwise evolving software are major parts of maintenance [31], which is reported
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to consume up to 90% of the total cost of software projects [32]. Incomplete doc-
umentation is a key maintenance difficulty [12]: up to 60% of maintenance time
is spent studying existing software (e.g., [29, p.475], [30, p.35]). Understanding
correct software behavior is central to maintaining, changing, and correcting
code. Human processes and especially tool support for these activities depend
on formal specifications of proper program behavior (e.g., [26]). Unfortunately,
while low-level program annotations are becoming more and more prevalent [11],
formal specifications remain rare.

Formal specifications are difficult for humans to construct [9], and incorrect
specifications are difficult for humans to debug and modify [3]. Specification
mining projects attempt to address these problems by inferring specifications
from program source code or execution traces [1,2,15,17,33,37,38]. Unfortunately,
existing techniques typically produce imprecise specifications and suffer from
false positive rates of 90–99% [36] — that is, a very large proportion of candidate
specifications produced by these techniques are not true program specifications.
Some miners require that every inferred policy be corrected manually [3].

Specification mining can be compared to learning the rules of English grammar
by reading essays written by high school students; we propose to focus on the
essays of passing students and be skeptical of the essays of failing students. We
claim that existing miners have high false positive rates in large part because they
treat all code equally, even though not all code is created equal. For example,
consider an execution trace through a recently modified, rarely-executed piece
of code that was copied-and-pasted by an inexperienced developer. We argue
that such a trace is a poor guide to correct behavior when compared with a
well-tested, infrequently-changed, and commonly-executed trace.

The problem of mining temporal safety policies is undecidable in general [2],
as it is impossible to learn regular languages in the limit [18, Theorem 1.8] based
on finitely many examples. Existing miners thus use heuristics to decide which
specifications are likely true. Our algorithm is no different in that regard; we
infer temporal safety properties of the form “b must follow a,” using heuristics
based on information gleaned from the software engineering process.

We propose a new automatic specification miner that uses artifacts from soft-
ware engineering processes to capture the trustworthiness of its input traces.
The main contributions of this paper are:

– A set of source-level features related to software engineering processes that
capture the trustworthiness of code for specification mining. We analyze the
relative predictive power of each of these features.

– Empirical evidence that our notions of trustworthy code serve as a basis for
evaluating the trustworthiness of traces. We provide a characterization for
such traces and show that off-the-shelf specification miners can learn just as
many specifications using only 60% of traces.

– A novel automatic mining technique that uses our trust-capturing features
to learn temporal safety specifications with few false positives in practice.
We evaluate it on over 800,000 lines of code and explicitly compare it to two
previous approaches. Our basic mining technique learns specifications that
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locate more safety-policy violations than previous miners (740 vs. 426) while
presenting far fewer false positive specifications (107 vs. 567). When focused
on precision, our technique obtains a low 5% false positive rate, an order-of-
magnitude improvement on previous work, while still finding specifications
that locate 265 violations. To our knowledge, this is the first specification
miner that produces multiple candidate specifications and has a false positive
rate under 90%.

The rest of this paper is organized as follows. In Section 2 we describe tem-
poral safety specifications and highlight uses. Section 3 gives a brief overview of
specification mining. Section 4 describes our approach to specification mining,
including the code trustworthiness metrics used (Section 4.1). In Section 5 we
present experiments supporting our claims and evaluating the effectiveness of
our miner. We discuss related work in Section 6 and conclude in Section 7.

2 Temporal Safety Specifications

A partial-correctness temporal safety property is a formal specification of an
aspect of correct program behavior [23], typically describing how to manipulate
certain important resources and interfaces. Specifications take the form of finite-
state machines that encode valid sequences of events relating to those resources
that occur during the program’s exeuction. For example, one event may represent
reading untrusted data over the network, another may represent sanitizing it,
and a third may represent a database query. Figure 2 shows such a specification
for SQL injection attacks [25], based on the code in Figure 1.

