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Abstract In this paper we introduce a formal approach for the specification of 

mobile code systems. This approach is based on graph grammars, that 

is a formal description technique that is suitable for the description of 

highly parallel systems, and is intuitive even for non-theoreticians. We 

define a special dass of graph grammars using the concepts of object

based systems and indude location information explicitly. Aspects of 

modularity and execution in an open environment are discussed. 
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1. INTRODUCTION 

The fast and continuous evolution of computing and communication 

capabilities have resulted in massively distributed computational envi

ronments (e.g. Internet). These environments are often called open 

environments and are characterized by: massive geographical distribu

tion; highly dynamic environments; no global control; partial failures; 

lack of security and high heterogeneity due to the diversity of commu

nication links (delay, throughput), cooperating organizations, services 

offered, etc. Due to these factors, developing applications for such en

vironments is rather complex and therefore research efforts have been 
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directed to improve support for development of distributed applications. 

One such efforts is the research area around code mobility[9]. 

In traditional distributed systems, interacting components are pri

marily static, i.e., a component remains on the same location during its 

whole life-cycle and interactions with other components take place by ex

changing messages through the communications network. Code mobility 

can be defined as the capability of dynamicaHy changing the location of 

an executing component. A mobile component is able to stop its exe

cution on a location, migrate through the network carrying its internal 

state, and res urne its execution on another loeation. Migration is not 

transparent to the distributed software developer, it is instead explicitly 

handled by hirn/her as part of the application's functionality. 

A wide field of applications is foreseen to be scenario for mobile code 

applications. Network management [9], electronic commerce [18], dis

tributed information retrieval [10], advanced telecommunication services 

and active networks [28], active documents and workflow management 

systems are among them. Code mobility is also weH suited for the ever 

growing field of physical node mobility because it is possible to launch 

remote computations, switch off the local node (e.g., a laptop), switch 

on the node latter, and receive the results of the remote computations. 

The ideas around mobile code and its implementations emerged from 

a practical approach. Most of the standards, platforms and languages 

currently available and widely used for the development of this kind of 

systems[22] reflect this fact: they were constructed in an ad hoc way 

rat her than based on corresponding theoretical investigations. Start

ing with the 7r-calculus [19][21], there had been some efforts towards 

computational models for mobile systems, e.g. based on abstract state 

machines [17], on mobile ambients [3], and on actors [2]. However, to 

be used in practical applications, high-level specification languages as 

weH as programming languages whose semanties can be described using 

such models must be provided. There are some proposals of correspond

ing programming languages (e.g. KLAIM [6J, Mobile UNITY [25], Pict 

[23], Nomadic Pict[29]), but on the level of specification there is still no 

formal method that is largely used for mobile systems. When consid

ering mobile code systems, complex distribution aspects, like location 

and mobility, communication, and, in some cases, failures, are not only 

implementation issues but also part of the functionality of the system. 

Therefore, it is necessary to provide the user with abstract constructions 

to specify and reason ab out those aspects. Process calculi models and 

corresponding languages offer a level of abstract ion based on processes: a 

system is viewed as a composition of (interacting) processes. Although 

this point of view may be adequate for some aspects of a system, it 
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lacks a comprehensive representation of data structure and its distribu

tion within a system. Object-based models, instead, join descriptions of 

data and processes within one object. In such systems, distribution and 

concurrency appear naturally with the concept of objects as autonomous 

entities. In the practice, object-based approaches to specification and 

programming are widely accepted, although most of the specification 

methods used are informal of semi-formal. In this paper we advocate 

the use of a formal description technique, namely graph grammars, to 

specify mobile code systems. 

Graph Grammar [8] [26] is a formal specification formalism that has 

been already used for the specification of concurrent and distributed sys

tems [27][24]. The basic idea ofthis formalism is to model the states of a 

system as graphs and describe the possible state changes as rules (where 

the left- and right-hand sides are graphs). The behavior of the system 

is then described via applications of these rules to graphs describing the 

actual states of a system. Rules operate locally on the state-graph, and 

therefore it is possible that many rules are applied at the same time. 

