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SPECIFICATION PROPERTY AND DISTRIBUTIONAL CHAOS
ALMOST EVERYWHERE

PIOTR OPROCHA AND MARTA ŠTEFÁNKOVÁ

(Communicated by Jane M. Hawkins)

Abstract. Our main result shows that a continuous map f acting on a com-
pact metric space (X, ρ) with a weaker form of specification property and with
a pair of distal points is distributionally chaotic in a very strong sense. Strictly
speaking, there is a distributionally scrambled set S dense in X which is the
union of disjoint sets homeomorphic to Cantor sets so that, for any two distinct
points u, v ∈ S, the upper distribution function is identically 1 and the lower
distribution function is zero at some ε > 0. As a consequence, we describe a
class of maps with a scrambled set of full Lebesgue measure in the case when X
is the k-dimensional cube Ik. If X = I, then we can even construct scrambled
sets whose complements have zero Hausdorff dimension.

1. Introduction

In 1981 Gy. Targonski formulated a question during the International Symposium
in France as to whether there exists a continuous map f of the interval I, chaotic
in the sense of Li and Yorke, whose scrambled set has positive Lebesgue measure
(denoted by L(·)). In other words, is there an f ∈ C(I) and a set S ⊂ I with
L(S) > 0 such that, for any distinct u, v in S, lim infn→∞ |fn(u) − fn(v)| = 0 and
lim supn→∞ |fn(u) − fn(v)| > 0? In 1983 Smı́tal [18] proved that the tent map
given by f(x) = 1 − |2x − 1|, 0 ≤ x ≤ 1, has scrambled set of full outer Lebesgue
measure but no scrambled set of positive measure; the notion of scrambled set was
used for the first time in this paper. In 1984 Kan [11] and Smı́tal [19] proved
that a scrambled set can have positive measure. Misiurewicz in 1985 gave an
example of chaos (in the sense of Li and Yorke) almost everywhere [14]. A slightly
stronger result, but with an easier proof, was given by Bruckner and Hu [7] in
1987; chaos in this paper is extremal, that is, lim supn→∞ |fn(u) − fn(v)| = 1
for any u �= v in the scrambled set. This construction was further improved and
simplified in 2000 by Babilonová [1]. All these results concern chaos in the sense
of Li and Yorke. One of the most important extensions of the concept of chaos in
the sense of Li and Yorke is distributional chaos as introduced in [16]. In 2003, a
general method for the construction of interval maps distributionally chaotic almost
everywhere (see the definition in the next section) was obtained [2]. Let us also
note that a particular example of an interval map distributionally chaotic almost
everywhere was rediscovered in 2007 [13]. There are also recent papers concerning
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the topological size of Li-Yorke scrambled sets for continuous maps of a compact
metric space; see, e.g., [10] or [4]. But there are no results concerning topological
size of distributionally scrambled sets.

In the present paper we essentially improve the above quoted results in two
directions. First, we show that similar results concerning distributional chaos can be
proved for continuous maps of the k-dimensional unit cube Ik. For one-dimensional
maps we show, among others, that distributional chaos can exist everywhere except
for a set of zero Hausdorff dimension. Our main tool is Theorem 2, which gives a
sufficient condition for a continuous map of a compact metric space (X, ρ) to have
a distributionally scrambled set which is a c-dense Fσ subset of X.

2. Terminology

Let (X, ρ) be a compact metric space. Let us denote by C(X) the set of contin-
uous self-maps acting on X. Let f ∈ C(X). By ωf (x) we denote the omega-limit
set of a point x ∈ X, that is, the set of limit points of the orbit of x under the
action of f . Point x is said to be periodic if fn(x) = x for some n ≥ 1. We denote
by Per(f) the set of periodic points of f .

By I we denote the compact unit interval [0, 1]. By the k-dimensional unit cube
we mean the set Ik, where k ≥ 1. The Lebesgue measure on Ik will be denoted by
L. By a perfect set we mean a compact set without isolated points. By a Cantor
set we mean a nonempty, perfect and totally disconnected set.

2.1. Specification properties. The specification property was introduced by Bo-
wen in [6] (see [17] or [8] for further examples of maps with the specification prop-
erty and for their basic properties). We recall the definition below; however, we
will use the terminology (the names of properties) introduced in [3] because with
this terminology it is easier to distinguish between different kinds of specification
properties.

