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Abstract

This paper discusses the problem of testing misspecifications in semiparametric

regression models for a large family of econometric models under rather general

conditions. We focus on mainly three issues that typically arise in econometrics.

First, many econometric models are estimated through maximum likelihood or

pseudo-ML methods like for example limited dependent variable or gravity mod-

els. Second, often one might not want to fully specify the null hypothesis. In-

stead, one rather wants to impose some important structure like separability. In

order to address these points we introduce an adaptive omnibus test. Special em-

phasis is given on practical issues like bias reduction, adaptive bandwidth choice,

general but simple requirements on the estimates, and finite sample performance,

including the resampling approximations. 1
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1 Introduction

When estimating structural econometric models, it is quite difficult to find a situa-

tion where economic theory or other information from outside the data enables us to

fully specify a model without taking the risk of a serious misspecification. On the

other hand, to a certain extent (parametric) modeling is wanted by the researcher,

or required by the nature of data in order to overcome problems like identification,

estimation, interpretation, numerical performance, etc. To manage this trade-off, that

is where semiparametric models are made for. They enable us to include available

information and necessary restrictions keeping the rest unspecified. The specification

imposed is not limited to parametric functional forms; it can be either the separability

of inputs, monotonicity or the conditional distribution. The latter for example might

be explored to estimate the mean function of limited dependent responses where alter-

native estimators are either difficult to obtain or are hard to calculate (cf. Lewbel and

Linton, 2002).

Although under such semiparametric approaches the risk of misspecification is consid-

erably reduced, the problem is not negligible. For example, within the framework of

conditionally parametric models the root-n consistency of the parameters of interest

is not obtained for free; it is obtained under stronger conditions including the cor-

rectness of all prior information. Consider the so-called Tobit model where a linear

structure in the index function might be recommended by economic theory. However,

it does not guide us when choosing the conditional distribution of the latent variable.

The censored Gaussian density is typically chosen just for convenience. Similarly, the

pseudo-ML fails if either the moments of interest (typically the mean) are not correctly

specified or the score functions do not constitute a valid set of moment conditions. For

example, the Poisson pseudo-ML for gravity models is inconsistent even if there is just

a small zero-inflation, i.e. a hurdle for trade.

As a conclusion of the above discussion we concentrate on problems where the main
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interest is related to the conditional mean. Regression tests are mainly available for

purely parametric null hypotheses. However, economic theory does not fully specify

the index plus the conditional distribution. Instead, it might be that it introduces

assumptions such as additivity transformations , homothetical (Lewbel and Linton,

2007) or weak separability. In those cases, the null hypothesis to be tested is semi-

parametric like for example the one of insignificant interactions (Sperlich, Tjøstheim,

and Yang, 2002). Therefore we are testing semiparametric null hypotheses that are

related to the mean function which is often estimated by (pseudo-) ML-methods. So

our null hypothesis is about the mean, not the conditional distribution, though it may

be affected by its particular choice.

For testing a parametric regression model against a broad set of alternatives, many

specification tests are available. Following Hart (1997), mainly two approaches are

considered: statistics that compare parametric vs nonparametric fits, and those that

appear as a weighted average of the residuals. The literature on specification test-

ing has been increasing with almost any new volume of an econometrics or statistics

journal; see Gonzalez-Manteiga and Crujeiras (2013) for a review. Nonetheless, non-

parametric testing is still less common for semiparametric latent variable models (see

Pardo-Fernández, Van Keilegom, and González-Manteiga, 2007). Here we introduce a

feasible omnibus test where the null hypothesis can be any parametric or semipara-

metric regression model. The testing target and the test statistic are both original.

Moreover, the test is data adaptive giving special emphasize on the calibration (see

Sperlich, 2013). In order to provide a broadly applicable procedure, we require the

estimates of the null model to fulfill rather general conditions. Many of the semipara-

metric econometric models are based on kernel smoothing, especially when thinking

of profiled likelihood based estimates. We therefore have decided for a test statistic

that evaluates kernel-convoluted differences2. Using kernels or other smoothing meth-

ods, a bandwidth needs to be chosen which regularizes the smoothness of the potential

2Else, empirical process technologies had to be applied which are based on somewhat different
assumptions and therefore test for slightly different alternatives.
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alternatives.

Although the problem of bandwidth selection for a test is related to the question of

calibration and power, it is often not treated very carefully. The so-called adaptive

tests try to balance the need for calibration on the one, and the power maximization

on the other hand; see for example Kallenberg and Ledwina (1995), Spokoiny (2001),

Härdle, Sperlich, and Spokoiny (2001), or Guerre and Lavergne (2005). We adapt

the ideas of the latter three articles to our problem. However, there is an important

difference between these mentioned articles and ours: Our null hypothesis is semipara-

metric whereas theirs are fully parametric. This leads to some conditions on how the

smoothing of the null model relates to the one of the alternative in order to obtain a

consistent test. Like in the above mentioned papers, and since the asymptotic proper-

ties are little helpful in finite samples, to approximate the critical values the inference

is done via resampling methods. This reminds us that for a nonparametric test with

a semiparametric null hypothesis one has to choose three regularization parameters at

least: one for estimating the null, one for the test (referring to the smoothness of the

alternative), and one for estimating the critical value. The latter is either the band-

width for generating bootstrap samples under the null or the size of subsamples when

subsampling is applied instead. Note that this triple choice problem is not specific

to our problem but typical for all smoothing based tests with a semiparametric null3.

While the bandwidth for the null model should be chosen along standard criteria for

regression estimation (see Köhler, Schindler and Sperlich, 2013), the testing bandwidth

should ideally maximize power. This is why we propose an adaptive test which auto-

matically provides such a testing bandwidth. We further discuss methods to select the

regularization parameter of the resampling procedure to reach calibration of the test.

As we give special emphasis to the practicability of our procedures, we study in detail

the resulting performance of our proposals.

Summarizing, we present a practical though general approach that allows for testing

3You need even be more if for example ideas of Zheng (1996) are used to construct the test.
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semiparametric hypothesis that are quite frequently used in the specification of econo-

metric models such as qualitative response models, truncated and Tobit type specifi-

cations, duration models, etc. A main theoretical result of this contribution is that a

nonparametric test of a semiparametric null hypothesis is considered. It highlights the

conditions on the smoothing that have to be performed in the different steps.

2 Proposal of the Test Statistic

Suppose that we have a sample of n independent replicates {(Yi, Xi)}i=1,··· ,n from the

pair of random variables Y ∈ IR, X ∈ X being X a compact set X ⊂ IRd, such that

the conditional distribution of Y given X is `Y |X (y, x). As we already pointed out

in the introduction, our interest is focused in testing the correct specification of the

regression function

m (x) =

∫
y `Y |X (y, x) dy. (1)

There exist a pleiad of consistent regression specification tests that do not depend

on a pre-specified choice of `Y |X (y, x). However, in some situations of interest for

economists, such as multi-index models (Tobit type models, Amemiya, 1985) prac-

titioners prefer to work under standard assumptions such as Gaussian errors of the

underlying latent variable model.

If this is the case, the null hypothesis will take the form

m0 (x) =

∫
y `0

Y |X (y, x; θ, η1, · · · , ηp) dy, (2)

with a family of conditional distributions

{
`0
Y |X (y, x; θ, η1, · · · , ηp) : θ ∈ Θ, η1(x1) ∈ H1, · · · , ηp(xp) ∈ Hp

}
, (3)

where Θ is a compact subset of IRk, H1, · · · , Hp are respectively compact subsets in
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IR, and V is a compact subset in IRν . The vectors xj ∈ Xdj , j = 1, · · · , p, are mutually

exclusive subsets of x such that X = Xd1 × · · · × Xdp . Further, the η are assumed to

be unknown smooth functions ηj : Xdj → Hj that take values in a set

Γj =
{
ϕ ∈ C2

(
Xdj
)

: ϕ(xj) ⊂ Hj for all xj ∈ Xdj
}
.

