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Substantial experience with the use of formal specification languages in the design of distributed 

systems has shown that finding appropriate structures for formal specifications presents a serious, 

and often underestimated problem. Its solutions are of great importance for ensuring the quality 

of the various designs that need to be developed at different levels of abstraction along the design 

trajectory of a system. This paper introduces four specification styles that allow us to structure 

formal specifications in different ways: the monolithic, the constraint-oriented, the state-oriented, 

and the resource-oriented style. These styles have been selected on the basis of their suitability 

to express design concerns by structuring specifications and their suitability to pursue qualitative 

design principles such as generality, orthogonality, and open-endedness. By giving a running 

example, a query-answer service, in the IS0 specification language LOTOS, these styles are 

discussed in detail. The support of verification and correctness preserving transformation by these 

styles is shown by verifying designs, expressed in different styles, with respect to each other. This 

verification is based on equational laws for (weak) bisimulation equivalence. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1. Introduction 

1.1. The role of system architecture 

A design trajectory consists of a number of designs of the same system that differ 

in abstraction level, especially with respect to the way in which user requirements 

are reflected and the measure in which design decisions are incorporated. The first, 

most abstract, design of a system along the trajectory, often referred to as the 

“(system) architecture”, should express only the user requirements for the realization 

of the system in the form of a product. This architecture is used as a point of 

reference for the derivation, via a number of intermediate designs, of a concrete 

design, often called “implementation”. The implementation acts as a blueprint for 

the realization. It fulfils not only the user requirements, but in addition also incorpor- 

ates a large number of design decisions. Such design decisions, or “implementation 

decisions”, need to be taken in order to make a product but are irrelevant to the 

user requirements. Obviously, implementation decisions can be taken in many 
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different ways, thus allowing many valid product implementations of the same 

architecture. 

The concept of architecture plays an important role in the design and implementa- 

tion of open distributed systems. The objective of open distributed systems is to 

allow the correct interworking of components of distributed systems, each of which 

may be partly or completely produced by different and independent manufacturers. 

This objective can only be achieved by standardizing precise specifications of the 

rules of interworking. Important examples of such specifications are the IS0 and 

CCITT protocol and service standards for Open Systems Interconnection [14]. An 

important requirement is that the standards are defined in an implementation- 

independent way. Manufacturers should have a maximal freedom to implement 

products according to their own insights, capabilities, and options. Thus, any element 

in a specification that constrains this freedom unnecessarily is in conflict with the 

goal of openness. This implies that such a specification has to be an abstract object 

defining user requirements only, i.e. as a system architecture. 

An architectural specification has to observe at least two important (and often 

confused) abstraction criteria to fulfil its role of an implementation-independent 

definition. 

(1) The architecture should be defined in terms of observable behaviour only, 

like a “black box”. We will refer to this as an extensional definition. In principle, 

one should not define the architecture in terms of a structure that discloses details 

of an internal organization that may be given to implementations. The latter will 

be referred to as an intensional definition. 

(2) The specification should reflect faithfully the architectural concepts at stake 

[35], such as e.g. protocol, service, interface, etc. This implies that the specification 

language adopted must support extensional definition, i.e. it should possess a syntax 

and semantics that enable one to express the aforementioned observable behaviour 

directly and naturally, instead of by clever but opaque encoding tricks. We use the 

term “architectural semantics” to denote the relationship between the primitive 

language constructs and their interpretation in terms of basic architectural concepts zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

[191. 

1.2. Pragmatics of architectural specification 

Having emphasized the great importance of the above abstraction criteria, we 

observe that in practice they are very difficult to meet for the specification of any 

architecture of more than elementary complexity. In practice, such architectures 

need to be structured in order to keep them comprehensible, and to efficiently 

express their functionality. Structuring, however, may easily introduce implementa- 

tion-oriented elements in the architecture. 

The technical complexity of most architectures forces the specifier to structure 

them in terms of simpler functional entities, even if the preservation of extensionality 

is an explicit goal. To achieve well-structured specifications of an architecture one 

needs an adequate set of basic architectural concepts and construction rules that 
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allow one to define it as a composition of those basic concepts (cd. the OS1 Reference 

Model [ 141). Such internal structure usually mixes architectural considerations with 

implementation pragmatism. 

The efficient expression of functionality is dictated by the use of general-purpose 

specification languages: it is impractical, if not unfeasible, to develop and use 

specification languages that contain primitive constructs for each potential architec- 

tural requirement. This implies that one needs an adequate set of generic language 

elements and construction rules, that allow one to faithfully express an architectural 

requirement as a composition of such language elements. This usually means that 

the same requirement can be expressed by many different compositions, and there- 

fore here too the extensionality requirement risks violation. 

From the above it follows that the introduction of structure and thus of intensional 

elements in a specification, is hardly avoidable in practice. Of course, an implemen- 

tor, i.e. the designer of an implementation, could try to ignore such structure. He 

or she could try to derive the extensional behaviour from the given architectural 

specification and use this “extensional detour” as the starting point for developing 

an implementation. However, since the structure in the specification was introduced 

for comprehensibility and reasons of efficiency, this detour is likely to be (very) 

hard and cumbersome, and hence of doubtful practical value. In practice, therefore, 

the implementor will use the architecture with its given specification structure as 

the starting point for implementation. Hence it is likely that this structure will be 

reflected in the structure of the implementation. 

We conclude that, although an architect should refrain in principle from intruding 

in the realm of implementation, he or she carries a considerable responsibility for 

the structure, and thus the quality, of the implementation in practice. The objective 

of this paper is to investigate how an architect can exploit, rather than ignore, this 

responsibility to pursue explicit design objectives with the goal of advancing the 

quality of implementations [25]. 

The approach we propose in this paper is based on the concept of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAspecijcation 

style. We advocate the use of a few well-chosen styles that allow one to structure 

formal specifications and that can be used to pursue qualitative design principles. 

The use of common and mutually related specification styles is also important to 

preserve homogeneity of large specifications which are usually developed by (large) 

teams of specifiers. Such styles would enable the designer to control correctness 

throughout the design trajectory and thus to produce higher quality designs in a 

shorter time. 

Four specification styles are introduced in this paper, viz. the monolithic, the 

contraint-oriented, the state-oriented, and the resource-oriented specification style. 

For each style it is globally indicated which design objectives can be supported. 

The styles can be used to support successive steps of the design trajectory from 

architecture to implementation. This is demonstrated by a verification exercise in 

the context of a simple example. The evaluation of the constraint-oriented style is 

addressed in more detail. This style, suggested in [34], defines an object in terms 
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of a set of constraints, each of which can be chosen so as to correspond closely to 

a natural requirement on the behaviour of the object. It appears to be very effective 

in initial design phases when requirements capturing is the prime objective. 

This paper is further organized as follows. In Section 2 we relate specification 

styles to qualitative design criteria such as orthogonality, generality and open- 

endedness. In Section 3 we introduce a number of specification styles and illustrate 

them by means of examples. In Section 4 we illustrate how specification styles can 

be used to achieve correct designs. In Section 5 we evaluate the relative merits of 

the discussion styles, in particular the constraint-oriented style, and evaluate their 

roles and interworking in the system design trajectory. Section 6 contains our 

conclusions. 