Typically, each important resource is tracked separately [13]. Each finite state
machine starts in its start state. A program conforms to a specification if and
only if it terminates with the corresponding state machine in an accepting state.
Otherwise, the program violates the specification. Such specifications can de-
scribe properties such as locking [10], resource leaks [36], security [25], high-level
invariants [16] and memory safety [19], and more specialized properties such
as the correct handling of setuid [9] or asynchronous I/O request packets [5].
These partial correctness specifications are distinct from and complementary to
full formal behavior specifications.

void bad(Socket s, Conn c) {

string message = s.read ();

string query = "select * " +

"from emp where name = " +

message;

c.submit(query );

s.write("result = " +

c.result ());

}

void good(Socket s, Conn c) {

string message = s.read ();

c.prepare("select * from "

+ " emp where name = ?",

message );

c.exec ();

s.write("result = " +

c.result ());

}

Fig. 1. Pseudocode for an example internet service. The bad method passes untrusted
data to the database; good works correctly. Important events are italicized.
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read

submit                prepare

sanitize submit

      exec

Fig. 2. Example specification for Figure 1

These types of specifica-
tions can be used by almost
any existing defect-finding tool
(e.g., [5,10,11,16]); indeed, all
bug-finders require implicit or
explicit specifications. Formal
specifications can also help with
program testing [4], optimization [24], refactoring [21], documentation [6], and
repair [34]. Formal specifications are rare in practice, but not due to a lack of
possible uses.

3 Specification Mining

The goal of specification mining is to construct a formal specification using
examples of program behavior [2]. Traces of program behavior can be collected
from the source code (e.g., [15]) or from instrumented executions on indicative
workloads (e.g., [37]). These traces usually take the form of a sequence of function
calls. A specification miner examines such traces and produces one or more
candidate specifications, which must then be verified by a human.

Existing specification miners fall into two categories. Some produce a single
finite automaton policy with many states [1,2,37], while others produce many
small automata [15,17,36,38], typically of a fixed form. We focus on the latter,
because large automata are much more difficult to verify or debug [3].

The simplest and most common type of temporal specification is a two-state fi-
nite state machine [15,36]. Such two-state specifications require that event a must
always be followed by event b, correspond to the regular expression (ab)∗, and are
written 〈a,b〉. Examples include 〈open,close〉, 〈malloc,free〉, and 〈lock,unlock〉.
Such specifications often describe resource allocation or the correct restoration
of invariants, and are prevalent in practice. Even when attention is restricted to
two-state specifications, mining remains difficult [17].

How a specification miner should decide what event pairs constitute a valid
policy is non-obvious, especially in the face of red herrings such as 〈print,print〉,
or even policy violations. Engler et al. note that programmer errors can be
inferred by assuming the programmer is usually correct [15]. That is, common
behavior implies correct behavior. Engler et al.’s ECC miner counts the number
of times a and b appear together in order and the number of times that event a
appears without event b, and uses the z -statistic to rank the likelihood that the
correlation is deliberate on the part of the programmer. Their miner presents a
ranked list of candidate specifications to the programmer for inspection. Without
human guidance (e.g., without lists of important functions to focus on [15]), this
technique is prone to a very high rate of false positives. On one million lines
of Java code, only 13 of 2808 positively-ranked specifications generated by ECC

were real: a 99.5% false positive rate [36].
In previous work, we observed that programmers often make mistakes in

rarely-tested error handling code [36]. Tracking a single bit of information per
trace — whether that trace corresponded to a program error or not — improved
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the mining accuracy dramatically, by an order of magnitude. We also included
a software engineering consideration, restricting attention to specifications in
which the events a and b came from the same package or library. We assumed
that independent libraries, potentially written by separate developers, are un-
likely to depend on each other for correctness at the API level. These insights
reduced the number of candidates presented to the programmer by a large fac-
tor: on the same million lines of Java code, the WN miner generated only 649
candidate specifications, of which 69 were real, for an 89% false positive rate.
However, this rate is still too high to be considered automatic; before being used,
the candidate specifications must still be hand-validated.

4 Our Approach: Code Trustworthiness

We call code trustworthy if it is unlikely to exhibit API policy violations. Pre-
vious approaches have implicitly assumed that all execution traces are equally
indicative of correct program behavior, that is, that all traces should be trusted
equally. In this paper, we demonstrate that this assumption is incorrect. We
present a specification miner that works in three stages:

1. Statically estimate the trustworthiness of each code fragment.
2. Lift that judgment to traces by considering the code visited along a trace.
3. Weight the contribution of each trace by its trustworthiness when counting

event frequencies for specification mining.