In order to motivate our problem of interest consider the latent regression model

y∗ = xT1 γ + η (x2) + u, (4)

where the ui’s are assumed to be random drawings from N (0, σ2). γ is an unknown

vector of parameters that needs to be estimated and we introduce a nonparametric

relationship η (·) that also needs to be estimated. Assume the following mechanism of

censoring,

y =

 y∗ if y∗ > 0

0 if y∗ ≤ 0
.

Then

log `0
Y |X (y, x; θ, η) = 1{y=y∗}

1

2

[
− ln (2π)− ln

(
σ2
)
−
(
y − xT1 γ − η (x2)

σ

)2
]

+1{yi=0} ln

[
1− Φ

(
xT1 γ + η (x2)

σ

)]
.

and the regression function takes the form

m0 (x) = Φ

(
xT1 γ + η (x2)

σ

)xT1 γ + η (x2) + σ
φ
(
xT1 γ+η(x2)

σ

)
1− Φ

(
xT1 γ+η(x2)

σ

)
 ,

where φ(·) and Φ(·) stand respectively for the pdf and the Gaussian distribution func-

tion. Note that for the null hypothesis to be true, we do not only need a correct

specification of (4). We also need correct specification of both, the censoring mech-

anism, the conditional distribution and the homoskedasticity assumption. Of course
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there are situations such as non-existing moments, quantiles or other robust quantities

where focusing on the likelihood would be more natural. In many cases the estimator

for m (x) under the null can be calculated directly from some consistent estimators θ̂

and η̂1, · · · , η̂p, and can generally be written as

m̂S (x) =

∫
y `0

Y |X

(
y, x; θ̂, η̂1, · · · , η̂p

)
dy.

We will specify the above mentioned consistent estimators in assumption (C.1). Let

ω(u) ≥ 0 be a bounded weight function. Then the testing problem can be written as

H0 : m(x) = m0(x) ∀x ∈ X for which ω(x) > 0,

H1 : m(x) 6= m0(x) with x ∈ X for which ω(x) > 0.

Several alternative testing approaches are thinkable. Several comparison studies (Dette,

von Lieres und Wilkau and Sperlich, 200; Roca-Pardiñas and Sperlich, 2007) show that

a quite successful one is to construct a statistic with convoluted differences in order to

handle the bias problem. For kernel K : IRd → IR, bandwidth h, define

Ih

(
η̂1, η̂2, · · · , η̂p, θ̂

)
=

∫ [
1

nhd

n∑
j=1

K

(
x−Xj

h

)
(Yj − m̂S (Xj))

]2

ω (x) dx. (5)

The statistical properties of this statistic depend both on the choice of the bandwidth

h, and the asymptotic behavior of θ̂ and η̂1, · · · , η̂p. On these grounds, it is important

to discuss how the smoothing parameters and the estimators are chosen. With respect

to the estimators, for the parametric part θ, we require a root-n consistent estimator.

In this way, the parametric estimator does not affect the asymptotic distribution of

the test statistic. This may happen with other estimators that exhibit a slower rate

of convergence. For the nonparametric estimators, only one minimal requirement of

uniform convergence at a certain nonparametric rate, r, is assumed.

(C.1) The function `0
Y |X is Lipschitz continuous in all its arguments. Under H0 we
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have

sup
xj∈Xj

|η̂j (xj)− ηj (xj)| = Op

(
n−rj (log n)rj

)
for 1

4
≤ rj <

1
2
, j = 1, · · · , p, and θ̂ = θ +Op

(
n−1/2

)
, as n tends to infinity.

This requirement is rather general since it is fulfilled by most part of nonparametric

estimators that appear in the econometric literature. Furthermore, by imposing this

condition we avoid that the statistical properties of the test neither depend on the form

of the estimator for the η’s nor in their bandwidth parameters. As it was already estab-

lished in Stone (1982), the optimal rate of convergence, rj, depends on the smoothness

class in which ηj is assumed to be, the dimension of xj or the type of deviation function

we are choosing. More precisely, the uniform maximal deviation converges slowly to

zero by a factor log n (see Mack and Silverman, 1982, section 3). Note that rj is strictly

smaller than 1/2 as it is also expected in the nonparametric literature. For example,

if the second derivative of ηj is Hölder continuous and the dimension of xj is dj, the

optimal rate will take the value rj = 2
4+dj

. We also impose that rj ≥ 1
4
. That is, the

rate of convergence does not have to be too slow. The same condition is also imposed

in Severini and Wong (1992) for the nonparametric estimator that is included in the

conditionally parametric model. For an example of estimator for ηj that fulfils these

conditions see Rodriguez-Poo, Sperlich and Vieu (2013), Section 5.

The choice of bandwidth h in (5) should ideally maximize the power of the test. As the

distribution of Ih will vary with h, it is natural to consider the standardized version

Th =
nhd/2Ih

(
η̂1, η̂2, · · · , η̂p, θ̂

)
− h−d/2B̂√

V̂
, (6)

where B̂ is an estimator of the expectation of nhd/2Ih under H0,

B =

∫
K2(u)du

∫
σ2(u)p(u)ω(u)du, (7)
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and V̂ an estimator of the variance of nhd/2In, i.e.

V =

∫
K(2)(u)2du

∫
σ4(u)p2(u)ω2(u)du. (8)

Here, we denote by K(2) the convolution of kernel K, p is the marginal density of X,

and σ2(x) is the conditional variance of Y given X. The standardization (6) creates

a family of test statistics {Th, h ∈ Hn}, where the choice of h marks the difference

between the null and the global alternative. Following the idea of adaptive testing

(Spokoiny, 2001) we propose to use test statistic

T ∗ = maxh∈HnTh (9)

where the value of h is taken from a set of bandwidths Hn with cardinality Jn, namely

Hn =
{
h = hmaxa

k : h ≥ hmin, k = 0, 1, 2, · · ·
}
, 0 < hmin < hmax, 0 < a < 1. (10)

Another relevant issue in the computation of the test statistic is the estimation of σ2(x).

Note that this variance expression appears in (7) and (8). Horowitz and Spokoiny

(2001) propose an estimator for σ2(x) that needs to be consistent under the alternative.

Often such an estimator is not easily available or it is only under the costs of further

restrictions. The difference estimator proposed by them works only reasonably well in

one dimensional regression problems. Here, we do not need such a strong condition

but instead we just ask for an estimator of σ2(x) fulfilling the following assumption

(C.2) supx |σ̂2(x)p̂(x)− σ2(x)p(x)| = op

(
h

µd
2(2+µ)/ log n

)
, for some µ > 0 and for all

h ∈ Hn.

Guerre and Lavergne (2005) discuss some drawbacks of the Horowitz-Spokoiny ap-

proach and propose an alternative choice of h that will be considered in Section 4

together with its practical implementation.
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An analytical expression for the critical values of T ∗ needs extreme value theory. As

this is cumbersome and it gives little helpful approximations in practice, we propose

resampling strategies. No matter whether (wild) bootstrap or subsampling is applied,

for the resampling estimates, say ˆ̂mS(x) and ˆ̂σ2(x), we ask for similar conditions as in

Horowitz and Spokoiny (2001), that is:

(C.3) As n tends to infinity, conditionally on the sample {x1, x2, . . . , xn}

sup
x

∣∣∣m̂S(x)− ˆ̂mS(x)
∣∣∣ = Op (|m(x)− m̂S(x)|) ,

sup
x

∣∣∣σ̂2(x)− ˆ̂σ2(x)
∣∣∣ = Op

(∣∣σ2(x)− σ̂2(x)
∣∣) .

Note that assumption (C.3) is rather general. In order to be more precise about the

consistency of the resampling estimates we have to be more specific about the model and

the estimators considered, loosing thereby the pretended generality. For the consistency

of related bootstrap problems see for example Giné and Zinn (1990) or Härdle, Huet,

Mammen, and Sperlich (2004). The alternative subsampling (Politis, Romano, and

Wolf, 1999) procedure works similarly. One draws subsamples of size ns < n from the

original sample {Xi, Yi}ni=1. Take b = h (n/ns)
r as the bandwidth for the subsampling

estimator to calculate the subsample analogues, T̂ ∗. r is the chosen bandwidth rate.

