
Specification, Synthesis and Validation of
Hardware/Software Interfaces

Mattias O’Nils

Stockholm 1999

Electronic system Design, Department of Electronics
Electrum 229, Isafjordsgatan 22-26

S-164 40 Kista, Sweden

Submitted to the School of Electrical Engineering, Royal Institute of
technology, in partial fulfillment of the requirements for the degree

of Technical Doctor.

Abstract

Design based on intellectual property (IP) is emerging to close the gap between steadily
increasing capacity, in terms of transistors on integrated devices, and design productivity,
in terms of the number of transistors designed in a given period. However, the integration
of several IP blocks into a single system on one chip makes the specification and imple-
mentation of interfaces (for example, bus interfaces and device drivers) a dominant design
problem for embedded systems. There is therefore a need for effective ways of modelling,
refining, and implementing communication within embedded systems.

This thesis presents one approach to hardware/software interface synthesis that ranges
from the specification to the implementation and validation of hardware/software inter-
face protocols. The information required for hardware/software interface synthesis is sep-
arated into three parts: the protocol specification, information related to the operating
system, and information related to the processor. From these inputs a synthesis tool gener-
ates (a) device driver functions, (b) a combination of device driver functions and a DMA
controller, or (c) simulation models, depending on what the designer decides. The clean
separation of information facilitates (1) efficient design space exploration with combina-
tions of different processors, operating systems and protocols, and (2) efficient mainte-
nance of a large number of different versions and variants of hardware/software
interfaces. The three-phase validation approach is based on standard simulation methods
and facilitates simulation of the interfaces at several steps during development. We keep
all the simulation models consistent with both the specification and the implementation
by generating the models using the same technique that is used for synthesis. Validation
in several phases is justified (1) by the faster simulation of early phases (up to four times
faster than late phases), and (2) by allowing both hardware designers and software devel-
opers to work in their familiar tool environments as long as possible.

Protocols are specified as a grammar, which is fully independent of architecture and
implementation. After the initial selection of implementation alternatives, the methods
presented are fully automated. Using real-life examples we demonstrate the effectiveness
of the simulation models and show that the quality of the generated code is close to hand-
written quality in terms of performance, area and code size.

Acknowledgements

I would like to begin by expressing my gratitude to Professor Hannu Tenhunen for accept-
ing me as a PhD student at the Electronic System Design Laboratory. I would also like to
send huge thanks to Dr Axel Jantsch for agreeing to be my supervisor and for his little
jokes, which helped me overcome the setbacks caused by rejected papers and other obsta-
cles. In my opinion Axel’s supervision has been a textbook example of how a supervisor
should work.

I am very grateful to Professor Ahmed A. Jerraya for agreeing to be the opponent of this
thesis.

I would also like to thank the people at the ESD Lab at the Royal Institute of Technology,
especially Henrik Olson for making my stays in Kista more fun, and Johnny Öberg for his
help during this work, together with the people at ITE, Mid Sweden University, for being
good colleagues, specially Hans-Erik Nilsson and Bengt Oelmann for all the useful and
fun discussions. Thanks also to Miguel Berg and the system administrators in both Stock-
holm and Sundsvall for helping me with computer problem and, of course, a big thank
you to my golfing partners Claes Lindkvist, Stefan Pettersson and Per-Erik Näsholm, who
together with the floorball team Sundsvall Academics helped take my mind off work.

Ingalill Arnfridsson, you’re a well of patience and smiles. Thanks for all the help with
arranging my travels and other boring administrative stuff during my time as a PhD stu-
dent.

I would like to thank the following for their financial support: Mid Sweden University, the
Swedish National Board for Industrial and Technical Development – NUTEK, and the
Swedish Foundation for Strategic Research – SSF.

Lastly I would like to take the opportunity to thank my loving girlfriend Susanne for all
her support and love. Without you, life would be so boring.

Sundsvall, May 1999

Mattias O’Nils

Contents

Abstract i

Acknowledgements iii

Contents v

Abbreviations and Acronyms vii

List of Figures xi

List of Papers xiii

1 Introduction 1
1.1 Thesis outline .. 3

2 Embedded systems 5
2.1 Design challenges.. 7

2.1.1 Specification..7
2.1.2 Design ...9
2.1.3 Validation ..10

2.2 History of codesign research ... 10
2.2.1 Vulcan ...11
2.2.2 COSYMA..12

2.3 Advanced research... 13
2.3.1 COSMOS ..13
2.3.2 Polis...14
2.3.3 CoWare..15
2.3.4 Chinook...15
2.3.5 SpecSyn...16
2.3.6 Tosca ...16
2.3.7 Miscellaneous approaches...17
2.3.8 Summary ...18

3 HW/SW interface design 21
3.1 Definition... 21
3.2 Motivation ... 23
3.3 HW/SW Interface synthesis .. 24

3.3.1 Device driver synthesis ...25
3.3.2 Bus interfaces synthesis ..27

3.4 Validation... 27
3.5 ComSyn... 30

3.5.3 Objective ...30

vi Contents

3.5.4 Design flow ...32
3.5.5 Target architecture...33
3.5.6 Protocol modelling in ProGram..34

4 Summary of papers 37
4.1 Analysis and problem formulation ..37

4.1.1 Paper 1, Norchip 1997 ..37
4.1.2 Paper 8, Norchip 1998 ..38

4.2 Protocol description ...38
4.2.3 Paper 2, Euromicro 1998 ..38

4.3 Protocol synthesis ..38
4.3.4 Paper 3, DATE 1999 ...38
4.3.5 Paper 4, VLSI Design 1999 ..39
4.3.6 Paper 5, Kluwer DAES Submitted 1999...39

4.4 Protocol validation...39
4.4.7 Paper 6, HLDVT 1998 ..39
4.4.8 Paper 7, IPSDP 1998...41

4.5 Author’s contributions ...41

5 Thesis summary 43
5.1 Conclusions..43
5.2 Future work..44

5.2.1 Specification..44
5.2.2 Synthesis ...44
5.2.3 Target architecture...45

6 References 47

Paper 1 57

Paper 2 67

Paper 3 73

Paper 4 81

Paper 5 91

Paper 6 123

Paper 7 133

Paper 8 141

Abbreviations and Acronyms

General
ADC. Analog to Digital Converter

AMPS Advanced Mobile Phone System

API. Application Program Interface

ARM Advanced RISC Machines

ASIC Application Specific Integrated Circuit

ATM. Asynchronous Transfer Mode

CAD. Computer Aided Design

CAN. Controller Area Network

CISC Complex Instruction Set Computer

CMOS Complementary MOS

CORBA Common Object Request Broker Architecture

CSP Communicating Sequential Processes

D-AMPS Digital AMPS

DAC. Digital to Analog Converter

DMA Direct Memory Access

DMAC DMA Controller

DRAM Dynamic RAM

DSP Digital Signal Processing

EDA. Electronic Design Automation

FIFO First In First Out

FSM. Finite State Machine

GSM Global System for Mobile Communications

HCCS. Host Code Cosimulation

HDL. Hardware Description Language

HLS High Level Synthesis

HW Hardware

I/O Input/Output

viii Abbreviations and Acronyms

I2C Inter Integrated Circuit bus

IEEInstitution of Electric Engineers

IEEEInstitute of Electrical and Electronic Engineers

IP Intellectual Property

ISRInterrupt Service Routine

ISS Instruction Set Simulator

LoC.Lines of Code

MOSMetal-Oxide-Silicon

NUTEK Swedish National Board for Industrial and Technical Development

OAM.Operation and Maintenance

OS.Operating System

ProGramProtocol Grammar

RAM.Random Access Memory

RISC.Reduced Instruction Set Computer

ROM.Read Only Memory

RPC Remote Procedure Call

RTL.Register Transfer Level

RTOSReal-Time Operating System

PC.Personal Computer

PDAPersonal Digital Assistant

SDL Specification and Description Language

SSFSwedish Foundation for Strategic Research

SWSoftware

TCCSTarget Code Cosimulation

TDMATime Division Multiple Access

UARTUniversal Asynchronous Receiver Transmitter

USART.Universal Synchronous/Asynchronous Receiver Transmitter

VHDL.VHSIC Hardware Description Language

VHSICVery High Speed Integrated Circuit

VLSIVery Large Scale Integration

VSIVirtual Socket Initiative

YACCYet Another Compiler Compiler

ix

Research groups and approaches
AKKA Royal Institute of Technology’s early codesign approach

CASTLE Codesign and Architecture driven Synthesis TooL Environment

CCG. Communication Classification Graph, defined in [89]

CFSM Codesign FSM, defined in [28]

Chinook University of Washington’s codesign approach

CodeSign Object oriented codesign approach, ETH, Zurich, Swiss

ComSyn Royal Inst. of Techonlogy’s HW/SW interface synthesis tool

COSMOS. An SDL-based Codesign Tool, TIMA, Grenoble, France

COSYMA COSYnthesis for eMbedded Architectures

Cx. Super set of C, defined in [50]

ESG Extended Syntax Graph, defined in [19]

FGM Flow Graph Model, defined in [83]

HardwareC. Modified C dialect for hardware synthesis

LYCOS LYngby COSynthesis system

Polis A codesign system for control application, Berkley, USA

PSM. Program State Machine, defined in [55]

RTC Register Transfer C, defined in[21]

SOLAR FSM based design representation, used in COSMOS

SpecSyn University of California - Irvine’s codesign approach

STG Signal Transition Graph, defined in [80]

Tosca Politecnico di Milano’s codesign approach

Vulcan Early codesign approach presented in [58]

x Abbreviations and Acronyms

List of Figures
Figure 1.1: The growing gap between what engineering teams can design

and what fabrication lines can economically produce [53].2
Figure 1.2: Organization of the thesis. ..4
Figure 2.1: Products that include embedded systems. ..5
Figure 2.2: Typical embedded system...7
Figure 2.3: System synthesis design flow..8
Figure 2.4: Vulcan design flow..11
Figure 2.5: COSYMA design flow. ...13
Figure 3.1: Communication routes in a heterogeneous embedded system.21
Figure 3.2: Break down of the HW/SW communication into different parts.22
Figure 3.3: Simplified schematic of the pay phone controller system.23
Figure 3.4: Mapping of hardware/software communication protocols onto

selected architecture. ..24
Figure 3.5: HW/SW interface design flows. (a) Without HW/SW interface

synthesis tool and (b) with a HW/SW interface
synthesis tool. ...25

Figure 3.6: Device driver protocol mapped onto an architecture........................30
Figure 3.7: Providing device driver implementation for two device driver

protocols mapped onto two RT-kernels and two processors,
using two different APIs, with and without DMA. (a) describes
the generation of implementation with the ComSyn approach,
and (b) with a handwritten library. ...32

Figure 3.8: Overview of the ComSyn synthesis system......................................33
Figure 3.9: Simulation levels in embedded hardware/software systems

development: (a) system description simulation, (b) HW/SW
stub simulation, (c) HW/SW host code cosimulation, and
(d) target code cosimulation. ..34

Figure 3.10: Grammar rule with actions. ..35
Figure 4.1: Identification of paper contents in the ComSyn design flow.37

xii List of Figures

List of Papers

Papers included in this thesis:

1. Mattias O’Nils, Axel Jantsch, “Communication in Hardware/Software Embedded Sys-
tems - A Taxonomy and Problem Formulation”,Proceedings of the 15th IEEE Norchip
Conference, pp. 67-74, 1997.

2. Mattias O’Nils, Johnny Öberg, Axel Jantsch, “Grammar Based Modelling and Synthe-
sis of Device Drivers and Bus Interfaces”,Proceedings of EUROMICRO Conference,
pp. 55-58, 1998.

3. Mattias O’Nils, Axel Jantsch, “Operating System Sensitive Device Driver Synthesis
from Implementation Independent Protocol Specification”,Proceedings of Design,
Automation and Test in Europe (DATE), pp. 562-567, 1999.

4. Mattias O’Nils, Axel Jantsch, “Generation of DMA Controllers from Device Driver
Descriptions”,Proceedings of IEEE VLSI Design Conference, pp. 138-145, 1999.

5. Mattias O’Nils, Axel Jantsch, “Device Driver and DMA Controller Synthesis from
HW/SW Communication Protocol Specifications”, submitted toDesign Automation
for Embedded Systems, Kluwer Academics Publisher, 1999.

6. Mattias O’Nils and Axel Jantsch, “Multi-phase Validation of Hardware/Software Inter-
faces based on Generated Simulation Models”,Proceedings of the IEEE International
High Level Design Validation and Test Workshop, pp. 40-46, 1998.

7. Mattias O’Nils, Axel Jantsch, “HW/SW Interface Validation in IP based System
Design”,Proceedings of International. Workshop on IP based Synthesis and System
Design, pp. 79-84, 1998.

8. Mattias O’Nils, Axel Jantsch, “Refinement of HW/SW Communication Channels:
Case Study and Comparison”,Proceedings of the 16th IEEE Norchip Conference, pp.
230-237, 1998.

xiv List of Papers

Other papers:

1. Mattias O'Nils, Kalle Tammemäe, Axel Jantsch, Ahmed Hemani, Hannu Tenhunen,
“Experiences using Akka: A Hardware-Software Codesign Tool Kit in design of Tele-
communication systems”, Poster session of CAVE'95 Workshop, 1995.

2. Kalle Tammemäe, Mattias O'Nils, Axel Jantsch, Ahmed Hemani, “AKKA: A Codesign
Environment”,Proceedings of 13th Norchip Conference, pp. 249, 1995.