We hypothesize that code is most trustworthy when it has been written by
experienced programmers who are familiar with the project at hand, when it
has been well-tested, and when it has been mindfully written (e.g., rather than
copied-and-pasted). Previous work has found more errors in recently-changed
code [27], unreadable code [7] and rarely-tested code [36]. Such information can
be collected from a program’s source code and version control history. Section 4.1
describes the set of features we have chosen to approximate the “trustworthiness”
of code. Section 4.2 describes our mining algorithm in more detail.

4.1 Trustworthiness Metrics

Our goal is to automatically distinguish between code that is likely to adhere to
program specifications and code that is not. Our specification miner thus uses a
number of metrics to approximate the trustworthiness of code. We only consider
metrics that can be computed automatically using commonly-available software
engineering artifacts, such as the source code itself or version control information.
In the interest of automation, we do not consider features that require manual
annotation or human guidance. We use the following metrics:

Code Churn. Previous work has shown that frequently modified code is less
likely to be correct [27]; changing the code to fix one defect often introduces
another. We hypothesize that so-called churned code is less likely to adhere to
specifications. Using version control information, we measure the time between
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the current revision and the last revision for each line of code in wall clock hours.
Similarly, we measure the total number of revisions to each line.

Author Rank. We hypothesize that some developers have a better understand-
ing of the implicit specifications for a project than others. A senior developer
who has performed many edits may remember more of the program invariants
than a developer recently added to the group. Source control repositories track
the author of each change. The rank of an author is the proportion of all changes
committed to the repository that were committed by that author. We measure
the author rank of the last author to touch each line of code.

Copy-Paste Development. We hypothesize that duplicated code is more
error-prone because it has not been specialized to its new context and because
patches to the original may not have propagated to the duplicate. We further
hypothesize that duplicated code does not represent an independent correctness
argument on the part of the developer; if printf follows iter in 10 duplicated
code fragments, it is not 10 times as likely that 〈iter,printf〉 is a real speci-
fication. We measure repetition using the open-source PMD toolkit’s copy-paste
detector, which is based on the Karp-Rabin string matching algorithm [20].

Code Readability. In previous work, we showed that more readable code is
less likely to contain errors [7]. We hypothesize that more readable code is thus
also more likely to adhere to specifications. We measure code readability using
our software readability metric, which is based on textual source code features
and agrees with human annotators [7].

Path Feasibility. Infeasible paths are an artifact of the static enumeration pro-
cess; we claim that they do not encode programmer intentions. Previous work
has argued that it is always helpful to have more traces, even incorrect ones [35];
our experiments suggest that quality is more important than quantity (see Sec-
tion 5.2). Merely excluding infeasible paths confers some benefit. However, we
further hypothesize that infeasible paths suggest pairs that are not specifica-
tions. If the programmer has made it impossible for b to follow a along a path,
〈a,b〉 is unlikely to be required. We measure the feasibility of a path using sym-
bolic execution; a path is infeasible if an external theorem prover (in our case,
Simplify) reports that its symbolic branch guards are inconsistent.

Path Frequency. We theorize that paths that are frequently executed by in-
dicative workloads and testcases are more likely to contain correct behavior. We
use a research tool that can statically estimate the relative runtime frequency
of a given path through a program [8] to measure path frequency. We measure
relative runtime frequency with respect to the enclosing method.

Path Density. We hypothesize that a method with few static paths is likely to
exhibit correct behavior and that a method with many paths is likely to exhibit
incorrect behavior along at least one of them. We define “path density” as the
number of traces it is possible to enumerate in each method and in each class.
A low path density for traces containing the paired events ab and a high path
density for traces that contain only a both make 〈a,b〉 a likely specification.
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4.2 Mining Algorithm Details

Our mining algorithm extends our previous WN miner [36]. Formally, our miner
takes as input:

1. The program source code P . The variable � ranges over source code locations.
2. A set of trustworthiness metrics M1 . . . Mq, with Mi(�) ∈ R.
3. A set of important events Σ, typically taken to be all of the function calls

in P . We use the variables a, b, etc., to range over Σ.

Our miner produces as output a set of candidate specifications C = { 〈a,b〉 | a
should be followed by b}. We determine the validity of a particular candidate
specification by manual inspection; we present experimental results in Section 5.