2. Specification style and design principles 

The term style is usually associated with someone’s particular approach to a 

certain field of expertise. This applies also to the development of specifications since 

the infinite number of possibilities to structure specifications invites individual 

specifiers to give a personal touch to their work. It would, however, be very 

disadvantageous for an implementor of standards to be confronted with a mixture 

of such personal touches as this would result in specifications with quite different 

expressions of the same or similar architectural concepts. Such redundancy is 

confusing and invites different implementation constructs, or conventions, where 

one could suffice. 

This confusion can be avoided by adhering to a specification discipline where a 

limited number of effective specification styles are defined, and related to the design 

objectives that they support. Such an approach was first proposed in [36]. With the 

availability of commonly agreed styles, (groups of) specifiers can determine a strategy 

for applying them in an architectural design, and report this strategy explicitly in 

the informative, explanatory documentation which accompanies the formal text of 

their specifications. 

Before considering particular styles, it seems appropriate to pay some attention 

to the relation between architectural design principles [2] and specification styles. 

General design principles as orthogonality, generality and open-endedness can be 

taken as the foundation of design methods for open distributed systems, as is 

illustrated in [37]. It appears that these principles are also useful to guide the 

specification of such systems [28]. 

Orthogonality. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIndependent architectural requirements should be specijied by indepen- 

dent dejinitions. 

The principle of orthogonality acts as a criterion to evaluate styles according to 

their suitability to recognize and emphasize functional independence. A style where 
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independent concerns are easily intermingled, for example if it does not allow the 

identification of locality aspects, is certainly less useful than a style that allows to 

separate them. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Generality. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAGeneric, parameterized dejnitions should be preferred over collections of 

special-purpose dejnitions. 

This principle induces the habit of recognizing and bringing out “the bare essence” 

of a problem. Whenever an essentially new design problem is encountered, a specifier 

should produce generic, reusable solutions to the advantage of future efforts. 

Consequently, a specifier should seek to reuse existing solutions. Dedicated, special 

purpose architectures can be obtained by instantiating general-purpose ones, tuning 

the design to the specific goals required by the particular application. This can only 

be supported in a specification formalism that allows for parameterized constructs. 

Open-endedness. Designs should be maintainable, i.e. easy to extend and modify. 

Architectures will usually be maintained. Not only to repair errors, but also to 

extend or modify their functionality to obtain better, e.g. more cost-effective, designs. 

With complex architectures it is often the case that the costs of such maintenance 

by far exceed the sum of all other design costs. Moreover, in the case of a new 

architecture having a reasonable amount of commonality with existing ones, it is 

advantageous to start the design by modifying existing, known solutions, rather 

than just beginning from scratch. 

The application of open-endedness is more than a combined application of the 

principles of orthogonality and generality: it requires a modular, iterative decomposi- 

tion of a design into small, rearrangeable units of specification. The availability of 

suitable composition constructs depends in the first place on the extent to which 

they are supported by the particular specification formalism. But given a formalism 

the modularity and rearrangeability of a specification depend on the style of the 

specifier. 

3. Examples of specification styles 

In this section we identify four specification styles and assess their relation to the 

design objectives and principles that characterize distinct phases of the system design 

trajectory. We also address the relationship between specification style and formal 

description in the specification language LOTOS [17,3]. We illustrate this with 

simple examples in LOTOS. The interested reader may find more complex examples 

of these styles, based on the application of LOTOS for large scale specifications, 

in [29,32,20]. Some considerations concerning styles of specification of abstract 

data types in LOTOS can be found in [12]. 
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Specification styles can be characterized as being supportive of either extensional 

or intentional description. This characterization relates the styles to their effectiveness 

for the different phases along the design trajectory from architecture to 

implementation. 

Extensional description 

In the first phase of the design of a system, when a (formal) definition of the 

architecture is the target, abstractness of the definition is the prime concern. For 

the effectiveness of a specification style in this phase it is essential that it supports 

extensional description. As was indicated in the first section an extensional descrip- 

tion defines a system in terms of its external observable behaviour, viz. in terms of 

the interactions between the system and its environment. No internal boundaries 

or interactions between parts of the system shall be the subject of specification, nor 

any representation of the internal state space. 

An extensional description is the proper starting point for system design because 

it deals with the definition of the functions of the total system: the “requirements 

capturing” or the what of the design. The external behaviour can then be considered 

in its own right by the system architects and by the system users exactly as it is 

presented in the extensional definition of the architecture. 

Two extensional specification styles are identified. They are referred to as the 

monolithic (Section 3.1) and the constraint-oriented (Section 3.2) style. 

Intensional description 

In the second phase of the design of a system, the implementation phase, the 

internal organization, or the how, of the system is of concern. For the effectiveness 

of a specification style in this phase it is essential that it supports intensional 

description. An intensional description defines a structuring of the system in terms 

of interacting parts, or in terms of an explicit definition of the state space of (the 

parts of) the system, or both. The obvious objective is to relate the parts or state 

information to implementable constructs. We will use the term “resource” to denote 

the parts or entities out of which a system is constructed. 

A description can be more or less intensional, depending on the depth of the 

substructuring it contains, and on the amount of detail that is present concerning 

the internal states and/or mechanisms embodied by (the resources of) the system. 

Two intensional specification styles are identified. They are referred to as the 

state-oriented (Section 3.3) and the resource-oriented (Section 3.4) style. 

Example: informal specification 

To help the reader understand the differences between the specification styles, 

and to show the transformation of a specification from one style into another; we 

have illustrated each style with a different specification of the same, simple system. 

For this system we have chosen the “question/answer service” shown in Fig. 1. 

A question is generated by a user Q and forwarded by the service to another user 



Specification styles in distributed systems design and verification 185 

user Q 

question 

Fig. 1. Question/answer service. 

A. The latter is required to generate an answer which is returned by the service to 

user Q. The question/answer service corresponds to the conventional request/ 

response service [ 181. 

The presentation of each style is organized as follows: 

l characterization of the style, 

l objectives of, or reasons for, using the style and the relationship with the design 

principles presented in Section 2, 

l an example specification of LOTOS that corresponds to the informal specification 

above, 

l the impact of the style on usage of language features, in particular specific LOTOS 

operators. 

3.1. Monolithic style 

Characterization 

In the monolithic style only observable interactions are presented and ordered 

as a collection of alternative sequences of interactions in branching time. 

Relation to design objectives and principles 

This style forces the specifier to show the temporal relationship between observa- 

able interactions directly and prohibits the possibility of providing hints concerning 

implementation-oriented aspects, such as, for example, internal structure, or locality 

aspects of the observational behaviour. A monolithic description is therefore as 

implementation-independent as possible. 

The monolithic description can be very useful if the system can be defined and 

understood as a simple black box (as is the case with our example). It can also 

provide a useful starting point for developing specifications in the other styles given 

below. In general, though, it is of little practical use for the design of more complex 

distributed systems because, through its lack of structure, it is not suitable for human 

comprehension of, and reasoning about, these systems. Consequently, it is more 

applicable to the specification of entities with a simpler functionality (e.g. service 

specifications) than to the more complicated ones (e.g. protocol specifications). 