3. Mattias O'Nils, Axel Jantsch, Ahmed Hemani, Hannu Tenhunen, “Interactive Hard-
ware-Software Partitioning and Memory Allocation Based on Data Transfer Profiling”,
Proceeding of International Conference on Recent Advances in Mechatronics, pp. 447-
452, 1995.

4. Kalle Tammemäe, Mattias O'Nils, Anders Tornemo, Hannu Tenhunen, “VLSI System
Level Codesign Toolkit AKKA”,Proceedings of the 14th IEEE Norchip Conference,
pp. 196-202, 1996.

5. Mattias O'Nils, Kalle Tammemäe, Axel Jantsch, Ahmed Hemani, “Design of D-AMPS
Channel Decoder with Codesign Methodologies”,Proceedings of Baltic Electronic
Conference, pp.397-400, 1996.

6. Kalle Tammemäe, Mattias O'Nils, Ahmed Hemani, “Flexible Codesign Target Archi-
tecture for Early Prototyping of CMIST Systems”,Field-Programmable Logic Smart
Application, New Paradigms and Compilers, Springer-Verlag, ISBN 3-540-61730- 2,
pp.193-199, 1996.

7. Kalle Tammemäe, Mattias O'Nils, Axel Jantsch and Ahmed Hemani, “AKKA: A Tool-
kit for Cosynthesis and Prototyping”,IEE Digest no:96/036 of Colloquim on Hard-
ware-Software Cosynthesis for Reconfigurable Systems, pp.8/1-8/8, 1996.

8. Bengt Oelmann, Mattias O’Nils, “Asynchronous Control of Low-Power Gated-Clock
Finite-State Machines”,Proceedings of IEEE International Conference on Electronics,
Circuits and Systems, 1999.

9. Bengt Oelmann, Mattias O'Nils, “A Low Power Hand-Over Mechanism for Gated-
Clock FSMs”,Proceedings of the European Conference on Circuit Theory and Design,
1999.

1 Introduction

Many types of electronic systems exist and they can be found almost everywhere, for
example, cellular telephones, toys, cars, and so on. Looking at the evolution of electronic
products one can identify several characteristics that are becoming more important, and
will therefore also influence the design process. The characteristics are increased system
functionality, more-portable systems (that is, battery operated), and shorterproduct life-

time. Table 1.1 outlines how the different characteristics will influence the design process.
The first and second columns indicate the product trend. Columns 3 and 4 show how each
trend affects the design and the design process.

Both the increase in system complexity and the requirements for low-power operation
lead to increased design time. Increased complexity can also lead to increased power con-
sumption. Design time will therefore increase because the designer needs to put more
effort into low-power design. At the same time, the decreasedproduct lifetimerequires a
reduction in design time. The design task will thus become more complex and the design
time for these systems will need to be reduced. In short, the electronic systems design
process has to be made more efficient by using better design methods.

In the past the driving force behind increased electronic system complexity has been the
advances in silicon technology. Figure 1.1 shows that the gap is increasing between sili-
con capacity, in terms of the number of gates on a chip, and the size of designs. Thus the
limitations are moving towards design productivity rather then technology capacity. This
is becoming a problem for silicon vendors because their production capacity is not fully
used, leading them to take more interest in design issues in recent years [6,15].

Table 1.1: Electronic product trends and their effects on product design.

Product trend ∆ This leads to ∆
Increasing complexity Increasing design time

Increasing power

Decreasing power Increasing design time

Decreasing product lifetime Decreasing design time

2 Introduction

In conclusion we see that there is a demand for more-efficient design methods from both
consumers and producers of electronic systems. This demand also includes efficient
design methods for low power. There are several ways of increasing electronic design
productivity. This thesis concentrates on the system design of the digital parts of embed-
ded systems. However, there exist several unsolved problems in other areas such as ana-
log design [78], electronic system packaging [9] and the integration/testing of electronic
systems [3,68].

There are two major ways of achieving increased design productivity: (1) using computer
aided design (CAD) tools, and (2) using design based on intellectual property (IP) com-
ponents. There are several techniques to achieve low-power operation for a system. This
is also reflected in several research approaches for low-power implementations, for exam-
ple: asynchronous logic [96], highly parallel low-speed structures [22,26], isosynchro-
nous techniques [5,61] or power management techniques [17].

The predominant computer aid for hardware design is still schematic capture and logic
synthesis [39]. Design tools for higher levels of abstractions are becoming more mature
and have resulted in tools for graphical design [103] and tools for high-level synthesis
(HLS) [24,54].

The reuse of hardware IP components is starting to gain recognition in the designer com-
munity. The VSI Alliance [117] for the documentation and exchange of hardware IP com-

1994 1995 1996 1997 1998 1999
0.6µ 0.5µ 0.35µ 0.25µ 0.2µ 0.15µ

Lo
g

sc
al

e
[G

at
es

/c
m

2]

Average Cell-based
Design Start

Figure 1.1: The growing gap between what engineering teams can design and what fabrication
lines can economically produce [53].

Moore’s Law

100k
125k

156k
195k

244k
305k

380k

603k

957k

1,520k

2,410k

3,830k

Widening Gap

1.1 Thesis outline 3

ponents is a good start, but there are still many issues that have to be solved to enable the
complete success of IP-based hardware design, for example, copyright protection [27],
the validation of IP components [38,93] and CAD tools for IP-based design (communica-
tion synthesis) [100,115,124].

Tools accepted and widely used by the software-designer community are C cross compil-
ers and debuggers for particular microprocessors. These tools are usually not portable,
that is, a software development system will only support one processor family (processor
architecture). Only a few software CAD tools support different optimization strategies
and analysis methods for size/performance/power constraints. Tools exists for higher lev-
els of abstractions for software synthesis, that is, case tools [34,42]. These tools enable
designers to work on a higher level of abstraction while the tools themselves handle the
low-level implementation details. These tools have not yet gained widespread recogni-
tion. The reuse of software IP components (code) has been proposed and debated for a
long time in the software community. It is only recently, with approaches like Corba [35]
and JavaBeans [73], that IP-based software design has gained acceptance among design-
ers.

Hardware/software codesign1 is the next evolutionary step for embedded systems CAD
tools. Hardware/software codesign research has been going on for about 10 years
[46,55,82,118]. Although the joint design of hardware and software is much older than
this, the concept of hardware/software codesign is to merge the design flows for hardware
and software into one hardware/software design flow. In recent years codesign research
has resulted in a few commercial design tools like Coware [21], Arexsys [105] and Felix
[104]. Most approaches to hardware/software codesign focus on top-down design, that is,
starting from a high-level specification that is then refined into an implementation. Only a
few research groups focus on methods for IP-based design [47,92,122].

1.1 Thesis outline

The next section goes through embedded systems, embedded systems’ design and the
research in hardware/software codesign. Section 3 analyses the task of hardware/software
interfacing and describes the related work in this area. It also describes the ComSyn sys-
tem, that is, the hardware/software communication synthesis system presented in the
appended papers. Section 4 summarizes the work covered by all papers included in this

1. “HW/SW codesign means meeting system-level objectives by exploiting the synergism of hardware
and software through their concurrent design.” – Giovanni De Micheli, Stanford University.

4 Introduction

thesis. Section 5 summarizes and concludes the contributions of this thesis. It also indi-
cates unresolved problems in communication synthesis. The eight papers that present the
original contribution are appended to the end of the thesis.

HW/SW

analysis
Communication

Paper 1
Paper 8

HW/SW
Protocol

Specification

Paper 2

HW/SW
Protocol

Implementation

Paper 3
Paper 4
Paper 5

HW/SW
Protocol

Verification

Paper 6
Paper 7

Papers included in thesis

Figure 1.2: Organization of the thesis.

2.1 Design challenges 2.2 History of codesign research

2.3 Advanced research

3.1 Definition 3.2 Motivation

3.3 HW/SW Interface synthesis 3.4 Validation

3.5 ComSyn

1 Introduction

2 Embedded systems

3 HW/SW interface design

4 Summary of papers 5 Thesis summary 6 References

2 Embedded systems

Today embedded computer systems have become everyday gadgets for most people, who
use them even without even knowing it. Figure 2.1 and the bulleted items below show
some examples of things, taken from the author’s daily life, that contain one or more
embedded computer systems. Each example includes a description of tasks that can be
carried out by embedded systems.

• microwave oven – providing the user interface and controlling the cooking of food.

• audio equipment – providing the user interface and processing the audio data.

• engine preheater – providing the user interface and controlling the power to the pre-
heater in accordance with the user’s wishes and the climatic conditions.

• cars– today cars usually contain several embedded systems: anti-lock brake controller,
ignition control, air conditioning controller, etc.

• cellular phone – providing the user interface, encoding data, speech compression, etc.

• TV set-top box – controlling the on-screen user interface, image processing, etc.

• Answering machine – compressing and storing speech data.

One reason why embedded computer systems are so popular is the combination of high-
performance hardware with flexible software that has a short design time. The first
embedded systems were banking and transaction systems running on mainframes and

Figure 2.1: Products that include embedded systems.

6 Embedded systems

arrays of disks. Since this sort of equipment was built from very expensive components, it
was used for relatively few but important applications. When equipment was as expensive
as the early mainframes were, it was easy to motivate high costs for the design and main-
tenance of systems.

What is an embedded system?There are probably as many definitions of what an embed-
ded system is as there are designers. The word embedded implies that the system will not
change after it has been designed, and that it has a specific task. This makes sense for the
examples above, but there is actually no generally accepted definition of what an embed-
ded system is. For example, is a PC that only runs a phone book application an embedded
system? Or is a PDA that uses the same processor running the same phone book applica-
tion an embedded system? All embedded systems mentioned in this thesis refer to hard-
ware/software systems with one or more microprocessors, similar to the system shown in
figure 2.2.

An embedded system has several components (see figure 2.2), but the most important
device, which has enabled the evolution of embedded systems, is the microprocessor [64].
The microprocessor has evolved from the simple 4004 [33] from Intel with only a few
thousand transistors, to the microprocessors of today (1999) with 6.5 to 100 million tran-
sistors on a single chip, for example, the AlphaTM 21364 [13], the PowerPCTM 750 [102],
the Pentium IITM[101]. The invention of the microprocessor enabled the use of embedded
systems in low-cost consumer products like the ones listed above. The complexities of the
processors mentioned above, together with memory devices containing up to 256 million
devices on a single chip [1], have made it possible for chips to contain entire systems.
This in turn enables system functionality well beyond traditional ASIC-based systems,
for example, a whole GSM mobile phone can now be integrated on a single chip.

The complexities of today’s systems mean that many problems will emerge during the
design process, as mentioned in the introduction. First of all, the design of embedded sys-
tems embraces several design areas such as distributed system design for linking the sys-
tem’s network of communicating microprocessors and real-time design to ensure that the
embedded system operates within the time constraints set by the user. These constraints
may be soft, as with a laser printer, where a delay in printing a page is not critical, or they
may be hard, as with an autopilot, which must without fail respond in real time. Many
embedded systems include at least a few hard real-time constraints. The designer’s job is
to choose the engine that does the job most economically, but at the same time satisfy
such constraints as physical size and power consumption. However, it is performance

2.1 Design challenges 7

constraints, particularly the hard real-time deadlines, that determine the basic require-
ments of a hardware engine.

2.1 Design challenges

To refine an embedded system from idea to finished product, a designer has to perform a
huge number of design and validation tasks. A great deal of effort is being put into devel-
oping a design tool that offers computer aided design support for the whole design proc-
ess, but several design sub-problems have yet to be analysed and researched before a tool
for system synthesis becomes reality. Figure 2.3 shows a design flow for the design of
hardware/software embedded systems. The tasks within this design flow are identified
below. The different design tasks are divided into three different classes: specification,
design and validation.

2.1.1 Specification

Many different aspects of a system have to be captured in a specification, that is, behav-
iour, architecture and requirements. Writing a specification is a very challenging task
since the specification should be unambiguous, consistent and complete. Specifications
have traditionally been captured, if at all, in natural language. The challenge for the future
in the area of specification is to find formal methods of capturing the information needed
to specify an embedded system.

Figure 2.2: Typical embedded system.

Embedded System

Processor
Core(s)

RAM

ROM

DMA

Application Specific

AD Converter

DA Converter

I/O Interface(s)
Logic

8 Embedded systems

• Behavioural specification. Captures the functional parts of a system, such as algo-
rithms and control flow.

• Architectural specification. Describes the architectural parts of the system, that is,
describes all parts of the system that are reused (for example, processors and IP Com-
ponents).

• Requirements specification. Describes non-functional system requirements, for exam-
ple, throughput constraints, power consumption constraints and descriptions of exter-
nal interfaces.

• Executable specification. Captures the behaviour of the system in a format that can be
executed on a computer, thus enabling validation and elaboration of system properties.

Figure 2.3: System synthesis design flow.

Specification
- Requirements
- Behaviour

Executable spec.

control-flow
Spec. of Spec. of

data-flow

Design

V
al

id
at

io
n

Data-flow oriented Control-flow oriented

Task assignment
Fix. arithmetic precision

Scheduling of tasks
HW/SW partitioning

Estimation

- Architecture

Communication synthesis
Interface synthesis

Code generation
Generation of glue logic

Partitioned spec.

T
he

or
em

 p
ro

ofi
ng

M
od

el
 c

he
ck

in
g

S
im

ul
at

io
n

Te
st

Integration

P
ro

to
ty

pi
ng

2.1 Design challenges 9

• Specification partitioning. Partitions a specification into, for example, control- and
data-flow dominated parts, that is, individual specifications of parts of the system that
need to be handled in different design flows.