In [20] is was shown that it is possible to encode any 7T'-calculus agent 

into a graph grammar. There, vertices were used to model channels 

(or names) and (hyper)arcs were used to model processes, thus obtain

ing a graphical representation of a term (agent). The reduction rules 

were then described by graph rules. Using this graph representation, it 

was possible to provide a true concurrency semantics to the 7T'-calculus. 

Note that there the description of the system is given by one graph, 

the rules were just used to implement the reduction of the 7T'-calculus. 

Here we will adopt an approach in which the system will be modeled 

by a graph grammar, the initial state of the system will be modeled 

by a graph (representing the distributed structure of data/objects) and 

possible evolutions of the system will be described by a (user-specified) 

set of rules. Graph grammars are appealing as a specification formalism 

because they are formal, they are based on simple but powerful concepts 

to describe behavior, and at the same time they have a nice graphical 

layout that helps even non-theoreticians understand a graph grammar 

specification. The latter argument was of particular importance for our 

choice of using graph grammars as a specification formalism for mo

bile code systems because it helps for a good acceptance of a method 

in practice. To make our specification language simpler to use within 

this application domain, we will define a special dass of graph gram

mars using the concepts of object-based systems and indude location 

information explicitly. 

In Sect. 2 we recall the main concepts of graph grammars according 

to the algebraic approach [7] and introduce the concept of doubly-typed 
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graph, that will be used to model object-based and mobile systems. 

In Sect. 3 we show how to describe mobile code systems using graph 

grammars, and in Sect. 4 we discuss (informally) the semantics of such 

systems. Final remarks can be found in Sect. 5. 

2. GRAPH GRAMMARS 

Graphs are a very natural means to explain complex situations on an 

intuitive level. Graph rules may complementary be used to capture the 

dynamical aspects of systems. The resulting notion of graph grammars 

generalizes Chomsky grammars from strings to graphs. A graph gram

mar is composed by a type graph (representing the types of vertices and 

edges allowed in the system), an initial graph (representing the initial 

state of the system) and a set 01 rules (describing the possible state 

changes that can occur in the system). 

We will use the algebraic Single-PushOut (SPO) approach to graph 

grammars [16][7]. This approach is based on categories of graphs and 

partial graph morphisms. The kind of graph we will use is called doubly

typed graph. In this Section we will first present the definition of doubly

typed graphs and (partial) morphisms, and then show how the use of 

this kind of graphs allows for a nice description of object-based systems. 

Then, in Sect. 3 we will expand this model for mobile code systems. We 

assume the reader is familiar with basic notions of category theory. 

2.1. BASIC NOTIONS 

Graphs and homomorphisms: We will consider graphs with vertices la

beled by attributes, that are values belonging to carriers sets of an alge

bra [15]. A graphs is a tuple G = (V, E, A, s, t, a) consisting of two sets 

V and E (vertices and edges), one algebra A (attributes) and three total 

functions s, t : E ---+ V and a : V ---+ U(A) (source and target of edges, 

and the attribution function), where U(A) is the disjoint union of carrier 

sets of A. A homomorphism g: G ---+ H is a tripie 9 = (gV,gE,gA) con

sisting of two partial functions gv and gE mapping vertices and edges 

from G to Hand one total algebra homomorphism gA mapping the 

attribute algebra of G into the attribute algebra of H such that the dia

grams below commute (the diagram on the left represents two diagrams, 

one for the compatibility with the source and other with the target 

functions). Let GraphP be the category of graphs and morphisms as 

described above (for the formal definition see [15], [14]). Colimits in 

GraphP can be constructed componentwise in the categories of sets 

and of algebras followed by a construction to remove edges whose source 

or target vertices have been deleted. For details see [14]. 
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Va ----9V----;..> VB Aa 1-1 AB 

Notation 2.1 The I---T-arrows denote total morphisms, whereas -t-arrows 

denote arbitrary morphisms (possibly partial).For a partial Junction J, 

dom(f) represents its domain 01 definition, J? and J! denote the cor

responding domain inclusion and domain restrietion. Each morphism 9 

in the category GraphP can also be lactorized into corresponding com

ponents g? and g!. 