Our algorithm first statically enumerates traces through P . Since there are
an infinite number of traces, we must choose a finite enumeration strategy. We
consider each method m in P in turn. Using a breadth-first traversal, we enu-
merate the first k paths through m, assuming that branches can either be taken
or not and that an invoked method can either terminate normally or raise any
of its declared exceptions [36]. We pass through loops no more than once. This
produces a set of traces T , where each trace t is a sequence of program locations
�. We write a ∈ t if the event a occurs in trace t and a . . . b ∈ t if the event a
occurs and is followed by the event b in that trace. We also note whether or not a
trace involves exceptional control flow; we write Error(t) for this judgment [36].

Next, where necessary, our miner lifts trustworthiness metrics from locations
to traces. Our lifting is parametric with respect to an aggregation function A :
P(R) → R. We use the functions max, min, span and average in practice. We
write MA for a trustworthiness metric M lifted to work on traces: MA(t) =
A({M(�) | � ∈ t}). We write M for the metric lifted again to work on sets of
traces: M(T ) = A({MA(t) | t ∈ T }).

Finally, we consider all possible candidate specifications. For each a and b
in Σ, we collect a number of features. We write Nab for the number of times
a is followed by b in a normal (non-error) trace. We write Na for the number
of times a occurs in a normal trace, with or without b. We similarly write Eab

and Ea for counts in error traces. We write SPab = 1 when a and b are in the
same package (i.e., defined in the same library). We write DFab = 1 when a and
b are connected by dataflow information: when every value and receiver object
expression in b also occurs in a [36, Section 3.1].

In previous work we showed that both the ECC and WN miners can be expressed
using this set of features [35]. The ECC miner returns 〈a,b〉 when a is followed by
b in some traces but not in others: Na −Nab + Ea −Eab > 0 and Nab + Eab > 0
and DFab = 1. The WN miner returns 〈a,b〉 when Eab > 0 and Ea − Eab > 0
and DFab = SPab = 1. Both of these miners encode arbitrary heuristic choices
about which features are considered, the relative importance of various features,
and which features must have high values.

We extend the set of features by adding the aggregate trustworthiness for each
lifted metric MA. We write Miab (resp. Mia) for the aggregate metric values on
the set of traces that contain a followed by b (resp. contain a). Figure 3 lists the
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Na = |{t | a ∈ t ∧ ¬Error (t)}|
Nab = |{t | a . . . b ∈ t ∧ ¬Error (t)}|
Ea = |{t | a ∈ t ∧ Error(t)}|
Eab = |{t | a . . . b ∈ t ∧ Error(t)}|
SPab = 1 if a and b are in the same package, 0 otherwise
DFab = 1 if every value in b also occurs in a, 0 otherwise
Mia = Mi({t | a ∈ t}) where Mi is a lifted trustworthiness metric
Miab = Mi({t | a . . . b ∈ t}) where Mi is a lifted trustworthiness metric

Fig. 3. Features used by our miner to evaluate a candidate specification 〈a,b〉

set of features considered by our miner when evaluating a candidate specification
〈a,b〉. Since we have multiple aggregation functions and metrics (see Section 4.1),
Mia actually corresponds to over a dozen individual features.

We also include a number of statistical features, fractions and percentages
related to the main frequency counts Na . . . Eab, such as the z-statistic used by
ECC to rank candidate specifications; we thus use over 30 total features fi for each
pair 〈a,b〉. Rather than asserting an a priori relationship between these features
that candidate specifications must adhere to, we use linear regression to learn
a set of coefficients ci and a cutoff cutoff , such that our miner outputs 〈a,b〉 as
a candidate specification iff

∑
i cifi < cutoff . This involves a training stage to

determine both the coefficients and the cutoff, described in detail in Section 5.

5 Experiments

Program Version LOC Description
hibernate2 2.0b4 57k Object persistence
axion 1.0m2 65k Database
hsqldb 1.7.1 71k Database
cayenne 1.0b4 86k Object persistence
jboss 3.0.6 107k Middleware
mckoi-sql 1.0.2 118k Database
ptolemy2 3.0.2 362k Design modeling
Total 866k

Fig. 4. Benchmarks used in our experiments

We evaluate our miner on sev-
eral open-source Java bench-
marks, shown in Figure 4. We
selected these programs to allow
a direct comparison to previ-
ous work [17,35,36,38]. We re-
stricted attention to programs
with CVS or SVN source-
control repositories. For each
program, we statically enumer-
ated traces (up to a limit of
20 per method) and gathered
the required information for the
trustworthiness metrics described in Section 4.1. We do not need source code
implementing a particular interface; instead, we generate traces from the client
code that uses that interface (as in [2,14,17,38]). One expensive operation was
computing path feasibility, which required multiple calls to Simplify, an external
theorem prover. On a 3 GHz Intel Xeon machine, computing it on the mckoi-sql