The principles of orthogonality and open-endedness are violated by this style, 

whilst generality can only be supported to a very limited extent. 
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Example 1 (monolithic speczfication of a question/answer service). The specification 

below is a straightforward representation of the question/answer service as given 

in the informal definition. 

process QA_service [Q,A]: noexit := 

Q?q:question; A!q; A?a:answer; Q!a; stop 

endproc 

The above example seems, in comparison to the representations given in the other 

styles, to be the simplest way to express this service. It appears, however, that the 

monolithic style will soon generate unreadable descriptions when the functionality 

of a system gets more complicated. As an exercise, the reader is invited to consider 

the specification, using the monolithic style, of a question/answer service that 

supports multiple concurrent pairs of users. 

Relation to language constructs 

The only constructs allowed are sequential composition, choice, guards, and 

tail-recursion. The prohibition of the use of parallel operators, in particular, deprives 

the specifier of his best means to achieve a separation of concerns and, in many 

cases, conciseness. 

3.2. Constraint-oriented style 

Characterization 

In the constraint-oriented style only observable interactions are presented, but 

their temporal ordering is defined by a conjunction of different constraints. 

Relation to design objectives and principles 

This style supports extensional description with modularity and parallel composi- 

tion. The structuring is based on the identification of the different (design) constraints 

that determine the external behaviour (“separation of extensional concerns”). 

However, by structuring the external behaviour, this style may in some cases provide 

useful hints for internal structuring. 

An architectural criterion for the constraint-oriented specification of distributed 

systems is to separate local constraints from remote, or end-to-end, constraints. This 

approach is extremely useful as a preparation for the implementation trajectory, 

where different parts of the distributed system have to be allocated to different 

implementation authorities. It also allows one to reuse the constraints in a 

specification at a lower abstraction level where the internal structure is shown 

explicitly. Another useful criterion for the use of this style is to identify orthogonal 

functions by separate constraints. 

All design principles mentioned in Section 2 can be supported by the constraint- 

oriented style. 
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Example 2 (constraint-oriented specification of a question/answer service). 

process QA_service [Q,A]: noexit := 

(QA-local [Q]III QA-local [A]) 

II 

QA_remote [Q,A] 

where 

process QA_local [X]: noexit := 

X?x:question; X?y:answer; stop 

endproc 

process QA_remote [X, Y]: noexit:= 

X?x:question; Y!x; stop 111 Y?y:answer; X!y; stop 

endproc 

endproc 

This specification of QA_service formalizes a decomposition of the overall external 

behaviour into local (i.e. local at gate Q or local at gate A) and end-to-end (i.e. 

between gate Q and gate A) constraints. The local constraint at either side can be 

specified by proper (gate) instantiation of the same generic process, namely of 

QA_local, thus supporting the design principles of generality and conciseness. 

Relation to language constructs 

This style induces an extensive usage of parallel composition operators. The 

composition may be unsynchronized (“interleaved “’ in LOTOS), or synchronized, 

depending on whether the separate constraints apply to disjoint or nondisjoint 

interaction sets, respectively. In addition, generic constraints call for extensive usage 

of parameterization. Because of the intended extensional character of this style the 

application of the hiding operator is prohibited. 

3.3. State-oriented style 

Characterization 

With the state-oriented style the system is regarded as a single resource whose 

internal state space is explicitly defined. This style, therefore, presents only observ- 

able interactions-unstructured, except as a collection of alternative sequences of 

interactions-and a representation of the global state space that is manipulated by 

these interactions. 

Relation to design objectives and principles 

The use of the state-oriented style provides insight in the amount of state informa- 

tion to be maintained by a resource and the complexity of the manipulation of this 
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information. This insight can be used to transform the formal specification into a 

final implementation of the resource by using it to develop the data structures and 

programs that embody the machine executable code. The state-oriented style is 

therefore particularly useful in the final phase of the design trajectory when the 

resource can be defined and understood as an object that can be implemented by 

a single implementation authority. 

The state-oriented style is of limited use, however, for the abstract specification 

of distributed systems. This has at least two reasons. First, the state-oriented style 

is analogous to the monolithic style in the presentation of dynamic behaviour. By 

its lack of structure it confronts the reader with the same problems of lack of 

surveyability and comprehensibility. Second, for distributed systems and for complex 

resources in general, one must decompose the state space. This implies the iden- 

tification of state variables with appropriate domains, which appears to be an 

extremely difficult problem. This problem is again aggravated by the “fine grain” 

of the state-oriented style, as the individual description of each state transition lacks 

structural hints. 

With respect to the design principles, the same remarks apply as for the monolithic 

style. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Example 3 (state-oriented specijication of a question/answer service). The 

specification below uses five data values to represent five global states. Alternatively, 

these global states could also have been written as five pairs of local states, each 

pair consisting of a local state associated with gate Q and a local state associated 

with gate A. This approach is followed in the specification of OS1 services with 

state tables (e.g. in [15, 161). 

process QA_service [Q,A]: noexit:= 

choice q:question, a:answerj QA_Servicel [Q,A] (awaitQ, q, a) 

where 

process QA_servicel [X, Y] (s:state, x:question, y:answer): noexit := 

[s = awaitQ]+ X?xl:question; 

QA-service1 [X, Y] (pendingQ, xl, y) 

1 [s =pendingQ] + Y!x; 

QA_servicel [X, Y] (awaitA, x, y) 

j [s = awaitA]+ Y?yl:answer; 

QA_servicel [X, Y] (pendingA, x, yl) 

1 [s =pendingA] + X!y; 

QA-Service1 [X, Y] (done, x, y) 

1 [s = done]-+ stop 

endproc 

endproc 
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Relation to language constructs 

The same comments apply as for the monolithic style. 

3.4. Resource-oriented style 

Characterization 

In the resource-oriented style both observable and internal interactions are presen- 

ted. The behaviour in terms of the observable interactions is defined by a composition 

of separate resources in which the internal interactions are hidden. In turn, these 

resources may be specified using any style. 

Relation to design objectives and principles 

This style supports intensional description with modularity and parallel structures. 

The structure is based on the distinction between resources by the separation of 

“intensional concerns” in much the same way as constraints in the constraint- 

oriented style are derived by separating the extensional concerns. The development 

of an internal structure is guided by the following criteria: 

l each resource should represent a self-contained entity with simple and efficient 

interfaces to other resources, 

l each resource should be easier to implement than the original system and 

l each resource should concern the smallest number of implementation authorities. 

Resource orientation “in extremo” identifies resources such that each one can be 

assigned to a single implementation authority and is specified in constructs with 

straightforward mappings onto, possibly predefined, implementation constructs. 

Since the resources themselves can be specified using any style, including the 

ones introduced here, it is the resource-oriented style in particular that allows to 

apply styles iteratively, resulting in a style-supported design methodology. The 

resource-oriented style also allows for considerations of performance. First, (e.g. 

identical) resources can be identified which can act independently (parallelism) and 

second, resources can be identified which have to interact, but work on different 

aspects of a task (cascading). 

All design principles presented in Section 2 are supported by the resource-oriented 

style. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Example 4 (resource-oriented speci$cation of the question/answer service based on a 

protocol). The internal structure of the system can, in principle, be given in an 

infinite number of ways. For reasons of brevity and simplicity we show only one. 