Finally, compute the empirical 1− α quantile as above. In cases where H0 is violated,

as n tends to infinity, nhd/2Ih grows faster than nsb
d/2I∗b , and therefore T̂ ∗ will become

larger than T ∗ resulting in a rejection of H0. General results on asymptotic theory

can be found in Politis, Romano, and Wolf (2001). To our knowledge, the choice of

optimal subsample size ns for non- and semiparametric specification testing has only

been treated by Delgado, Rodriguez-Poó, and Wolf (2001), and Neumeyer and Sperlich

(2006).

One may also estimate B̂, V̂ , and this way implicitly also σ2(x) by resampling. For

the bootstrap we generate samples {Xi, Y
∗
i }ni=1 with Y ∗i drawn from the estimated
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null distribution, and calculate T̂ ∗ like before T ∗. Repeating this many times we can

calculate the empirical 1− α quantile of T̂ ∗, tα, and use it as critical value for T ∗.

3 Asymptotic Behavior

For the ease of notation but without loss of generality we set p = 2 for the rest of the

paper. Recall that level and power of our test will depend on the theoretical properties

of η̂1 and η̂2 (p = 2), appearing in the test through m̂S (x). Therefore, we first analyze

the properties of this regression function estimator and afterward the test. We use the

following assumption on Y :

(B.1) For some s > 0, E |Y |s <∞ and
∫
|Y |s dy = Ms <∞.

The first result is a crucial tool when studying our test statistic. Note that by having

considering a separable model we avoid the curse of dimensionality under the null.

Lemma 1. Under conditions (C.1) and (B.1), if the null hypothesis H0 is true, for n

tending to infinity,

sup
x∈X
|m̂S (x)−m (x)| = Op

(
bnn

−r1 (log n)r1 + bnn
−r2 (log n)r2

)
+Op

(
bnn

−1/2
)
.

Where bn is an increasing sequence for which
∑

n b
−s
n converges.

To study the properties of statistic T ∗ we need the following additional conditions:

(S.1) The functionm (x) is β-times continuously differentiable at point xj ∈ Xj ⊂ IRdj .

(S.2) Densities p and pj of Xj, j = 1, 2, are β-times continuously differentiable on Xj.

(S.3) Let α(x)2+µ = E (Y 2+µ|X = x). The function α(x)2+µ is bounded above and

below, for µ = 0 and for some µ > 0 in any place in the support of X .
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(K.1) K is a compactly supported and continuously differentiable kernel of order β

satisfying
∫
K(u)du = 1.

These are standard conditions on kernel and smoothness of densities and conditional

expectations. The next set of conditions defines the set of bandwidths for the test

statistic and relates it to the smoothing applied when estimating the null model m̂S.

(H.1) The set Hn of bandwidths has the structure (10) with hmax > hmin ≥ n−
1
d and

hmax is at most CHn
2
d

(2r−1)b2
n (log n)−2r for some finite constant CH > 0, and

r = min{r1, r2}. Furthermore, Jn ∼ log n as n tends to infinity.

Assumption (H.1) is similar to Horowitz and Spokoiny (2001). However, there is an

important difference. The fact that we have a non- or semiparametric null hypothesis

increases the bias problem. Often, the bias problem has been solved by smoothing

the (parametric) estimator under the null hypothesis, too. In our case, we smooth the

function estimate under the null which already shows nonparametric rates of conver-

gence, recall Section 4. To control for this problem the upper bound of the set Hn

depends on the rate of convergence of m̂S(x). In the case r = 1
2
, that is the null hy-

pothesis is fully parametric, the upper bound coincides with that assumed by Horowitz

and Spokoiny (2001). However, as it is in our case, if the estimator under the null

exhibits a nonparametric rate, then hmax must tend to zero at a rate that adapts to

the convergence rate of the estimator. As usual, conditions (S.1), (S.2), (K.1) take care

for the reduction of the higher order terms of the bias. Then, the asymptotic behavior

of the test under H0 is given by

Theorem 1. Assume that conditions (C.1)-(C.3), (S.1)-(S.3), (B.1), (K.1) and (H.1)

hold. If the null hypothesis H0 is true, then for n tending to infinity

P (T ∗ > tα)→ α.
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In order to determine the power, we define a sequence of local alternatives.

Ha : m(x1, x2) = m0(x1, x2) + γn

∫
ψ (y, x1, x2) dy , (11)

where function ψ(·), not depending on n, shall describe the deviation from the condi-

tional density under the null, respectively from the mean function, and the sequence

γn is supposed to be such that:

(A.1) For all h ∈ Hn, γn
√
nhd/2 −→∞.

(A.2) ψ(·) is continuous and ϑ(x) :=
∫
y ψ (y, x1, x2) dy 6= 0.

It is clear that assumptions (A.1) and (A.2) on the one had are also related to the bias

problem that has been mentioned above. On the other hand they also guarantee the

detection of local alternatives by our statistic, i.e. consistency of the test. Note that

conditions (A.1) and (H.1) do not entail mutual constraints.

Theorem 2. Assume that conditions (C.2)-(C.3), (S.1)-(S.3), (K.1) and (H.1) hold.

If the alternative Ha is true with (A.1) and (A.2), then we have for n→∞ that

P (T ∗ > tα)→ 1.

Theorem 2 says that our test has nontrivial power only against sequences of local

alternatives for which γn tends to zero at a rate that is smaller than
√
n. It is known

that tests based on weighted parametric residuals have nontrivial power against local

alternatives for which the rate is exactly
√
n. Thus, at least in terms of the asymptotic

local power these tests appear to dominate tests that require slower rates. However, as

discussed in Guerre and Lavergne (2002) or Horowitz and Spokoiny (2001), at an exact

rate of
√
n no omnibus test can have nontrivial power uniformly over non-artificial

classes of functions ψ(·), respectively ϑ(x) in (11). Moreover, what we can see, recall

(A.1), is that for γn the optimal rate is o( 1√
nhd/2

) as expected, cf. Guerre and Lavergne
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(2002). How fast this can be, this depends obviously on h, and the fastest rate therefore

on hmax. Concluding, we can see from (A.1) and (H.1) how the rate slows down for

semi- and nonparametric (separable) null hypotheses compared to testing problems

where the null is parametric.

4 Finite Sample Performance and an alternative

Bandwidth Choice

To illustrate the performance of our testing procedure we present simulation results for

different models with censored responses:

y =

 κ(x) + u if κ(x) + u > 0

0 otherwise
, (12)

where x = (x1, x2)T with X1 ∼ U [0, 2]2, X2 ∼ U [−1, 1]q and i.i.d. errors u. Under H0

we suppose u ∼ N(0, σ2) and

κ0(x) = xT1 γ + η(x2), x1 = (x11, x12)T (13)

where γ, η(·), and error variance σ2 are arbitrary. Then we have

E[y|x] = Φ(κ0(x)/σ) {κ0(x) + σλ(κ0(x)/σ)} , λ(v) = φ(v)Φ−1(v) (14)

with φ and Φ indicating the normal density and its cumulated distribution function.

The different real data generating processes (DGP) are as follows:

κ1(x) = xT1 γ + sin(2.5x2), γ = (−1, 1.5)T , (15)

κ2(x) = κ1(x) + (2x11x12 − 2) , (16)

κ3(x) = κ1(x) + 2(x11 − 1)2 − 2/3 , (17)
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all with an additional N(0, 0.52) error term u. Further, we generate data as in (15) but

replacing error u by

u∗ ∼ (χ2
1 − 1) · 8−1/2 , and u∗∗ ∼ U [−

√
3

2
,

√
3

2
] respectively. (18)

So the error variance is always 0.52. Finally, we also consider models with x2 =

(x21, x22) ∈ IR2, X2 ∼ U [−1, 1]2, and

κ4(x) = xT1 γ + x21x22, γ = (−1, 1.5)T (19)

κ5(x) = κ4(x) + (x11 − 1)2 − 1/3 . (20)

Note that among (15) to (20), models (15) and (19) are the only ones that belong to the

null hypothesisH0, compare (13). For the other models, the additional terms (deviating

from the null model) are centered to zero such that they do not affect the censoring

threshold in (12). We simulated also models without such centering (not shown here).