2.1.2 Design

To transform a specification into an implementation, a designer has to go through several
refinement steps. The design task can be divided into four stages: (1) applying the specifi-
cation to a specific implementation and estimating design properties, (2) assigning the
specification to execution units and scheduling it, (3) synthesizing the interconnections,
and (4) code generation and integration.

• Task assignment. Break down the specification into a set of tasks that perform the sys-
tem functionality to enable concurrency and optimization.

• Fix arithmetic precision. For fixed-point implementation, the arithmetic width has to
be defined and verified so that the implementation meets the initial specification.

• Estimation. Estimate cost parameters for both hardware and software. Cost parameters
can be, for example, timing performance, gate count (HW), code size (SW), power,
memory size, and statistics on execution frequency. Estimated values are used to aid
designers/tools to make design decisions, thus decreasing the number of design itera-
tions.

• Allocation. Allocate a set of processors and execution units that will deliver enough
computation power to meet all cost, performance and other constraints.

• Hardware/software partitioning. Partition a system into multiple processors and other
execution units. Partitioning decisions should consider timing, power and other cost
constraints.

• Scheduling. Find a system schedule and allocation, taking into consideration timing
constraints and the need to minimize system costs.

• Communication synthesis. Define the communication protocol from the system specifi-
cation, select a suitable communication architecture that fulfils a set of communication
constraints, and map the communication protocol onto the selected architecture.

• Code generation. Generate code that is optimized for each specific execution unit.

• Integration. Integrate hardware, software, memory, etc. into a complete system.

Most of the design tasks will affect each other’s results. For example, the allocation will
affect the partitioning, scheduling and communication synthesis, but at the same time the
communication synthesis can affect all the others. The quality of all design decisions
depends on the quality of the estimation values.

10 Embedded systems

2.1.3 Validation

System validation, which is carried out at the same time as the design and specification
activities, includes verifying the specification, checking that models are consistent with
each other and testing the final system.

• Formal verification. Check models between abstraction levels and proof specifications.

• Simulation. Generate accurate simulation models. Provide simulation models for
cosimulation, for example, hardware/software cosimulation and data-flow/control-flow
cosimulation.

• Prototyping. Rapidly develop an accurate implementation for evaluation, validation
and demonstration purposes.

• Test. Verify that the final implementation of the system meets the initial system specifi-
cations.

2.2 History of codesign research

As mentioned in the introduction, the research field of hardware/software codesign is
about 10 years old. That is, the research for design methods where there is no bias
towards a hardware or software implementation in the initial specification and the design
processes for hardware and software have been merged.

Initially almost every group that worked on hardware/software codesign developed their
own hardware/software partitioning technique. There were approaches that attempted to
speed up the initial software implementation by integrating computationally intensive
parts into hardware [8,45,49,69,94]. Others attempted to partition a set of parallel proc-
esses into hardware and software [14,58,113]. Most of these approaches had evolved from
high-level synthesis.

As the research field has matured a wider range of research topics has been dealing with,
for example, specification [15,71,122], architectural modelling [47,123], partitioning
[48,63,66], scheduling [32,108,110], estimation [52,56,119], communication synthesis
[36,97,115], validation [41,114], code generation [16,77,79] and prototyping [25,60,109].
The most mature topic is hardware/software cosimulation, which has earned a wide rec-
ognition in the designer community with tools like Seamless and the Eagle [41]. Another
area that has resulted in a few start-up companies is communication synthesis, that is,
CoWare [21], Arexsys [105] and Felix [104]. Even though these tools have more features,
it is the cosimulation and communication synthesis techniques that are most important.

2.2 History of codesign research 11

To illustrate the initial research efforts, the following two subsections present two differ-
ent research projects. Each represents one class of approaches: COSYMA [49] (speed-up
of software) and Vulcan [58] (evolved from HLS research). The remaining parts of the
section describe theleading approachesin hardware/software codesign research.

2.2.1 Vulcan

VULCAN takes a HardwareC specification [83] (hardware description language that is a
subset of C with processes) as input. The description is compiled to a data flow graph
model, FGM, that allows multiple threads. Starting with the whole system in hardware,
functionality is successively moved to software. Global and local timing constraints can
be expressed in the specification and a key feature of the partitioning is that it carefully
analyses these timing constraints to meet them while minimizing design costs.

HDL
Specification

Graph
Model

Compilation

Constraints
analysis

Partitioning

Program
Graph

Interface
ASIC
Graph
Model

Assembly
Program

C
Program

ASIC Netlist

Mixed System Implementation

Structural
synthesis

Code synthesis Interface gen.

Compilation

Simulation

Figure 2.4: Vulcan design flow.

12 Embedded systems

Interprocess communication is modelled with send/receive primitives. The tool accepts
blocking, non-blocking and buffered communication. All communication between proc-
esses is performed through static channels. The tool generates a buffered structure for
synchronization and scheduling between processes.

The first assumption made is that non-deterministic operations related to data-dependent
loop operations define the beginning of program threads in software, while all other oper-
ations are implemented in hardware. If the initial assumption is feasible, iterative
improvement is achieved by migrating deterministic operations between the partitions.
Operations for migration are selected so that the move lowers the communication costs
while maintaining satisfactory timing constraints. In addition, communication feasibility
is checked by verifying the process communication for each thread and ensuring that
processor and bus use constraints are satisfied [58]. The output from the system is C code
for software and FGM for hardware (see the design flow in figure 2.4).

2.2.2 COSYMA

The front-end language to the COSYMA system is a Cx (C extended with processes)
description that is compiled into an internal graph-based representation, extended syntax
graph (ESG) [19]. The graph is scheduled [18] into a single serialized process, and a sys-
tem speed-up constraint is calculated to meet the timing constraints. The objective of the
partitioner in this system is to move basic blocks from software to hardware until the sys-
tem speed-up constraint is fulfilled [62]. The partitioning process is divided into two
steps: firstly, an estimation-based partition that uses simulated annealing (inner loop) and,
secondly, an evaluation of the partition feeds back the real values to the inner loop (outer
loop). The simulated annealing in the inner loop starts with an all-software solution and
extracts hardware iteratively until all timing constrains can be met. The objects extracted
for hardware are basic blocks. To calculate the speed-up for each block the difference
between the software execution time and the sum of the hardware execution time and the
hardware/software communication time is measured. Software execution time is captured
using execution profiling refined through static analysis. For the hardware execution time,
each basic block is scheduled to a fixed data path. A hardware cost is generated from the
schedule. The selected partition from the inner loop is evaluated in a cosimulation envi-
ronment. If the constraints are still fulfilled the partition is accepted, otherwise the real
values from synthesis are fed back to the inner loop. The output of the system is C code
for software and an RTL VHDL for the hardware (see figure 2.5 for the design flow).

2.3 Advanced research 13

Communication in the Cx specification is modelled as logical static channels and bundles
of channels. These logical channels can be mapped in the specification onto some prede-
fined communication device/resource. The channel service functions are blocking and
non-blocking send/receive, taken from a communication library [50].

2.3 Advanced research

2.3.1 COSMOS

Jerraya et al. use SOLAR [74] as an intermediate language. It supports system level mod-
elling and synthesis. SOLAR is based on a finite state model extended with concepts of
hierarchy and parallelism and can be generated from C, VHDL and SDL. The design
specification is partitioned by an interactive toolbox called Partif [67]. Partitioning starts
with a set of hierarchical and communicating processes that are characterized by a cost

Cx

system
description

Cx compiler

Simulator

Communication
protocol

ES-graph -> CDFG

CDFG
description

high-level

Communication
protocol

ES-graph -> C

C-description

C compiler
(GNU)

object
code

ES graph

partitioning

cost-
estimation

synthesis

run time
analysis

Outer
partitioning

loop

Inner
partitioning

loop

Figure 2.5: COSYMA design flow.

14 Embedded systems

function and performance. The partitioning tool allows the user to apply system level
transformations to the design:move, merge, split, cut andmap. These transformations are
applied manually by the designer. The designer chooses which transformation should be
applied based on information about interconnection, variable sharing, states, operators in
the data path and local variables. The result from the partitioning tool is a set of design
units connected by abstract channels.

The communication semantics are based on the concept of rendezvous channel communi-
cation via send/receive operations. The types of protocols supported include blocking and
non-blocking communication. A channel is implemented by allocating communication
units from a library [36]. These library units are composed to fulfil a set of constraints put
on the channel. The library consists of a set of communication services and protocols
together with their implementations (a mixture of hardware and software). Interface syn-
thesis techniques are used to permit communication between the processor and the chosen
communication units. The research efforts in the COSMOS system have led to a commer-
cial set of tools called Arexsys [105].

2.3.2 Polis

Polis [10] is focused on control-dominated applications with system architectures com-
posed of a single processor surrounded by custom or library hardware. Polis uses Code-
sign Finite State Machines (CFSM) [28] as the internal representation for a system
description, separating communication, behaviour and timing of the system. The CFSM is
a finite state machine extended with a data path. The communication model is globally
asynchronous, locally synchronous, with non-blocking finite buffers between CFSMs. So
far, translation from Esterel [59] to CFSM has been reported. The description is manually
partitioned with guidance of estimation values. C code and HDL code is generated from
the CFSMs mapped to software and hardware respectively.

Except for the I/O drivers and code generated from the CFSMs, the software code con-
sists of a generated application-specific operating system for the selected processor. All
communication within software or between software and hardware occurs through shared
memory, I/O ports or memory-mapped I/O. The synthesized hardware includes the
address decoders, multiplexers, latches and glue logic. Special-purpose hardware must
follow a simple, data/strobe-based protocol to make it suitable for interfacing with other
CFSMs. The Polis project has led to a commercial set of tools called Felix [104].

2.3 Advanced research 15

2.3.3 CoWare

CoWare [21] is a design environment for heterogeneous hardware/software systems on a
chip. CoWare’s main focus is system integration and the handling of communication in
embedded systems. CoWare accepts heterogeneous communicating processes, which are
specified in a super set of C. This description is then manually refined down to an RTL
description in register transfer C (RTC) or in VHDL/DFL.

The heterogeneous specification is mapped onto different processors (DSP, microcontrol-
ler or hardware). Software is generated with either an application-specific real-time kernel
or generated by using software synthesis techniques [116]. Interprocess communication is
done with point-to-point communication channels. The communication semantics are
based on the concept of rendezvous channel communication via send/receive operations.
Hardware/software communication channels are mapped onto a fixed architecture. This
architecture is based on several library models. For software, the communication proce-
dures are captured as parametrized C functions that are mapped onto a software model,
that is, they adapt to processor-specific I/O handling, interrupt handling, etc. For hard-
ware, a hardware interface cell is generated to connect via a handshake protocol to an I/O
control unit [80,115]. This I/O control unit is a link between the processor and the hand-
shake protocol.

2.3.4 Chinook

The Chinook [30,31] approach extends the commonly used concept of device driver to
include the bus interface as well. The driver/interface is described in a timing diagram
description (SEQ), which captures both the behaviour and timing constraints for the inter-
face. The description is synthesized into low-level software code that accesses the device
via the ports of a microcontroller (for example, Intel 87C51 [2]) together with the
required glue-logic. The synthesis procedure tries to find the cheapest implementation
(smallest amount of hardware) regarding both timing and resource constraints.

In their later work, Ortega et al. [29,97] expand the approach to communication synthesis
for a distributed system. Input to the system is a behavioural description consisting of
communicating processes. The processes communicate with each other via messages sent
through ports connected by channels. All communication is of broadcast type, that is, one
to many unidirectional. For each output port, the designer selects a high-level abstract
protocol, that is, blocking or non-blocking, along with a deadline constraint. For each
input port, the designer selects the appropriate queuing semantics. The designer also

16 Embedded systems

defines a system architecture that consists of heterogeneous processors connected by
standard bus protocols (for example, CAN [121] and I2C [65]). Processes and communi-
cation channels are then mapped onto the selected architecture. The system then gener-
ates the communication interfaces. If there is no direct connection between two
communicating processes, intermediate hop processes are automatically inserted to route
a message from one bus to another bus. For each processor, a customized real-time oper-
ating system is generated that includes a real-time scheduler, a message routing process
and device drivers.

2.3.5 SpecSyn

SpecCharts [55] is used for capturing the system’s behaviour in SpecSyn. It is based on
hierarchical program state machine (PSM). The PSM description allows VHDL code
within the states. Communication in SpecCharts is modelled with shared variables. In
later publications the group presents a specification language, SpecC [122], that has
promising characteristics for IP-based design, that is, better support for interfacing of
components, hierarchy and communication. So far, only specification methods using
SpecC have been reported.

In SpecSyn the SpecChart specification is compiled into an internal representation. Based
on an estimation of cost and performance [56] several design refinement methods are
applied to the system representation, that is, the allocation of processing elements and
partitioning [113]. SpecSyn generates buses for communication between two processes
using a technique called interface refinement. By analysing the size of the data communi-
cated along with the rate of data generation, the bandwidth of the generated bus (number
of wires and rate of transfer) is determined and the communication channels merged onto
the bus. An abstract protocol is then directly implemented using additional control wires.
Arbiters are synthesized to control access to the bus. The software send and receive sub-
routines are modified to use the synthesized bus.