Typed Graphs and morphisms: A typed graph GT is a tuple GT = 

(G, typeG, T) where G and T are graphs and typeG : G -t T is a total 

graph morphism. A typed graph morphism gT : GT -t H T between 

typed graphs GT and H T is a pair of graph morphisms gT = (g, idT) 

with 9 : G -t Hand idT is the identity on T such that typeG 0 g? = 
typeH 0 g!. A typed graph morphism gT is called an injective/total 

if 9 is injective/total. The category of typed graphs and typed graph 

morphisms over a type graph T is denoted by TGraphP(T). Colimits 

in TGraphP(T) can be constructed componentwise in GraphP[14].1 

Doubly- Typed Graphs and morphisms: As the definitions and results for 

doubly-typed graphs are analogous to the ones for typed graphs, we will 

just sketch them here. To get the category of doubly-typed graphs, one 

has just to take the corresponding definition of typed graphs and sub

stitute the category GraphP by TGraphP(T). A doubly-typed graph 

(aT, typeGT ,TGT ) will be denoted by a TG /,T. The graph TG is called 

(application) type-graph and the graph T is called model type

graph (these names will be motivated in Sect. 2.2). Again, colimits 

are constructed componentwise in the basis category, Le., TGraphP(T) 

(see [24] for the proofs). 

2.2. OBJECT-BASED GRAPH GRAMM ARS 

In this paper we consider an object-based system as being a system 

consisting of autonomous entities called objects that communicate and 

cooperate with each other through messages. Objects may have an in

ternal state and relate to other objects within the system. The behavior 

lIf we had used total graph morphisms, the category defined above could have been defined 

as a comma category (as it was done in [4]). We use an analogous construction for categories 
with partial morphisms called generalized graph structures [14). 
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of an object is described through its reactions to the receipt of messages 

(triggers). This reaction may be to change the object's internal state 

and/or send messages to other objects. An object may perform many 

(re)actions in parallel. 

A way to model object-based systems using graph grammars have 

been presented [13] inspired in the actor model [1] . The basic idea was 

to use graph grammars as a (graphical) language to specify actor sys

tems. We will follow the same ideas, although using definitions based 

on doubly-typed graphs. 

To describe an object-based system using graph grammars, the first 

step is to identify the entities of this specification model and represent 

them as a graph, called model graph. This is shown in Figure 1. Objects, 

messages and attributes will be modeled as vertices. A message must 

have as destiny an object (modeled by the dashed edge) and may have 

as arguments other objects and/or attributes of data types. An object 

may know other objects and may have attributes. Each attribute vertex 

is attributed with a value belonging to an attribute algebra. At this level 

of abstraction, we will use a variable as attribute to describe that the 

Q-vertex mayassume any value from the carrier sets of the attribute 

algebra in so me instance graph of this type.2 Note that a type graph 

models kinds of objects and links that may be present in an actual state 

of the system, but say not hing about the number of elements of each 

kind that must be present at a particular state. 

<p.I ; rg 
ar : 

; Atr 

bl Ir 

biOWJ 

Figure 1 Object Model Graph oe 

The existence of the model type-graph makes it easier to relate spec

ifications based on different models: once we have related the models 

at the abstract level (for example, via a morphism between two model 

type-graphs) we can relate specifications of concrete applications based 

on that models. 

2This can be formally described , for example, by using as attribute algebra a term algebra 

over an order-sorted specification. As this topic is not central for this paper, we will not 
discuss it in detail. 
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For each specific object-based system we may have various types of 

objects and messages that are relevant for that application. Thus, to 

build a specification for an object-based system using graph grammars 

one must define the application type-graph. In the next section, Figure 

2 shows the model type graph for mobile code systems, and Figure 5(a) 

shows the application type graph corresponding to one specific mobile 

code application. 

A rule r : L -t R specifies astate change of a system in the following 

way: all items that are in L must be present at the current state to 

allow this state change, all items that are mapped from L to R (via the 

morphism r) will be preserved, all items that are not mapped from L 

to R will be deleted from the current state and all items that are in R 

and are not in L (not in the range of r) will be added to obtain the 

following state. For an object-based graph grammar we will only allow 

rules that consume elements of type message, Le., each rule represents 

areaction to the kind of message that was consumed. Moreover, only 

one message may be consumed at a time by each rule. Note that the 

system may have many rules that specify reactions to the same kind 

of message (non-determinism), and that many rules may be applied in 

parallel iftheir triggers (messages) are present at an actual state (graph). 