In those cases the power of the test is always overwhelming. We concentrate here on

the presentation of the cases when detection of an alternative is a hard problem. Notice

that the variation due to the deviation from H0 (i.e. E[κ0(X) − κj(X)]2, j = 1, 2) is

28/9 in (16), whereas only 16/45 in (17). Recall that we only worry about the effect

of a misspecification on the regression estimation.

For the simulations we use only 250 bootstrap samples, respectively subsamples. In

empirical research one should certainly take more. Having consistent (under H0) esti-

mates of κ0 and σ2 (even root-n of the latter), the bootstrap sample can be generated

by Y ∗i = max
{

0, κ̂0(xi) +N(0, σ̂2)
}

. This is actually a bootstrap from a known para-

metric distribution, i.e. the normal censored at zero, with semiparametric first and

parametric second moment. The estimation of the model under the null hypothesis

is done accordingly to Rodŕıguez-Póo, Sperlich and Vieu (2003). The percentages of

rejections under the null are calculated out of 500 simulation runs whereas only 250

are used to approximate the rejection levels under H1. As we use uniform distributions
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for all covariates in this simulation, we set w(x) = 1 for the entire simulation study.

An else obvious choice is either a trimming weight or the density of X such that the

integral can be replaced by the sample average.

As has been discussed earlier in this paper, there exist some alternative approaches

to make a nonparametric test adaptive in the sense of choosing the test bandwidth h

adaptively. Among them the approach of Guerre and Lavergne (2005) seems to be a

quite promising one, but they yield their excellent results applying the method to a

rather different test statistic and problem. We briefly explain how we modified and

implemented their idea for our statistic Th, respectively Ih. Since they supposed to

dispose of a centered (under H0) test statistic, let us consider Ich := {Ih − E0[Ih]},

where E0 refers to the expectation under H0. Then, select h by

hGL = arg max
h∈Hn

(
Ich − 2

√
2 ln JnV ar0

[
Ich − Ichmax

])
, (21)

where V ar0 refers to the variance under H0. In our context hmax is the largest band-

width inHn, cf. Guerre and Lavergne (2005). The final test statistic is IchGL/V ar0

[
Ichmax

]
.

For each bandwidth h, the bootstrap can be used to approximateE0[Ih], V ar0

[
Ich − Ichmax

]
,

and V ar0[Ich]. This is what we have done in our simulation study. In our context this

approach gives basically the same results for all simulated models and rejection levels.

We conclude therefore that both approaches seem to be reasonable alternatives for the

choice of the testing bandwidth h in (5) albeit Guerre and Lavergne (2005) showed

some theoretical advantages of their approach. In practice this might vary for different

testing problems, models and implementations.

The bandwidths hj from (C.1) to estimate the nonparametric part η(·) of the null

model (13) can be chosen by jackknife or generalized cross validation, depending on

the particular estimation problem. This gives bandwidths that produce slightly under-

smoothed estimates. Trying out various bandwidths for each hj on a reasonable range

we always got rather similar results. This might be due to the adaptive selection of
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h, determined by a naive grid search with Jn = 15 and a = 1.05, cf. (10). Let us call

h∗j the bandwidths to (pre-)estimate the null model from which the bootstrap samples

will be drawn from. The h∗j should be chosen depending on hj to fulfill Assumption

(C.3) but in practice are often set just equal to hj.

In Table 1 and Table 2 are given the rejection levels and bootstrap p-values for models

(15) to (18) for sample size n = 200 applying bootstrap with hj = 1.75σx/n
1/5 ,

h∗j = hj and h∗j = hjn
1/5−1/6 respectively. Here, σx denotes the vector of sample

standard deviation(s) of X2. We used second order quartic kernels, and we set hmax =

3σx/n
1/7 in (10). Table 1 gives the results when using the h−adaptive test of Horowitz

and Spokoiny (2001); Table 2 the results when applying the h−adaptive method of

Guerre and Lavergne (2003). The bootstrap p-values are the (average) percentage of

bootstrap statistics which have been larger than the original test statistic. First, we

see that the test almost holds the level under H0 for h∗j = hj but is a bit less reliable

if h∗j = hjn
1/5−1/6 . The differences between the two bandwidth adaptive methods

is minor what is in accordance with the simulation results of Guerre and Lavergne

(2005) for more ’regular’ (or say ’smooth’) alternatives. The test detects clearly when

the functional form of the conditional expectation is misspecified. Even though the

deviation from H0 is much larger in (16), our test detects more easily the one in

model (17). One reason could be that model (17) is smoother and thus the alternative

gets estimated more easily; another reason could be that the bootstrap samples were

generated with the residuals from H0. When the functional form is specified correctly

and only the error distribution deviates from H0, the test does not reject as long as

this misspecification has no effect on the regression estimation. In Table 3 we see that

(18), u∗∗i , has no effect on the estimation of the parametric part. Nevertheless, we

find nontrivial power for the case of asymmetric error distribution, u∗, even though it

affects the regression estimation only very mildly. Actually, when we increase n to 400,

at the nominal 5% significance level we reject in about 7.5%, and for n = 500 in about

10% of all cases.
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Horowitz-Spokoiny Guerre-Lavergne
bootstrap significance levels bootstrap significance levels

DGP p−value 1% 5% 10% 15% p−value 1% 5% 10% 15%

(15), H0 .452 .012 .058 .120 .170 .469 .012 .054 .096 .162
(16) .005 .896 .972 .992 .992 .005 .896 .972 .992 .992
(17) .000 1.00 1.00 1.00 1.00 .000 1.00 1.00 1.00 1.00
(18), u∗i .413 .028 .072 .144 .224 .413 .028 .072 .144 .224
(18), u∗∗i .433 .012 .068 .124 .180 .433 .012 .068 .124 .180

Table 1: The bootstrap p-values and percentages of rejections at various significance
levels for different models when sample size is n = 200 when h∗j = hj .

Horowitz-Spokoiny Guerre-Lavergne
bootstrap significance levels bootstrap significance levels

DGP p-value 1% 5% 10% 15% p-value 1% 5% 10% 15%

(15), H0 .435 .008 .072 .132 .184 .459 .012 .054 .096 .162
(16) .009 .896 .968 .980 .984 .009 .896 .968 .980 .984
(17) .000 1.00 1.00 1.00 1.00 .000 1.00 1.00 1.00 1.00
(18), u∗i .421 .024 .080 .132 .188 .421 .024 .080 .132 .188
(18), u∗∗i .459 .008 .048 .096 .144 .459 .008 .048 .096 .144

Table 2: The bootstrap p-values and percentages of rejections at various significance
levels for different models when sample size is n = 200 when h∗j = hjn

1/5−1/6 .

When we consider models with multidimensional nonparametric parts (speaking of

nonparametric parts that cannot be decomposed into lower dimensional separable com-

ponents), then much larger samples are required to make the asymptotics work. For

models like (19) and (20), 1000 or more observations are necessary. The problem is

that for a semiparametric null hypothesis the variance decomposition does not work

sufficiently well to make the bootstrap work. This easily leads to tests that are either

to liberal or have almost trivial power. In most of the literature it is just proposed to

choose bandwidths h∗j adequately. So far there do not exist results nor clear guidelines

for its practical choice. In Figure 1 we see how the bootstrap rejection levels converge

for model (19) to the nominal size (α) for increasing n when using hj = 1.75σx/n
1/9 ,

true estimates in model (DGP)
coef. (15), H0 (16) (17) (18), u∗i (18), u∗∗i

-1.0 -1.000 (.067) 1.266 (.541) -1.033 (.119) -1.011 (.067) -1.001 (.060)
1.5 1.505 (.069) 3.525 (.725) 1.511 (.103) 1.525 (.068) 1.495 (.064)

Table 3: Average and standard deviation (in parentheses) of the parameter estimates
for the different models when sample size is n = 200.
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h∗j = hjn
1/9−1/13 , and a 4th order optimal product kernel. Note that we tried many

other bandwidth combinations: However, for moderate sample sizes we can not get

rid of the size problem for any reasonable bandwidth. A detailed discussion of the

calibration problem in nonparametric testing is given in Sperlich (2013). The power of

the test seems to be rather strong now but clearly, this may be misleading due to the

size problem.
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Figure 1: Bootstrap p-values (left) and rejection levels (right) in model (19) for increas-
ing n. Straight lines indicate the 50%-line (left), and the nominal significance levels
(right). Dashed lines refer to the 5%, dotted to the 10%, and solid to the 15% levels.

