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SPECIFICATION ON THE INTERVAL

JÉRÔME BUZZI

Abstract. We study the consequences of discontinuities on the specification
property for interval maps. After giving a necessary and sufficient condition
for a piecewise monotonic, piecewise continuous map to have this property, we
show that for a large and natural class of families of such maps (including the
β-transformations), the set of parameters for which the specification property
holds, though dense, has zero Lebesgue measure.

Thus, regarding the specification property, the general case is at the oppo-
site of the continuous case solved by A.M. Blokh (Russian Math. Surveys 38
(1983), 133–134) (for which we give a proof).

1. Introduction

R. Bowen [5] has introduced the following notion. Given a self-map on a compact
metric space f : X → X , one says that f has the specification property, if, for
every ε > 0, there exists a constant D < ∞ such that, given (x1, l1), . . . , (xr , lr) ∈
X × N, 0 ≤ r < ∞, if we let L(s) = l1 + · · · + ls−1 + (s − 1)D for 1 ≤ s ≤ r + 1,
then there exists z ∈ X such that fL(r+1)(z) = z and d(fL(s)+k(z), fk(xs)) < ε for
0 ≤ k < ls and s = 1, . . . , r.

In other words, given an arbitrary number of arbitrarily long segments of orbits,
one can find a periodic orbit which follows each one of them, with a precision ε > 0,
and “switch” from one segment to another in a fixed amount of time depending
only on ε.

This property is very strong. It allows the study of generic properties of invariant
measures and, under the additional hypothesis of expansiveness, it implies that
there exists a unique equilibrium measure for any smooth potential (see, e.g., [6]).
It is so strong that one could wonder whether it is realized by many natural systems,
except of course by subshifts of finite type and the like.

F. Hofbauer [10], using his Markov diagram, introduced previously in [7], has
shown that all continuous piecewise monotonic maps have a weak specification
property. This weak property implies the generic properties of invariant measures
which we alluded to, but not the result about equilibrium states.

A.M. Blokh completely solved the problem on the interval in the continuous case,
in quite an unexpected way:
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1.1 Theorem (A.M. Blokh [3]). Every continuous self-map of the interval has the
specification property iff it is topologically mixing (i.e., for every pair of non-empty
open sets U, V , fn(U) ∩ V 6= ∅ for all large n).

For the sake of completeness we give a short proof of this result of A.M. Blokh
in Appendix A.

This paper addresses the following question, most natural after A.M. Blokh’s
result: what happens for general interval maps (i.e., if one allows discontinuities)?
We are going to show that the situation completely changes: the specification
property becomes exceptional. For instance:

1.2 Counterexample. Though, for all β > 1, all maps Tβ : [0, 1] → [0, 1] defined
by:

Tβ : x 7→ {βx} ({·} ∈ [0, 1[: fractional part)

are topologically mixing, the set of β > 1 such that the map Tβ has the specification
property is dense, but has Lebesgue measure zero.

We prove this fact as a special case of a general result, the Main Theorem below
(see the comments after the Main Theorem for generalizations). Now let us state
the general result. First we give some definitions.

1.3 Definition. A p.m.m. (piecewise monotonic-continuous map) is a map f :
[0, 1] \ C(f) → [0, 1] with C(f) a finite set, called the set of critical points, such
that, writing P for the set of the connected components of [0, 1] \ C(f):

1. for every U ∈ P , f : U → f(U) is a homeomorphism;
2. no critical point c ∈ C(f) is removable: f cannot be extended to any neigh-

bourhood V of c in such a way that f : V → f(V ) is a homeomorphism.

P is called the natural partition of f .

Recall that a function is Cr with r non integer iff it is Ck with k the largest
integer smaller than r and its rth derivative is Hölder with exponent r − k.

1.4 Definition. Let r ≥ 0. A Cr family of p.m.m.’s is {ft}t∈T such that T =⋃∞
j=1 Tj and each Tj is an interval, for which there exists:

1. an integer 1 ≤ N <∞.
2. 0 < d1(t) < · · · < dN−1(t) < 1 — critical points, assumed to be Cr functions

of t. We write C(ft) = {d1(t), . . . , dN−1(t)}.
3. fi : T × [0, 1] → R (i = 1, . . . , N) strictly monotonic mappings of class Cr —

the “pieces”

such that ft is defined from [0, 1] \ C(ft) to [0, 1] and coincides with the p.m.m.:

x ∈ [0, 1] \ C(ft) 7→ fi(t, x),

i = i(x) := max{j ∈ {1, . . . , N} : dj−1(t) < x < dj(t)}
(where we set, for convenience, d0(t) = 0, dN (t) = 1).

Notations. As a p.m.m. f is not defined on the whole of [0, 1], so we make the
following conventions. We write f(S) for f(S\C(f)). We write g(x+) (resp. g(x−))
for the limit to the right (resp. to the left) of x of the function g (which can be ft,
∂uft (with u = x or t), fnt , etc.). We call such an association of a point x with a
side + or − an endpoint. Often we shall write x±, y∓, etc. Of particular interest
to us will be the endpoints of the natural partition P : c+, c− for c ∈ C(f).
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In particular, we define in this way the virtual orbit under a p.m.m. f , starting
from x± as the sequence of limits {fk(x±)}k≥0.

We remark that the union of all virtual orbits is countable so they have no effect
on the properties of specification or topological mixing.

1.5 Main Theorem. Let {f}t∈T be a C1+θ family of p.m.m.’s (0 < θ < 1). As-
sume that, for Lebesgue-almost all t ∈ T , ft is:

(A1) completely discontinuous (on the critical set): for every discontinuity di(t),
the left and right limits of ft at di(t) are distinct.

(A2) non-degenerate: there exists an endpoint e = e(t) (e(t) standing for di(t)±)
such that the sum:

d′i(t) +
∑
n≥1

∂tft
(
fn−1
t (e)

)
∂xfnt

(
e
)

does not converge to zero.
(A3) expanding:

inf
x∈[0,1]\C(ft)

|∂xft(x)| > 1

Then the set Tspec of values t ∈ T such that ft has the specification property has
Lebesgue measure zero.

On the other hand, the set Tcoll of values t ∈ T such that critical orbits collide,
i.e., fnt (c±) = d for some c, d ∈ C(ft) and n ≥ 1, is dense in T .

1.6 Corollary. Under the additional assumption:

(A4) there is essentially only one critical orbit, i.e., for all t ∈ T :

ft(0) = ft(d1(t)+) = · · · = ft(dN−1(t)+) = 0,

ft(d1(t)−) = · · · = ft(dN−1(t)−) = 1,

the set Tspec is dense in T .