Definition 1. A continuous function f acting on a nondegenerate (i.e., with at
least two elements) compact metric space (X, ρ) has the strong specification property
(briefly SSP) if, for any δ > 0, there is a positive integer Nδ such that for any integer
s ≥ 2, any set {y1, . . . , ys} of s points of X, and any sequence 0 = j1 ≤ k1 < j2 ≤
k2 < · · · < js ≤ ks of 2s integers with jm+1 − km ≥ Nδ for m = 1, . . . , s − 1, there
is a point x in X such that, for each positive integer m ≤ s and all integers i with
jm ≤ i ≤ km, the following two conditions hold:

ρ(f i(x), f i(ym)) < δ,(1)

fn(x) = x, where n = Nδ + ks.(2)

If f fulfills the above-mentioned conditions (1) and (2) only for the special case
s = 2, then we say that f has periodic specification property (briefly PSP). If
additionally periodicity condition (2) is omitted, we say that f fulfills the weak
specification property.

To prove the main results of this paper we need only the weak specification
property. We will reformulate it in the following (equivalent) way.

Definition 2. A continuous map f of a compact metric space (X, ρ) has the weak
specification property, briefly WSP, if for any η > 0 and any n there is a K = K(η, n)
such that for any sequence of integers T0 = 0 < T1 < T2 < · · · < Tn such that
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K < Ti+1 − Ti, whenever 1 ≤ i < n, and any u, v ∈ X, there is a point z ∈ X such
that

(3) ρ(f j(z), f j(u)) < η if T2i ≤ j ≤ T2i+1 − K and 2i + 1 ≤ n,

and

(4) ρ(f j(z), f j(v)) < η if T2i−1 ≤ j ≤ T2i − K whenever 2i ≤ n.

2.2. Distributional chaos. Let f ∈ C(X), where (X, ρ) is a compact metric
space. For any positive integer n, points x, y ∈ X and t ∈ R let

Φ(n)
xy (t) =

1
n

∣∣{i : ρ(f i(x), f i(y)) < t, 0 ≤ i < n
}∣∣ ,

where |A| denotes the cardinality of the set A. Let us denote by Φxy and Φ∗
xy the

following functions:

Φxy(t) = lim inf
n→∞

Φ(n)
xy (t), Φ∗

xy(t) = lim sup
n→∞

Φ(n)
xy (t).

Both functions Φxy and Φ∗
xy are nondecreasing, Φxy(t) = Φ∗

xy(t) = 0 for t < 0
and Φxy(t) = Φ∗

xy(t) = 1 for t > diamX.

Remark 1. Should we later need to emphasise that Φxy(t) (and Φ∗
xy(t)) are based

on the function f , we will explicitly use the notation Φxy(f, t) (and Φ∗
xy(f, t)).

Definition 3. A pair of points (x, y) ∈ X × X is called distributionally chaotic of
type 1 if

Φxy(s) = 0 for some s > 0 and(5)
Φ∗

xy(t) = 1 for all t > 0.(6)

A set containing at least two points is called a distributionally scrambled set of
type 1 (D1 -scrambled, for short) if any pair of its distinct points is distributionally
chaotic of type 1.

A map f is distributionally chaotic of type 1 (DC1, for short) if it has an un-
countable D1 -scrambled set S. We say that distributional chaos of type 1 is uniform
if there exists T > 0 such that Φxy(T ) = 0 for any distinct x, y ∈ S.

Definition 4. We say that a map f ∈ C(X) exhibits extremal distributional chaos
if it exhibits distributional chaos of type 1 with a D1 -scrambled set S such that
Φxy(s) = 0 for any distinct points x, y ∈ S and any s < diamX.

Definition 5. We say that a continuous map from the unit cube Ik into itself
displays (uniform) distributional chaos of type 1 almost everywhere ((uniform) DC1
a.e., for short) if there exists a distributionally scrambled set S ⊂ Ik of type 1 such
that L(S) = 1 (and distributional chaos is uniform, respectively).

3. Specification property and distributional chaos

In this section we will construct D1 -scrambled sets which are homeomorphic to
sets with full Lebesgue measure. An appropriate homeomorphism is obtained by a
direct application of the following theorem by Oxtoby and Ulam (see [15, Thm. 9]).

Theorem 1 (Oxtoby and Ulam). Let B ⊂ Ik and suppose that there exists a
sequence {Sn}∞n=1 of perfect sets Sn ⊂ B such that

⋃
n∈N

Sn is dense in Ik. Then
there exists a homeomorphism h : Ik → Ik such that h|∂Ik = id and L(h(B)) = 1.
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It should be noted that twenty-five years later a much weaker version of this
result, for k = 1, was rediscovered in [9]. The following theorem is the main result
of the paper. It is used as background for further theorems and examples.