There exists the subsampling as an alternative resampling method. This - at least in our

simulations - has turned out to be rather reliable concerning the size of the test, even

for small samples and certainly with some loss of power. As the problem of finding

the optimal subsample size in nonparametric testing is known (see e.g. Neumeyer

and Sperlich, 2006), we concentrate here on size and power of the test but take the

subsample size as given.

In Table 4 are given the number of rejections when n = 300, subsample size ns = 250,

bandwidth h1 = h2 = 2σx/n
1/9 with 4th order optimal product kernels, and hmax =

3 · stdev(X) · n−1/8 in (10). Again we tried several bandwidths, and again the results

do not vary much as long as h1, h2 are providing a reasonable smoothing, i.e. do not

strongly over- or undersmooth. Taking a cross validation bandwidth is again a good

choice. Table 4 shows that even for small samples and multidimensional nonparametric
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parts, subsampling achieves both holding the size (being conservative for our subsample

size) and obtaining nontrivial power.

wanted significance level
DGP p−value 1% 5% 10% 15%

(19), H0 .388 .002 .026 .052 .104
(20) .049 .385 .645 .817 .900

Table 4: The subsampling p−values and percentages of rejections at various significant
levels for different models when sample size is n = 300, and subsample size ns = 250.

5 Appendix

5.1 Proof of Lemma 1

For the proof of Lemma 1 we first need to establish the following proposition:

Proposition 1. Assume that condition (C.1) holds. Under H0 we have

sup
y

sup
x1∈X1

sup
x2∈X2

sup
θ∈Θ

∣∣∣`0
Y |X

(
y, x1, x2; θ̂, η̂1, η̂2

)
− `0

Y |X (y, x1, x2; θ, η1, η2)
∣∣∣

= Op

(
n−r1 (log n)r1 + n−r2 (log n)r2

)
+Op

(
n−1/2

)
as n tends to infinity.

Proof of Proposition 1. Since by assumption (C.1), `Y |X is differentiable we have

∣∣∣`0
Y |X

(
y, x1, x2; θ̂, η̂1, η̂2

)
− `0

Y |X (y, x1, x2; θ, η1, η2)
∣∣∣

≤ C
{
|η̂1 (x1)− η1 (x1)|+ |η̂2 (x2)− η2 (x2)|+

∣∣∣θ̂ − θ∣∣∣} .
This is uniform because X1, X2 and Θ are compact sets. So condition (C.1) applies.
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Proof of Lemma 1. The proof of this result will be a direct consequence of Proposition

1 since

m(x) =

∫
y`Y |X (y, x1, x2) dy.

Thus we can write

|m(x)− m̂S(x)| =
∣∣∣∣∫ y

(
`Y |X (y, x1, x2)− `0

Y |X

(
y, x1, x2; θ̂, η̂1(x1), η̂2(x2)

))∣∣∣∣ . (22)

Furthermore, under the null hypothesis we have

∫
y`Y |X (y, x1, x2) dy =

∫
y`0
Y |X (y, x1, x2; θ, η1(x1), η2(x2)) dy (23)

Thus, the left hand side of (22) is equal to

∣∣∣∣∫ y
(
`0
Y |X (y, x1, x2; θ, η1(x1), η2(x2))− `0

Y |X

(
y, x1, x2; θ̂, η̂1(x1), η̂2(x2)

))
dy

∣∣∣∣ . (24)

Note that (24) is bounded by the following term

∣∣∣∣∫ ydy

∣∣∣∣ sup
y

sup
x1∈X1

sup
x2∈X2

sup
θ∈Θ

∣∣∣`0
Y |X

(
y, x1, x2; θ̂, η̂1(x1), η̂2(x2)

)
− `0

Y |X (y, x1, x2; θ, η1(x1), η2(x2))
∣∣∣ .

Noting that since P (|yn| > bn) ≤ b−sn E |y|s, it follows with probability one that |yn| ≤

bn for all sufficiently large n, and hence since bn is increasing,

|yj| ≤ bn, for all j ≤ n,

therefore ∫
|y|<bn

|y| dy = O (bn) .

Now, using the fact that by a standard argument,

∫
|y|≥bn

|y| dy ≤Msb
−s
b , (25)
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it follows that (25) is bounded by O
(
b−sb
)

with probability one. Apply now Proposition

1 and the proof is done.

5.2 Proof of Theorem 1

Before proving Theorem 1 we need first to state a few technical results. This is done

in lemmas 2-7 below. In the following, as above, double hat refers to estimators from

the re-samples like e.g. ˆ̂η1.

Lemma 2. Assume conditions (S.1)-(S.2), (B.1), (C.1), (K.1) and (H.1) hold, and

let

Un =

∫ [
1

nhd

n∑
j=1

K

(
x−Xj

h

)
(m (Xj)− m̂S (Xj))

]2

ω (x) dx.

Then, for some µ > 0, under the null hypothesis, H0,

E [Un]2+µ = o

(
1

n2+µh
d
2

(2+µ)

)

as n tends to infinity.

Proof of Lemma 2. We rewrite E [Un]2+µ =

=
1

n2(2+µ)h2d(2+µ)
E


∫ [ n∑

j=1

K

(
x−Xj

h

)
(m (Xj)− m̂S (Xj))

]2

ω (x) dx


2+µ

,

so it can be seen that E [Un]2+µ ≤

≤ C
1

n2(2+µ)h2d(2+µ)
sup
x
|m (x)− m̂S (x)|2(2+µ)


∫ ( n∑

j=1

∣∣∣∣K(
x−Xj

h
)

∣∣∣∣
)2

ω (x) dx


2+µ

.
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Applying (S.2) and a strong law of large numbers we obtain

E [Un]2+µ ≤ C sup
x
|m (x)− m̂S (x)|2(2+µ)

{∫
p2(x)ω (x) dx

}2+µ

+ op(1),

and by Lemma 1

E [Un]2+µ = O
(
n−(2+µ)r (log n)(2+µ)r b2+µ

n

)
,

where recall that r = max {r1, r2}. Furthermore, since h ∈ Hn, by condition (H.1)

E [Un]2+µ = o

(
1

n2+µh
d
2

(2+µ)

)

what closes the proof.

Now, for the following we define εj = Yj −m(Xj).

Lemma 3. Assume that conditions (C.1), (S.1)-(S.3), (B.1), (K.1) and (H.1) hold,

and let

Vn =

∫ (
1

nhd

)2 n∑
j=1

εjK
2

(
x−Xj

h

)
{m (Xj)− m̂S (Xj)}ω (x) dx.

Then, for some µ > 0 under the null hypothesis H0 one has

E [Vn]2+µ = o

(
1

n2+µh
d
2

(2+µ)

)

as n tends to infinity.

Proof of Lemma 3. We have

E [Vn]2+µ ≤
(

sup
x
|m (x)− m̂S (x)|

)2+µ(
1

nhd

)4+2µ

E

[∫ n∑
j=1

εjK
2

(
x−Xj

h

)
ω (x) dx

]2+µ

.
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Integrating by substitution and using a standard inequality for expectations gives

E [Vn]2+µ ≤
(

1

nhd/2

)4+2µ(
sup
x
|m (x)− m̂S (x)|

)2+µ(∫
K2(u)du

)2+µ n∑
j=1

E [εjω (Xj)]
2+µ .