This example assumes that the QA_service cannot be implemented directly. There- 

fore, local resources in the form of protocol entities are identified that can be 

implemented separately and that interwork via a lower level service to provide the 

QA-service. The resulting internal structure of the system is show in Fig. 2. For the 

lower level service an easier implement, connection-less data transport service is 

chosen. This service is not concerned with the question/answer relationship. 
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Fig. 2. Question/answer protocol. 

process QA_service [Q,A]: noexit := 

hide CLQ, CLA in 

( (Q-entity [Q,CLQ] 111 A-entity [A, CLA]) 

KLQ, CLAil 

CL-service [CLQ,CLA] 

1 

where 

(* process definitions Q-entity, A-entity and CL-service *) 

endproc 

To provide a complete specification each of the resources identified by the use 

of the resource-oriented style has to be specified. We elaborate the specifications 

of some of these resources using the monolithic, constraint-oriented and state- 

oriented style, respectively and indicate some relations with the corresponding 

specifications of the integral QA-service. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Example 4.1 (monolithic specification of Q-entity, A-entity and CL-service). The 

protocol entity Q-entity (A-entity) is able to send (receive) a question and to receive 

(send) an answer that is encoded as data via the lower level service. Note that the 

interactions specified in QA_Zocal in Example 2 are interleaved with internal interac- 

tions to form the specification of the local protocol entities. Also note the rather 

tedious specification of CL-service, which is caused by the use of the monolithic style. 

process Q-entity [X, Y]: noexit:= 

X?x:question; Y!send!encode_q(x); 

Y!receive?d:data; X!decode_a(d); stop 

endproc 

process A-entity [X, Y]: noexit:= 

Y!receive?d:data; X!decode_q(d); 

X?y:answer; Y!send!encode_a(y); stop 

endproc 
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process CL-service [X, Y]: noexit := 

X!send?dl:data; 

( Y!receive!dl; Y!send?d2:data; X!receive!d2; stop 

1 Y?send?d2:data; 

( Y!receive!dl; X!receive!d2; stop 

j X!receive!d2; Y!receive!dl; stop 

1 1 

1 Y!send ?d2:data; 

( X!receive!d2; X!send?dl:data; Y?receive!dl; stop 

1 X!send ?dl :data; 

( X!receive!d2; Y!receive!dl; stop 

j Y!receive!dl; X!receive!d2; stop 

) 1 

endproc zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Example 4.2 (constraint-oriented speczjication of Q-entity). The transformation of a 

constraint-oriented specification into a resource-constraint-oriented specification 

(i.e. a resource-oriented specification where the resources are defined using the 

constraint-oriented style) allows constraints defined at the higher abstraction level 

to be reused at the lower abstraction level. In the example below the constraint- 

oriented specification of Q-entity reuses the process abstraction QA-local defined 

in Example 2. This approach can simplify considerably the verification of an 

implementation given in a resource-constraint-oriented specification against an 

architecture given in a constraint-oriented specification. 

process Q-entity [Q, CLQ]: noexit := 

QA-~o~a~[Ql/[Ql/(Q-send[Q,CLQlIIIQ-re~eive[Q,CLQl) 
where 

process QA_local [X]: noexit := 

X?x:question; X?y:answer; stop 

endproc 

process Q-send [X, Y]: noexit := 

X?x:question; Y!send!encode_q(x); stop 

endproc 

process Q-receive [X, Y]: noexit := 

Y!receive?d:data; X!decode_a(d); stop 

endproc 

endproc 

Example 4.3 (state-oriented specijication of Q-entity). We may derive a subset of 

the states of the protocol entity Q-entity by representing the global states of the 

QA-service as pairs of local states, as discussed in Example 3, and extract the local 

states that can be attributed to the protocol entity located at gate Q. The remaining 
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states of Q-entity are related to the interactions of Q-entity with the lower level 

service. Note that Q-entity should be instantiated in QA-service as Q-entity 

[ Q,CLQ] (await-q, empty, empty). 

The example given below corresponds to the traditional approach of describing 

protocol entities as state machines. The state table descriptions of OS1 protocols 

are an example of this approach. 

process Q-entity [Q,CLQ] (s:local_state, bl:q_bufler, b2:a_bufer): noexit:= 

[s = await-q]+ Q?x:question; 

Q-entity [Q,CLQ] (pending-q, push_q(x, bl), b2) 

j [s =pending_q]+ CLQ!send!encode_q(top_q(bl)); 

Q-entity [Q,CLQ] (await-a, bl, b2) 

j [s = await-a]-+ CLQ!receive?d:data; 

Q-entity [Q,CLQ] (pending-a, bl, push_a(decode_a(d), b2) 

1 [s = pending-a] + Q! top-a(b2); 

Q-entity [Q,CLQ] (done-q, bl, 62) 

~7 [s = done-q] + stop 

endproc 

Relation to language constructs 

As with the constraint-oriented style, the resource-oriented style induces extensive 

usage of parallel composition operators. Unlike the constraint-oriented style, hiding 

is used for internal interactions to make them invisible in the external behaviour. 

4. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAVerification of examples 

The previous examples demonstrate how several styles may be used along the 

design trajectory of a distributed system in order to support the design principles 

and objectives. At each stage the specification builds on the previously developed 

structure, thus permitting a step-by-step development of a final specification that 

can be used as a reference for product implementation. Correctness of the 

implementation requires that the desired external behaviour as defined by the initial 

specification is preserved in some appropriate sense by each design step. 

In this section we discuss the verification of two steps in the design of the 

question/answer service and show the role of the specification styles. In particular 

we show that 

(1) the constraint-oriented specification of the question/answer service (Example 

2) is equivalent to the monolithic specification (Example 1) and 

(2) the resource-oriented specification of the question/answer service (Example 

4) is equivalent to (i.e. the protocol is correct with respect to) the constraint-oriented 

specification. 
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We will only consider the verification of dynamic behaviour, whereas a complete 

treatment would require additional reasoning concerning the role of the data types 

that are used. Standard theory on the verification of abstract data types can be 

found in, for example, [ 10, 111. This limitation means that the specifications presen- 

ted in Section 3 can be simplified by replacing the events that model the communica- 

tion of data with events that model merely synchronization (each event consists of 

only a gate name). Alternatively, one can view the simplification as reducing the 

number of values per data sort to one. 

With this simplification, and the introduction of new, short names for processes 

and gates, the question/answer service can be represented in the following ways: 

l monolithic specification: 

process Sm[Qq, Aq, Aa, Qa]: noexit:= Qq; Aq; Aa; Qa; stop endproc 

l constraint-oriented specification: 

process Sc[Qq, Aq, Aa, Qa]: noexit 

:= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(L[Qq, Qallll L[Aq, Aa]) (I Rc[Qq, 4, Qa, Aa] zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
w here 

process L[Xq, Xa]: noexit := Xq; Xa; stop endproc 

process Rc[Qq, Aq, Qa, Aa]: noexit := Qq; Aq; stop 111 Aa; Qa; stop endproc 

endproc 

l resource-oriented specification: 

process Sr[Qq, Aq, Aa, Qa]: noexit := 

hide UQs, UQr, UAs, UAr in 

((QE[Qq, Qa, UQs, UQr]/I) AE[Aq, Aa, UAs, UAr]) /[UQs, UQr, UAs, UAr]/ 

US[UQs, UQr, UAs, UAr]) 

where 

process QE[Qq, Qa, UQs, UQr]: noexit := L[Qq, Qa] /[Qq, Qa]/ 

(QEs[Qq, UQs] 111 QEr[Qa, UQr]) endproc 

process AE[Aq, Aa, UAs, UAr]: noexit := L[Aq, Aa] /[Aq, Aa]/ 

(AEs[Aa, UAs] ()I AEr[Aq, UAr]) endproc 

process US[UQs, UQr, UAs, UAr]: noex it  
.- ‘- UQs; UAr; stop 111 UAs; UQr; stop endproc 

process QEs[Qq, UQs]: noexit:= Qq; UQs; stop endproc 

process QEr[Qa, UQr]: noexit:= UQr; Qa; stop endproc 

process A Es[Aa, UAs]: noexit := Aa; UAs; stop endproc 

process AEr[Aq, UAr]: noexit := UAr; Aq; stop endproc 

endproc 
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4.1. Equivalence of behaviours: a few laws 