Many messages may be generated in reaction to one message. To make 

sure that a rule may be applied whenever its trigger is found in the 

actual state graph we will require that whenever a message appears in a 

graph, it has exactly all specified arguments and exactly one destination. 

Analogously, each object must have all its attributes. 

The following definition is given in a semi-formal way because the 

corresponding formal definitions require a number of concepts that are 

not needed elsewhere in this paper and have been omitted. 

Definition 2.2 Rule. Let AGOG be a finite typed-graph, where OG is 

the object-based model type-graph. A morphism r : LAG/ OG -t R AG/ OG 

is a rule scheme iff Land R are finite and r is injeetive. A rule is a 

rule seheme which satisfies the following eonditions: 

i) There is exactly one message vertex on the lejt-hand side of a rule. In 

this case, m is called trigger of r, denoted by Trig(r). 

ii) The message on the lejt-hand side of a rule is eonsumed by the appli

eation of the rule (Trig(r) rJ dom(r)). 

iii) Messages have exaetly one destination and all neeessary arguments. 

This is ealled message-completeness. Moreover, all items in L must 

be eonneeted. This latter eondition is to avoid non-loeal side effects. 

iv) Only the attributes corresponding to the internal state of the desti

nation of a message may appear in Land R. 
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Given a rule scheme r sand a rule r, a specialization is a pair of 

total homomorphisms (Zeft, right) mapping the left- and right-hand sides 

of the rule scheme r s to corresponding left- and right-hand sides of one 

of the rule r such that r 0 left = right 0 rs. 

N ow we can define a graph grammar. 

Definition 2.3 (Object-based) Graph Grammar. A graph gram

mar is a tuple GG = (AGOG,I,Rules) where OG is the object-based 

model graph, AGOG is a finite typed-graph, called the type of the gram

mar, I is a finite, message-complete, object-complete (each object has 

exactly all attributes specified in AGOG) doubly typed-graph according to 

AGOG, called the initial graph of the grammar, and Rules is a finite 

set of rules according to AGOG. 

Notation 2.4 When the model graph OG is clear from the context, we 
will write GAG instead of GAG /,OG. 

3. MOBILE CODE SYSTEMS AS GRAPH 
GRAMMARS 

With Mobile Code, the distributed software developer can build appli

cations taking location into consideration. Migration is not transparent, 

but rather specified explicitly. In order to discuss mobility, some notions 

have to be first established. The distributed environment is assumed to 

be a set of places and a set of mobile components. 

Places work as possible locations where mobile components can run. 

They offer basic facilities and the possibility of accessing other compo

nents having weH defined interfaces (e.g. naming service, event service, 

etc.). Basic facilities are communications, storage, and processing power. 

The basic functionality of a place is to accept an incoming mobile com

ponent, launch it and support it during run time until it leaves. 

Mobile components are software components that may migrate during 

their execution from place to place to use other local components and 

basic facilities. A mobile component has internal data or state, code, 

and a set of meta-data or attributes (e.g. identifier, credentials, origina

tor, operational status, etc.). These components are designed without 

location transparency and may create other mobile components to run 

concurrently in the same or different places. Mobile applications can be 

build from various mobile components. 

Example 3.1 As an example of a mobile code application, consider shops 

that support places to which mobile components can move to and from. The 

place of each shop can be configured following its objectives, with services 
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relative to the shopping activity, e.g., to answer queries about offers and 

prices, to reserve and seil products or services, etc. 

Consider that various shops exist in the distributed environment and that 

a user wants to know which shop has the cheapest price for a product. 

Various approaches can be followed to achieve that. Here we adopt a simple 

one based on mobile code. 

The user launches a mobile component informing a list of shops (ad

dresses of the places of the different shops) and the product to search for 

(details of how to obtain those place addresses will not be considered here). 

The component sequentially visits the various places informed by the user, 

and in each place interacts with a query service of that shop to disco ver the 

price of the product informed by the user. After visiting all places defined 

by the user, the component returns to the origin place and informs the user 

where the cheapest price for the desired product was found. 