Theorem 2. Let f be a continuous map of a compact metric space (X, ρ) with WSP
such that X contains a pair of distal points u, v (i.e. lim infn→∞ ρ(fn(x), fn(y)) >
0). Then f is DC1 and possesses a dense D1-scrambled set S which is an at most
countable sum of pairwise disjoint Cantor sets and such that, for any distinct x, y
in S,

(7) Φ∗
xy ≡ 1 and Φxy(ε) = 0, where ε = lim inf

n→∞
ρ(fn(u), fn(v)).

To prove this theorem we need the following two lemmas. For any α in the set
{u, v}n of all ordered n-tuples of two symbols, let Bα ⊂ X be a nonempty closed
set with diameter less than d(n), with limn→∞ d(n) = 0, such that

(8) Bα ∩ Bβ = ∅ and Bαu ∪ Bαv ⊂ Bα, if α, β ∈ {u, v}n, α �= β,

where αu denotes the (n+1)-tuple α1α2 . . . αnu ∈ {u, v}n+1 (and similarly for αv).
The following result is obvious (note that much stronger results of this kind are
well known [12], e.g. the Alexandroff-Hausdorff theorem).

Lemma 1. The set
⋂∞

n=1

⋃
α∈{u,v}n Bα is homeomorphic to the middle-third Can-

tor set C ⊂ I.

We fix the following notation. Let δ > 0 (it will be specified later), and let
δi = 2−iδ, for any i ≥ 1. Let Ki := K(δi, 4i), for i ≥ 1 (cf. definition of WSP).
Let 0 = T0 < T1 < T2 < · · · be an increasing sequence of integers such that
Ki < Ti − Ti−1, for any i ≥ 1, and

(9) lim
i→∞

Ti+1 − Ki+1

Ti
= ∞.

Finally, if ρ(f j(x), f j(y)) < η for any j with a ≤ j ≤ b − K(η, n), where K(η, n) is
given by WSP, then we say that x η-traces y on the interval J = [a, b]. Thus, e.g.,
(3) means that z η-traces u on any [T2i, T2i+1].

Lemma 2. Let X, f , and u, v be as in Theorem 2. Let ν = {n(i)}∞i=1 be an
increasing sequence of positive integers, and let G ⊂ X be an open ball with center
g and radius δ. Then there is an infinite subsequence µ = {m(i)}∞i=1 of ν and
a Cantor set S ⊂ G such that (7) is valid for any x �= y in S. Moreover, any
x ∈ S δi-traces u on any interval [Tm(i), Tm(i)+1] if i is odd, and δi-traces v on
[Tm(i), Tm(i)+1] otherwise.

Proof. The proof is a little bit technical, so we first describe the idea behind it.
We use WSP to approximate the desired Cantor set in an inductive construction
(similar to the construction of the Cantor ternary set). We define a subsequence
µ = {m(i)}∞i=1 so that the number of iterations needed for a change of a traced
orbit (applying WSP) is very small when compared to |Tm(i)+1 − Tm(i)|. We also
note that the definition of WSP (Definition 2) can be easily reformulated using any
finite sequence of points u1, . . . , uk instead of just a pair of two points u, v.

We now turn to the construction. Since f has WSP, there are members m(1) <
m(2) in ν greater than 1 and points xu, xv ∈ G which δ2-trace g on [0, T1], δ2-trace
u on [Tm(1), Tm(1)+1], and δ2-trace v on [Tm(2), Tm(2)+1]. Moreover, these points
can be chosen in such a way that xt δ2-traces t on [Tm(2)+1, Tm(2)+2], for t ∈ {u, v}.
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By continuity, there are disjoint compact balls Bu, Bv ⊂ G such that any point
x ∈ Bt δ3-traces xt on [0, Tm(2)+2], for t = u, v. Without loss of generality we can
assume that the diameter of either Bu or Bv is δj(1) where j(1) ≥ 3.