(our second-largest) benchmark took 25 seconds. Enumerating all static traces
for mckoi-sql, with a maximum of 20 traces per method, took 912 seconds in
total; this happens once per program. Collecting the other metrics for hsqldb
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is relatively inexpensive (e.g., 6 seconds for readability, 7 seconds for path fre-
quency). The actual mining process (i.e., considering the features for every pair
of events in mckoi-sql against the cutoff) took 555 seconds. The total time for
our technique was about 30 minutes per 100,000 lines of code.

5.1 Trustworthiness Metrics: Learning Cutoffs and Coefficients

First, we learn the coefficients and cutoff that determine which candidate spec-
ifications to output, and thus the relative importance of our trustworthiness
metrics. We use recall and precision to evaluate potential coefficients. Recall is
the number of real specifications returned out of all possible real specifications,
or the probability that a real specification is returned by the algorithm. Preci-
sion is the fraction of candidate specifications that are not false positives. A high
recall indicates that the miner is doing useful work (i.e., returning real specifica-
tions), but without a corresponding high precision, those real specifications will
be drowned in a sea of false positives. We claim that current false positive rates
are too high for existing techniques to be of practical use.

Metric F p

Frequency 32.3 0.0000
Copy-Paste 12.4 0.0004
Code Churn 10.2 0.0014
Density 10.4 0.0013
Readability 9.4 0.0021
Feasibility 4.1 0.0423
Author Rank 1.0 0.3284

Fig. 5. Analysis of variance

We use linear regression to find the coefficients
for our miner. Linear regression requires annotated
answers (i.e., a set of known-valid and known-
invalid specifications). We use the valid and in-
valid specifications mined and described in previ-
ous work [35,36] as a training set. Given the set of
linear regression coefficients, we perform a linear
search of possible cutoffs and choose the one that
maximizes an objective function. That objective
function can be the harmonic mean of precision
and recall (our normal miner) or just precision
(which yields a precise miner with very few false
positives).

Our first experiment evaluates the relative importance of our trust-
worthiness metrics. A per-feature analysis of variance, over all of the training
data, is shown in Figure 5. The F column denotes the F -ratio, or the square of
the variance explained by the feature over the variance not explained. It is near
1 if the feature does not affect the model. The p column shows the probability
that the feature does not affect the miner.

All features except Author Rank had a significant main effect (p ≤ 0.05). The
Frequency metric, encoding our static prediction of how often the path would be
executed at run-time [8], was our most important feature: commonly-run (and
thus well-tested) paths do not demonstrate erroneous behavior. All of our new
trustworthiness features were more important to mining than feasibility, which is,
to our knowledge, the only one that had been previously investigated [1]. We were
surprised to discover that our formulation of author rank had no effect on the
model: whether the last person to touch a line of code was a frequent contributor
to the project is not related to whether traces adhered to specifications.
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5.2 Trust Matters for Trace Quality

In our second experiment, we demonstrate that our trustworthiness met-
rics improve existing techniques for automatic specification mining.
For each of our benchmarks, we run the unmodified WN miner [36] on multiple
input trace sets. For generality, we restrict attention to feasible traces, since
miners such as JIST already disregard infeasible paths [1].

We compare WN’s performance on a baseline set of feasible static traces to
its performance on trustworthy subsets of those traces. For this experiment we
define the trustworthiness of a trace to be a linear combination of the metrics
from Section 4.1, with coefficients based on their relative predictive power for
specification mining (the F column in Figure 5).

On the entire baseline set, WN miner produces 75 real specifications. Averaged
over all the benchmarks, WN finds the same specifications using only the top
60% most trustworthy traces: 40% of the traces can be dispensed with while
preserving true positive counts. As a point of comparison, when a random 40%
of the traces are discarded, we find only 56 true specifications in total, with a
4% higher rate of false positives.