Using Lemma 1 and assumptions (S.3) and (H.1) and recalling that h ∈ Hn we obtain

E [Vn]2+µ = o

(
1

n2+µh
d
2

(2+µ)

)
.

This closes the proof.

Lemma 4. Assume conditions (C.1), (S.1)-(S.3), (K.1), (L.6) and (H.1) hold, and

let

Wn =

∫ (
1

nhd

)2∑
j

∑
k 6=j

K

(
x−Xj

h

)
K

(
x−Xk

h

)
εk {m (Xj)− m̂S (Xj)}ω (x) dx.

Then, under the null hypothesis, H0,

E [Wn]2+µ = o

(
1

n2+µh
d
2

(2+µ)

)

as n tends to infinity.

Proof of Lemma 4. If we use for any integer µ > 0 the notation

F (j1, k1, . . . , j2+µ, k2+µ)

=∫
x1

. . .

∫
x2+µ

K(
x1 −Xj1

h
)K(

x1 −Xk1

h
) . . . K(

x2+µ −Xj2+µ

h
)K(

x2+µ −Xk2+µ

h
)×

× εk1 . . . εk2+µw(x1) . . . w(x2+µ)dx1 . . . dx2+µ,
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then we have directly that

E(W 2+µ
n ) ≤

(
sup
x
{m(x)− m̂S(x)}

)2+µ

×

× 1

n2(2+µ)h2(2+µ)d

∑
k1

∑
j1 6=k1

. . .
∑
k2+µ

∑
j2+µ 6=k2+µ

E [F (j1, k1, . . . , j2+µ, k2+µ)] .

If we denote by I the set composed of all the 2(2 + µ)-integers (j1, k1, . . . j2+µ, k2+µ)

such that ji 6= ki,∀i, this last inequality can be written as:

E(W 2+µ
n ) ≤

(
sup
x
{m(x)− m̂S(x)}

)2+µ
1

n2(2+µ)h2(2+µ)d

∑
I

E [F (j1, k1, . . . , j2+µ, k2+µ)] .

Now we will decompose the set I of indices according to the number of distinct integers

among the different ki. More precisely, we can write I = I1 ∪ . . . ∪ I2+µ, where Im =

{(j1, k1, . . . j2+µ, k2+µ) ∈ I such that Card{k1, . . . k2+µ} = m}, so that the previous

inequality can be rewritten as E(W 2+µ
n ) ≤

(
sup
x
{m(x)− m̂S(x)}

)2+µ
1

n2(2+µ)h2(2+µ)d

∑
m=1,...2+µ

∑
Im

E [F (j1, k1, . . . , j2+µ, k2+µ)] .

By independence of the data, note that if m > 1+µ/2, i.e. if one among the ki appears

only once, we have E [F (j1, k1, . . . , j2+µ, k2+µ) = 0]. So we have finally E(W 2+µ
n ) ≤

(
sup
x
{m(x)− m̂S(x)}

)2+µ
1

n2(2+µ)h2(2+µ)d

∑
m=1,...1+µ/2

∑
Im

E [F (j1, k1, . . . , j2+µ, k2+µ)] .

Next, for some m ∈ {1, . . . , 2 + µ}, let us compute E [F (j1, k1, . . . , j2+µ, k2+µ)]. Using

again the same technique, we can define:

Im,s = {(j1, k1, . . . j2+µ, k2+µ) ∈ Im, such that Card{j1, k1, . . . j2+µ, k2+µ} = s},

and we have Im = Im,1 ∪ . . . ∪ Im,2+µ+m. For (j1, k1, . . . j2+µ, k2+µ) ∈ Im,s we can do

25



exactly s+ 1 + µ/2 integrations by substitution, so that

∀(j1, k1, . . . j2+µ, k2+µ) ∈ Im,s, E [F (j1, k1, . . . , j2+µ, k2+µ)] = O(h(1+µ/2+s)d).

Because of Card(Im,s) = O(ns), we have directly

∑
Im,s

E [F (j1, k1, . . . , j2+µ, k2+µ)] = O(nsh(1+µ/2+s)d).

Finally, we get
∑
Im E [F (j1, k1, . . . , j2+µ, k2+µ)] =

=
∑

s=1...,2+µ+m

O(nsh(1+µ/2+s)d) = O(n2+µ+mh(3(1+µ/2)+m)d).

Let us now come back to the term E[W 2+µ
n ]. By using the last equality for any m =

1, . . . 1 + µ/2, we have E[W 2+µ
n ] ≤

≤
(

sup
x

(m(x)− m̂S(x))

)2+µ
1

n2(2+µ)h2(2+µ)d

∑
m=1,...1+µ/2

O(n2+µ+mh(3(1+µ/2)+m)d)

≤
(

sup
x

(m(x)− m̂S(x))

)2+µ
1

n2(2+µ)h2(2+µ)d

∑
m=1,...1+µ/2

O(n3(1+µ/2)h2(2+µ)d)

= O

(
n−(1+µ/2) sup

x
(m(x)− m̂S(x))

)2+µ

.

Then, because of Lemma 1, given that h ∈ Hn and assumption (H.1), we have

sup
x
{m(x)− m̂S(x)} = o

(
n−1/2h−d/2

)
,

and we arrive finally at E(W 2+µ
n ) = o(n−2−µh−d−

dµ
2 ).

Lemma 5. Assume that conditions (C.1)-(C.2), (S.1)-(S.3), (B.1), (K.1) and (H.1)

hold. Then, for all z, we have under H0 and as n tends to infinity:

P

(
max
h∈Hn

|Th − Th0| > z

)
= o(1),
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where

Th0 =
nhd/2I0

h (η1, η2, θ)− h−d/2B√
V

, (26)

I0
h (η1, η2, θ) =

∫ [
1

nhd

n∑
j=1

K

(
x−Xj

h

)
(Yj −m (Xj))

]2

ω (x) dx. (27)

Proof of Lemma 5. By assumptions (S.2) and (S.3) and using definitions (5) and

(26), a Taylor expansion around V gives

Th − Th0 =
nhd/2

{
Ih

(
η̂1, η̂2, θ̂

)
− I0

h (η1, η2, θ)
}
− h−d/2

(
B̂ −B

)
√
V

+ op

(
V̂ − V

)

as n tends to infinity. Then, using the triangle inequality we obtain

P

(
max
h∈Hn

|Th − Th0| > z

)
≤ P

max
h∈Hn

∣∣∣∣∣∣
nhd/2

{
Ih

(
η̂1, η̂2, θ̂

)
− I0

h (η1, η2, θ)
}

√
V

∣∣∣∣∣∣ > z/2



+P

max
h∈Hn

∣∣∣∣∣∣
h−d/2

{
B̂ −B

}
√
V

∣∣∣∣∣∣ > z/2

 . (28)

We treat each of the above terms separately. For the first term of the r. h. s. in (28)

the following inequality holds

P

max
h∈Hn

∣∣∣∣∣∣
nhd/2

{
Ih

(
η̂1, η̂2, θ̂

)
− I0

h (η1, η2, θ)
}

√
V

∣∣∣∣∣∣ > z



≤
Jn
(
nhd/2

)2+µ

z2
E
[
Ih

(
η̂1, η̂2, θ̂

)
− I0

h (η1, η2, θ)
]2+µ

,

for some µ > 0. Let us now decompose Ih

(
η̂1, η̂2, θ̂

)
and I0

h (η1, η2, θ) as

I0
h (η1, η2, θ) = S0

h (η1, η2, θ) +R0
h (η1, η2, θ) ,
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where

S0
h (η1, η2, θ) =

∫ (
1

nhd

)2 n∑
j=1

K2

(
x−Xj

h

)
ε2
jω (x) dx,

and

R0
h (η1, η2, θ) =

∫ (
1

nhd

)2∑
j

∑
k 6=j

K

(
x−Xj

h

)
K

(
x−Xk

h

)
εjεkω (x) dx.