Comments. 1. Statements similar to 1.2 can be deduced from our result for much
more general families of p.m.m. than β-transformations: consider x 7→ {βx + α}
or more generally x 7→ {ft(x)} with ft of class C1+θ such that: ∂tft > 0, ∂xft ≥
λ(t) > 1. We call this class of maps the expanding maps modulo 1. We have the
same conclusions as in the case of β-transformations: Tspec has Lebesgue measure
zero and, if ft(0) = 0, Tspec is dense.

2. Clearly, condition (A1) is satisfied by “almost all” p.m.m. in any reasonable
sense. However we must stress that we do not know of any simple necessary and
sufficient condition for the specification property (like Proposition 2.1 below) in the
general case, i.e., if the p.m.m. has among its critical points both discontinuity and
continuity points.

3. There has to be some condition like (A2) above so as to avoid fictitious
dependence on t, such as in a family like:

ft(x) = ϕt ◦ f ◦ ϕ−1
t(*)

where ϕt : [0, 1] → [0, 1] is a family of diffeomorphisms and f any p.m.m.
It suggests the following question. Assume that a family is expanding (condition

A3) and that the series in (A2) converges to zero for all t ∈ T . Does this imply
that the family is of the form (*) above?
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4. P. Walters [12] (see F. Hofbauer and G. Keller [11] for a generalization) has
shown that existence and uniqueness of the equilibrium measure with respect to a
smooth potential (one of the key properties of systems with specification) hold for
all β-transformations.

It is natural to ask whether this property can be deduced from a suitably weak-
ened property of specification which would be satisfied by these transformations.

In section 2 we state a necessary and sufficient condition for the specification
property under condition (A1). The proof of necessity is immediate. The proof of
sufficiency is more complex. It uses Hofbauer’s Markov diagram. In section 3, we
prove the main theorem by using standard techniques. Section 4 checks that the
family of β-transformations satisfies the hypothesis of the theorem.

2. Condition for the specification property

This section is devoted to the proof of the following criterium:

2.1 Proposition. Let f : [0, 1] \ C(f) → [0, 1] be a p.m.m. Assume that it is
completely discontinuous.

f has the specification property if and only if the following two conditions hold:

(S1) f is topologically mixing.
(S2) orbits of discontinuities do not get too close to discontinuities on the “wrong

side”, i.e., for every discontinuity d±, for all n ≥ 1:

|fn(d±)− e| ≥ α > 0 with α some constant

if e is any discontinuity, distinct from fn(d±), such that e and fn( ]d, d± ε[ )
are on the same side of fn(d±) (for ε > 0 small enough).

Remark. After this paper was written, I was told of an article by A. Bertrand-
Mathis [2, Theorem II] about β-shifts, the symbolic dynamical systems associated
to β-transformations. This article contains a necessary and sufficient condition for
the specification property among these particular systems in terms of the so-called
symbolic β-expansion of the critical point. It is easily seen to be equivalent to the
above proposition restricted to β-shifts.

Proof of Necessity. Clearly specification implies topological mixing so that (S1) is
necessary. Assume that (S2) is not fulfilled: for some discontinuities d±, e, there
exists a sequence of integers ni such that: |fni(d±)− e| decreases to zero, e being
on the wrong side.

The Bowen ball of radius ε > 0 and order n ≥ 1 centered at x ∈ [0, 1] is:

Bn(x, ε) = {y ∈ [0, 1] : |fk(y)− fk(x)| < ε for k = 0, . . . , n− 1}.
We define the Bowen ball centered at x± in the obvious way, by replacing fk(x)
by the limit fk(x±).

2.2 Lemma. If f : [0, 1] → [0, 1] is an arbitrary p.m.m. then, for ε > 0 small
enough, for any x ∈ [0, 1], any n ≥ 0, we have:

fkBn(x, ε) is an interval (0 ≤ k < n− 1).

More precisely, the restrictions fk|Bn(x, ε) are continuous.
If f is a completely discontinuous p.m.m., then these restrictions are homeomor-

phisms.
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The lemma is obvious: it is enough to take ε > 0 so small that, for every
discontinuity point d, we have that f(]d − ε, d[) and f(]d, d + ε[) are separated by
a distance at least ε > 0. The lemma implies that fniBni+2(d±, ε) ⊂]fni(d±), e[.
Hence the images of these Bowen balls have arbitrarily small diameter.

Now, the specification property would imply that, for arbitrarily small ε > 0,
one can go from fnBn(x, ε) to any Bowen ball of radius ε in a “switching time” M
depending only on ε. In particular fM (fnBn(x, ε)) should be ε-dense. We claim
that, for ε < 1/4, this implies that diam(fnBn(x, ε)) is not too small, contradicting
what we have just seen. Let us prove the claim. Fix M . Let I be an interval with
small diameter diam(I) (i.e., diam(I) is smaller than some positive function of M).
Let n1 = min{k ≥ 0 : fk(I) ∩ C(f) 6= ∅}. If n1 ≥ M then fM |I is continuous
and therefore fM (I) is an interval with small diameter and is not ε-dense. Assume
n1 < M .

fn1(I) is small by continuity so it cannot contain more than one critical point.
Let us split fn1(I) into I1 ∪ {c} ∪ I2, c being the critical point met by fn1(I). Let
n2 = min{k ≥ 0 : fk(I1) ∩ C(f) 6= ∅}. If n2 < M then fn2(I1) is small so that
fn2(c−) is close to, but distinct from a discontinuity. This implies that n2 is large,
contradicting the hypothesis n2 < M . Hence n2 ≥M .

We have shown that fM |I1 is continuous. It is the same for fM |I2. Hence, for
I of diameter small enough (with respect to M), fM (I) is either a small interval
or the union of two small intervals fM−n1(I1), f

M−n1(I2): it cannot be ε-dense in
[0, 1] for ε < 1/4. The claim, and therefore the necessity of (S1)-(S2), is proved.

We remark that the necessity of conditions (S1)-(S2) is enough to prove the part
“zero Lebesgue measure” of the Main Theorem.

Preliminaries to the Proof of Sufficiency. Let f be a p.m.m. completely dis-
continuous and satisfying (S1)-(S2). To prove the specification property we will
study the symbolic dynamics of f .