2.3.6 Tosca

Functionality in TOSCA [11] is captured in an OCCAM [75] description. OCCAM is
built on communicating sequential processes (CSP). High-level languages like C (soft-
ware) and VHDL (hardware) can be mapped/connected to the OCCAM description. Only
processes that are written in OCCAM can be used in the exploration of the design space.
Processes connected to the OCCAM description, for example, C, VHDL, are mapped to
software and hardware respectively. The partitioning process starts with expanding the

2.3 Advanced research 17

description to parallel processes at the top level. Processes suitable for hardware or soft-
ware are preallocated to the best implementation. The last step consists of pair-wise col-
lapsing processes to new processes, considering user-defined closeness criteria. This is
done until a user-specified cost constraint is fulfilled [12].

For software synthesis, a virtual machine code (VIS [7]) is generated from the OCCAM
code. The implementation assembler code for the selected processor is then generated by
translation from the virtual machine code. To verify and evaluate the design quality the
TOSCA environment also provides a cosimulation facility, where the virtual machine
code is executed in a VHDL model. The virtual processor accesses the system bus
through a bus interface for the selected processor. The hardware/software interfaces are
implemented with library functions on the software side and a fixed interface structure on
the hardware side.

2.3.7 Miscellaneous approaches

The seven approaches presented in detail in this section represent the most recognized
and successful research groups. However, they still represent only a fraction of the work
being done in hardware/software codesign. Some other research approaches are described
in brief below. The author refers readers interested in hardware/software codesign to
[46,55,82,118].

Lycos [81] is a system for speeding up C programs by implementing computationally
intensive parts in hardware. The main application area has been image processing. Cam-
posano et al. [23] present a similar approach called CASTLE. One system that has
focused on data-flow-dominated systems is Cool [86]. Cool uses a subset of VHDL for
specification. The main objective of Cool is heterogeneous implementation and its crea-
tors present several partitioning algorithms. Eles et al. [48] also present several different
hardware/software partitioning algorithms.

AKKA accepts system specification in C++ and partitions it into hardware and software
components and synthesizes interfaces between them. The hardware component is coded
in behavioural VHDL. Principal features of AKKA [72] are as follows: performance anal-
ysis, hardware/software partitioning [94] and cosimulation and coemulation environment
[70,111].

The CodeSign [47] project presents an approach that starts with a heterogeneous specifi-
cation. The tool supports several design refinements. The project also proposes methods

18 Embedded systems

for object-oriented modelling of the architectural parts. The architectural model is used
during interface synthesis.

Programming language Java is a hot topic in the information technology industry, which
has led to several proposals for using Java for hardware/software codesign. Fleischmann
et al. [51] use Java for specifying dynamically reconfigurable embedded systems. Young
et al. [120] present a method for using JavaTime (extended Java) for specifications and
their successive refinement.

2.3.8 Summary

Even though a considerable amount of work has been done in the field of hardware/soft-
ware codesign there are still several problems to be solved. One can observe that from the
initial approaches, in which research was often aimed at automatically transforming a
specification into an implementation, researchers now tend to focus on more specific
problems. This is also the case in this thesis, which concentrates on the design of hard-
ware/software interfaces or, more specifically, the specification, synthesis and design of
the device-driver part of hardware/software interfaces.

On studying the work done in the area of hardware/software with respect to interface
design, one can observe that tools like CoWare [21], Polis [10] and Cool [86] are prima-
rily designed for situations in which the whole design functionality is captured in its envi-
ronment, with communication then being refined during system synthesis, that is, the
device drivers are generated together with the custom hardware and an application-spe-
cific operating system. If designers use IP blocks and off-the-shelf real-time operating
systems (RTOS), they are faced by the same problems that occur in manual design as
described by Tuggle in [112]. COSYMA [49] and Lycos [81] use libraries for the hard-
ware/software interfaces, which only moves the problems to the provider of the library.
CodeSign [47] and MakeApp [57] are two tools that support the interfacing of IP compo-
nents. CodeSign generates the interface code and an application-specific real-time kernel
for the selected processor. It even supports some DMA access from data-flow specifica-
tions. MakeApp is a tool for generating device drivers for different devices and processors
matching user-defined configurations.

The work presented in this thesis, ComSyn, deals with hardware/software interface syn-
thesis that ranges from the specification to the implementation and validation of hard-
ware/software interface protocols. ComSyn takes an architecture- and implementation-
independent description of the hardware/software interfaces as well as libraries capturing

2.3 Advanced research 19

the architecture. From these inputs a synthesis tool generates (a) device driver functions,
(b) a combination of device driver functions and a DMA controller, or (c) simulation
models, depending on what the designer decides. The clean separation of information
facilitates (1) efficient design space exploration with combinations of different proces-
sors, operating systems and protocols, and (2) efficient maintenance of a large number of
different versions and variants of hardware/software interfaces. This is not achieved by
any of the other approaches.

A careful examination of the problem and a review of the work done in hardware/soft-
ware interfacing is presented in the next section, which also contains a thorough presenta-
tion of ComSyn, the tool for handling of hardware/software interface design developed by
the author.

20 Embedded systems

3 HW/SW interface design

In [89] we discussed the specification and implementation of communication in an
embedded system. There we identified several different communication routes in a hard-
ware/software embedded system, which includes both hardware and software library
components (see figure 3.1). A communication specification can be mapped onto a large
set of heterogeneous implementations (see table 3.1). If the specification can be mapped
onto a distributed system the implementation set will be even larger and the communica-
tion synthesis task even more complicated.

In [89] we also analysed the research dealing with communication in embedded systems.
This analysis led us to focus on the hardware/software interfacing of IP components,
since this was not well covered in the research work we found.

3.1 Definition

A hardware/software interface can consist of up to four parts: (1) device driver functions,
(2) direct memory access (DMA) controller, (3) bus interface, and (4) the register file and
handshake behaviour of the device. A device driver is the wrapper for a hardware device

Library

H11

H12

Hardware Software

Coprocessors

H21

1

2

3

4

6

7

8

9

10
P22component

Processors
11

Figure 3.1: Communication routes in a heterogeneous embedded system.

P21

Library

P11

5
modules

22 HW/SW interface design

accessed from software. The device driver’s behaviour is essentially that of a protocol
defining how the device is accessed and synchronized with software. A device driver can
perform all accesses to the device directly or it can use DMA to transfer data between two
places in the address space. In the last case the device driver controls the DMA controller,
which in turn accesses memory and other devices.

Table 3.1: Communication routes in an embedded system.

Description

1. SW process connected to another SW process on the same processor.

2. SW process connected to another SW process on a different processor, with the
same or a different operating system.

3. SW process connected to an HW process (coprocessor).

4. SW process connected to a peripheral, for example, off-the-shelf component,
library module, etc.

5. SW process connected to a library SW module.

6. HW process connected to another HW process on the same chip (partition).

7. HW process connected to another HW process on another chip (different parti-
tions).

8. HW process connected to a peripheral, for example, off-the-shelf component,
library module, UART, etc.

9. HW process connected to an SW process.

10. Peripheral connected to an SW process.

11. HW coprocessor connected to a library SW module.

c. Device driver behaviour

initialize(...);
open(...);
read(..., data) {...}
write(..., data);
close(...);
interrrupt_handler();

RTOS

Application program

Device drivers & Interrupt handlers

00
01
02
03

Bus interface

Device

dev_1 dev_2 dev_3

Device register

th
re

ad
_1

th
re

ad
_2

th
re

ad
_3

th
re

ad
_4

th
re

ad
_5

Processor

Interface logic

b. I/O data to/from application program

d. Device memory and registers

Figure 3.2: Break down of the HW/SW communication into different parts.

register_1
register_2
register_3
register_4

DMA controller e. DMA controller behaviour

f. DMA controller register file.

a. Device driver entries

3.2 Motivation 23

Figure 3.2 illustrates the dependence of a device driver on various other parts, both hard-
ware and software. We can observe that a device driver contains information on: (a) proc-
essor architecture and behaviour, (b) real-time kernel behaviour, (c) device architecture
and behaviour, (d) access protocol of the device, (e) application programmer interface
(API) rules, and (f) DMA controller architecture and behaviour. Device drivers thus
accommodate a very high information density and are dependent on many parts that can
appear in a large number of combinations. This fact is the reason for the low productivity
of device driver modelling, which is four times lower than for ordinary software code
[20].

3.2 Motivation

Días et al. [40] present a good example of design using IP components, in which more
than 60% of the design consists of IP components. It illustrates how time-consuming the
task of interfacing IP components can be, that is, design of the hardware/software com-
munication parts of the system. Figure 3.3 shows a simplified schematic of the system,
which is a pay phone controller. Consider the following design scenario: A system
designer needs to evaluate the impact DMA controllers have on the system performance
by comparing two alternative architectures of interfaces with the USARTs in figure 3.3:
(1) no DMA controller, and (2) DMA controllers to interface the USARTs. The assess-
ment is difficult because of the many dependencies, and a simple calculation is not accu-
rate enough. This is supported by the observation that in many practical situations the
traffic on the bus is identified as a performance bottleneck only after the system has been
built. Ideally the two alternative architectures should be compared using simulation with
all the interface details included in the simulation models. However, without tool support
this is a formidable task because the designer must develop an entirely different interface
code for each configuration and component. This is necessary because of the huge differ-
ence between implementing a hardware/software communication protocol in pure soft-
ware and implementing it with a DMA controller. This task is so time-consuming that

U
S

A
R

T

U
S

A
R

T

U
S

A
R

T

U
S

A
R

TDisplay
controller

Keyboard
controller

I2C
interface

Real-time
clock Timers

Figure 3.3: Simplified schematic of the pay phone controller system.

ARM7 Memory Counter
array

DMA
controller

24 HW/SW interface design

system designers typically consider a very limited number of design alternatives, and fre-
quently only one. On the other hand a tool is perfectly capable of generating efficient
models for this purpose from a high-level specification of the communication protocols,
as this thesis shows.

In addition to the evaluation of different architectures, there is the task of configuring a
system for different product versions and product generations. For example, in a second
version of the product it is decided to use a different processor and real-time kernel, but
the functionality is the same. If the interface code was written with reuse in mind, that is,
macros for real-time kernel functions and processor instructions are used in the code,
most of the code can be reused. Only the APIs of the code have to be adapted to fit the
new architecture. However, a new processor will require another DMA controller. The
interface code dependent on the DMA controller therefore has to be redesigned.

Now consider the evaluation and design architecture upgrade tasks using a tool for hard-
ware/software communication. The designer maps a protocol description of the interfaces
onto an architecture, that is, real-time kernel, processor and DMA controller (see figure
3.4). The communication synthesis procedure transforms the protocol descriptions into

architecture-specific device driver code and application-specific DMA controllers. This
enables IP providers to supply a wrapper for IP components. A designer that uses these IP
components therefore only has to use the tool to generate the interface code for the spe-
cific architecture.

Figure 3.5 illustrates the differences in design flow between manual and computer aided
hardware/software interface design.

3.3 HW/SW Interface synthesis

Many research groups have recently focused on the problem of communication synthesis
for embedded real-time systems [98]. However, none of them has fully dealt with the
problem described above. Tools like CoWare [21], Polis [10] and Cool [86] are primarily
designed for cases in which the whole design functionality is captured within the tool’s

Figure 3.4: Mapping of hardware/software communication protocols onto selected architecture.

Processor

Real-time kernel

Device driver

DMACHW/SW com.
protocol

3.3 HW/SW Interface synthesis 25

environment and communication refined during system synthesis, that is, the device driv-
ers are generated together with the custom hardware and the operating system. However,
if users want to use IP blocks and off-the-shelf real-time operating systems (RTOS), they
will face the same problems that occur in manual design [112].

As described above, a hardware/software interface consists of several parts that have to be
generated during hardware/software interface synthesis. When generating hardware/soft-
ware interfaces between software and hardware IP components, however, the interface
synthesis task is reduced to the generation of device drivers (including DMA controllers)
and bus interfaces.

3.3.1 Device driver synthesis

Most codesign approaches support the generation of device drivers when a system
description is synthesized down to an implementation. The interfacing of hardware
library components is only supported in a few research projects [47,57,91]. Most
approaches to hardware/software interface synthesis use a parametrized library for the
device driver generation. This is the case for CoWare [21], where communication chan-
nels are mapped onto library procedures (device drivers). These device drivers are cap-
tured as parametrized C functions that are mapped onto a software model, that is, they
adapt to processor-specific I/O handling and interrupt handling. A library component is
therefore interfaced by writing parametrizable C functions. This is also the case for the
Polis system [10].

Designer

Device Driver Bus Interface Device Driver Bus Interface

Library
processor

device kernel

API

protocolDMA

processor device

kernel

API protocol

DMA

Designer

HW/SW interface synthesis

b.a.

Figure 3.5: HW/SW interface design flows. (a) Without HW/SW interface synthesis tool and
(b) with a HW/SW interface synthesis tool.

26 HW/SW interface design

The Chinook [30,31] approach extends the commonly used concept of device driver to
include the bus interface. The driver/interface is described in a timing diagram description
(SEQ), which captures both the behaviour and timing constraints for the interface. The
description is synthesized into low-level software code that accesses the device via the
ports of a microcontroller (for example, Intel 87C51 [2]) together with the required glue-
logic. The synthesis procedure tries to find the cheapest implementation (smallest amount
of hardware) regarding both timing and resource constraints. In their more recent work, in
which communication routes are synthesized onto a distributed architecture [97] with
standard bus protocols, the device drivers are captured as library elements.

In COSMOS [66] a communication channel is implemented by allocating communication
units from a library [36]. These library units are composed to fulfil a set of constraints put
on the channel. The library consists of a set of communication services and protocols
together with their implementations (a mixture of hardware and software).