Again by the WSP there are members m(3), m(4) in ν such that m(3) > m(2)+2,
m(4) > m(3) + 3, and points xuu, xuv interior to Bu, and xvu, xvv interior to Bv

that δj(1)-trace u on [Tm(3), Tm(3)+1], δj(1)-trace v on [Tm(4), Tm(4)+1]. Additionally,
we may assume that

xuu, xuv δj(1)-trace u, and xvu, xvv δj(1)-trace v on [Tm(4)+1, Tm(4)+2],

xuu, xvu δj(1)-trace u, and xuv, xvv δj(1)-trace v on [Tm(4)+2, Tm(4)+3].

To finish the second step, similarly as before we find disjoint compact sets Buu, Buv

in the interior of Bu and Bvu, Bvv in the interior of Bv such that any point x ∈ Bα

δj(1)+1-traces xα on [0, Tm(4)+3], for any α ∈ {u, v}2. Without loss of generality we
can assume that the diameter of any Bα is δj(2), with j(2) > j(1) + 1.

By induction, for any k ∈ N and any α ∈ {u, v}k there is a compact ball Bα,
integers m(1) < m(2) < · · · < m(2k) from ν, and positive integers j(1) < j(2) <
. . . < j(k) such that if x, y are distinct points of Bα, then x δj(k−1)-traces y on
[0, Tm(2k)+k]. The balls Bα satisfy condition (8). Moreover, for any x ∈ Bα,
α = a1a2 · · · ak,

(i) The point x τik-traces u on [Tm(2i−1), Tm(2i−1)+1], and τik-traces v on
[Tm(2i), Tm(2i)+1], where τik = δi+1 + δi+2 + · · · + δk < δi, 1 ≤ i < k.

(ii) For any i, x τik-traces a1 on any interval [Tm(2i)+1, Tm(2i)+2] if 1 ≤ i ≤ k,
τik-traces a2 on any interval [Tm(2i)+2, Tm(2i)+3] with 2 ≤ i ≤ k and, in
general, for any j, 1 ≤ j ≤ k, xα τik-traces aj on any [Tm(2i)+j , Tm(2i)+j+1]
with j ≤ i ≤ k.

To finish the argument put S =
⋂∞

n=1

⋃
α∈{u,v}n Bα. Since diam(Bα) → 0 for

n → ∞, S ⊂ G is a Cantor set, by Lemma 1. Moreover, any s ∈ S can be uniquely
represented as sα =

⋂∞
n=1 Ba1a2···an

, where α = a1a2 · · · an · · · is a sequence in
{u, v}N. Then S is a scrambled set since sα δi-traces aj on [Tm(2i)+j , Tm(2i)+j+1],
for any j < i. This implies (7). �
Proof of Theorem 2. By Lemma 2, it is possible to define a sequence S1, S2, · · · of
disjoint Cantor sets such that S =

⋃∞
n=1 Sn is dense in X and, for any distinct

x, y in S, (7) is satisfied. Let {Gi}∞i=1 denote a countable base of topology of X
consisting of open balls. Apply Lemma 2 to ν = 1, 2, 3, . . . , with g and δ fixed to
be the center and the radius of G1, respectively. We get a Cantor D1 -scrambled
set S1 := S satisfying (7), and a sequence µ := µ1 = m(1, 1) < m(1, 2) < m(1, 3) <
· · · . In the second step, if S1 �= X, let g ∈ X and δ > 0 be the center and
the radius of the first open ball Gk such that Gk ∩ S1 = ∅. Apply Lemma 2
to ν = {m(1, 1), m(1, 3), m(1, 5), · · · } to obtain a set S2 := S and a sequence
µ := µ2 = {m(2, 1), m(2, 2), m(2, 3), · · · } ⊂ µ1. Then, for any a ∈ S1 and b ∈ S2,
a δi-traces b on [Tm(2,2i−1), Tm(2,2i−1)+1], while a δi-traces u and b δi-traces v on
[Tm(2,2i), Tm(2,2i)+1], for any i ≥ 1; whence S1∪S2 is a D1 -scrambled set, since also
either S1 or S2 are D1 -scrambled sets. The result now follows by induction.

Notice that it never happens that S1 ∪ . . .∪Sn = X since a D1 -scrambled set is
also ε-scrambled and such a set is never equal to the whole compactum [4]. �
Corollary 1. Every map f ∈ C(Ik) with a weak specification property is conjugate
to some map g ∈ C(Ik) which exhibits DC1 a.e.
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Proof. The desired map g is obtained by an application of Theorems 2 and 1. �

Remark 2. If there are points u, v ∈ X such that limn→∞ ρ(fn(u), fn(v)) =
diam X, then the D1 -scrambled set in Theorem 2 fulfills Definition 4; i.e. dis-
tributional chaos is extremal.