Recall that P is the natural partition of f . The itinerary of a point x is the
unique sequence ι(x) ∈ PN defined by: A = ι(x) iff fk(x) ∈ Ak. It is defined
for x ∈ [0, 1] \ C−(f) with C−(f) =

⋃
k≥0 f

−kC(f). An endpoint x± (x ∈ [0, 1])
defines a unique itinerary naturally associated with the virtual orbit starting from
x±: ι(x±) = A iff fk(x± h) ∈ Ak for h > 0 small enough.

A finite itinerary is a finite sequence coinciding with the beginning of some
ι(x). The set of points whose itineraries coincide with the itinerary of x up to and
including time n−1 is written Hn(x). It is called the n-homterval containing x as it
is the maximal interval J containing x such that f |J, . . . , fn|J are homeomorphisms
on their images. Hn(x±) is defined to be Hn(x± h) for small h > 0.

A homterval is a non-trivial interval on which fn is a homeomorphism for all
n ≥ 0. If J is a maximal homterval, then there are two possibilities: (i) for some
n ≥ 1, fn maps J homeomorphically into itself: every point of J converges to some
fixed point of f2n; or (ii) the intervals fn(J) are disjoint from the interior of J .
Both possibilities contradict topological mixing.

Therefore our map f has no homtervals.
Remark that this is equivalent to say that given an infinite sequence A ∈ PN

there exists at most one point or virtual orbit the itinerary of which is A. It implies,
in particular, that if a point x has a periodic itinerary, then the orbit of x is also
periodic, with the same period. Under our assumptions, the Bowen balls are very
simply controlled in terms of symbolic dynamics:
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2.3 Lemma. Let f : [0, 1] \ C(f) → [0, 1] be a p.m.m.
(*) If f has no homtervals, then, for every ε > 0, there exists N = N(ε) < ∞

such that for all x, n:

Hn+N (x) ⊂ Bn(x, ε)

(**) If f is completely discontinuous, then for every ε > 0 small enough, for all
x and n:

Bn+1(x) ⊂ Hn(x).

Proof. Compactness of [0, 1] implies that max{diam(J) : J is an n-homterval}
converges to zero as n → ∞. In particular, for every ε > 0, there exists N < ∞
such that Hn+N (x) ⊂ Bn(x, ε). (*) is proved.

(**) is a restatement of Lemma 2.2.

Hence, to prove the specification property, it is enough to prove the following
claim:

2.4 Claim. There exists D <∞ such that for every finite collection of finite itinerar-
ies Ai ∈ Pni , i = 1, . . . , r, there exists sequences Bi ∈ PD, i = 1, . . . , r, such that
the infinite, periodic sequence defined by the infinite repetition of the block of
length n1 + · · ·+ nr + rD:

A1B1 . . . ArBr

is the itinerary of some point x.

To study this question we shall use Hofbauer’s Markov diagram. Define recur-
sively P0 = P and Pn+1 = {f(A) ∩ Z 6= ∅ : A ∈ Pn, Z ∈ P}. The Markov diagram
of f is:

M =
⋃
n≥0

Pn.

Elements of M are open intervals. They are not necessarily disjoint. Their end-
points are points of C+(f) = {fk(c±) : k ≥ 0, c ∈ C(f) and ± ∈ {−,+} }, i.e.,
post-critical points. More precisely, Pn = {fn(J) : J is a n+ 1-homterval }.
M is countable. It has a natural (oriented) graph structure: A → B iff B =

f(A)∩Z for some Z ∈ P . A path on M is a finite or infinite sequence α such that
αk → αk+1.

For each element I of M there exists a unique element π(I) of P containing it.
This map π : M→ P induces a projection from the set of paths on M to

⋃
k≥1 P

k.

For every finite path α, A = π(α) is a finite itinerary which defines a (non-empty)
n-homterval, if n is the length of α. Indeed, writing H for this n-homterval, the
definition of the graph structure implies that:

∅ 6= αn−1 = f(αn−2 ∩ f−1(An−1)) = . . .

= fn−1(α0 ∩ f−1(A1) · · · ∩ f−n+1(An−1))

= fn−1(α0 ∩ A0 ∩ f−1(A1) · · · ∩ f−n+1(An−1))

⊂ fn−1(A0 ∩ f−1(A1) · · · ∩ f−n+1(An−1)) = fn−1(H).

(*)

For infinite paths the situation is slightly more complex:
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2.5 Lemma. There exists a finite exceptional set of periodic itineraries X such that
the following holds:

Every loop on M (i.e. periodic path) α such that π(α) /∈ X , defines one point
x ∈ [0, 1] with itinerary π(α). In particular, x has the same period as α.

Proof. To see this, letA∈PN be the projection of the loop. Consider
⋂
k≥0 f

−k(Ak).
If this intersection is not empty, then it is the desired point. Assume it is empty.⋂
k≥0 A0 ∩ · · · ∩ f−k(Ak) is not empty, by (*) and compactness, and therefore is

equal to some point y. It must be in ∂(A0 ∩ · · · ∩ f−k(Ak)) for large k, so that the
virtual orbit starting from y± must go through C(f). It must be periodic like the
sequence A.

Therefore we can take as the exceptional set X , the set of the itineraries of
periodic virtual orbits. It is indeed finite (since C(f) is finite). The lemma is
proved.

Let us state some facts about the orbit of an interval. Obviously, if I is a non-
trivial interval then fk(I) is the union of a finite number of non-trivial intervals
—remember that the critical points have no image under f . We will need the
following result:

2.6 Proposition (F. Hofbauer [9, corollary, p. 382]). Let f be a topologically tran-
sitive p.m.m.

Then for any non-trivial interval J ,⋃
k≥0

fk(J) =

K⋃
k=0

fk(J) = [0, 1] \ Y

for some K <∞, Y ⊂ [0, 1] finite, both depending on J .

For the sake of completeness we include a proof of this result of F. Hofbauer in
Appendix B.

Let us remark that for families satisfying the additional assumption (A4) (in
particular the β-transformations), there is a very simple, direct proof of this fact
(see 3.5).

Call any path α such that π(α) = A a lift of the itinerary A.
It is easy to see that an itinerary A admits a lift α starting from some α0 ∈ M

iff A is the itinerary of an orbit or a virtual orbit starting from the interval α0 (for
a virtual orbit x± this means ]x, x± h[⊂ α0 for small h > 0).

Though an itinerary may obviously have a lot of lifts on M, we have a kind of
“eventual uniqueness” of the lifts of itineraries:

2.7 Lemma (F. Hofbauer [8]). Let B be the set of the itineraries of the post-critical
virtual orbits {fk(c±)}k≥k0 , (c ∈ C(f), k0 ≥ 0).