MakeApp [57] is a tool for generating device drivers for different devices and processors
matching user-defined configurations. MakeApp solves only part of the problems
described in [112] since it does not support operating systems. This means that for exam-
ple semaphores sometimes needs to be inserted when an operating system is used.

Eisenring et al. [47] present a method for modelling the target architecture by means of
object-oriented methods. The architectural model is used to generate hardware/software
interfaces from data-flow descriptions. This is the only approach, besides ours, that han-
dles the mapping of hardware/software communication onto DMA, but their approach is
limited to a set of standard APIs and cannot handle more complex protocols, as in our
approach [87,91].

The approach to device driver synthesis presented in this thesis is unique regarding the
clean separation of behaviour and architecture [91,92], the efficient techniques for model-
ling, and the full support of direct memory access (DMA) [87,91]. The separation of
behaviour and architecture enables the efficient reuse of the protocol descriptions since
they can be mapped onto any combination of processors and real-time kernel. Protocols
can also be mapped to an implementation using DMA. The information and size of the
interface descriptions are much smaller than other modelling techniques [90,91,92,95].

3.4 Validation 27

3.3.2 Bus interfaces synthesis

Bus-level protocols for components are usually described graphically by means of timing
diagrams in a data sheet. For this reason [31] and [85] have developed specification lan-
guages based on timing diagrams. One problem with these approaches is that it is not pos-
sible to specify high-level behaviour. Lin et al. model the interface with an extended STG
(signal transition graph) [80] based on Petrinets. They can use this modelling technique to
model asynchronous events, and an extended-STG model to perform asynchronous syn-
thesis. This approach enables the modelling of more complex behaviours. [44] and [55]
use hardware description languages to model bus interfaces. Gajski et al. use a program
state machine (PSM) to specify interfaces, but in all examples they use the HDL capabil-
ity of the PSM to model interfaces. Öberg et al. present a communication protocol synthe-
sis tool that specifies the design in a special-purpose language, ProGram [124], which is
based on context-free grammar. The synthesizable subset is limited to a regular grammar
with attributed conditions.

Table 3.2 shows a comparison between some of the approaches described above and the
extended version of ProGram presented in this thesis. The table shows that interfaces pre-
sented by other research groups are modelled more efficiently in ProGram. The example
for SEQ in row 4 is an asynchronous circuit, which is the primary target for SEQ but not
for ProGram. The ProGram model is still comparable with the SEQ model, however, and
better suited to synchronous interfaces than SEQ.

3.4 Validation

Validation is as important as design, since a design does not have any value until the
designer knows that it fulfils the desired behaviour. In the traditional method of validating
hardware and software in embedded system design, software is typically developed after a

Table 3.2: Comparison of Lines of Code (LoC).

Reference model LoC ProGram Ratio

HDL (VHDL), list 1 in [44] 20 5 4.0

Extended TD, fig. 1 in [85] 16a

a. Number of conditions specified graphically.

7 N.a.

PSM, fig. 8.10 in [55] 21 12 1.8

Timing diagram (SEQ), [32] 6 6 1.0

Petrinets (E-STG), fig. 5 in [80] 11 6 1.8

28 HW/SW interface design

hardware design has begun to stabilize and prototypes are available for the integration of
the hardware and software. This method provides limited visibility of both hardware and
software operations. Software can also be prototyped in a host environment in which
hardware/software communication is replaced by device drivers that emulate the hard-
ware behaviour [84]. The problem with this approach lies in ensuring that the emulation
models are consistent with the implementation.

The alternative to the sequential validation of hardware/software communication is the
emerging technology of hardware/software cosimulation [41]. Cosimulation means the
simulation of a model of the hardware executing the software. This simultaneously pro-
vides both visibility and control of the hardware model while allowing software execution
to be controlled and observed at all the levels of detail required to understand the behav-
iour of the system. Cosimulation leads to radical improvements in productivity because of
the decreased effort required to model different levels of abstractions. This increased pro-
ductivity comes at the cost of low simulation performance caused by the cost of the syn-
chronization between the software and hardware simulation. Cosimulation can be
performed at several different levels of abstraction and can be implemented in several dif-
ferent ways.

Host code cosimulation: Host code cosimulation (HCCS) is when software is executed
on the host workstation and the hardware/software communication is linked to a hardware
simulator. HCCS can be performed with or without a bus interface. With a bus interface, a
simulation device driver connects the software to the hardware simulator via the bus inter-
face and addresses the device in the same way as it does in an implementation [107]. In
cases where there is no bus interface, the hardware and software, for example, C and
VHDL code, communicate with a handshake protocol [114].

RTL model of processor: The simplest method for hardware/software cosimulation is to
develop an RTL model in HDL of the processor on which the target code is executed. This
method can be improved by implementing an instruction set simulator connected to an
HDL interface [4].

Cosimulation bridge tool: A bridge tool for cosimulation is a tool that connects two or
more simulators, that is, it handles the synchronization and interaction between them. In
the case of hardware/software cosimulation it is connecting an instruction set simulator
(ISS) with an HDL simulator or a gate level simulator [43,107]. More general bridge tools
also exist, such as Ptolomy [37], which can connect a large set of heterogeneous simula-
tors. Valderrama et al. [114] present an approach in which they generate the simulation

3.4 Validation 29

models from an interface description. This approach is similar to ours [88,93], with the
exception that we generate simulation models for commercial tools like Seamless [107]
and support higher abstraction levels.

Commercial hardware/software cosimulation tools like Seamless and the Eagle tools sup-
port selective focus as a mechanism to reduce simulation time. Simulation speed-up is
achieved by filtering the data passed between the processor and the hardware. These fil-
ters can, for example, store the instruction memory locally in the ISS, that is, no code data
is sent over the cosimulation interface. Another way of speeding up simulation is to acti-
vate the bus only during access and disable it at other times (saves HDL simulator time).

Columns 1–2 in table 3.3 respectively contain the name of the cosimulation tool and the
name of the company that provides it. Columns 3–6 indicate what type of cosimulation
each specific tool supports. Columns 3–5 indicate different types of bridge tools: (3) host
code cosimulation, (4) target code cosimulation, and (5) multilingual simulator connec-
tions. The RTL model of processor is indicated in column 6.

The multilevel validation approach presented in section 3.5.5 and [88,93] does not pro-
pose any new validation techniques, rather an improvement of well-established tech-
niques. Both consistency between models and design productivity are improved.
Consistency is improved because all simulation models and implementation are generated
from the same interface protocol description. Design productivity is improved because
the interface protocol descriptions can be reused over and over again and all simulation
and implementation models are derived from the same interface description. The designer

Table 3.3: Commercial cosimulation tools and tools with cosimulation support.

Tool Provider
Bridge tool RTL

modelHCCSa

a. Host code HW/SW cosimulation.

TCCSb

b. Target code HW/SW cosimulation.

Multilingual

Seamless Mentor Graphics x x

Eagle Synopsys x x

Virtual-CPU Summit Design x x

Virtual ICE Yokogawa Electric x

VMLink Yokogawa Electric x

Armulator ARM x

Arexsys Arexsys x x x

30 HW/SW interface design

therefore only needs to write one description and then generate simulation models and
implementation.

3.5 ComSyn

ComSyn is the informal name of the project that is covered in this thesis. This section
summarizes the objective, design flow and refinement methods presented in the appended
papers [87,88,90,91,92,93,95].

3.5.3 Objective

The objective of ComSyn is to reduce the amount of effort required by the designer to
reuse hardware IP components in hardware/software systems by reusing the hardware/
software interface. So far the ComSyn project has only concentrated on the access proto-
cols of hardware/software interfaces, also known as the device drivers. To enable the easy
reuse of hardware components the designer must access the device through an application
programmer interface (API) suitable for the specific project. The designer should not have
to be concerned with the implementation details of the interface. This is achieved in Com-
Syn by separating the behaviour of the protocol from the architecture and capturing the
architecture in two different libraries: one that captures the processor-specific parts and
another that captures the parts specific to the operating system. Implementations are gen-
erated from the behavioural description and the two libraries.

D
M

A
C

A
P

I

Processor RT-kernelprotocol

Figure 3.6: Device driver protocol mapped onto an architecture.

Device driver

Application SW

R
ea

l-t
im

e
ke

rn
el

DMA controller

M
ic

ro
 p

ro
ce

ss
or

3.5 ComSyn 31

The information density of a device driver is very high, which is also the reason for the
low reuse and lower productivity (about four times lower) in writing device drivers com-
pared with application software [20]. In essence, a device driver is an interface protocol
for synchronizing and transferring data between two parties, that is, application software
and the interface device. The device driver can use a real-time kernel and a DMA control-
ler to increase the performance of the implementation. During the implementation the
device driver protocol therefore has to adapt to the application software, microprocessor,
real-time kernel and a DMA controller (see figure 3.6). A device driver contains informa-
tion on:

• processor: a device driver can have processor-specific assembler code in it. Address
calculation for accessing device registers will also depend on the processor.

• real-time kernel: a device driver can have real-time kernel functions for synchroniza-
tion, execution delay and handling of mutual exclusion.

• device: the behaviour of the device and the structure of the interface will affect the
device driver.

• access protocol: the protocol determines how the comminution should be performed.

• API rules: determine how the communication between the device driver and the appli-
cation software is performed.

• DMA controller (when DMA access is required): each DMA controller has its own
unique architecture and behaviour, that is, the device driver has to adapt its behaviour
depending on the DMA controller used.

Using ComSyn the designer only needs to model the access protocol to the device, the
centre in figure 3.6, and let the tool generate the architecturally dependent parts, that is,
the arrows in figure 3.6. To further illustrate the benefits of ComSyn, one can look at the
example in figure 3.7. In this example we want to provide a library of device drivers for
accessing a device. The library is based on two access protocols, and it should support
two processors and two real-time kernels, as well as both DMA and non-DMA access and
two different APIs. To write this library manually (see figure 3.7 (b)), the designer of the
library has to write 16 models for each protocol (that is, a total of 32 models). This does
not include the models necessary for verification. This can of course be improved if the
device drivers are written for reuse with the help of macros, that is, removing the depend-
ence on the processor and real-time kernel. If this is done only 4 models are required for
each protocol, not counting the verification models (that is, a total of 8 models). Applying
the same example to ComSyn one would need 2 models, each describing one access pro-

32 HW/SW interface design

tocol. From these descriptions the ComSyn tool would generate the desired implementa-
tions (see figure 3.7 (a)). This also includes the generation of verification models. One
could argue that if using ComSyn the designer needs to capture the library entries for the
different architectures, but this is almost the same amount of information that needs to be
captured for manually written models using macros.

3.5.4 Design flow

We model device drivers independently of the architecture using ProGram [124]. Pro-
Gram is a grammar-based notation for protocol applications, which is inspired by YACC
[76]. Specifications in ProGram deal with sequences of allowed events as opposed to
states and state transitions in an FSM model. In contrast to parsers for compilers ProGram
allows several concurrent input and output streams. The ProGram description is synthe-
sized into a set of untimed extended state machines [95,124], which is the input to the
architecture mapping procedure described in [87] and [92].

ComSyn

LibraryLibrary

= processor 1

= processor 2

= kernel 1

= kernel 2

= With DMA

= No DMA

= API 1

= API 2

b.a.

Figure 3.7: Providing device driver implementation for two device driver protocols mapped onto
two RT-kernels and two processors, using two different APIs, with and without DMA. (a) describes
the generation of implementation with the ComSyn approach, and (b) with a handwritten library.

protocol 1 protocol 2

3.5 ComSyn 33

There are two types of state machines: access functions and interrupt routines. As shown
in figure 3.8, the mapping procedure uses data from two libraries to generate the architec-
ture-specific code. The first library captures the information on the operating system
architecture (OSLib) and the second library captures the processor-specific characteristics
(ProcLib). This organization carefully separates protocol specification from operating
system and processor dependencies. Using this input the tool can generate three alterna-
tive implementations: (I) pure software implementation, (II) code for mixed hardware/
software solutions with a DMA controller, and (III) multilevel simulation models.

3.5.5 Target architecture

As indicated in figure 3.8, our approach to device driver synthesis supports two alternative
target architectures: (1) pure software implementation, and (2) software together with a
generated DMA controller.

Software implementation: For pure software implementation, access functions and
interrupt routines are implemented as software functions in C, which are mapped to fit the
selected real-time kernel and processor. An interrupt handler is generated for the appro-
priate call of the interrupt routine.

With DMA controller : The combined DMA and software-based architecture is used
when the designer has selected one of the state machines to be implemented as a DMA

Communication protocol
description in ProGram

Extended FSMs

Synthesize FSMs
Library information captured for
the supported SW architectures:
– function declarations
– data types
– kernel functions

Library information captured
for the supported processors:
– processor-specific routines
– processor characteristics
– bus models

MemoryD
ev

ic
e

dr
iv

er

D
ev

ic
e Device

D
ev

ic
e

dr
iv

er

A
pp

lic
at

io
n

A
pp

lic
at

io
n

Processor Processor

Figure 3.8: Overview of the ComSyn synthesis system.

DMA controller

OSLib

Multilevel simulation
models (see figure 3.9)

I. II.

ProcLib

Map Device Drivers onto
the specified architec-

III.

34 HW/SW interface design

controller, which controls the data transfer between a hardware device and memory. This
is the preferred solution if high peripheral data rates must be achieved, and performance
and bus use is critical.