Remark 3. If f has PSP, then it has WSP and a pair of distal points (e.g., formed
by two distinct periodic points). In particular, the assumptions of Theorem 2 are
fulfilled.

Let us recall the notion of Hausdorff dimension. Let s > 0, and let A be a
subset of a compact metric space (X, ρ). Denote by Bn the system of open balls
in X with diameter less than 1/n, and let Hs,n(A) = infG ΣG∈G|G|s, where the
infimum is taken over all covers G ⊂ Bn of A. Then Hs(A) = limn→∞ Hs,n(A) is a
nonincreasing function of s. The Hausdorff dimension dim(A) of A is the infimum
of s such that Hs(A) < ∞. Obviously, any set A ⊂ Ik with dim(A) = 0 has zero
Lebesgue measure. Let us continue with the following well-known lemma.

Lemma 3. There is a sequence {Fn}∞n=1 of pairwise disjoint Cantor sets in I such
that dim(I \

⋃∞
n=1 Fn) = 0.

Proof. Let Λ := {λn}∞n=1, where λn = 1/nn!. Let F1 = I \
⋃∞

n=1 I1,n, where I1,n

are open intervals dense in I, with pairwise disjoint closures, such that {|I1,n|}∞n=1

is a subsequence of Λ. To get F2, we let I2,n, n ∈ N, be open intervals in I \ F1,
with pairwise disjoint closures, and dense in any I1,n such that {|I2,n|}∞n=1 is a
subsequence of Λ and Σ∞

n=1|I2,n|1/2 < 1. In the next step we obtain open intervals
I3,n, n ∈ N, with disjoint closures and dense in I\(F1∪F2) such that Σ∞

n=1|I3,n|1/3 <
1, etc. Taking S = F1 ∪ F2 ∪ · · · we get H1/n(I \ S) < 1, for any n > 1, whence
dim(I \ S) = 0. �

Corollary 2. Every bitransitive map f ∈ C(I) is conjugate to a map g ∈ C(I)
which exhibits DC1 everywhere, except for a set of zero Hausdorff dimension. In
particular, g is DC1 a.e.

Proof. Map f has SSP (see [5]). Hence the result follows by Theorem 2 and
Lemma 3 via the fact that if A, B ⊂ I are sets dense in I and each of them is
the union of pairwise disjoint Cantor sets, then there is an increasing homeomor-
phism ϕ : I → I such that ϕ(A) ⊆ B. �

Conjecture 1. Corollary 2 cannot be extended to maps in C(Ik), with k > 0.

Corollary 3. For any k > 0 there exists a map f ∈ C(Ik) which displays extremal
DC1 a.e.

Proof. Let us define a piecewise linear map g from the unit interval into itself with
graph as presented on Figure 1 (i.e. g(0) = 0, g( 1

3 ) = 1, g( 2
3 ) = 0, g(1) = 1). Points

0, 1 are fixed points of g. It is also easy to verify that g is bitransitive; thus it has
SSP .

Given a positive integer k we define a map g̃ ∈ C(Ik) by the formula

g̃(x1, . . . , xn) = (g(x1), . . . , g(xn)).

Map g̃ exhibits the strong specification property (it is a product of maps with SSP
[8]) and has two stationary points, p0 = (0, . . . , 0), p1 = (1, . . . , 1). If d denotes the
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Figure 1. An interval map with extremal DC1

Euclidean metric in Ik, then d(p0, p1) = diam Ik. Let f ∈ C(Ik) be a map obtained
from g̃ by the application of the homeomorphism h ∈ C(Ik) given by Theorem 1 (i.e.
f = h ◦ g̃ ◦h−1). Points p0, p1 are also fixed points of f because h is the identity on
the boundary of Ik. Points p0, p1 were used in the construction of the D1 -scrambled
set S for g̃ by the technique described in Theorem 2, and by conjugacy arguments,
similar properties are shared by h(S) and f . In particular, f exhibits extremal
distributional chaos with a D1 -scrambled set h(S) of full Lebesgue measure. �

Given f ∈ C(X) acting on a compact metric space and a point x ∈ X, we define
an asymptotic cell of x by the formula

A(f, x) =
{

y ∈ X : lim
n→∞

ρ(fn(x), fn(y)) = 0
}

.