Given an infinite itinerary A /∈ B and two paths α and β on M projecting both
to A, there exists n <∞ such αk = βk for all k ≥ n.

Proof. This lemma follows from (*) above applied to αk and βk. As f has no

homterval,
⋂
k≥0 f

−k(Ak) is a single point. As A /∈ B, this point must belong to

the open intervals α0 and β0. Hence A0 ∩ f−1(A1) ∩ · · · ∩ f−k(Ak) ⊂ α0 ∩ β0 for k
big enough. But then αk = βk. The lemma is proved.

Let us show that assumption (S2) implies that one can return to a fixed, finite
part of M in a bounded time:
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2.8 Lemma. There exists N1 < ∞ such that, starting from any element of M
there exists a path of length at most N1 going to an element of QN1 =

⋃N1

k=0 Pk.

Proof. First, one can easily prove that every J ∈ M is the homeomorphic image
by some iterate fm of f , of an interval of the form ]a, fk(b)[ with a, b ∈ C(f) (here
we disregard the respective order of a and fk(b)). Therefore |a − fk(b)| ≥ α (the
constant defined by (S2)).

Fix N1 < ∞ such that all N1-homtervals have length strictly less than α.
Therefore there exists m ≤ q < N1 such that ]a, fk(b)[ is in a q-homterval but
not in a q + 1-homterval: f i+1]a, fk(b)[ is the unique successor of f i]a, fk(b)[ for
i = m, . . . , q−1 and f q]a, fk(b)[ has several successors; among them ]f q+1a, c[ with
c ∈ C(f). But then this is f q+1Hq+2(a±) (with the sign according to the side of a
on which sits fk(b)). Hence this successor belongs to Pq+1 with q + 1 ≤ N1. The
lemma is proved.

Recall that the oriented graph M has a natural pre-order: A � B iff A = B
or there exists a path from A to B. Corresponding equivalence classes are called
irreducible parts. An irreducible part is either (i) trivial: a single element with
no loops going through; or (ii) a ⊂-maximal subset of M with the property that
for any two of its elements A,B there exists a path from A to B to A.

Each non-trivial irreducible part has a unique period: the largest integer p such
that, for any two elements A,B, there exists k0 ∈ {0, . . . , p − 1} such that the
lengths of the paths from A to B are of the form k0 + mp with m an integer. The
previous lemma and the topological mixing imply the following properties of the
Markov diagram.

2.9 Lemma. M contains M′ such that:

1. M′ is a non-trivial irreducible part of M.
2. M′ is closed, i.e., all the successors of any element of M′ are again elements

of M′.
3. M′ has period 1.
4.
⋃M′ is dense in [0, 1].

Proof. We use Lemma 2.8 to show that there exists a closed, irreducible part. It
is convenient to remark that an irreducible part is closed iff it is �-maximal. Now,
consider the set of irreducible parts which meet QN1. This set is finite. Hence it
admits a �-maximal element, M′.

Let A ∈M be such that M′ � A. By Lemma 2.8, there exists a path from A to
some B ∈ QN1 . Hence M′ � B. But M′ is �-maximal in QN1. Hence, B ∈ M′.
Now M′ � A �M′ implies, by irreducibility, that A ∈M′. M′ is closed.

Let p be the period of M′ and let A ∈ M′
0. Because of topological mixing,

fk(A) ∩ A has more than three points for large k. As fk(A) is the union of non-
trivial intervals, this intersection has non-empty interior. Similarly, for large l,
f l(A)∩fk(A)∩A has non-empty interior, so it contains points not in C−(f)∪C+(f)
(which is countable). Consider x, y ∈ A such that fk(x) = f l(y) ∈ A. x, y ∈
A \ C−(f) define paths α, β starting from A. ι(fk(x)) /∈ X . Applying Lemma 2.7,
we see that αk+n = βl+n for large n. By the definition of the period, l− k must be
a multiple of p. But l could be chosen freely: p must be equal to 1.

Finally, we remark that for any interval A ∈ M, f(A) is the union of the succes-
sors of A in M and, possibly, of some critical points, which have no image under
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f . Hence,
⋃
k≥0 f

k(
⋃M′) ⊂ ⋃M′ ∪ C(f), as M′ is a closed graph. As f is

topologically mixing this implies that
⋃M′ is dense.

The lemma is proved.

Proof of Sufficiency. It remains to prove Claim 2.4.
Using Proposition 2.6, we see that there exists a finite subset M′′ ⊂ M′ such

that
⋃
I∈M′′ I = [0, 1] \X0 (with X0 finite).

Let x ∈ [0, 1] and n ≥ 0. We shall find a path starting in the finite subset M′′,
the beginning of which will project to the n-itinerary of x and which return to some
fixed element of M′′ in a fixed amount of time.

By moving x within Hn+1(x), we can make sure that it is not in the finite set X0.
Hence there exists a path α0 . . . αn starting from an element of M′′ and projecting
to the n-itinerary of x. As M′ is closed, we shall always remain in M′.

By Lemma 2.8, there exists a path of length at most N1 from αn to some element
of QN1 ∩M′. Let M′′′ ⊂M′ be a finite set containing at least one predecessor of
each element of M′′. As QN1 ∩M′ and M′′′ are finite, the fact that the period
of M′ is 1 implies that there exists N2 < ∞ such that for any I ∈ QN1 ∩M′ and
J ∈M′′′ there exists a path from I to J of any given length greater or equal to N2.

Therefore we can complete the previous path α0 . . . αn into a path α(x, n, γ) of
length n +N1 +N2 ending at a predecessor of any prescribed element γ of M′′.

To make sure that the path we build defines a point, we make the following
remark. As the exceptional set X of Lemma 2.5 is a finite set of periodic itineraries,
we can find a finite itinerary C which does not appear as a subsequence of any
itinerary in X . We chose a path γ(α) of constant length N3, starting from a
fixed element γ0 of M′′, ending at a predecessor of any prescribed element α of
M′′ and such that the beginning of its projection is the finite itinerary C. Given
(x1, n1), . . . , (xr , nr) ∈ [0, 1] × N, we consider the periodic path defined by the
repetition of:

α(x1, n1, γ0)γ(α2)α(x2, n2, γ0)γ(α3) . . . α(xr , nr, γ0)γ(α1)

(here αi is the first symbol of α(xi, ni, γ0)).
Claim 2.4 is proved and with it the sufficiency of (S1)-(S2).