HW/SW simulation models: ComSyn supports the generation of three different simula-
tion models (illustrated in figure 3.9): (b) hardware/software stub simulation models, (c)
device drivers for hardware/software host code cosimulation, and (d) device drivers for
hardware/software target code cosimulation. In stub simulation, hardware and software
are simulated separately. For software simulation ComSyn generates a device driver that
emulates the device behaviour, and for hardware simulation it generates a testbench with
the device driver behaviour. For host code cosimulation, in which software is executed on
the host workstation and hardware simulated in an HDL simulator, ComSyn generates a
device driver that connects the software to the hardware via the HDL simulator interface
instead of reading and writing registers in the same way as in the implementation. Device
drivers for target code cosimulation are the same as the ones used for implementation.

3.5.6 Protocol modelling in ProGram

A ProGram model defines the possible event sequences for several parallel inputs in terms
of a grammar. Actions, which are associated with grammar rules, define the reaction to

Simulation of System
description

Figure 3.9: Simulation levels in embedded hardware/software systems development: (a) system
description simulation, (b) HW/SW stub simulation, (c) HW/SW host code cosimulation, and (d)
target code cosimulation.

Target processor code simulator HW simulator

Cosim connection Hardware
behaviour

Processor entity connected
to cosimulation tools

Processor entity connected
to cosimulation tools

Software simulated in a
target code simulator

Real device
driver

Cosim connection

HW simulator
Code simulated on development system

processor
bus

processor
bus

processor
bus

Device
behaviour

Code simulated on development system

Device
behaviour

SW and processor access
behaviour implemented in HW

HW simulator

a.

b.

c.

d.

System description simulation

HW/SW stub simulation

HW/SW host code cosimulation

HW/SW target code cosimulation

Software executed in
a host environment

Hardware behaviour
simulated in software

Cosimulation
device driver

Software executed in
a host environment

3.5 ComSyn 35

input events and the event sequence on the output ports. A ProGram description consists
of three parts: (1) interface declaration, (2) tokens and memories, and (3) grammar rules
and actions.

Interface declaration: The interface declaration describes the interface to the application
and the device. There are four types of ports to describe the device driver interface: (1)
ports to the application (SW), (2) registers of the interfaced device (HW), (3) internal sig-
nals (internal), and (4) interrupt signals from the device (interrupt). In addition to the type,
a port declaration contains name, direction and bit width. A port declaration of a device
register also requires the register’s relative address.

Tokens and memories: A Token is a pattern of bits read from an input stream or written
to an output stream. It can also be viewed as a constant. Reading and writing tokens are
the primary events. Memories and variables can be defined to maintain a state and to com-
municate between concurrent activities of the protocol implementation. The size and lay-
out of memory fields can be defined.

Grammar rules and actions: The grammar description begins with one or more start
rules. They define concurrent activities and work in practice as process declarations that
define the signals used for the start condition. The synthesis process generates an access
function or an interrupt routine for each start rule. Actions in the grammar specify the
assignment of values to signals. Expressions to compute these values may be put directly
in the assignments or may be associated with some symbols in the action value section.
The assignments can then simply refer to these symbols. The expressions allow concate-
nation and conditionals in addition to the usual arithmetic and logic operations. The oper-
ands can be constants, signals, other action value symbols or bit patterns recognized by
grammar symbols. A grammar rule consists of a grammar symbol that serves as a rule
identifier and a list of alternatives. Each alternative is a sequence of non-terminal sym-
bols, terminals and actions. Passing the new signal stream as a parameter to the subtree of
productions redirects the input stream. Actions are enclosed in curly brackets (see figure
3.10).

grammar_rule_1(sig):symbol_1 grammar_rule_2
| ...
| symbol_n {action_section;};

Figure 3.10: Grammar rule with actions.

36 HW/SW interface design

4 Summary of papers

The eight papers in this thesis can be categorized in four groups: (section 4.1) analysis
and problem formulation, (section 4.2) specification of interface protocols, (section 4.3)
synthesis of interface protocols, and (section 4.4) validation of interface protocols. Sec-
tions 4.1 to 4.4 outline the content and contribution of each paper. The content of each
paper is identified in the design flow of our device driver synthesis tool, ComSyn,
depicted in figure 4.1. Section 4.5 presents an outline of each author’s contribution to the
papers.

4.1 Analysis and problem formulation

4.1.1 Paper 1, Norchip 1997

This paper formulates the problem of communication synthesis in hardware/software
embedded systems (a) by investigating the required concepts at the specification level and
(b) by analysing potential communication routes in heterogeneous hardware/software

Extended FSMs

Synthesize FSMs

MemoryD
ev

ic
e

dr
iv

er

D
ev

ic
e

Device

D
ev

ic
e

dr
iv

er

A
pp

lic
at

io
n

A
pp

lic
at

io
n

Processor Processor

Figure 4.1: Identification of paper contents in the ComSyn design flow.

DMA controller

OSLib

Multilevel simulation
models

ProcLib

Map Device Drivers onto
the specified architec-

Paper 1

Papers 3 & 5

Papers 4 & 5

Papers 6 & 7

Paper 8

Paper 2Communication protocol
description in ProGram

38 Summary of papers

architectures, thereby defining the input and output for communication synthesis. We also
formulate a taxonomy for a complete classification of communication in hardware/soft-
ware embedded systems.

4.1.2 Paper 8, Norchip 1998

This paper compares four different approaches to the specification and refinement of soft-
ware parts in a hardware/software communication channel with respect to design produc-
tivity. The four approaches are CoWare [21], MakeApp [57], ComSyn [87,95,88,92] and
manual refinement. This case study shows how the different tools can improve the design
process. It also shows the deficiencies of the different approaches. The comparison is
done by analysing the impact different techniques have on the design process. The analy-
sis is based on two designs: a channel decoder of a transceiver in a D-AMPS base station
and an operation and maintenance block of an ATM network. We compare design produc-
tivity by comparing the amount of effort required for development, validation and library
maintenance.

4.2 Protocol description

4.2.3 Paper 2, Euromicro 1998

This paper presents an adaptation of the interface specification language ProGram to cap-
ture hardware/software interfaces, that is, device drivers and bus interfaces. ProGram is
used for the architecturally independent modelling of device drivers and bus interfaces for
mixed hardware/software systems. The specification of the protocol is separated from the
description of processor bus interfaces and operating system device driver interfaces,
which ensures high efficiency in device driver development and maintenance. A device
driver synthesis method for single threaded architectures is presented together with the
results of modelling and implementation efficiency for both device drivers and bus inter-
faces.

4.3 Protocol synthesis

4.3.4 Paper 3, DATE 1999

This paper presents a method for generating the software parts of a hardware/software
interface (that is, the device drivers), which separates the behaviour of the interface from
the architecture-dependent parts. The generation procedure targets a real-time kernel-

4.4 Protocol validation 39

based architecture. The synthesis procedure presented uses a ProGram protocol descrip-
tion and two libraries as input. The first library captures the processor-specific parts and
the second captures the operating system kernel parts. The paper also presents an analysis
and specification of the contents for the two libraries.

4.3.5 Paper 4, VLSI Design 1999

This paper presents a protocol synthesis method that generates a mixed hardware and
software implementation, that is, a complement to the approach in paper 3. For the hard-
ware part, the synthesis method will generate an application-specific DMA controller for
each synthesized protocol specification. The software parts of the generated implementa-
tion are components for the initialization and synchronization of and communication with
the DMA controller. Since this approach is based on a device driver synthesis system for
software solutions (in paper 3), which adapts the device drivers generated to a selected
processor and kernel, the generated hardware/software solution can also be adapted to any
processor and OS kernel.

4.3.6 Paper 5, Kluwer DAES Submitted 1999

This paper presents an improvement of the approaches proposed in papers 3 and 4. The
improvements are:

• Improved description of the synthesis procedures.

• Improved software synthesis procedure.

• DMA controller synthesis extended to handle access functions.

• Wider range of examples applied to the synthesis procedures.

• Complexity analysis of the synthesis methods.

4.4 Protocol validation

4.4.7 Paper 6, HLDVT 1998

This paper presents a multiphase validation approach that facilitates the simulation of
interfaces at several steps during development. The technique is base on the generation of
simulation models from an interface protocol description. The presented validation
method keeps the simulation models consistent with both the specification and the imple-
mentation by generating the models with a technique derived from interface synthesis (in

40 Summary of papers

Table 4.1: Author’s contribution to each individual paper (M = main contributor, C = co-author).

Paper #
Author contribution

Contribution
MOa AJb JÖc

1 M C MO : Analysis of communication in embedded systems.

MO : A taxonomy for classification of communication.

AJ: Supervisor.

2 M C C MO & JÖ: Adaptation of ProGram to specification of
HW/SW interface with ProGram.

MO : A method for generating SW code for single-
threaded software.

AJ: Supervisor.

3 M C MO : Analysis and proposal of library structure for cap-
turing architecturally dependent parts of device drivers.

MO : SW code generation methods for real-time kernel-
based embedded systems.

AJ: Supervisor.

4 M C MO : Proposal of a DMA architecture for synthesis.

MO : A DMA controller synthesis method.

AJ: Supervisor.

5 M C MO : Improved description of the synthesis procedures.

MO : DMA controller synthesis expanded to handle
access functions.

MO : Wider range of example applied to the methods.

MO : Complexity analysis.

AJ: Supervisor.

6 M C MO : Multilevel validation technique based on
generated simulation models.

AJ: Supervisor.

7 M C MO : Adaptation of the validation approach to valida-
tion of HW/SW interfaces in IP-based design.

AJ: Supervisor.

8 M C MO : A comparison between three different
approaches with ours.

MO & AJ: Case studies.

AJ: Supervisor.

a. Mattias O’Nils
b. Axel Jantsch
c. Johnny Öberg

4.5 Author’s contributions 41

papers 3 and 5). This method enables the interface specification, simulation models and
implementation to be consistent with each other. The paper shows that several validation
phases are justified (a) by the faster simulation of early phases (up to four times faster
than late phases), and (b) by allowing both hardware designers and software developers to
work in their familiar tool environments as long as possible.

4.4.8 Paper 7, IPSDP 1998

This paper applies the approach taken in paper 6 to the verification of the interface proto-
cols used for IP components in IP-based design. The method of generating simulation
models results in significantly less effort being required to verify interfaces between soft-
ware and IP components.

4.5 Author’s contributions

The contribution of the author of this thesis has been essential to all the papers presented
in the thesis. The exact contribution of each author is described in table 4.1. As described
above, these papers cover the analysis, refinement, design and verification of hardware/
software interfaces.

42 Summary of papers

5 Thesis summary

Aspects of modelling, synthesis and validation of hardware/software interfaces for low
effort reuse have been studied and analysed in this thesis. Sections 2 and 3 give an exten-
sive review of the related work. Section 3 also gives a motivation for the work together
with a summary of the work presented in the eight appended papers. Section 4 identifies
the original contribution for each paper.

The following section summarizes the conclusions reached during work on this thesis,
followed by suggestions for improvements of the approach presented.

5.1 Conclusions

Paper 1 [89] presents an approach to the classification of communication within system
specifications. It also defines the solution space and problem formulation of communica-
tion synthesis for embedded hardware/software systems. The problem formulation works
as a base for the work covered by this thesis.

The thesis presents an approach to the generation of hardware/software interfaces
between application software and hardware IP components. This approach reduces the
effort required in designing the hardware/software interfaces to the generation time of the
interface (see paper 5 [91]). The reuse and generation of device drivers is enabled by
modelling the interface protocols using an architecture- and implementation-independent
description (ProGram) (see paper 2 [95]). ProGram is a grammar-based notation extended
to model device drivers. The protocol description contains less information than compara-
ble models in C because no architectural information is captured in the protocol. Results
from the modelling of design examples indicate that the size of the grammar-based
description is half that of an ordinary C description (see papers 2, 3, 5 and 8
[95,92,91,90]).

Methods for translating the protocol description into software implementation are pre-
sented (see papers 2, 3 and 5 [95,92,91]), as well as into a DMA-based implementation
(see papers 4 and 5 [87,91]). Results from these methods show that the performance (exe-

44 Thesis summary

cution time) and size (code size) for these are similar to those modelled by hand in C (see
paper 5 [91]).

Papers 6 and 7 [88,93] present methods for the generation of hardware/software co-verifi-
cation models. These models can be generated for three levels of abstraction, each level
differs in the details covered and simulation speed. The highest level of abstraction (stub
simulation) gives up to four-times higher simulation performance and allows hardware
and software developers to work in their familiar tool environments. The approach leads
to better consistency between specification and implementation/simulation models for all
abstraction levels, since all models are generated from the same protocol description.

5.2 Future work

5.2.1 Specification

ProGram is the grammar-based description language used to describe communication
protocols. The initial target for ProGram was to capture protocols that were intended for
hardware implementations. In this thesis, ProGram has been adapted to capture interface
protocols intended for a hardware/software implementation. Although ProGram has been
adapted to model hardware/software interface protocols, it still requires awkward descrip-
tions to model certain behaviours, for example, unbounded loops and buffers.

Task: Learn from the results and do a thorough analysis of device drivers, and from this
improve the description language.

5.2.2 Synthesis

The synthesis procedure presented here starts from where the synthesis procedure for
hardware [124] has generated a set of FSMs. The translation from ProGram to state
machines is done with a hardware implementation in mind. The FSMs are then trans-
formed and optimized for software or DMA-based implementation. As shown in this the-
sis, the quality of the generated code is similar to that for handwritten code with respect to
performance and size. It is likely that the code quality will increase if the translations
from specification to implementation are merged, that is, translation from ProGram to
FSMs would be optimized for device driver synthesis. In addition, heuristics for the trad-
ing of size and performance of the generated code could be applied.