In the literature there are many different notions of equivalence of observable 

behaviour. The LOTOS standard [17] contains definitions of and laws for two 

well-established notions of observational equivalence, viz. weak bisimulation 

equivalence (cf. [24, 22, 11) and testing equivalence (cf. [8, 4, 91). Of the two, weak 

bisimulation is the strongest, i.e. if two behaviours are weak bisimulation equivalent, 

they are also testing equivalent, but not necessarily vice versa. 

We will show that the specifications given above are weak bisimulation equivalent, 

therefore also testing equivalent. To this end we make use of some of the laws for 

weak bisimulation congruence (i.e. equivalence that is preserved in every 

specification context, notation “=“) that are stated in the LOTOS standard and of 

a few additional theorems which are proven below. For the proofs we apply to 

LOTOS the notion of (strong) bisimulation equivalence [24] (notation “-“), which 

is stronger than weak bisimulation congruence: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBABl - 82 iff a relation R over 

behaviour expressions exists with (BI,B2) E R, such that V (A, B) E R and V g E G u 

{i, S}, where G is the set of user-definable gates 

6) A 4 A’+3B’. B 3 B’ and (A’, B’)E R, 

(ii) B 3 B’j3A’. A 3 A and (A’, B’)E R. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Theorem. stop /[S]/ B - stop if L(B) c S and B is stable (i.e. cannot perform internal 

transitions: B % B’ + g # i). 

Proof. The proof follows immediately from the operational semantics of the LOTOS 

parallel operator, as defined by the inference rules that express the transition 

possibilities of a behaviour expression Bl I[S]l B2: 

B23 B2’and gE(L(B2)-S)u{i}+ Bl I[S]l B23 Bl I[S]l B2’, 

=aBl I[S]l B24 BI’/[S]/B2’. 0 

Theorem (associativity of parallel composition). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

(A I[Sfll B) I[=‘11 C-A I[Slll (B I[=‘11 C) 

ifL(A)nS2cL(A)nSIand L(C)nSlcL(C)nSZ. 
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Proof. We define the following abbreviations: 

B1 %‘(A I[Sl]l B) 1[5.2]1 C, B2ef A I[Sl]l (B I[S2]1 C) and 

R gf {((E l[Slll V zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI[Wl G, E I[Sfll (F I[=‘11 G)) 

1 E, F, G behaviour expressions}. 

From the definition of R it follows that (Bl, B2) E R. We enumerate the potential 

transition cases of Bl and B2 in terms of transitions of A, B and C, and state the 

conditions such that Bl -% Bl’ j 3B2’. 82% 62’ and B23 B2’ =3 

3Bl’. Bl 3 67’. The cases and conditions follow from the inference rules defining 

the operational semantics of the parallel operator: 

(a) A%A’:L(A)-(S~~S~)=L(A)-SI~L(A)~S~GL(A)~SI; 

(b) B s B’: no conditions, i.e. transitions of B1 and B2 depend in the same way 

on L(A), L(B), L(C), Sl and S2; 

(c) Cs C’: L(C)-S2=L(C)-(SluS2) EJ L(C)nSlcL(C)nS2; 

(d) A 3 A’ and B s B’: no conditions; 

(e) A%A’and C % C’:(L(A)nL(C)nS2)-Sl=(L(A)nL(B)nSl)-S2. 

This condition is only true if the left- and righthand side are equal to 0 (in which 

case this transition cannot occur), which is implied by L(A) n S2 c L(A) n Sl and 

L(C)nSIzL(C)nS2; 

(f) B s B’ and C 3 C’: no conditions; 

(g) A s A’ and B 3 B’ and C 5 C’: no conditions. 

It follows directly from the definition of the parallel operator that also (BY’, B2’) E 

R. q 

Theorem (parallel composition reshuffling). 

(A l[S7ll 6) IL/f u W (C I[=‘11 D)-- (A K/f11 C) I[Sf u WI (B l[Qll D) 

if L(A)n(S2u/2)=0, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL(B)n(S2uII)=0, L(C)n(Slul2)=0 and L(D)n 

(S7u/I)=@ 

Proof. We define 

61 ‘kf (A I[Sl]l B) I[/1 u 1211 (C I[S2]1 D), 

B2%f (A l[/l]l C) I[Sl u S2][ (B 1[12]/ D) and 

R sf {((E I[=11 F) I[/1 u Qll (G KS211 HI, 

(E I[/111 F) I[Sl u 5211 G l[W ff))i 6 F, G, H 
behaviour expressions}. 

Clearly, (B 1, B2) E R. We check whether for all possible transition cases of B I and 

B2 the conditions that must apply if BI 5 Bl’ + 3B2’. 82 -5 B2’ and B2 -% B2’ + 

3Bl’. B1 s Bl’ are implied by the conditions of the theorem: 

(a) A%A’:L(A)-(S7uIIu12)=L(A)-(SluS2uII). This is true since 

L(A)n(S2u/2)=& 

(b) 6% B’: L(B)-(SluIIu/2)=L(B)-(SIuS2u12). True, since L(B)n 

(S2u /7)=0; 
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(c) Cs C’:L(C)-(SZuIIu12)=L(C)-(SluS2uIl). True, since L(C)n 

(S7u/2)=0; 

(d) D% D’:L(D)-(S2uIIu12)=L(D)-(SluS2u1.2). True, since L(D)n 

(Slu/l)=@; 

(e) AsA’and B% B’:(L(A)nL(B)nSl)-(llul2)=(L(A)nL(B)n (Slu 

S2)) - (II u 12). True, since L(A) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn S2 = 0; 

(f) A % A’ and C J% C’:(L(A)nL(C)n(llnl2))-(SluS2)= 

(L(A)nL(C)n /l)-(SluS2). True, since L(A)n/2=0; 

(g) Bs B’and D% D’:(L(B)nL(D)n(llu/2))-(SluS2)=(L(B) 

L(D)n /2)-(SluS2). True, since L(B(nl1 =0; 

(h) Cs C’and Ds D’: (L(C)nL(D)nS2)-(11u/2)=(L(C)nL(D 

(Sl u S2))-(ll u 12). True, since L(C)n Sl =a; 

(i) A % A’ and B -% B’ and C -3 C’ and D 5 D’: 

(L(A)nL(B)nL(C)nL(D)nSlnS2n(IIu/2))u{S} 

n 

In 

=(L(A)nL(B)nL(C)nL(D)n(SluS2)n(/1n/2))~{6}. 