3. Proof of the Main Theorem

Because of the C1-smoothness of the p.m.m. family f , the initial parameter
interval can be written as a countable union of parameter intervals T such that:

(1) {ft}t∈T is uniformly expanding: there exists λ > 1 such that:

|∂xft(x)| ≥ λ (∀x ∈ [0, 1) \ C(ft), t ∈ T ).

From now on, we consider one such interval. As remarked by M. Benedicks and
L. Carleson [1], expansion with respect to x and expansion with respect to t are
related by the following computation:

3.1 Lemma. Let (ft)t∈T be a C1 family of p.m.m.’s. We have:

rn(x, t) :=
∂tf

n
t (x)

∂xfnt (x)
=

n−1∑
k=0

∂tft(f
k
t (x))

∂xf
k+1
t (x)

for all x ∈ [0, 1] and n ≥ 0 such that both sides are defined.
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Proof. We have:

∂tf
n+1
t (x) = ∂tft(y)|y=fnt (x) + ∂xft(y)|y=fnt (x)∂tf

n
t (x),

∂xf
n+1
t (x) = ∂xft(y)|y=fnt (x)∂xf

n
t (x).

Set rn+1 =
∂tft(y)|y=fnt (x)

∂xf
n+1
t (x)

+ rn. Hence:

rn+1 =

n∑
k=0

∂tft(y)|y=fnt (x)

∂xf
n+1
t (x)

.

Let e(t) be the non-degenerate endpoint satisfying condition (A2). The derivative
with respect to t of fnt (e(t)) is:

Dt[f
n
t (e(t))] = e′(t)∂xfnt (e(t)) + ∂tf

n
t (e(t))

Hence σ(t) =
Dt[f

n
t (e(t))]

∂xfnt (e(t)) is equal, by the previous lemma to:

σ(t) = e′(t) +
∑
n≥0

∂tft(f
n
t (e(t)))

∂xf
n+1
t (e(t))

In general, σ(t) has a dense set of discontinuities. But, under the hypothesis of
uniform expansion (1), the series is uniformly converging and therefore: the set
{t ∈ T : σ(t) 6= 0} can be written as the countable union of intervals T ′ on each
one of which:

(2) there exists C <∞ such that:

C−1 ≤
∣∣∣∣Dt[f

n
t (e(t))]

∂xfnt (e(t))

∣∣∣∣ ≤ C (n ≥ 0)

Proof of the density of Tcoll. We remark that (1) and (2) imply that:

|Dt[f
n
t (e(t))]| ≥ C−1λn(3)

This implies immediately that the intervals of continuity of t 7→ fnt (e(t)) have
their lengths bounded by Cλ−n. But the discontinuities of these functions corre-
spond to values of t such that fkt (e(t)) ∈ C(ft) for some 0 ≤ k < n. Hence the set
Tcoll is dense in T as stated.

As usual, expansion implies a control on distortion:

3.2 Distortion Lemma. Let (ft)t∈T be a C1+θ family of p.m.m.’s (0 < θ < 1),
uniformly expanding and non-degenerate, i.e., satisfying conditions (1) and (2)
above.

There exists a uniform bound K < ∞ on the distortion of every Fn : t 7→
fnt (e(t)), for every n ≥ 0, on each interval U ⊂ T on which Fn is continuous:

sup
t1,t2∈U

∣∣∣∣F ′n(t1)

F ′n(t2)

∣∣∣∣ < K

This result is of course trivial in the case of a family of piecewise affine maps like
the β-transformations.
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Proof. First we strengthen (2): there exists constants k0 < ∞, C′ > 0, such that,
for all k0 ≤ k ≤ n,

|Dx(Fn ◦ F−1
k )(x)| ≥ C ′λn−k (x ∈ Fk(U)).(**)

Indeed, Fn ◦ F−1
k (x) = fn−kt (x) where t = F−1

k (x). Taking the derivative:

Dx(Fn ◦ F−1
k )(x) = ∂xf

n−k
t (x) + (F−1

k )′(x)∂tf
n−k
t (x)

= ∂xf
n−k
t (x)

[
1 + (F−1

k )′(x)rn−k(x, t)
]
.

But |F ′k| ≥ Cλk and, because of Lemma 3.1, the functions {rn(x, t)}n≥0 are uni-
formly bounded by a constant M which may be taken to be: sup |∂tft|

∑
m≥1 λ

−m.
Thus,

|Dx(Fn ◦ F−1
k )(x)| ≥ C(1 − Cλ−k ·M) · λn−k.

We get (**) for k ≥ k0 := [logCM/ logλ] + 2 and C ′ = (1− λ−1)C.
As ]Fk(t1), Fk(t2)[ is mapped by Fn ◦F−1

k to ]Fn(t1), Fn(t2)[⊂]0, 1[, (**) implies:

|Fk(t1)− Fk(t2)| ≤ C ′−1
λ−(n−k).

But, because of (2), with C±1 standing for numbers in [C−1, C1],

|F ′n(ti)| = C±1|∂xfnti(eti)| = C±1
n−1∏
k=0

|∂xfti(Fk(e(ti)))|.

As ∂xft is Hölder with exponent θ > 0 and is bounded away from zero (by λ),
log |∂xft| is also Hölder with the same exponent. This is true with respect to x as
well as with respect to t. Hence there exists C′′ <∞ such that:

log

∣∣∣∣F ′n(t1)

F ′n(t2)

∣∣∣∣ ≤ 2 logC +

n−1∑
k=0

∣∣∣∣log |∂xft1(Fk(t1))| − log |∂xft1(Fk(t2))|
∣∣∣∣

+

∣∣∣∣log |∂xft1(Fk(t2))| − log |∂xft2(Fk(t2))|
∣∣∣∣

≤ 2 logC +

(
n−1∑
k=0

C′′|Fk(t1)− Fk(t2)|θ
)

+ nC′′|t1 − t2|θ

≤ 2 logC + C′′k0 + C′′
(

n−1∑
k=k0

C′−θλ−(n−k)θ
)

+ nC′′C′−1
λ−nθ.

From this we deduce the existence of the constant K <∞ as stated.

3.3 Definition. t ∈ T is n-admissible (n ≥ 1) if, for all 0 ≤ k ≤ n,

[Fk(t), Fk(t)± α[∩C(ft) = ∅.
The sign ± being plus if the wrong side is on the right, minus otherwise.

An interval U ⊂ T is n-admissible (n ≥ 1) if the mappings Fk : t 7→ fkt (e(t)),
0 ≤ k ≤ n, are continuous on U and if every t ∈ U is n-admissible.