We also explore the impact of trustworthy traces on false positive rates by
passing various proportions of trustworthy input to the WN miner. Figure 6 shows
the results when only the 25% most trustworthy traces are used. On the baseline
set, WN has 683 false positives: a false positive rate of 90%. When restricted to
the 25% most trustworthy traces, WN produces 39 real specifications and 306
false positives: a false positive rate of 89%. Notably, we find over one-half of
the specifications with only one-fourth of the input, without sacrificing the false
positive rate. Beyond halving the raw false positive rate, and thus human effort
required to validate the results, this is useful if the smaller output set contains

Fig. 6. The false positive rate of the off-the-shelf WN miner on various input sets. The
total height of the bar represents the number of candidate specifications returned to
the user for inspection.
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particularly helpful specifications, which we investigate next. As a lower bound,
only two true specifications can be mined from the 25% least trustworthy traces.

Any static specification mining technique involves a particular trace enumer-
ation strategy; trace generation is often a bottleneck. Rather than enumerating
a certain number of traces per method, we claim that trustworthy traces should
be pursued and untrustworthy traces should be skipped. These results also have
implications for multi-party techniques to mine specifications collaboratively by
sharing trace information [35]. Focus should be placed on sharing information
from trustworthy traces. Our trustworthiness metrics could generally be used
as a preprocessing step to improve any static trace-based specification miner
(e.g., [15,17,36,38]). However, they can be even more useful when directly incor-
porated into a mining algorithm.

5.3 Trustworthy Specification Mining

For our main experiment, we measure the efficacy of our new specification
miner on all input trace sets. We must first verify that our miner is not biased
with respect to our training data. A potential threat to the validity of our results
is over-fitting by testing and training on the same data. We use 10-fold cross
validation to mitigate this threat [22]. We randomly partition the data into
10 sets of equal size. We test on each set in turn, training on the other nine;
in this way we never test and train on the same data. If the average results of
cross-validation (over many random partitionings) are different from the original
results, it may indicate bias. For our experiment, the difference was less than
0.01%, indicating little or no bias.

Figure 7 shows the results of applying our new specification miner from
Section 4 to the benchmarks in Figure 4. For each benchmark, we report the
number of candidate specifications returned, broken down into valid specifica-
tions and false positives (determined by manual verification of the results). We
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hibernate 7 8 = 53% 279 5 1 = 17% 153 9 42 = 82% 93 3 421 = 99% 21

axion 7 5 = 42% 71 4 0 = 0% 52 8 17 = 68% 45 0 96 = 100% 0

hsqldb 3 1 = 25% 36 1 0 = 0% 5 7 55 = 89% 35 0 244 = 100% 0

jboss 14 75 = 84% 255 2 0 = 0% 12 11 103 = 90% 94 2 442 = 99% 4

cayenne 5 7 = 58% 45 3 0 = 0% 23 5 30 = 86% 18 3 308 = 99% 8

mckoi-sql 7 10 = 59% 20 2 0 = 0% 7 19 137 = 88% 69 2 344 = 99% 5

ptolemy 6 1 = 14% 44 3 0 = 0% 13 9 183 = 95% 72 3 653 = 99% 12

Total 49 107 = 69% 740 20 1 = 5% 265 68 567 = 89% 426 13 2508 = 99% 50

Fig. 7. Comparative mining results on 800kLOC. “Specs” indicates valid specifications,
“False” indicates false positive specifications. “Bugs” totals, for each valid specification
found, the number of distinct methods that violate it. The two left headings give results
for our Normal Miner and our Precise Miner; WN and ECC are previous algorithms.
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also report the number of distinct methods that violated the valid mined speci-
fications (i.e., the number of policy violations found by using that specification
with a bug-finding tool). Each method is counted only once per specification,
even if multiple paths through that method violate it. We reprint published re-
sults for the WN [36] and ECC [15] miners for comparison. Recall that our normal
miner minimizes both false positives and false negatives, while our precise miner
only minimizes false positives (see Section 5.1).

The WN and ECC miners were chosen for comparison because of their compara-
tively low false positive rates. Other methods produce even more candidates. On
jboss, the Perracotta miner produces 490 candidate two-state properties, which
the authors say “is too many to reasonably inspect by hand.” [38] Gabel and
Su report mining over 13,000 candidates from hibernate [17]. Our precise miner
produces six – one is a false positive, and the other five find over 150 violations.

Our normal miner finds important specifications with a low false positive rate.
It improves on the false positive rate of WN by 20%. Moreover, the specifications
that it finds generally find more violations than those found by WN: 740 violations,
or 15 per valid specification, compared to WN’s 426, or 7 per valid specification.
However, the end-user inspects both valid and invalid specifications. Each can-
didate specification from our miner helps to find 4 violations on average; for WN,
less than 1 violation is found on average per candidate inspected.