True, since L(A) n (S2 u /2) = 0. 

Other transition cases are not possible for Bl and B2 with the conditions of the 

theorem. Transitions of B 1 (B2, respectively) require a g action with g E /I u 12 

(g E Sl u S2), while the parts involved are such that some have no gates in common 

with /I (Sl) and the others have no gates in common with /2 (S2). 

It follows directly from the definition of the parallel operator that also 

(BY’, B~‘)E R. 0 

Table 1 summarizes the weak bisimulation congruence laws which will be used 

for the verification exercise. Of the above theorems ((9), (10) and (11) in the table) 

also some interesting special cases are indicated (( lOa), (lob) and (1 la)). 

4.2. VeriJication of the constraint-oriented speci$cation 

Verifying the correctness of the constraint-oriented specification of the ques- 

tion/answer service with respect to the monolithic specification is straightforward, 

since it requires application of the laws for instantiation and expansion only. In 

the following we show the transformation of SC to Sm. We justify each transforma- 

tion step with a reference to the law of Table 1 which is made use of. 

Sc[Qq, Aq, Aa, Qa] 

=(Qq; Qa; stop jl( Aq; Aa; stop) (1 (Qq; Aq; stop 111 Aa; Qa; stop) (5) 

= Qq; ((Qa; stop 111 Aq; Aa; stop) 1) (Aq; stop 111 Aa; Qa; stop)) (7) 

= Qq; Aq; ((Qa; stop 111 Aa; stop) I( (stop 1)) Aa; Qa; stop)) (7) 

=Qq; Aq; Aa; ((Qa; stop 111 stop) 1) (stop I(( Qa; stop)) (7) 

= Qq; Aq; Aa; Qa; stop (7) 

= Sm[Qq, Aq, Aa, Qa] (5) 
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Table 1. Some useful laws of weak bisimulation congruence (without value expressions). 

hiding 

(1) hideSinB=BifL(B)nS=M 

(2) hideSing;B=i;(hideSinB)ifgES 

(3) hide S in g; f3 = g; (hide S in B) if gC S 

(4) hide S in (BI I[S’]l B.Z)=(hide Sin BI)J[S’]I (hide Sin 62) if SnS’=0 

instantiation 

(5) b[al,. . , an] = Bb[al/gl,. , zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAan/gn] if process b[gl, _. , gn]:f:= Bb endproc is the format 

of the corresponding process abstraction for the process-identifier b 

internal action 

(6) a; i; B = a; 6 

expansion 

Let Bl 0 82 0 . . 0 Bn be writtten as I{ Bl, 82,. , Bn}, with n finite and let B = [{bi; Bil in I} and 

C = [{cj; Cj 1 j E J}, with I and J finite sets. Then 

(7) BI[S]IC=[{bi;(BiI[S]I C)lbi~S,iEI}OO{cj;(BI[S]ICjlcj~S,jEJ}~0{a;(BiI[S]ICj) la= 

bi=cj, at-S, in/, jeJ} 

parallel composition 

(8) A I[Sll B = B i[Sll A 
(9) stop I[S]l 6 = stop if L(B) c S and 6 is stable 

(10) (A i[Sl]l B)I[SZ]l C=A I[.Sl]l(Bl[SZ]/ C) if L(A)nSZzL(A)nSSI and L(C)nSlcL(C)n 

s2 

(lOa) (A~[.S1]~B)I[SZ]~ C=A~[.SI]~(BI[SZ]~C)if L(A)nS2=0and L(C)nS7=0 

(lob) (A I[Slt B) I[Sll C=A l[Sll (B t[Sll C) =A I[Sll B l[Sll C 
(11) (A l[Sl]l B)~[11u12]~ (C l[SZ]l D)-(A I[/l]l C)I[SluSZ]l (Bl[/Z]l D) if L(A)n(SZu/2)=0, 

L(B)n(SZu/l)=0, L(C)n(Slu/Z)=(dand L(D)n(Slul7)=0 

(lla) (A I[Slll WII(CIL~2ll ~~=~~III~~l~~~~~~ll~~lll~~ if (L(A)uL(B))nSZ=B, (L(C)u 

L(D))nSI =0 

4.3. Veri$cation of the resource-oriented specijication 

In this case we exploit the structure of the given specifications in order to derive 

the equivalence of two specifications from the congruence of smaller (simpler) 

behaviours, thus reducing the verification effort. First, common parts in the 

specifications may be identified that may subsequently be eliminated if their composi- 

tion with the remaining part is the same in both specifications. In other words, the 

equivalence of C[BI] and C[BZ], where C[ ] is a context and ~31 and 132 are 

behaviour expressions, is implied by the congruence of Bl and B2. 

The above approach is a special case of that of identifying “corresponding” parts, 

i.e. behaviours that describe corresponding functionality and for that reason are 

expected to be equivalent. If one can identify such parts, it is natural to investigate 

the congruence of the pairs independently: the equivalence of C[Dl, . . . , Dn] and 

C[E1,. . . En] is implied by the congruence of all the pairs Dl and El, 02 and E2, 

etc. 

The structures chosen for the specifications, and therefore also the specification 

styles adopted, determine how easy or difficult it is to find common/corresponding 

parts. As stated before, a constraint-oriented specification may provide hints for 

further (internal) structuring. Following these hints in the development of a resource- 
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oriented specification can be advantageous. That is illustrated in the following 

transformation of Sr to Sc. 

Sr[Qq, 4 Aa, Qal 
= hide UQs, UQr, UAs, UAr in 

( ( (L[Qcl, Qall[Qq, Qall (QEs[Qq, UQs])ll QEr[Qa, UQr])) 

111 WqJ AallPq, AallPsPar UWlllAWq, UfW) 

/[U’as. UQr, UAs, UAr]/ 

US[UQs, UQr, UAs, UAr] 

) 

(9 

= hide UQs, UQr, UAs, UAs in 

( ( MQa Qallll Wq, W zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
l[Qq, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQa, 4, Aall 

(lla) 

((QEs[Qq, UQs]lll QEr[Qa, UQr])III (AEs[Aa, UAs]IIIAEr[Aq, UAr])) 

! 