We prove the theorem. Let e = e(t) be a critical endpoint. Remark that whether
the wrong side of fnt (e(t)) is at the left or at the right is determined by the n-
itinerary of e and is therefore constant on each continuity interval of Fn.
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Criterium (S2) of Proposition 2.1 implies that ft may have the specification
property only if t is n-admissible for all n ≥ 0 and some α > 0. Hence it is enough
to prove that, for every small α > 0, the set of n-admissible t, which is a finite union
of n-admissible intervals, has Lebesgue measure zero. But this follows immediately
from the:

3.4 Claim. There exists κ < 1 such that, for all n ≥ 0, if U is an n-admissible
interval then there exists m > n such that the union U ′ of m-admissible intervals
meeting U and hence, included in U , is of Lebesgue measure at most |U ′| ≤ κ · |U |.

The theorem will follow. Let us prove the claim. Let U ⊂ T be a non-trivial,
n-admissible interval. Let κ = 1− α/K.

If U is (n + p)-admissible then, according to (3),

|Fn+p(U)| ≥ C−1λn+p|U |.
But |Fn+p(U)| ≤ 1, hence there exists p < ∞ maximal with the property that U
is (n + p)-admissible. Thus Fn+p is continuous on U whereas some t ∈ T are not
(n + p + 1)-admissible: for some discontinuity d(t), Fn+p(t) ∈ [d(t), d(t) ± α[ (sign
± according to wrong side).

For the sake of clarity, we restrict ourselves to the case where there is only one
such discontinuity, the general case being similar. By considering Fn+p(t) − d(t)
instead of Fn+p(t), we may assume that d(t) = d, a constant: as |F ′n+p(t)| ≥ Cλn+p

whereas d′(t) stays bounded, this will practically not change the relevant properties
of expansion and distortion.

The t ∈ U which are not (n+ p+ 1)-admissible are therefore the ones for which

fn+p
t (e) ∈ [d, d+α[ (if the wrong side is, for instance, to the left of fnt (e(t)) on U).

If

|[d, d+ α[∩Fn+p(U)| < α|Fn+p(U)| ≤ α,(*)

then [d, d + α[ meets ∂Fn+p(U) so that U contains only one maximal (n + p +
1)-admissible interval and this interval V satisfies, according to the distortion
Lemma 3.2:

|V | ≥
(

1−K
|Fn+p(U) ∩ [d, d+ α[|

|Fn+p(U)|
)
|U | ≥ (1−Kα)|U |;

hence |Fn+p(V )| ≥ Cλn+p(1 − Kα)|U |. As λp(1 − Kα) ≥ λ1/2 > 1 (α > 0
being small and p ≥ 1), it follows that, after r meetings of this kind, the maximal
admissible interval is Vr and, with obvious notations,

|Fn+p1+···+pr (Vr)| ≥ Cλn+p1+···+pr (1−Kα)r|U | ≥ Cλn+ r
2 |U |

and therefore (*) cannot happen an infinite number of times: there exists m > n,
such that U contains a unique maximal (m − 1)-admissible subinterval W and W
is not m-admissible and, with notations as above, |[d, d+α[∩Fm(W )| ≥ α|Fm(W )|.
Hence, according to the distortion lemma, the part of W mapped into [d, d + α[
—which is not m-admissible— is a proportion of W at least equal to K−1α and we
have, writing U ′ for the set of m-admissible parameters in U :

|U ′| ≤ |W | − |(Fm|W )−1(]d, d+ α[)| ≤ (1−K−1α)|W | ≤ (1−K−1α)|U |.
The claim, and hence the theorem, is proved.
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Proof of the corollary of the Main Theorem.

3.5 Lemma. (A3)+(A4) imply topological mixing.

If an interval does not contain a discontinuity in its interior, ft multiplies its
length by λ > 1. It follows that if I is a non-trivial interval, then there exists

n(I) < ∞ such that f
n(I)
t (I) contains a discontinuity c in its interior and, as

ft(c+) = 0, f
n(I)+1
t (I) contains an interval of the form ]0, ε[ for ε > 0 small enough.

But fkt (]0, ε[) =]0, 1[ as soon as k > | log ε|
log λ . The lemma is proved.

Let t ∈ Tcoll: f
n
t (c±) = d for some c, d ∈ C(ft), n ≥ 1. We now use the equations

in (A4). First, the sign ± is necessarily the minus sign. Second, ft is piecewise
increasing. Hence, fnt (c−) = d−. Now fn(d−) = fn−1(1−) = fn(c−) = d−: the
virtual orbit defined by d− is periodic. Therefore:

C+(f) = {0, d1, . . . , dN−1, 1−, ft(1−), . . . , fn−2
t (1−)}.

In particular, it is finite. This implies that (S2) is satisfied.
Hence the criterium 2.1 implies that ft has the specification property for all

t ∈ Tcoll. We have seen (Main Theorem) that Tcoll is dense. The corollary is
proved.

4. Application to families like (Tβ)β>1

First let us remark that everything we are going to do for the β-transformations
is true for expanding maps modulo 1 (see the introduction). Let us remark also
that the β-transformations define a C∞ family of p.m.m.’s. Conditions (A1), (A3)
and (A4) are obviously satisfied. We have to check condition (A2). We will use the
following notion, which obviously includes the β-transformations as a special case:

4.1 Definition. A family of p.m.m.’s is said to be monotonic if, for i = 1, . . . , N .

1. x 7→ fi(t, x) is strictly increasing, for fixed t ∈ T .
2. t 7→ fi(t, x) is non-decreasing, for fixed x ∈ [0, 1].

We assume, in addition that there exists an endpoint e(t) = di(t)±, an integer K
such that the map t 7→ fKt (e(t)) is piecewise strictly increasing.

Let us check that a monotonic p.m.m. family satisfies the non-degeneracy con-

dition (A2). The partial sums in (A2) are: σn(t) = e′(t) +
∑n−1

k=0
∂tft(f

k
t (e(t)))

∂xf
k+1
t (e(t))

. By

Lemma 3.1, σn(t) =
Dt[f

n
t (e(t))]

∂xfnt (e(t)) . Hence, introducing h(t) = fK(e(t)) and using

again Lemma 3.1:

σn+K(t) =
Dt[f

n
t (h(t))]

∂xfnt (h(t))
· 1

∂xfKt (e(t))

=

(
h(t)′ +

n−1∑
k=0

∂tft(f
k
t (h(t)))

∂xf
k+1
t (h(t))

)
· 1

∂xfKt (e(t))
.