Ih

(
η̂1, η̂2, θ̂

)
= S0

h (η1, η2, θ) +R0
h (η1, η2, θ) + Un + 2Vn + 2Wn

where Un, Vn and Wn are defined in previous lemmas. Then, the following inequality

holds

E
[
Ih

(
η̂1, η̂2, θ̂

)
− I0

h (η1, η2, θ)
]2+µ

= E [Un + 2Vn + 2Wn]2+µ

≤ C1E [Un]2+µ + C2E [Vn]2+µ + C3E [Wn]2+µ ,

for some constants C1, C2, C3 > 0.

Now, applying Lemmas 2, 3 and 4, and assumption (H.1) the first term of the r.h.s. in

(28) tends to zero as n tends to infinity.

For the second term holds the following bound,

P

max
h∈Hn

∣∣∣∣∣∣
h−d/2

{
B̂ −B

}
√
V

∣∣∣∣∣∣ > z

 ≤ Jnh
−µd

2

z2
E
[
B̂ −B

]2+µ

,

and substituting B̂ and B by their definitions in (7) we obtain

E
[
B̂ −B

]2+µ

=

{∫
K2(t)dt

}2+µ

× E
{∫ [

σ̂2(u)p̂(u)− σ2(u)p(u)
]
ω(u)du

}2+µ

and

E
[
B̂ −B

]2+µ

= O

({
sup
x

∣∣σ̂2(x)p̂(x)− σ2(x)p(x)
∣∣}2+µ

)
.
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Now using assumption (C.2) and (H.1) we get

Jnh
−µd

2

z2
E
[
B̂ −B

]2+µ

= o(1).

This closes the proof.

Lemma 6. Assume that conditions (C.1)-(C.2), (S.1)-(S.3), (B.1), (K.1) and (H.1)

hold. Then, as n tends to infinity,

max
h∈Hn

Th0 − max
h∈Hn

T̃h0 →d 0,

where

T̃h0 =
nhd/2Ĩh (η1, η2, θ)− h−d/2B√

V
, (29)

Ĩh (η1, η2, θ) =

∫ [
1

nhd

n∑
j=1

K

(
x−Xj

h

)(
Ỹj −m (Xj)

)]2

ω (x) dx, (30)

and Ỹj = m (Xj) + σ (Xj) ε
∗
j with ε∗j being resampled errors (having mean zero and

variance one).

Proof of Lemma 6. Let Ĩh (η1, η2, θ) = S̃0
h (η1, η2, θ) + R̃0

h (η1, η2, θ), where

S̃0
h (η1, η2, θ) =

∫ (
1

nhd

)2 n∑
j=1

K2

(
x−Xj

h

)
σ2 (Xj) ε

∗2
j ω (x) dx,

R̃0
h (η1, η2, θ) =

∫ (
1

nhd

)2∑
k 6=j

K

(
x−Xj

h

)
K

(
x−Xk

h

)
σ (Xj)σ (Xk) ε

∗
jε
∗
kω (x) dx.

Moreover, as it is known from the proof of Lemma 5 that

I0
h (η1, η2, θ) = S0

h (η1, η2, θ) +R0
h (η1, η2, θ) .

In order to prove the lemma we will first show that

max
h∈Hn

V −1/2
{
S̃0
h (η1, η2, θ)− S0

h (η1, η2, θ)
}

= op(1). (31)
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If this result holds, to show the lemma it suffices to prove that the joint distributions

of V −1/2R̃0
h (η1, η2, θ) and V −1/2R0

h (η1, η2, θ) are asymptotically the same.

We first show (31). Write

max
h∈Hn

{
V −1/2S̃0

h (η1, η2, θ)− V −1/2S0
h (η1, η2, θ)

}

= max
h∈Hn

V −1

∫ (
1

nhd

)2 n∑
j=1

K2

(
x−Xj

h

){
ε2
j − σ2(Xj)ε

∗2
j

}
ω(x)dx.

To prove (31), it suffices to show that for n→∞

∑
h∈Hn

V −1E

[∫ (
1

nhd

)2 n∑
j=1

K2

(
x−Xj

h

){
ε2
j − σ2(Xj)ε

∗2
j

}
ω(x)dx

]2

= o(1). (32)

Note that taking iterated expectations, using the i.i.d. structure of our observations

and integrating by substitution, it is straightforward to show that

E

[∫ (
1

nhd

)2 n∑
j=1

K2

(
x−Xj

h

){
ε2
j − σ2(Xj)ε

∗2
j

}
ω(x)dx

]2

=

= O

(
1

n2h2d

)
+O

(
1

n3h3d

)
.

Hence, (32) is of order O
(

1
n2

∑
h∈Hn

1
h2d

)
. Now, using (10) and because h ∈ Hn, this is

indeed of order O
(

1
n2h2dmax

)
, and (31) is proved.

Then, the proof that the joint distributions of V −1/2R̃0
h (η1, η2, θ) and V −1/2R0

h (η1, η2, θ)

are asymptotically the same follows the same lines of the proof of Lemma 10 in Horowitz

and Spokoiny (2001), pp 622.

Lemma 7. Assume that conditions (C.1)-(C.3), (S.1)-(S.3), (B.1), (K.1) and (H.1)

hold. Then, for all z, under H0, and for n→∞

P

(
max
h∈Hn

∣∣∣T̂h − T̃h0

∣∣∣ > z

)
= o(1),
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where

T̂h =
nhd/2Ih

(
ˆ̂η1, ˆ̂η2,

ˆ̂
θ
)
− h−d/2 ˆ̂

B√
ˆ̂
V

, (33)

Ih

(
ˆ̂η1, ˆ̂η2,

ˆ̂
θ
)

=

∫ [
1

nhd

n∑
j=1

K

(
x−Xj

h

)(
Yj − ˆ̂mS (Xj)

)]2

ω (x) dx, (34)

ˆ̂
B =

∫
K2(u)du

∫
ˆ̂σ2(u)p̂(u)ω(u)du, (35)

ˆ̂
V =

∫
K(2)(u)2du

∫
ˆ̂σ4(u)p̂2(u)ω2(u)du, (36)

and ˆ̂mS (x) and ˆ̂σ2(x) are resampling estimators.

Proof of Lemma 7. Using (29) and (33), under conditions (S.2) and (S.3) a Taylor

expansion around V gives

T̂h − T̃h0 =
nhd/2

{
Ih

(
ˆ̂η1, ˆ̂η2,

ˆ̂
θ
)
− Ĩh (η1, η2, θ)

}
− h−d/2

(
ˆ̂
B −B

)
√
V

+ o
(

ˆ̂
V − V

)

as n tends to infinity. Now, by the triangle inequality

P

(
max
h∈Hn

∣∣∣T ∗h − T̃h0

∣∣∣ > z

)
≤ P

max
h∈Hn

∣∣∣∣∣∣∣
nhd/2

{
Ih

(
ˆ̂η1, ˆ̂η2,

ˆ̂
θ
)
− Ĩh (η1, η2, θ)

}
√
V

∣∣∣∣∣∣∣ > z



+P

max
h∈Hn

∣∣∣∣∣∣∣
h−d/2

{
ˆ̂
B −B

}
√
V

∣∣∣∣∣∣∣ > z

 . (37)

We treat each of the above terms by separate. By a standard inequality,

P

max
h∈Hn

∣∣∣∣∣∣∣
nhd/2

{
Ih

(
ˆ̂η1, ˆ̂η2,

ˆ̂
θ
)
− Ĩh (η1, η2, θ)

}
√
V

∣∣∣∣∣∣∣ > z


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≤ Jnn
2+µh

d
2

(2+µ)

z2
E
[
Ih

(
ˆ̂η1, ˆ̂η2,

ˆ̂
θ
)
− Ĩh (η1, η2, θ)

]2+µ

,

for some µ > 0. Noting that

Ih

(
ˆ̂η1, ˆ̂η2,

ˆ̂
θ
)
− Ĩh (η1, η2, θ) = Sh

(
ˆ̂η1, ˆ̂η2,

ˆ̂
θ
)
− S̃0

h (η1, η2, θ)