/[UQs, UQr, UAs, UAr]/ 

US[UQs, UQr, UAs, UAr] 

) 

= hide UQs, UQr, UAs, UAr in (loa) 

( MQq, Qal III Wb Aall 
l[Qq, Qa, Aq,AaIl 

( ((QWQq, UQsllll QEdQa, uQrl)III(AEs[Aa, UAs]lllAEr[Aq, UAr])) 
/[UQs, UQr, UAs, UAr]I 

US[UQs, UQr, UAs, UAr] 

= :hiie UQs, UQr, UAs, UAr in (L[Qq, Qa] 11) L[Aq, Aa])) (4) 

l[Qq, Qa, 4, Aall 
( hide UQs, UQr, UAs, UAr in 

( ((QEs[Qq, lJQs]III QEr[Qa, UQr])III (AEs[Aa, UAs]jIIAEr[Aq, UAr])) 

/[UQs, UQr, UAs, UAr]I 

US[lJQs, UQr, UAs, UAr] 

= (U!QdQaIIII L[Aq, Aal) 
l[Qq, Qa 4, Aall 
( hide UQs, UQr, UAs, UAr in 

( ((QEs[Qq, UQs]ill QEr[Qa, UQrl) 
III(AEs[Aa, UAs]lllAEr[Aq, UArI)) 

/[UQs, UQr, UAs, UAr]/ 

(1) 

US[UQs, UQr, UAs, UAr] 

) ) 

We observe that the latter behaviour expression has its first part in common with 

the expression that defines SC (the part representing the local behaviour at the 
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interfaces). Therefore, if we can prove the congruence of the remaining part of both 

expressions (representing end-to-end behaviour) we are done. Let the protocol 

end-to-end behaviour, i.e. the last hide-expression above, be denoted by Rr. Since 

the service end-to-end behaviour is denoted by Rc, we have to show the transforma- 

tion of Rr into Rc. To shorten the presentation of the proof, we allow the application 

of more than one law in a transformation step. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Rr[Qq, 4, Qa, Aa] 
= hide UQs, UQr, UAs, lJAr in (5, lob, 8) 

( ((QWQq, UQs]IIIAEr[Aq, UAr]) 111 (QEr[Qa, UQr]lllAEs[Aa, UAs])) 

/[lJQs, UQr, UAs, UAr]/ 

(UQs; UAr; stop 111 UAs; UQr; stop) 

= hide UQs, UQr, UAs, UAr in (lla) 

( (( QEs[Qq, UQs]lllAEr[Aq, UAr]/[UQs, UAr]/ UQs; UAr; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAstop) 

III 
((QEr[Qa, UQr]lll AEs[Aa, UAs]) /[lJQr, UAs]I UAs; UQr; stop) 

) 

= (hide UQs, UQr, UAs, UAr in (499 

((Qq; UQs; stop 111 UAr; Aq; stop) /[UQs, UAr]/ UQs; UAr; stop)) 

111 (hide UQs, UQr, UAs, UAr in 

((UQr; Qa; stop 111 Aa; UAs; stop) /[UQr, UAs]I UAs; UQr; stop)) 

= Qq; (hide UQs, UQr, UAs, UAr in (7,3) 

((UQs; stop /[I UAr; Aq; stop) /[UQ.s, UAr]I UQs; UAr; stop)) 

lIlAa; (hide UQs, UQr, UAs, UAr in 

((UQr; Qa; stop 111 UAs; stop) l[lJQr, UAs]/ UAs; UQr; stop)) 

= Qq; i; (hide UQs, UQr, UAs, UAr in (722) 

((stop 111 UAr; Aq; stop) /[UC%, UAr]/ UAr; stop)) 

lIlAa; i; (hide UQs, UQr, UAs, UAr in 

((UQr; Qa; stop 111 stop) l[UQr, UAs]I UQr; stop)) 

= Qq; i; i; (hide UQs, UQr, UAs, UAr in (7,2) 

((stop 111 Aq; stop) IPJQs, UAr]I stop)) 

lIlAa; i; i; (hide UQs, UQr, UAs, UAr in 

((Qa; stop 111 stop) I[UQr, UAs]I stop)) 

= Qq; i; i; Aq; stop 111 Aa; i; i; Qa; stop (7,339) 

= Rc[Qq, Aq, Qa, Aa] (67% 

The sequence of the transformation steps above is suggested by the fact that it 

may be possible to find expressions corresponding to the independent behaviours 

(viz. those describing different directions of transfer) that form the end-to-end 

constraints of the constraint-oriented specification. This is indeed possible, and the 

transformation to Rc then is simple. 
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It appears that law (11) plays a crucial role in the verification. First it is used to 

separate the local constraints from the end-to-end constraints in the composite 

behaviour of the two protocol entities and the underlying service and subsequently 

it allows to separate the constraints associated with the two directions of transfer 

in the protocol end-to-end behaviour. We may wonder whether this approach is 

still viable if the specifications are not as simple as in the present case. For instance, 

in the constraint-oriented specification the end-to-end constraints for the two direc- 

tions of transfer may be interrelated (this is the case, for example, in the OS1 session 

service specification [32]) and similarly with the send and receive actions of a 

protocol entity in the resource-oriented specification (this is normally the case). It 

appears that the above mentioned approach indeed applies to more complex cases. 

The interested reader is referred to [33] where more general constraint- and resource- 

oriented specification structures are assessed in terms of their suitability for 

verification. 

A final remark should be made about the internal structuring of a system (e.g., 

the question/answer service). In Section 3 it was mentioned that, in principle, this 

can be done in an infinite number of ways. Laws (2) and (6), in particular, illustrate 

how different compositions of a system may provide equivalent behaviour. Law (2) 

states that actions at internal gates, can be replaced by internal events in the 

behaviours of the compositions; law (6) states that processes with certain internal 

events cannot be observably distinguished from the same processes without those 

internal events (there are also laws that relate to internal actions in other contexts). 

Hence, application of these laws makes the particular internal structures expressed 

by different (e.g. resource-oriented) specifications disappear and allows them to be 

transformed, with the help of the other laws, into the same (e.g. constraint-oriented) 

specification. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

5. Evaluation 

In introducing the role of architecture we stated that abstractness is the most 

relevant criterion to evaluate its adequacy. The relevance of structuring abstract 

specifications was argued both from the standpoint of the system user to provide a 

comprehensible specification and from the standpoint of the system implementor 

to produce a reliable and effective implementation. A need for specification and 

implementation methods was thus recognized, leading to the identification of four 

distinct specification styles, whose relation to general design principles such as 

orthogonality, generality and open-endedness was addressed. These styles emerge 

from our own specification experience as practical approaches which can be used 

to serve different design objectives. It should be noted that these styles are actually 

extremes in the sense that specifications of “real” systems will normally be based 

on a mixture of these styles. Section 3.4 already exemplified such a mixture. Also 

other styles may prove worthwhile. Further research into the identification and 

characterization of specification styles is therefore encouraged. 
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The use of well-suited specification styles will be most effective if they are applied 

throughout the design trajectory, from the early conceptual phases of architectural 

design to the final phases of implementation development. If the formal description 

of an object can only start after it has been completely informally defined, see e.g. 

the current situation of OS1 standards, the chance to produce high-quality architec- 

tures and implementations is much reduced. On the other hand, one cannot expect 

a team of industrial designers to become familiar with a specification discipline 

overnight. One should rather anticipate a necessary habituation period, after which 

specification styles can be applied routinely. The tuned interworking of styles in 

the system design trajectory will only prove effective if it facilitates the design process 

and improves the quality of its result. We evaluate now to which extent the four 

styles presented in Section 3 may serve these purposes. 

5.1. Requirements capturing: the constraint-oriented style 

During the first phase of design, the system achitecture is best defined using an 

extensional description. If the architecture is extremely simple, the monolithic style 

is best suited for its specification. Such a specification is then the most compact one 

and poses no problems with respect to comprehensibility. Fairly complex architec- 

tures, however, require a structured approach in order to find comprehensible 

presentations. The constraint-oriented style is best suited for this purpose since it 

enables the human understanding of the architecture and reasoning about it, in 

terms of the user requirements on the system’s external behaviour and the relations 

between these requirements. 