But ∂xf
K
t (e(t)) and h′(t) are positive and independent of n. The first factor is

bounded from below by h′(t) > 0. Hence σn(t) cannot converge to zero: condition
(A2) is satisfied.

The Main Theorem therefore applies to β-transformations with e(t) = β−1−,
K = 2: we have the stated counterexample.
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4.2 Remark. Because of the first condition of monotonicity fnt (Hn+1(e)) is on the
same side of fnt (e) for all n ≥ 0. The right endpoints c+ (c ∈ C(f)) are mapped to
the fixed point 0: they all satisfy condition (S2). The left endpoints c− are mapped
to 1 and fnt (c−) is always the right endpoint of fnt Hn+1(e). Hence, if the left
endpoint of the interval fnt Hn+1(e) is a critical point (fnt Hn+1(e) =]di+, f

n
t (e)[),

then its image is ft(f
n
t Hn+1(e)) =]0, fn+1

t (e)[.
Therefore condition (S2) is equivalent to:

inf{fnt (1−) > 0 : n ≥ 0} > 0

Appendix A. A proof of Blokh’s theorem

We give an independent proof of Theorem 1.1 of A.M. Blokh [3]. We remark
that A.M. Blokh has recently published a proof, as a chapter of his monograph [4].
Let f : [0, 1] → [0, 1] be a continuous, topologically mixing map. We do not assume
that it is piecewise monotonic. We remark that in that particular case one can give
a proof based on Hofbauer’s Markov diagram in the spirit of [10]. It uses the fact
that, if an interval is split by a critical point into two sub-intervals such that one
is very small, one can avoid the small interval by using the map which associates
to each point in the neighborhood of an extremum the other which has the same
image. But this proof is both more involved and less general than the one we give
here. The obvious but fundamental fact about f is that the image of an interval is
an interval (the so called “Darboux property”). We shall use it constantly without
reference. The following lemma deals with the fact that it is not always true that
for any non-trivial interval I, fN(I) = [0, 1] for N big enough:

A.1 Lemma. Let f : [0, 1] → [0, 1] be an arbitrary continuous, topologically mixing
map.

For every α, ε > 0, there exists N(α, ε) < ∞ and δ(ε) > 0 such that, for all
x, y ∈ [0, 1], all n ≥ 0, there exists z(y, ε) ∈ Bn(y, ε) –so that the Bowen ball at z is
nearly the same as the Bowen ball at y– such that:

fNB(x, α) ⊃ B(z, δ) ∩ [0, 1].

Proof (of the lemma). Topological mixing and compactness imply that, for every
α, δ > 0 there exists N1(α, δ) <∞ such that:

fnB(x, α) ⊃ [δ, 1− δ] (for all x ∈ [0, 1], n ≥ N1).

If there exists a ∈]0, 1[ such that f i(a) = 0 (i ≥ 0, in fact one can assume i = 1, 2),
we say that 0 is accessible with interior pre-image a; likewise for 1.

If 0 and 1 are accessible with respective interior pre-images a and b, then the
preceding property implies that fnB(x, α) = [0, 1] for n ≥ N1

(
α, d({a, b}, {0, 1}))+

2. Hence just take N = N1 + 2, z(y, ε) = y, δ(ε) = 1.
Assume, for instance, that 1 is accessible but not 0 (the other cases are similar).

As the topological mixing implies that f([0, 1]) = [0, 1], necessarily f−1(0) = {0}: 0
is a fixed point. We have the following fact (which we state in a form also suitable
for the p.m.m. case):

A.2 Lemma. Let f : [0, 1]\D→ [0, 1] be continuous, topologically mixing. Assume
that D ⊂]0, 1[ is finite and that f has a left and a right limit at each point of D.
Then:

If the following hold:
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(i) for h > 0 small enough, f |]x0, x0 + h[ is continuous;
(ii) f(x0+) = x0+;
(iii) f(y±) 6= x0+ for all y± 6= x0+.

Then fixed points accumulate on x0+ (i.e., they accumulate to the right of x0).

Proof. If ]x0, x0 + h[ did not contain any fixed point, t 7→ f(t)− t would have fixed
sign so that one of the following statements would hold:

1. every point of this interval would converge to x0 (if f(t) < t);
2. fk(]x0 + u, f(x0 + u)[)∩]x0 + u, f(x0 + u)[= ∅ for k ≥ 1 (u > 0 fixed, small

enough) (if f(t) > t);

(for the last statement remark that f([0, x0[∪]x0 +u, 1])∩]x0, x0 +u[= ∅ by the last
assumption of the lemma).

Both statements contradict topological mixing. Hence ]x0, x0 + h[ contains at
least one fixed point. But we can reduce h > 0 at will. The lemma is proved.

This lemma (with x0 = 0+) implies that we may choose a fixed point p distinct
from 0 but close to it. We choose it so close that f i([0, p]) ⊂ [0, ε/3[ for i = 0, 1, 2.

Let δ = p/2 and δ′ = min(p/2, d(a, {0, 1})) (with a an interior pre-image of 1).
Notice that δ depends only on ε. Let N = N1(α, δ

′)+2, so that fNB(x, α) ⊃ [p/2, 1]
for every x ∈ [0, 1]. Let y ∈ [0, 1]. We now have to find z = z(y, ε) ∈ Bn(y, ε)∩[p, 1].

Let m = min{k ≥ 0 : fk(y) ∈ [p, 1]}. If m = ∞ then take z = p. If m = 0, take
z = y. Assume 0 < m <∞. Remark that fk(y) ∈ [0, ε/3[ for k = 0, . . . ,m− 1 and
also k = m.

Topological mixing implies that, for every 0 < β < ε/3, there exists K(β) <
∞ such that fK(]p, p + β[) 3 fm(y). Assume that K is minimal, so that
fk(]p, p + β[) ⊂ [0, ε/3] for k = 0, . . . , K − 1. By choosing β small enough, we
may ensure K ≥ m. Fix z ∈ fK−m(]p, p+ β[) a pre-image by fm of fm(y). We see
that z = z(y, ε) ∈ Bn(y, ε).

Write B′
n(x, ε) for the connected component of Bn(x, ε) containing x.

A.3 Lemma. For every 0 < ε < 1/2, δ > 0 there exists N2(ε, δ) <∞ such that:

B′
n(x, ε) ⊂ B(x, δ) (for all x ∈ [0, 1], n ≥ N2).