5.2 Future work 45

Task: Merge the tasks of protocol description synthesis, architectural mapping and code
generation by developing new methods for translating from description to FSMs.

5.2.3 Target architecture

As presented in this thesis, the methods for architectural mapping only support a simple
bus architecture, as found in an embedded system. No work has been done to study the
generation of device drivers for more complex systems with standard buses such as PCI
[99] or SBus [106].

Task: Analyse the requirements for device drivers in a standard bus structure such as PCI
and SBus, that is, multibus structure. Improve the library structure and the architectural
mapping procedures to handle multibus architectures.

The generation of application-specific DMA controllers presented in this thesis supports
only a read/write architecture. That is, if data is moved from source A and moved to sink
B, the DMA controller first has to read the data from A and then write the data to B. Most
off-the-shelf DMA controllers supports awrite-throughmode, that is, the DMA controller
writes to B at the same time as it reads A. This performance improvement comes at the
cost of changes to the implementation since the DMA controller has to control the sink B
instead of having B controlled from the bus.

Task: Improve the methods for generating application-specific DMA controllers to han-
dle write-through operation.

The granularity of parts of the protocol that can be implemented as a DMA controller is
defined by whole access functions or interrupt handlers. This is not always the optimal
solution since the data dependencies in the access functions can cause several bus opera-
tions.

Task: Develop methods for partitioning device driver behaviour between software imple-
mentation and DMA controller implementation to fit a set of performance and cost con-
straints.

46 Thesis summary

6 References

[1] 256 Mbit SDRAM - 16M x 4 bit x 4 Banks Synchronous DRAM, Data sheet
KM416S16230A, Rev. 0.2. Samsung Electronics Inc., January 1999.

[2] 80C51-based 8-bit microcontrollers, Philips Semiconductors, Netherlands, 1997.

[3] M. Abramovici, M. A. Bruer, A. D. Friedman,Digital Systems Testing and Testable
Design, Rockville, Computer Science Press, 1990.

[4] Advanced RISC Machines (ARM) Ltd., 90 Fulbourn Road, CAMBRIDGE, Cam-
bridgeshire, CB1 9JN, England.

[5] M. Afghahi and C. Svensson, “Performance of synchronous and asynchronous
schemes for VLSI systems”,IEEE Transactions on Computers, Vol. 41, No. 7, pp.
858-872, July 1992.

[6] P. Ainsley, “The Embedded Micro Controller ASIC”,Proceedings of the Interna-
tional Workshop on IP Based Synthesis and System Design, pp. 97-100, 1998.

[7] A. Allara, S. Filipponi, W. Fornaciari, F. Salice, D. Sciuto, “A Flexible Model for
Evaluating the Behavior of Hardware/Software Systems”Proceedings of the 5th
International Workshop on Hardware/Software Codesign, March 1997.

[8] P. M. Athanas, H. F. Silverman, “Processor Reconfiguration Through Instruction-
Set Metamorphosis”,IEEE Computer, 1993.

[9] H. B. Bakoglu,Circuits, Interconnections, and Packaging for VLSI, Addison-Wes-
ley Publishing Company, ISBN 0-201-06008-6, 1990.

[10] F. Balarin, M. Chiodo, P. Giusto, H. Hsieh, A, Jurecska, L. Lavagno, C. Passerone,
A. Sangiovanni-Vincentelli, E. Sentovich, K. Suzuki, B. Tabbara,Hardware-Soft-
ware Co-Design of Embedded Systems: The Polis Approach., Kluwer Academic
Press, 1997.

[11] A. Balboni, W. Fornaciari, D. Sciuto, “Co-synthesis and Co-simulation of Control-
Dominated Embedded Systems”,Design Automation for Embedded Systems, Vol. 1,
No. 3, pp. 257-289, 1996.

48 References

[12] A. Balboni, W. Fornaciari, D. Sciuto, “Partitioning and Exploration Strategies in the
TOSCA Co-Design Flow”,Proceedings of the 4th International Workshop on Hard-
ware/Software Codesign, March 1996.

[13] P. Bannon, “Alpha EV7: A Scalable Single-chip SMP”,MicroProcessor Forum,
October 1998.

[14] E. Barros, W. Rosenstiel, X. Xiong, “A method for partitioning UNITY language in
hardware and software”,Proceedings of the European Design Automation Confer-
ence, 1994.

[15] D. L. Barton, S. C. Fortier, “Using a systems description language for complete avi-
onics systems”,Proceedings of the IEEE Aerospace Conference, pp. 249-254, 1998.

[16] S. S. Battacharyya, J. T. Buck, S. Ha, E. A. Lee, “Generating compact code from
dataflow specifications of multirate signal processing algorithms”,IEEE Transac-
tion on Circuits and Systems, Vol. 42, No. 3, pp. 138-150, 1995.

[17] L. Benini, G. De Micheli,Dynamic Power Management of Circuits and Systems:
Design Techniques and CAD Tools, Kluwer, 1997.

[18] Th. Benner, R. Ernst, A. Österling, “Scalable Performance Scheduling for Hard-
ware-Software Cosynthesis”,Proceedings of the European Design Automation Con-
ference, 1995.

[19] Th. Benner, J. Henkel, R. Ernst, “Internal Representation of Embedded Hardware-/
Software-Systems”,Proceedings of the 1st International Workshop on Hardware/
Software Codesign, 1993.

[20] B. Bohem, B. Clark. E. Horowitz, C. Westland, R. Madachy, R. Selby, “Cost models
for future software life cycle processes: COCOMO 2.0”,Annals of Software Engi-
neering, Vol. 1, pp. 57-94, 1995.

[21] I. Bolsens, H. J. De Man, B. Lin, K. van Rompaey, S. Vercauteren, D. Verkest,
“Hardware/Software Co-Design of Digital Telecommunication Systems”,Proceed-
ings of the IEEE, Vol. 85, No. 3, pp. 391-418, 1997.

[22] R. Brodersen, A. Chandrakasan, S. Sheng, “Design Considerations for Portable Sys-
tems,”IEEE International Solid-state Circuits Conference, February 1993.

[23] R. Camposano, J. Wilberg, “Embedded System Design”,Design Automation for
Embedded Systems, Kluwer Academic Publisher, Vol. 1, No. 1-2, March, pp. 5-50,
1997.

49

[24] R. Camposano, W. Wolf,High-Level VLSI Synthesis, ISBN 0-7923-9159-4, Kluwer
Academic Publishers, 1991.

[25] S. Cardelli, M. Chiodo, P. Giusto, A. Jurecska, L. Lavagno, C. Sansoè, A. Sangio-
vanni-Vincentelli, “Rapid-Prototyping of Embedded Systems via Reprogrammable
Devices”,Design Automation for Embedded Systems, Kluwer Academics Publisher,
Vol. 3, No. 2/3, pp. 149-162, March 1998.

[26] A. Chandrakasan, S. Sheng, R.W. Brodersen, “Low-Power CMOS Digital Design,”
IEEE Journal of Solid-State Circuits, Vol. 27, No. 4, pp. 473-484, April 1992.

[27] E. Charbon, I. Torunoglu, “Intellectual Property Protection Via Hierarchical Water-
marking”, Proceedings of the International Workshop on IP based Synthesis and
System Design, 1998.

[28] M. Chiodo, P. Giusto, A. Jurecska, M. Marelli, “A Formal Specification Model for
Hardware/Software Codesign”,Proceedings of the 1st International Conference on
Hardware/Software Codesign, 1993.

[29] P. Chou, K. Hines, K. Partridge, G. Borriello, “Control generation for embedded
systems based on composition of modal processes”,Proceedings of the Interna-
tional Conference on Computer Aided Design, 1998.

[30] P. H. Chou, R. B. Ortega, G. Borriello, “The Chinook Hardware/Software Co-Syn-
thesis System”,Proceedings of the International Symposium on System Synthesis,
1995.

[31] P. H. Chou, R. B. Ortega, G. Borriello, “Synthesis of the Hardware/Software Inter-
face in Microcontroller-Based Systems”,Proceedings of the International Confer-
ence on Computer Aided Design, pp. 488-495, 1992.

[32] P. Chou, E. A. Walkup, G. Borriello, “Scheduling for reactive real-time systems”,
IEEE Micro, Vol. 14, No. 4, pp. 37-47, August 1994.

[33] Computer on a Chip,IEEE Computer, January, 1971.

[34] Control Design Automation Solution, The MathWorks Inc., Watertown, MA, USA.

[35] CORBA/IIOP 2.2 Specification, Object Management Group, Inc., 492 Old Connecti-
cut Path Framingham, MA 01701, USA, 1998.

[36] J-M Daveau, G. F. Marchioro, T. Ben Ismail, A. A. Jerraya, “Protocol Selection and
Interface Generation for HW-SW Codesign”,IEEE Transaction on Very Large Scale
Integration, Vol. 5, No. 1, pp. 136-144, 1997.

50 References

[37] J. Davis, R. Galicia, M. Goel, C. Hylands, E.A. Lee, J. Liu, X. Liu, L. Muliadi, S.
Neuendorffer, J. Reekie N. Smyth, J. Tsay and Y. Xiong,Heterogeneous Concurrent
Modeling and Design in Java, Memorandum UCB/ERL M98/72, EECS, University
of California, Berkeley, CA, USA 94720, November 23 1998.

[38] A. E. K. Dekdouk, O. Ait-Mohamed, M. S. Jahan, E. Cerny, “What About Formal
Verification of IP-based SoC Designs?”,Proceedings of the International Workshop
on IP based Synthesis and System Design, 1998.

[39] S. Devadas, A. Ghosh, K. Keutzer,Logic Synthesis, ISBN 0-07-016500-9, McGraw-
Hill Inc., 1994.

[40] J. C. Días, J. Riesco, P. Plaza, “Design of an ARM based System-on-a-Chip for Pay
Phones”,Proceedings of the International Workshop on IP Based Synthesis and Sys-
tem Design, pp. 101-105, 1998.

[41] P. Dreike, J. McCoy, “Co-Simulating Software and Hardware in Embedded Sys-
tems“,Embedded Systems Programming, Vol. 10, No. 6, June 1997.

[42] DSP Workshop, The MathWorks Inc., Watertown, MA, USA.

[43] Eagle Tools, Synopsys Inc., 700 East Middlefield Rd. Mountain View, CA 94043,
USA.

[44] W. Ecker, M. Glesner, A. Vombach, “Protocol Merging: A VHDL-Based Method
for Clock Cycle Minimizing and Protocol Preserving Scheduling of IO-Operations”,
Proceedings of the European Design Automation Conference, pp. 624-629, 1994.

[45] M. Edvards, J. Forrest, “A Development Environment for the Co-synthesis of
Embedded Software/Hardware Systems”,Proceedings of ED & TC, E-DAC,
EUROASIC, pp. 469-473, 1994.

[46] S. Edwards, L. Lavagno, E. A. Lee, A. Sangiovanni-Vincentelli, “Design of Embed-
ded Systems: Formal Models, Validation, and Synthesis”,Proceedings of the IEEE,
Vol. 85, No. 3, pp. 366-390. March 1997.

[47] M. Eisenring, J. Teich, “Domain-Specific Interface Generation from Dataflow Spec-
ifications”, Proceedings of the 6th International Workshop on Hardware/Software
Codesign, pp. 43-47, 1998.

[48] P. Eles, Z. Peng, K. Kuchinski, A Doboli, “System Level Hardware/Software Parti-
tioning Based on Simulated Annealing and Tabu Search”,Design Automation for
Embedded Systems, Kluwer Academic Publisher, Vol. 2, No. 1, pp. 5-32, 1997.

51

[49] R. Ernst, J. Henkel, Th. Benner, “Hardware-Software Cosynthesis for Microcontrol-
lers”, IEEE Design and Test of Computers, December 1993.

[50] R. Ernst, Th. Benner,Communication, Constraints and User Directives in
COSYMA, Technical Report CY-94-2, Institut für DV-Anlagen, Technische Univer-
sität Braunschweig, 1994.

[51] J. Fleischmann, K. Buchenrieder, R. Kress, “Codesign of Embedded Systems Based
on Java and Reconfigurable Hardware Components”,Proceedings of Design, Auto-
mation and Test in Europe Conference (DATE), pp. 768-769, March 1999.

[52] W. Fornaciari, P. Gubian, D. Sciuto, C. Silvano, “Power estimation of embedded
systems: a hardware/software codesign approach”,IEEE Transaction on VLSI Sys-
tems, Vol. 6, No. 2, pp. 266-275, June 1998.

[53] R. Foster, “A Design Style to simplify IP Integration and Verification”,Proceedings
of the International Workshop on IP Based Synthesis and System Design, pp. 39-44,
1998.

[54] D. Gajski, A. Wu, N. Dutt, S. Lin,High-Level Synthesis, ISBN 0-7923-9194-2,
1992.

[55] D. Gajski, F. Vahid, S. Narayan, and J. Gong,Specification and Design of Embedded
Systems, Prentice Hall, 1994.

[56] J. Gong, D. D. Gajski, A. Nicolau, “A performance evaluator for parameterized
ASIC architectures”,Proceedings of the European Design Automation Conference,
pp. 66-71, 1994.

[57] R. Grehan, “Driver Assistance”,Computer design, vol. 36, no. 1, pp. 75-80, 1997.

[58] R. K. Gupta,Co-Synthesis of Hardware and Software for Digital Embedded Sys-
tems, PhD Thesis, Stanford, Dec. 1993.

[59] N. Halbwachs,Synchronous Programming of Reactive Systems, Kluwer Academic
Publishers, 1993.