It is also worth mentioning that, especially in the early phases of formation of 

the user requirements, inconsistencies, errors, or unfeasible prescriptions are likely 

to occur. Forcing a formal specification of user requirements then proves extremely 

beneficial to their-possibly machine-aided-analysis, and helps to prevent, or detect 

deficiencies at an early stage. Undetected deficiencies propagate throughout the 

subsequent stages of the design trajectory at unpredictable costs. 

Requirements structuring is more art than science. Yet, not only the economical 

and strategic relevance of this problem is generally recognized (see e.g. the recom- 

mendations in [31], striving for adoption of FDTs at the early phases of standardiz- 

ation projects), but also the awareness of its scientific relevance is penetrating the 

“ivory tower” of theoretical circles. For instance, in [26] the problem of structuring 

specifications is considered to be most important and considerable attention is paid 

to specification styles in algebraic specification. 

It is reasonable to evaluate the implementation-oriented styles on the basis of 

their adequacy for developing and validating implementations. This evaluation 

involves technical criteria, such as the ease with which subprocesses can be mapped 

on implementation building-bricks. The various state-machine models that underly 

the state-oriented approacch are well-researched, allowing for quite direct 

implementation strategies, as well as different validation methods. The resource- 

oriented style has a less developed theory because the concept of state is easier to 
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formalize than that of a resource. Consequently, the success of the application of 

this style will be judged mainly on the basis of experience and pragmatic arguments. 

The constraint-oriented style, on the other hand, should be evaluated on the basis 

of its adequacy to capture specification requirements. In the case of LOTOS and 

other process-algebraic formalisms such as TCSP [7] or CIRCAL [23], the mechan- 

ism that is used to achieve this can be explained in a formal setting. As this mechanism 

is less known than it should be, we digress shortly on this topic. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Parallel composition as logical conjunction 

The usefulness of the constraint-oriented style should be appreciated in the light 

of the constructive nature of LOTOS and related process-algebraic formalisms. In 

logical languages, many of which are nonconstructive par excellence, a constraint- 

oriented style is dictated by the formalism, but generally at the cost of a greater 

gap between specification and implementation. In [13] it is explained how some of 

the constraint-oriented power of logical languages may be salvaged for constructive 

techniques. The main point is that parallel composition may be used to implement 

a logical conjunction. Although this concerns only one logical operator it is most 

important: many systems are conceived of as models of the conjunction of a large 

set of requirements. This implies an important structuring principle: each require- 

ment is expressed by a separate process and these processes are composed in parallel. 

It is clear that this technique can be applied iteratively, also decomposing the 

processes that correspond to requirements that can be factorized as a conjunction 

of simpler requirements, etc. Open-endedness is supported in a straightforward 

manner: adding a requirement corresponds to the addition of (a) process(es). 

To express how the representation of conjunction works we use the assertion 

B zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsatA P, where B is a behaviour expression, A a set of gates and P a predicate. 

B satA P is true if and only if the restrictions to A of all elements of the (prefix-closed) 

set of observable traces of B satisfy property P. The precise way in which parallel 

composition can support the expression of conjunction is indicated by the following 

lemma. 

Lemma. If B, satA P and B2 sat, Q then B, I[A]I B, sat, P A Q. 

The proof is an adaptation of the work in [ 131 and can be found in [5,6]. It can 

be modified in various ways, e.g. when the gates that are common to B, and B2 are 

all in A. Also, in the above only properties of trace sets are dealt with, which suffices 

for dealing with safety properties, but does not guarantee the progress of behaviour, 

or liueness. In part this can be remedied by use of failures, i.e. traces + refusal sets, 

and using a more complicated satisfaction relation [13]. 

It is also possible to model other logical operators in constructive techniques, 

most notably disjunction (e.g. by a choice construct), but this seems to be of less 

decisive importance for the success of constraint-oriented specification. 
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5.2. System implementation: from styles to methodology 

Intensional descriptions support the implementation of the system achitecture. 

Even if the extensional description was a simple one, say in the monolithic style, 

this does not mean that the system is easy to implement. The distribution of the 

resources available for the implementation may present technical difficulties that 

can only be overcome by introducing internal functions which were not visible in 

the system architecture. A resource-oriented style is best suited for this purpose 

since it enables the description of internal structures in a straightforward way. Each 

of the devised resources may again be described in any of the four styles. This 

iterative integration of different styles in the system design trajectory, see Fig. 3, 

forms the basis of a design method. 

I 
\- resource 

Fig. 3. Related specification styles. 

Specifications in the resource-constraint-oriented style may benefit from a con- 

straint-oriented specification by reusing part of the latter. A state-oriented 

specification style should be viewed as the last step in the formal design trajectory 

and should only be undertaken when no further substructuring of the system or 

resource is required. Such specifications are best derived from monolithic ones. This 

style is most restrictive: implementors can only directly copy the states and state 

transitions in the implementation, e.g. by using table look-up techniques, unless 

they are willing to redesign the system. 

The constraint-oriented and resource-oriented styles can be used iteratively until 

the abstract resources are simple enough to allow some easy mapping of their 

descriptions and arrangements onto implementation constructs. These styles are to 

be preferred for intermediate specifications along the design trajectory, since they 

best match advanced implementation techniques which aim at (partially) automated 

implementation. In the case of complex systems, these styles support genera1 design 

principles which should be adhered to for producing high quality architectures and 

implementations. 

5.3. Specijication styles and specijcation languages 

Our final point of evaluation concerns the extent to which different styles are 

supported by given specification formalisms. In Section 3 the four styles have been 
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characterized in general terms and exemplified with specifications in LOTOS. 

According to [27], specification languages can be characterized by how extensive 

the state component of the underlying model is versus their ability to define allowable 

state transitions, or interaction sequences. Some languages may therefore be more 

suitable to express state-oriented specifications or monolithic specifications and less 

suitable to support mixtures of styles, including styles that favour structuring. 

Consequently, transformations between specifications in different styles may prove 

not possible in a given language. 

LOTOS is considered a broad-spectrum specification language which supports 

the four specification styles mentioned in this paper. It is interesting to note that 

the importance of constraint-oriented specification for the implementation-indepen- 

dent description of open systems has caused significant feedback on the design of 

LOTOS. During the development of the LOTOS standard it has led to a change in 

the definition of parallel composition and more recently it has led to the development 

of Extended LOTOS [5], whose syntax and semantics have been optimized with 

respect to the application of this style. 

6. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAConclusions 

In this paper we have argued that in practice an architecture needs to be structured, 

thus possibly influencing implementation choices, despite the fact that in principle 

an architecture is an implementation-independent definition of externally observable 

behaviour. This implies a responsibility of the architect for the quality of the 

implementations. To exploit this responsibility the architect should obey qualitative 

design principles like orthogonality, generality, and open-endedness. One way to 

obey such principles is by applying specification styles. We have introduced a set 

of specification styles. We have shown that such styles can be used in relationship 

to each other, as elements of a method that supports the complete design trajectory 

from requirement capturing to implementation, where at each level in this trajectory 

different design objectives are supported. The suitability of these styles to various 

aspects of the verification problem has been exemplified. The specification language 

LOTOS has been adopted as a vehicle to convey ideas and to present examples. 

This choice should not be viewed as a limitation of the applicability of specification 

styles. In [30], for example, it is shown that some of our styles can easily be 

determined in the very general framework of equational type logic [21]. 
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