Theorem 3. Let us consider a map f ∈ C(X0) acting on a compact arcwise-
connected metric space (X0, ρ0), with a weak specification property. Additionally,
let us assume that gi ∈ C(Xi) are maps acting on compact metric spaces (Xi, ρi)
such that for any i = 1, . . . , n there exists a point zi ∈ Xi such that A(gi, zi) is
dense in Xi. In that case the product map

F = f × g1 × . . . × gn : X0 × . . . × Xn −→ X0 × . . . × Xn

has dense D1-scrambled set S =
⋃∞

i=1 Si where each Si is a Cantor set.

Lemma 4. If we additionally assume that X is arcwise-connected, then the set S
from Theorem 2 may be decomposed into a countable sum of pairwise disjoint sets
Pi such that each Pi is dense and is obtained as a countable sum of pairwise disjoint
Cantor sets.

Proof. We perform a construction almost identical to that in the proof of Theo-
rem 2. We start with some countable base {B̃i}∞i=1 of X and rearrange it to obtain
a base {Bi}∞i=1 of the form

{Bi}∞i=1 = B̃1, B̃2, B̃2, B̃3, B̃3, B̃3, B̃4, . . . .

We repeat the construction performed in the proof of Theorem 2, with the only
addition that the open ball Bk chosen in step n has not only the property that

Bk ∩ (S1 ∪ . . . ∪ Sn) = ∅
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but additionally Bk ⊂ Bn. That this is possible follows directly from the definition
of an arcwise-connected space: There always exists an arc α : I → X such that
α(I) ⊂ Bn. But then, α(I) \ (S1 ∪ . . . ∪ Sn) �= ∅, as otherwise I would not be
connected. This implies that Bn\(S1∪ . . .∪Sn) �= ∅; in particular, this complement
contains some Bk as a subset.

By construction, each Bn contains some Cantor set constructed inside of it in
the step n. We may rewrite the base {Bk}∞k=1 in the form {Bk}∞k=1 = {Ci,j}1≤i≤j ,
where Ci,j = B̃j . In the same way we may change indices of {Sk}∞k=1 to the form
Si,j and then Si,j ⊂ Ci,j .

Given an integer i we define

Pi =
∞⋃

j=1

Si,j .

Observe that Pi ∩Pk = ∅ for i �= k. Furthermore, each Pi is dense in X by the fact
that for any fixed i we have the equality

{Ci,j}∞j=i = B̃i, B̃i+1, B̃i+2, B̃i+3, . . . ;

in particular {Ci,j}∞j=i is a base of the topology of X. �

Proof of Theorem 3. Let us denote by d the product metric

d((x1, . . . , xn), (y1, . . . , yn)) = max
i=1,...,n

ρi(xi, yi).

Let xi, yi ∈ A(gi, zi). In that case, it is easy to verify that for any x0, y0 ∈ X0,
t > 0 and large n it follows that

Φ(n)
(x0,...,xn),(y0,...,yn)(F, t) ≤ Φ(n)

x0y0
(f, t) ≤ Φ(n)

(x0,...,xn),(y0,...,yn)(F, 2t).

In particular, when (x0, y0) is a DC1 pair, then so is the pair ((x0, . . . , xn),
(y0, . . . , yn)).

There exists an at most countable and dense (in X1 × . . . × Xn) set

C = {c1, c2, . . . } ⊂
n∏

i=1

A(gi, zi).

Let Pi be sets obtained by the application of Lemma 4 to the dynamical system
(f, X0). The following set is the desired D1 -scrambled set:

S =
∞⋃

i=1

Pi × {ci} . �

The above theorem obviously implies that there exists a nontransitive map on
Ik which displays uniform DC1 a.e. for k > 1. The following example shows that
there is such a map for k = 1, too.

Example 4. Let us consider a map f : [0, 1] → [0, 1] from Figure 2. The map
f |[0,0.5] has SSP, so we may apply Lemma 4. In particular, there exist two dense
(in [0, 0.5]) and disjoint sets S1, S2 ⊂ (0, 0.5) such that S1 ∪ S2 is a D1 -scrambled
set for f . Observe that f(1 − x) = f(x) for any x ∈ [0, 0.5]. This immediately
implies that the set

S = S1 ∪ {1 − x : x ∈ S2}
is a dense (in [0, 1]) D1 -scrambled set for f . Applying Theorem 1, we obtain a
nontransitive interval map which exhibits distributional chaos almost everywhere.
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Figure 2. A map without WSP which has a dense D1 -scrambled set
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