We can model mobile code systems as object-based systems having two 

kinds of objects: places and components. The specification of places sug

gested here will encompass only the functionalities that must be provided 

by a place (and can not be implemented as components). Everything 

else will be seen as a component. Obviously, some of these components 

may implement the services provided by the place, and some may be user 

defined applications executing on that place. This way we will get a flex

ible model that can be seen as a first step towards a formal specification 

of active networks: services of a place may be upgraded dynamically 

without having to recompile or make changes to the kernel of the place. 

A component may send messages to other components it knows and 

also to its own place (for example, requesting to move somewhere else). 

Places may send messages to the components lying on it and to other 

places. But if we analyze carefully, we recognize that places have the 

power to act over components: messages among components can only be 

sent if the corresponding places agree, the same holds for move requestsj 

if a place crashes, all components running on it are not accessible any

more and stop execution (if the place has recovery schemes, components 

may res urne when the place re-initiate, otherwise, the components dis

appear). Moreover, the attribute describing in which place a component 

is in can not be changed by the component itself (like its object iden

tity). As we wish to have a high-level specification language for mobile 

code systems, we will abstract from this kind of details. For example, a 

move will be modeled as an atomic operation in which a place is able to 

modify the argument of a component that corresponds to its placement 

information. Figure 2 shows the graph that will be used as model type 

graph to mobile code applications. The arc labeled with is_in carries 

the information ab out the place a component resides. This argument 
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will be mandatory for each component of a mobile code system spec

ification. The arcs labeled with to indicate the receiver of a message. 

In an instance of type Msg the only outgoing arc shall be of kind to 

because each message in the system must have exactly one receiver, and 

the ingoing arcs represent the parameters of this message (that, accord

ing to the model type graph MG may be places, components and/or 

attributes). The outgoing ares of components and places represent their 

internal state. The arcs/vertices are labeled/have different shapes such 

that we can distinguish the instances of them without having to show 

explicitly the typing morphism. 

Arr 

Figure 2 Mobile Code Model Graph MG 

As we may see components and places as objects, we can define rules 

and graph grammars for mobile code systems analogously to the corre

sponding definitions for object-based systems (Defs. 2.2 and 2.3), obtain

ing the concept of mobile code graph grammars. In this case, we would 

have to relax condition v of Def. 2.2 to allow the deletion/insertion of 

is_in attributes of components by the places they are in. 

When designing a mobile code system, a user specifies components. 

This specification is based on his/her expectations about the behavior 

of the places involved (because places are responsible for handling com

munication and move requests). Thus, it is imperative that he has an 

abstract and precise description of this behavior. In the following we 

will provide such a description, and then show how (mobile) compo

nents may be specified using graph grammars and illustrate this by an 

example. 

3.1. SPECIFICATION OF PLACES 

A place basically provides physical resources (like memory, CPU) and 

communication services to the components running on it. Internally, a 

place manages the resources and communication, that is, it implements 

a network operating system. There are two kinds of communication that 

involve places: communication between components and places (place -+ 
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component: messages to start and finish execution, etc.; component -t 

place: messages to move, find place name server, etc.), and communi

cation between places (messages that form the communication protocol 

between places). 

The resources and their administration can be modeled very abstractly 

using an algebraic specification. One of the operations, accept : State, 

ReqList -t Bool, may evaluate whether the place may or may not accept 

a new component trying to move to it (based probablyon the number 

of applications actually on this place, the properties of the place and the 

requirements of the component). 

Communication can be modeled using graph rules. Figure 3 presents 

rule schemes to model this, actual communication will be represented 

by a rule that is a specialization of one of these rule schemes. Rule 

scheme Send specifies that components lying on the same or different 

places may communicate (note that this rule scheme specifies local and 

remote message passing, since the specialization homomorphism is not 

required to be injective). Rule scheme ServiceRequest describes that 

components may send messages to the place in which they are executing. 

uJrt 

lau lau i 1 • .,10 

lau 

S erviceRequ •• 

Figure 3 Message Passing Rule Schemes 

Besides computational resources and communication, a place may be 

able to provide move services. The rules describing such service are 

shown in Figure 4. Message M ove can be sent by a component to a place 

(Orig) asking to do a move to place Dest. The attribute req represents 

the requirements of the component. This is a list of services/attributes 

needed for the execution of this component. When a place (Orig) re

ceives a M ove message from a component, it sends a M oveReq message 

to the place that shall receive the component having as attributes the 

component that wants to move, its requirements and the origin place 

(rule RequestMove). Rule Move specifies what happens when a place 

receives a M oveReq message and decides to accept the component3 : 