This precise miner finds fewer valid specifications, but its 5% false positive
rate approaches levels required for automatic use. It finds 30% as many specifi-
cations as WN, but 60% of the violations: each candidate inspected yields over 12
violations on average. Users are often unwilling to wade through voluminous tool
output [15,19]; with a 5% false positive rate, and more useful specifications than
those of previous work, we claim that our precise miner might be reasonable in
both interactive and automatic settings.

5.4 Threats to Validity

Although our two miners outperform existing approaches in terms of bugs found
and false positives avoided, our results may not generalize to industrial prac-
tice. The benchmarks used in this project may not be representative of other
projects. We chose the benchmarks to be directly comparable with previous
work [17,35,36,38], and note that the domains represented are more indicative
of server and back-end computing than of client code. A second threat is over-
fitting. We use cross-validation in Section 5.3 to demonstrate that our results
are not biased by over-fitting. A third threat lies in our manual validation of the
output: our human annotation process may mislabel candidate specifications. To
mitigate this threat we re-checked a fraction of our judgments at random and
used the source code of a and b to evaluate 〈a,b〉. A final threat lies in our use
of “bugs found” as a proxy for specification utility: while our mined specifica-
tions find more policy violations, they may not be as useful for tasks such as
documenting or refactoring. We leave an investigation of specification utility for
future work.



304 C. Le Goues and W. Weimer

6 Related Work

Our work is most closely related to existing specification mining algorithms
(see [36] for a survey). The ECC [15] and WN [36] algorithms are formalized in
detail in Section 4.2. The WML_static [37] miner examines library source code,
assumes that typestate is explicitly captured by object fields and thrown excep-
tions, and produces a single multi-state specification. The WML_dynamic [37] miner
examines dynamic traces and produces a permissive multi-state specification
that describes all observed behavior. The JIST [1] miner refines the WML_static

approach and uses techniques from software model checking to rule out infea-
sible paths. The Perracotta [38] miner mines multiple candidate specifications
that match a given template (e.g., the two-state specification form used in this
paper is one such template). Gabel and Su [17] extend Perracotta using BDDs,
show that two-state mining is NP-complete, and show that some specifications
cannot be mined by composing multiple two-state specifications. The Strauss

tool [2] uses probabilistic finite state machine learning to learn a single specifica-
tion from traces. Shoham et al. [33] mine by using abstract interpretation where
the abstract values are specifications.

Unlike WML_static, JIST, Strauss and Shoham et al., we do not require that
important parts of the specification, such as the classes of interest, be given
in advance by the user. Unlike Strauss, WML_dynamic, JIST, and Shoham et al.,
we produce multiple candidate specifications rather than a single specification;
complex specifications are difficult to debug and verify [3]. Unlike Perracotta

or Gabel and Su, we cannot mine more complicated templates, such as three-
state specifications. Like ECC, WN, and Gabel and Su, our miner is scalable. The
primary difference between our miner and previous miners is that we use software
engineering information, encoded as trustworthiness metrics, to weight input
traces and thus obtain low false positive rates. To our knowledge, no published
miner that produces multiple candidates has a false positive rate under 90%; we
present one with a 5% false positive rate that still finds over 250 violations.

7 Conclusion

Formal specifications have myriad uses, from testing and optimizing, to refactor-
ing and documenting, to debugging and repair. Formal specifications are difficult
to produce manually, and existing specification miners typically have 90–99%
false positive rates. We claim that not all parts of a program are equally indica-
tive of correct behavior. We encode this intuition using trustworthiness metrics
such as predicted execution frequency, measurements of copy-paste code, code
churn, software readability or path feasibility. These metrics can be used to
improve the performance of existing trace-based miners by focusing on trust-
worthy traces: equivalent results can be obtained using only 60% of the input.
We also use our metrics to create a new specification miner and compare it to
two previous approaches on over 800,000 lines of code. Our basic miner learns
specifications that locate hundreds more bugs than previous miners while pre-
senting hundreds fewer false positive candidates. When focused on precision, our
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technique obtains a low 5% false positive rate, an order-of-magnitude improve-
ment on previous work, while still finding specifications that locate hundreds of
violations. To our knowledge, among specification miners that produce multiple
candidate specifications, this is the first to maintain a false positive rate under
90%. We believe it to be a first step towards utility in an automated setting.
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