Proof. If this lemma was not true, one could find, by compactness, an x ∈ [0, 1],
an ε > 0 such that B =

⋂
n≥1 B

′
n(x, ε) would be a non-trivial interval. But

diam(fn(B)) ≤ 2ε < 1 for all n ≥ 0, contradicting topological mixing. The lemma
is proved.

Remark that this statement with Bn(x, ε) instead of B′
n(x, ε) is clearly false.

A.4 Lemma. Let f : [0, 1] → [0, 1] be an arbitrary continuous, topologically mixing
map. If, for every ε > 0:

α(ε) = inf
x∈[0,1]
n≥0

diam(fnB′
n(x, ε)) > 0(1)

then f has the specification property.

Proof. Fix ε > 0. Lemma A.1 defines δ(ε/2) > 0. Let α = α(ε/2) > 0. Fix
N = N1(α, ε/2) according to Lemma A.1 and N2(ε/2, δ) according to Lemma A.3.

Now, let (y1, d1), . . . , (yr, dr) ∈ [0, 1]× N. We build the periodic point required
by the definition of the specification property.
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Let zi(yi, ε/2) ∈ Bdi+N2(yi, ε/2) be defined as in Lemma A.1. Let:

J(i) = B′
di+N2

(zi, ε/2) ⊂ Bdi+N2(yi, ε).

fdi+N2B′
di+N2

(zi, ε/2) is an interval with diameter at least α. By the definition of

N2, J(j) ⊂ B(zj , δ). Hence, fdi+N2+N (J(i)) ⊃ J(j), in particular for j = i + 1
(j = 1 if i = r).

Let us remark that, if [a, b] ⊂ f([c, d]) then [a, b] = f([c′, d′]) for some subinterval
[c′, d′] ⊂ [c, d]. Thus, by an easy recurrence, we build an intervalK such that, letting
D = N2 +N , fd1+···+ds−1+(s−1)D(K) ⊂ J(s) for 1 ≤ s ≤ r and fd1+···+dr+rD(K) ⊃
K. Hence there exists a periodic point z ∈ K as requested. The specification
property is proved.

Proof of Blokh’s theorem. We only have to check the hypothesis of the previous
lemma.

First remark: for each ε > 0, we have, using compactness and topological mixing,
a “no-contraction principle”:

β(ε) = inf
I, n≥0

diam(fn(I)) > 0.

(I ranging over the intervals with diameter at least ε).
Second remark: if fn+1B′

n+1(x, ε) 6= f(fnB′
n(x, ε)) it is becauseB′

n(x, ε) contains

points separated by fn+1 from fn+1(x) by a distance greater than ε. Hence the
interval fn+1B′

n+1(x, ε) has diameter at least ε.
An immediate recurrence using both remarks shows that diam(fnB′

n(x, ε)) do
not get smaller than β(ε) > 0. Hence, by the previous lemma, the specification
property holds. Blokh’s theorem is proved.

Appendix B. Proof of Proposition 2.6

f : [0, 1] \ C(f) → [0, 1] is a topologically transitive p.m.m. In particular f
has no homtervals. Let I be a non-trivial interval. Set S =

⋃
k≥0 f

k(I) and

Sn =
⋃n
k=0 f

k(I). We have to prove that S is a finite union of intervals and that
S = Sn for finite n. It will imply that S = [0, 1] \ Y with Y a finite set of points.

B.1 Lemma (F. Hofbauer [8]). Let f : [0, 1] \ C(f) → [0, 1] be a p.m.m. without
homtervals. Then S is a finite union of intervals.

Proof. For each endpoint c± of P , let K(c±, n) be the connected component of
Sn \C(f) containing ]c, c± h[ (h > 0 small enough) or the empty set, if there is no
such component. If [c, c ± h[⊂ Sn (h > 0 small enough) then add c to K(c±, n).
Finally let K(c±) =

⋃
n≥0 K(c±, n).

Let J be a non-trivial interval or the empty set. Define n(J) = 0 if J = ∅,
otherwise let n(J) be the smallest integer k ≥ 0 such that fk(J) meets C(f). By
assumption n(J) is always finite.

Let A be the following union:

n(I)−1⋃
k=0

fk(I) ∪
⋃
e

n(K(e))−1⋃
k=0

fk(K(e)).(*)

(e ranges over the endpoints of P .)
Clearly I ⊂ A ⊂ S and f(A) ⊂ S. To prove that S = A (a finite union of

intervals) it is enough to see that f(A) ⊂ A.
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Consider fk(K(e)). If k < n(K(e))− 1 then fk+1(K(e)) ⊂ A by definition (*).
Assume k = n(K(e))− 1. Then fk+1(K(e)) meets C(f). As fk+1(K(e)) ⊂ f(A) ⊂
S, fk+1(K(e)) ⊂ ⋃c±K(c±) with c± ranging over the endpoints of P such that

c± ∈ fk+1(K(e)) (i.e., ]c, c± h[⊂ fk+1(K(e))). Hence fk+1(K(e)) ⊂ A. The case
of the fk(I) is similar. We have proved that f(A) ⊂ A. Thus S = A.

We assume that the union (*) above is a disjoint union (if not, consider:

A′ =

n(I)−1⋃
k=0

fk(I)× {(I, k)} ∪
⋃
e

n(K(e))−1⋃
k=0

fk(K(e))× {(K(e), k)}

and define f : A′ → A′ in the obvious way).
We say that x± is an endpoint of S (and write x± ∈ S) if x ∈ ∂S and ]x, x±h[⊂ S

(for small h > 0).

Claim. Every endpoint of S is an endpoint of Sn for some n <∞.

Using the disjointness assumption, it is clear that the claim implies that S = Sn
for large n. Let us prove the claim.

Let X be the set of endpoints of S which are not endpoints of Sn, however large
is n. X is a finite set. Let x± ∈ X . Points close to x± are the image by f of
points of S. Hence, there exists an endpoint y∓ such that f(y∓) = x±. If y∓ was
a critical point, it would be an endpoint of some Sn. If y∓ was an endpoint of Sn,
x± would be an endpoint of Sn+1 so that y∓ must be in X . From this we deduce
that X is a finite union of (possibly virtual) periodic orbits. By replacing f with
an iterate f q we may assume that the inacessible endpoints x ∈ X are fixed by f .

Let x± ∈ X . f is piecewise monotonic: we can apply Lemma A.2 to each x±.
Hence, fixed points accumulate on x±. But if p is a fixed point close enough to
x± then f is monotonic on [x±, p]. Hence this interval is invariant. It must be a
homterval. As f has no homtervals, X must be empty. The proposition is proved.
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73–169. MR 92d:58116
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