3The condition written under the rule are deseribe eonditions that has to be satisfied for the 

rule to be applied. Formally this behavior is obtained by eonsidering as attribute algebra for 
the left- and right-hand side an algebra that satisfies this eondition. 
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the place sends a message to place Orig to inform that the component 

Comp! has successfully moved, sends a message to Comp! telling it to 

continue its execution, and changes its internal state to inc1ude this new 

component. Messages DenyM ove and N otM ove specify the actions to 

be performed when a move request does not succeed: the destination 

place informs the origin place the move was denied, and the latter for

wards this information to the corresponding component. 

&.Jo Ori 

o..yM""" I.J. 

Ori 

Figure 4 Move Rules M Rules 

3.2. SPECIFICATION OF MOBILE 

COMPONENTS 

To build a specification of a mobile component, the first step is to 

define the application model graph AG to be used. This graph will 

be typed over the mobile code model type graph MG (Figure 2) and 

contains the types of components that are necessary for this applica

tion, the messages that are exchanged, and the internal structure the 

component being developed. Then we can define the initial state of the 

component (that is a doubly-typed graph over AGMG), and the set of 

rules that describe how this component may evolve. These components 

typically rely heavily on message passing, and therefore the behavior of 

the application can be suitably described by graph rules [24][11] . To be 

able to model mobile code systems faithfully, this grammar must fulfill 

additional requirements: each component vertex must be connected to 

exact1y one place by an is_in are, and each rule that generates messages 

must be a specialization of one of the rules of Figure 3 (because these 

rules describe the possible message passing strategies of the places). 

Each component in an open system may use other components and 

be used by them. When choosing a component to perform some task, it 
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is important that the behavior of this used component is in accordance 

to the desired by the user component. To model this we will include in 

the specification of a component an abstract description of the desired 

behavior of the components that are used by this component. This will 

be called import interface. 

Definition 3.2 Mobile Component. A mobile component is a tuple 

MG = (T, Ini, Rules, Imp) where (T, Ini, Rules) is a graph gramm ar 

with type graph T MG , Imp is a set of rules over T MG such that the 

following conditions are satisfied: 

i) Each component vertex must be connected to exactly one place by an 

lSJn arc. 

ii) Each rule that generate messages must be a specialization of one of 

the rule schemes of Figure 3. 

iii) Each rule in Imp contains no attributes for places or components. 

Example 3.3 Now example 3.1 will be modeled using graph grammars. 

The application type graph (see Figure 5(a)) shows the types of entities in

volved. A mobile component (MG) searches for the bestPrice of a product 

with name given by prodName in a number of places numPlaces. MG 

holds also registers to each place to be visited (visit), to the origin place, 

to where it is - in currently, and to the place with the best offer. The sce

nario described also involves information services (ISs) that the MG may 

use (consult) du ring its journey. Details of IS are not given here. When 

MG completes its task it should also give back an answer to the user U. 

The identifiers real, natural and string stand for variables of the corre

sponding data types (we use a term algebra as attribute algebra). Actually 

all messages (together with their arguments) involved in this application are 

also part of the application type graph (although not drawn in Figure 5). 

The initial graph shown in Figure 5(b) is one of many possible initial 

graphs for this example. In this case MG will look for the best price of 

product product1 in places PI to P3, departing from P _orig. In each of 

these places there are ISs located, which MG can use. 

Figure 6 shows the rules that describe the dynamic behavior of the sys

tem. Considering the initial state described above, the first rule that will 

be applied is rule M oveN ext. This rule can be applied in three different 

ways, depending on the place chosen to be visited. In the graph grammar 

semantics (that will be discussed in the next section), this choice is non

de term in istic. The application of this rule will genera te a M ove message 

having as argument the place chosen to be visited. The reader may verify 

that now rules M oveN ext, QueryPrice and U pdate&Proceed or Proceed 

will be applied until there are no more places to visit. Note that rules that 

belong to the specification of places and other components, for example, 
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Figure 5 (a)Application Type Graph - (b) Initial Graph 

I S, were not described here. The move rules belong to the basic functional

ity offered by places. The import rules for this component(not shown here) 

would describe, for example, that in response to a cost? message the I S 

component will eventually deliver a price message. 