[60] W. Hardt, W. Rosenstiel, “Prototyping of Tightly Coupled Hardware/Software Sys-
tems”,Design Automation for Embedded Systems, Kluwer Academic Publisher, Vol.
2, No. 3/4, pp. 283-318, May 1997.

[61] A.Hemani, T.Meincke, P.Nilsson, T.Olsson, S.Kumar, P.Ellervee,J.Öberg, A.Pos-
tula, “Lowering power consumption in clock by using Globally Asynchronous,
Locally Synchronous Design Style”,Proceedings of the 36th Design Automation
Conference, June 1999.

52 References

[62] J. Henkel, R. Ernst, U. Holtmann, Th. Benner, “Adaptation of Partitioning and High-
Level Synthesis in Hardware/Software Co-Synthesis”,Proceedings of International
Conference on Computer Aided Design, pp. 96-100, 1994.

[63] J. Hou, W. Wolf, “Partitioning methods for hardware-software co-design”,Proceed-
ings of the 4th International Workshop on Hardware/Software Codesign, pp. 70-76,
1996.

[64] G. P Hyatt, United State Patent, Pat. no. 4 942 516, July, 1990.

[65] I2C Peripherals for Microcontrollers, Philips Semiconductors, 1992.

[66] T. Ben Ismail, M. Abid, A. Jerraya, “COSMOS: A CoDesign Approach for Commu-
nicating Systems”,Proceedings of 2nd International Workshop on Hardware/Soft-
ware Codesign, 1994.

[67] T. Ben Ismail, K. O’Brien, A. A. Jerraya, “Interactive System-level Partitioning with
PARTIF”, Proceedings of the European Design Automation Conference, Paris,
France, pp. 464-468, Feb. 1994.

[68] INTEGRATION: The VLSI Journal, Quarterly, North Holland Publishing, Amster-
dam, Netherlands.

[69] A. Jantsch, P. Ellervee, J. Öberg, A. Hemani and H. Tenhunen, “Hardware-Software
Partitioning and Minimizing Memory Interface Traffic”, Proceedings of the Euro-
pean Design Automation Conference, pp. 226-231, 1994.

[70] A. Jantsch, J. Isoaho, “A Versatile Design Validation Environment by Means of
Software Execution, Hardware Simulation, and Emulation”,Proceedings of the 36th
SIMS Simulation Conference, pp 322-325, 1994.

[71] A. Jantsch, S. Kumar, I. Sander, B. Svantesson, J. Öberg, and A. Hemani, “Compar-
ison of Six Languages for System Level Descriptions of Telecom Systems”,Pro-
ceedings of the Forum on Design Languages, vol. 2, pp 139 - 148, 1998.

[72] A. Jantsch, J. Öberg, P. Ellervee, A. Hemani, H. Tenhunen, “A software oriented
approach to hardware-software co-design”,Proceedings of the International Con-
ference on Compiler Construction, pp. 93-102, 1994.

[73] JavaBeans - Specification, Sun Microsystems, Inc., 901 San Antonio Rd., Palo Alto,
CA 94303 USA, 1998.

[74] A. A. Jerraya, K. O'Brien, “SOLAR: An Intermediate Format for System-Level
Modeling and Synthesis”,Computer Aided Software/Hardware Engineering, Ed. J.
Rozenblit, IEEE Publisher, chap. 10, 1994.

53

[75] H. Jifeng, I. Page, J. Bowen,Towards a Provably Correct Hardware Implementation
of OCCAM, Technical Report, Oxford University Computing Laboratory, 1994.

[76] S. C. Johnsson,Yet another compiler compiler, Computing Science Tech. Rep. 32,
AT&T Bell Lab. Murray Hill, 1975.

[77] L. Lavagno, J. Cortadella, A. Sangiovanni-Vincentelli, “Embedded code optimiza-
tion via common control structure detection”,Proceedings of the 5th International
Workshop on Hardware/Software Codesign, March 1997

[78] T. Lee,The Design of CMOS Radio-Frequency Integrated Circuits, Cambridge Uni-
versity Press, 1998.

[79] C. Liem, P. Paulin, A. Jerraya, “Compilation Methods for the Address Calculation
Units of Embedded Processor Systems”,Design Automation for Embedded Systems,
Kluwer Academic Publisher, Vol. 2, No. 1, pp. 61-78, January 1997.

[80] B. Lin, S. Vercauteren, “Synthesis of Concurrent System Interface Modules with
Automatic Protocol Conversion Generation”,Proceedings of the International Con-
ference on Computer Aided Design, pp. 101-108, 1994.

[81] J. Madsen, J. Grode, P. V. Knudsen, M. E. Petersen, A. Haxthausen, “LYCOS: the
Lyngby Co-Synthesis System”,Design Automation for Embedded Systems, Kluwer
Academic Publisher, Vol. 2, No. 2, March, pp. 195-235, 1997.

[82] G. De Micheli, R. K. Gupta, “Hardware/Software Co-Design”,Proceedings of the
IEEE, Vol. 85, No. 3, pp. 349-365, March 1997.

[83] G. De Micheli, D. C. Ku, F. Mailhot, T Truong, “The OLYMPUS Synthesis System
for Digital Design”, IEEE Design & Test of Computers, Vol. 7, No. 5, pp. 37-53,
1990.

[84] L. Mittag, “Device Drivers for Nonexistent Devices”,Embedded System Program-
ming, Aug. 01 1996, vol. 9, no. 8, pp. 30-32,34,36,38,40.

[85] P. Moeschler, H. P. Amann, F. Pellandini, “High-Level Modeling using Extended
Timing Diagrams, A formalism for the behavioral specification of digital hardware”,
Proceedings of the European Design Automation Conference, pp. 494-499, 1992.

[86] R. Niemann, P. Marwedel, “Synthesis of Communicating Controllers for Concurrent
Hardware/Software Systems”,Proceedings of the Design Automation and Test in
Europe Conference (DATE), pp. 912-913, 1998.

54 References

[87] M. O’Nils, A. Jantsch, “Synthesis of DMA Controllers from Architecture Independ-
ent Descriptions of HW/SW Communication Protocols”,Proceedings of the IEEE
VLSI Design Conference, pp. 138-145, 1999.

[88] M. O’Nils, A. Jantsch, “Multi-phase Validation of Hardware/Software Interfaces
based on Generated Simulation Models“,Proceedings of the IEEE Workshop on
High Level Design, Validation and Test, November, 1998.

[89] M. O’Nils, A. Jantsch, “Communication in Hardware/Software Embedded Systems
- A Taxonomy and Problem Formulation”,Proceedings of the 15th IEEE Norchip
Conference, pp. 67-74, 1997.

[90] M. O’Nils, A. Jantsch, “Refinement of HW/SW Communication Channels: Case
Study and Comparison”,Proceedings of the 16th IEEE Norchip Conference, pp.
230-237, 1998.

[91] M. O’Nils, A. Jantsch, “Device Driver and DMA Controller Synthesis from HW/
SW Communication Protocol Specifications”, submitted toDesign Automation for
Embedded Systems, Kluwer Academics Publisher, 1999.

[92] M. O’Nils, A. Jantsch, “Operating System Sensitive Device Driver Synthesis from
Implementation Independent Protocol Specification”,Proceedings of the Design
Automation and Test in Europe Conference (DATE), Germany, pp. 562-567, March
1999.

[93] M. O’Nils, A. Jantsch, “HW/SW Interface Validation in IP based System Design”,
Proceedings of the International Workshop on IP based Synthesis and System
Design, pp. 79-84, 1998.

[94] M. O’Nils, A. Jantsch, A. Hemani, H. Tenhunen, “Interactive Hardware-Software
Partitioning and Memory Allocation Based on Data Transfer Profiling”,Proceed-
ings of the International Conference on Recent Advances in Mechatronics, pp. 447-
452, 1995.

[95] M. O’Nils, J. Öberg, A. Jantsch, “Grammar Based Modelling and Synthesis of
Device Drivers and Bus Interfaces“,Proceedings of the Euromicro Conference, pp.
55-58, August, 1998.

[96] B. Oelmann,Design and performance evaluation of asynchronous micropipeline
circuits for digital radio, Lic. thesis, ISSN 1104-8697, Royal Institute of Technol-
ogy, Stockholm, Sweden, 1996.

[97] R. B. Ortega, G. Borriello, “Communication Synthesis for Distributed Embedded
Systems”,Proceedings of the International Conference on Computer Aided Design,
1998.

55

[98] R. B. Ortega, L. Lavagno, G. Borriello, “Models and methods for HW/SW intellec-
tual property interfacing”, NATO ASI on System-level Synthesis, 1998.

[99] PCI Specification, Version 2.2, PCI Special Interest Group, Oregon, USA, 1999.

[100]R. Passerone, J. A. Rowson, “Automatic Synthesis of Interfaces between Incompati-
ble Protocols”,Proceedings of the 35th Design Automation Conference, June 1998.

[101]Pentium II Processor Developer’s Manual, Intel Inc., October 1997.

[102]PowerPC - MPC 750 RISC Microprocessor Technical Summary, Motorola Inc.,
1997.

[103]Renoir - Reference Manual, Mentor Graphics Corporation, 1998.

[104]J. Rowson, A. Sangiovanni-Vincentelli, “Felix initiative pursues new codesign
methodology”,Electronic Engineering Times, pp. 50,51, 74, June 1998.

[105]M. Santarini, “French allies to blend CASE, EDA in SoC tool”,Electronic Engi-
neering Times, Issue: 1035, November 1998.

[106]SBus Specification, IEEE Std 1496-1993, 1993.

[107]Seamless Co-Verification Environment User’s and Reference Manual, Ver. 2.3,
Mentor Graphics Inc., 1998.

[108]G. C. Sih, E. A. Lee, “Declustering: a new multiprocessor scheduling of periodic,
real-time tasks”,IEEE Transaction on Parallel and Distributed Computing, Vol. 4,
No. 6, pp. 625-637, June 1993.

[109]A. Smailagic, D. P. Siewiorek, R. Martin, J. Stivoric, “Very Rapid Prototyping of
Wearable Computers: A Case Study of Custom versus Off-the-Shelf Design Meth-
odologies,Design Automation for Embedded Systems, Vol. 3, No. 2/3, pp. 217-230,
March 1998.

[110]J. A. Stankovic, M. Spuri, M. Di Natale, G. C. Buttazzo, “Implications of classical
scheduling results for real-time systems,”,IEEE Computer, Vol. 28, No. 6, pp. 16-
25, June 1995.

[111]K. Tammemäe, M. O'Nils, A. Hemani, “Flexible Codesign Target Architecture for
Early Prototyping of CMIST Systems”,Field-Programmable Logic Smart Applica-
tion, New Paradigms and Compilers, Springer-Verlag, ISBN 3-540-61730-2,
pp.193-199, 1996.

[112]E. Tuggle, “Writing Device Drivers”,Embedded Systems Programming, Jan. 1993,
pp. 42-65.

56 References

[113]F. Vahid, J. Gong, D. D. Gajski, “A binary-constraint search algorithm for minimiz-
ing hardware during hardware/software partitioning”,Proceedings of the European
Design Automation Conference, 1994.

[114]C. Valderrama, F. Naçabæl, P. Paulin, A. Jerraya, “Automatic VHDL-C Interface
Generation for Distributed Cosimulation: Application to Large Design Examples”,
Design Automation for Embedded Systems, Kluwer Academic Publisher, Vol. 3, No.
2/3, pp. 199-216, March 1998.

[115]S. Vercauteren, B. Lin, “Hardware/Software Communication and System Integra-
tion for Embedded Architectures“,Design Automation for Embedded Systems, Klu-
wer Academic Publisher, Vol. 2, No. 3/4, pp. 359-382, May 1997.

[116]S. Vercauteren, D. Verkest, J. Van Der Steen, “Combining Software Synthesis and
Hardware/Software Interface Generation to Meet Hard Real-Time Constraints”,
Proceedings of Design, Automation and Test in Europe Conference (DATE), pp.
556-561, March 1999.

[117]VSI Alliance - Architecture Document, Version 1.0, 1997.

[118]W. H.Wolf, “Hardware-Software Co-Design of Embedded System”,Proceedings of
the IEEE, vol. 82, no. 7, July 1994.

[119]T. Y. Yen, W. Wolf, “Performance estimation of distributed embedded systems”,
Proceedings of the International Conference on Computer Design, 1995.

[120]J. S. Young, J. MacDonald, M. Shilman, A. Tabbara, P. Hilfinger, A R. Newton,
“Design and Specification of Embedded Systems in Java Using Successive, Formal
Refinement”,Proceedings of the 35th Design Automation Conference, 1998.

[121]H. Zeltwanger, “An inside look at the fundamentals of CAN,Control Engineering,
42(1), January 1995.

[122]J. Zhu, R. Dömer, D. D. Gajski, “Syntax and Semantics of the SpecC Language”,
Proceedings of the Synthesis and System Integration of Mixed Technologies, Decem-
ber 1997.

[123]J. Zhu, D. D. Gajski, “A Retargetable, Ultra-fast Instruction Set Simulator“,Pro-
ceedings of the Design Automation and Test in Europe Conference (DATE), pp. 298-
302, March 1999.

[124]J. Öberg, A. Kumar, A. Hemani, “Grammar-based Hardware Synthesis of Data
Communication Protocols”,Proceedings of the 9th International Symposium on
System Synthesis, pp. 14-19, Nov. 1996.

	Cover
	Abstract
	Contents
	List of papers
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5