Me ._- p " Me ---
PmUH 

"-'" "--" 

P..J!. P..J!. 

Figure 6 Rules 

4. SEMANTICAL ASPECTS 

The behavior of a graph grammar is given by the applications of rules 

to graphs representing the actual states of the system, starting from the 

initial graph. The applications of rules may occur in parallel if the rules 

do not try to delete the same items. Note that, if a rule preserves an 

item that is deleted by another rule, these two may occur in parallel. 
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This situation corresponds to one write and one read access occurring 

at the same time. 

To be able to apply a rule to a graph representing the actual state of 

a system one must first find out whether the rule can be applied. This 

is done by finding a match of the left-hand side of the rule in this actual 

graph. An application of a rule in a graph, called derivation step, deletes 

from the actual graph everything that is to be deleted by the rule and 

adds the items that shall be created by the rule. 

Definition 4.1 Match, Derivation Step. Let r : LAG -t RAG be a 

rule and GAG be a (doubly-typed) graph. A match of r in G is a total 

doubly-typed graph morphism m : LAG -t GAG . A derivation step of 

a rule r at match m, denoted by G =*r,m H, is the pushout of rand m 

in the category DTGraphP(AGMG ). 

The semantics of a graph grammar can be defined as the dass of all 

computations that can be performed using the rules of the grammar 

starting with the initial state. These computations may be sequential 

or concurrent, giving raise to sequential and concurrent semantic mod

els. Figure 7(a) Illustrates a sequential derivation for a grammar with 

starting graph I. In this derivation we have a total order «) on deriva

tion steps (sI < s2 < s3) that denotes the sequence in which they 

have occurred in this computation. If we make a suitable gluing4 of all 

intermediate graphs of this derivation, we obtain a structure called con

current derivation (Figure 7(b)). Now, the total order that existed in 

the sequential derivation is lost, but we may define a partial order (-<) 
between the steps that describes the causality relation: if sI -< s2 then 

sI must occur to allow the occurrence of s2. A concurrent derivation 

can be seen as an equivalence dass of sequential derivat ions (all possible 

sequential derivat ions corresponding to the totalizations of -< are in this 

dass). A true concurrency semantics for graph grammars can be also 

described by an unfolding construction that gives us a partial order of 

derivation steps [24]. The unfolding construction encompasses informa

tions about all possible computations that are described by the given 

graph grammar. 

Open systems are highly dynamic, in the sense that places and ser

vices may be created, deleted, become reachable and unreachable at any 

moment. Thus, a suitable semantics for such systems must take these 

characteristics into account. Note that, to define a semantics for a mobile 

component, it is not enough to consider the behavior of this component 

4This gluing is actually a colimit of a diagram in the category of doubly-typed graphs [14, 24]. 
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Figure 7 (a) Sequential derivation (b) Concurrent Derivation 

in every possible network configuration, but we must also consider its 

behavior in changing network configurations, that is, in a configuration 

that may change while the component is executing. To capture the 

dynamics of the environment we will use a set of rules that describes 

such changes. Some of these rules are depicted in Figure 8. Rules 

createPlace/createComp and destroyPlacejdestroyComp are used to 

create and delete places between placesjcomponents from the network. 

Moreover, a rule that changes (consistently) the internal state of a place 

is needed. The semantics of a mobile component shall consider not just 

the rules that describe the behavior of the component itself, but also and 

the rules that describe (abstractly) the behavior of the used components 

(described in the Import interface of this component), the move rules 

of the place, and the rules that may create j destroy / modify places and 

used components. As a mobile component only uses the kinds of com

ponents that are described in its specification, the fact that other kinds 

of components may exist in the network are irrelevant for its behavior 

and must therefore not be considered. With these rules we may obtain 

all possible computations of this system taking as initial state a graph 

consisting of the initial graph of the definition of the component itself 

plus an initial state for the places involved. We can consider a trivial 

initial state because other possible initial states may be obtained by the 

dynamic rule that changes the state of places. 

Figure 8 Dynamic Rules 
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5. CONCLUSION 

In this paper we have introduced a formal approach for the specifica

tion of mobile code systems. This approach is based on graph grammars, 

and the main idea is to model places and components as vertices (with 

attributes), and their behavior as rules specifying the desired actions 

that shall be performed when a place/component receives some kind of 

message. Graph grammars seem to be weIl suited for the specification 

of such systems as they match aseries of important characteristics: 

Concurrency: Applications are composed by various mobile compo

nents which may be active. Therefore a mobile application is inherently 

concurrent. Graph grammar is a formal description technique that is 

suitable for the description of highly parallel systems. Concurrency is 

not specified explicitly, as, for example, in process calculi, but rat her ob

tained as a consequence of independence of actions (rule applications). 

As discussed in [20], this approach can be useful to guide an efficient 

implementation of the system (since it allows to derive information con

cerning the maximal parallelism taking into account the use of shared 

data), as weIl as allow for better strategies to debug a system (since it 

permits to trace back all the actions that have influenced the occurrence 

of an undesired state). From the concurrency semantics of a graph gram

mar we can obtain causal dependency and conflict relationships that can 

be used to reason ab out the parallelism of a system (actually, due to the 

possibility of read-access to items, we need also a third relationship, 

called weak -or asymmetric- conflict [12]). Even without considering 

all computations of the semantical model, an analysis of the potential 

causal and conflict relationships among rules may already lead to useful 

statements about the system. 

No global state: As the environment is very dynamic, mobile code 

components rely less on aglobaI not ion of state and more on a local 

notion of state, tending to have more autonomy to decide the actions to 

perform in a wider range of situations as if compared to fixed systems. 

This is naturally modeled with graph grammars as the distributed state 

is modeled by a graph and each rule application affects only apart of 

this graph (rule applications have only local effects). The description 

of the state as a graph highlights the relationships among the compo

nents (since these can be explicitly represented as edges connecting the 

involved components). Such a representation considerably eases the un

derstanding of the specification. 

Openness: In the massively distributed environment considered, places 

can be created and deleted (shut down) following policies from different 
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organizations and offer different sets of services. Components have in

dependent life-cycles and enter and leave places, becoming reachable or 

unreachable to other components. These dynamic aspects were consid

ered by the discussion about semantics in Sect. 4. 

Fault tolerance: As the environment considered is a massively dis

tributed one, partial failures may be present/arise. Many times it is 

important/necessary to consider the possibility of infra-structural fail

ures in the applications. As the sketched semantical model takes into 

consideration that the environment may fail, we believe that it will be 

possible to reason about the fault tolerance aspects of a component by 

analyzing the computations of the corresponding graph grammar. This 

is a very interesting subject of future work. 

Modularity: While modeling applications for open systems it is very 

important to have a sound definition of the functionality offered by the 

application and used from other applications. In our approach this was 

(partially) considered using the not ion of import interface, which is part 

of the specification of each component. However we still have to con

sider the impact of this interface in defining semantical models for mobile 

applications (here we have only discussed the semantics of one mobile 

component). Moreover, it is also important to have an export interface 

describing the services offered by a component at an abstract level. This 

would require a notion of satisfaction of a specification (rule) by a graph 

grammar, that is, we would have to guarantee that the rules specify

ing the behavior of a given component would always lead to a certain 

state/trigger some message. This topic is currently under investigation, 

as it is also needed to assure that an imported component presents the 

required behavior. Some work in this direction have been done in [20], 

where different notions of observational equivalences for graph grammars 

were defined. Another topic would be to consider whether richer place 

hierarchies, as provided by mobile ambients [3], can be integrated to our 

approach to improve the structuring of the system. 

In addition to all those aspects, graph grammars are intuitive even 

for non-theoreticians. Besides being an unambiguous description of the 

system, a graph grammar allows for formal analysis of properties of 

this system, like complexity (for example, in terms of number of rule 

applications necessary to perform some task) , relationships (causality, 

conflict) among rules, etc. In the project PLATUS [5] an environment 

for simulation of graph grammar specifications is currently under devel

opment. This environment may be used for the specification of mobile 

code systems as described here. 
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