+Rh

(
ˆ̂η1, ˆ̂η2,

ˆ̂
θ
)
− R̃0

h (η1, η2, θ) + Uh

(
ˆ̂η1, ˆ̂η2,

ˆ̂
θ
)

+ 2Vh

(
ˆ̂η1, ˆ̂η2,

ˆ̂
θ
)

+ 2Wh

(
ˆ̂η1, ˆ̂η2,

ˆ̂
θ
)
,

where

Sh

(
ˆ̂η1, ˆ̂η2,

ˆ̂
θ
)

=

∫ (
1

nhd

)2 n∑
j=1

K2

(
x−Xj

h

)
σ̂2 (Xj) ε

∗2
j ω (x) dx,

Rh

(
ˆ̂η1, ˆ̂η2,

ˆ̂
θ
)

=

∫ (
1

nhd

)2∑
j

∑
k 6=j

K

(
x−Xj

h

)
K

(
x−Xk

h

)
σ̂ (Xj) σ̂ (Xk) ε

∗
jε
∗
kω (x) dx,

Uh

(
ˆ̂η1, ˆ̂η2,

ˆ̂
θ
)

=

∫ [
1

nhd

n∑
j=1

K

(
x−Xj

h

)(
m̂S (Xj)− ̂̂mS (Xj)

)]2

ω (x) dx,

Vh

(
ˆ̂η1, ˆ̂η2,

ˆ̂
θ
)

=

∫ (
1

nhd

)2 n∑
j=1

ε∗jK
2

(
x−Xj

h

)(
m̂S (Xj)− ̂̂mS (Xj)

)
ω (x) dx,

and

Wh

(
ˆ̂η1, ˆ̂η2,

ˆ̂
θ
)

=

∫ (
1

nhd

)2∑
j

∑
k 6=j

K

(
x−Xj

h

)
K

(
x−Xk

h

)
ε∗j

(
m̂S (Xj)− ̂̂mS (Xj)

)
ω (x) dx,

the following bound holds

E
[
Ĩh (η1, η2, θ)− Ih

(
ˆ̂η1, ˆ̂η2,

ˆ̂
θ
)]2+µ

= E
[
Sh − S0

h +Rh −R0
h + Uh + 2Vh + 2Wh

]2+µ

≤ C ′1E
[
Sh − S0

h

]2+µ
+C ′2E

[
Th − T 0

h

]2+µ
+C ′3E [Uh]

2+µ +C ′4E [Vh]
2+µ +C ′5E [Wh]

2+µ ,

for some constants C ′1, C
′
2, C

′
3, C

′
4, C

′
5 > 0.

E
[
Sh − S0

h

]2+µ
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≤
(

1

nhd

)2(2+µ)(
sup
x

∣∣σ̂2 (Xj)− σ2 (Xj)
∣∣)2+µ

E

[∫ n∑
j=1

K2

(
x−Xj

h

)
ε∗2j ω(x)dx

]2+µ

.

Furthermore, integrating by substitution there exists a constant C > 0 such that

E

[∫ n∑
j=1

K2

(
x−Xj

h

)
ε∗2j ω(x)dx

]2+µ

≤ C

(∫
K2(u)du

)2+µ n∑
j=1

E
[
ε∗2j ω(Xj)

]2+µ
.

(38)

Applying (C.2) and the bound achieved in (38) we get

n2+µh
d
2

(2+µ) log nE
[
Sh − S0

h

]2+µ
= o (1) .

Following the same lines as above it is straightforward to show that the second term,

Rh −R0
h

=

∫ (
1

nhd

)2∑
j

∑
k 6=j

K

(
x−Xj

h

)
K

(
x−Xk

h

)
{σ̂ (Xj) σ̂ (Xk)− σ (Xj)σ (Xk)} ε∗jε∗kω (x) dx,

is also of order o

(
1

n2+µh
d
2 (2+µ) logn

)
, as n tends to infinity.

The terms Uh

(
ˆ̂η1, ˆ̂η2,

ˆ̂
θ
)

, Vh

(
ˆ̂η1, ˆ̂η2,

ˆ̂
θ
)

and Wh

(
ˆ̂η1, ˆ̂η2,

ˆ̂
θ
)

can be treated as in Lemmas

2, 3 and 4 respectively by replacing assumption (C.1) by assumption (C.3).

Proof of Theorem 1. The proof of this result is done if we can show that T̂ ∗ and T ∗

have identical asymptotic distribution. This follows directly from previous lemma, since

as n tends to infinity, we have by Lemma 5 that maxh∈Hn Th = maxh∈Hn Th0 + op(1),

while Lemma 6 insures that maxh∈Hn Th0 and maxh∈Hn T̃h0 have identical asymptotic

distribution. So, because Lemma 7 insures that maxh∈Hn T̃h0 = maxh∈Hn T̂h + op(1),

we get that maxh∈Hn T̂h and maxh∈Hn Th have the same asymptotic distribution.
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5.3 Proof of Theorem 2

The proof works by following the lines of the proof for Theorem 1 but replacing Lemmas

2-7 by similar results stated under the alternative hypothesis. We start the proof by

stating the following Lemmas, along which the notations used above.

Lemma 8. Under the assumptions of Theorem 2 we have for any h ∈ Hn and as n

tends to infinity: Un = Cγ2
n + op

(
n−1h−d/2

)
.

Proof of Lemma 8. The proof follows the lines of the one for Lemma 2, but now

assuming H1 and that consequently expression (39) holds. Then we obtain

Un ≡ U1n + U2n + U12n,

where

U1n = γ2
n

∫ [
1

nhd

∑
i

K

(
x−Xi

h

)
ϑ (Xi)

]2

ω (x) dx,

U2n =

∫ [
1

nhd

∑
i

K

(
x−Xi

h

)
{m (Xi)− m̂S (Xi)}

]2

ω (x) dx,

U12n = 2γn

∫ [
1

nhd

∑
i

K

(
x−Xi

h

)
ϑ (Xi)

]
[

1

nhd

∑
i

K

(
x−Xi

h

)
{m (Xi)− m̂S (Xi)}

]
ω (x) dx.

Applying (S.2) and a strong law of large numbers we obtain U1n = Cγ2
n + op(1).

Furthermore, |U2n| = op
(
n−1h−d/2

)
by Lemma 2. Finally, integrating by substitution,

applying a strong law of large numbers and conditions (H.1) and (A.1), U12n = op (U1n).

Lemma 9. Under the assumptions of Theorem 2 we have for any h ∈ Hn and n tending

to infinity: Vn = op (Un)
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Proof of Lemma 9. The proof basically follows the arguments as in Lemma 3, but

now we analyze the behavior under H1. Note that H1 implies

∫
y`Y |X1,X2 (y, x1, x2) dy =

∫
y`0
Y |X1,X2

(y, x1, x2θ) dy + γn

∫
yψ (y, x1, x2) dy, (39)

where ϑ (x) =
∫
yψ (y, x1, x2) dy is a bounded continuous function on its support, see

(A.3). Then

Vn ≡ V1n + V2n = γn

∫ (
1

nhd

)2∑
j

εjK
2

(
x−Xj

h

)
ϑ (Xj)ω(x)dx (40)

+

∫ (
1

nhd

)2∑
j

εjK
2

(
x−Xj

h

)
{m (Xj)− m̂S (Xj)}ω(x)dx. (41)

V1n =
γn
nhd
× 1

nhd

n∑
j=1

εjϑ (Xj)

∫
K2

(
x−Xj

h

)
ω(x)dx.

Integrating by substitution and using the smoothness conditions on ω(x) then

V1n =
γn
nhd

[∫
K2 (u) du× 1

n

n∑
j=1

ϑ (Xj)ω(Xj)εj

]
(42)

+
γnh

2

nhd

[∫
u2K2 (u) du× 1

n

n∑
j=1

ϑ (Xj)ω
′′
(Xj)εj

]
(43)

+ op

(
γnh

4

nhd

)
. (44)

Under the conditions established in the lemma, standard central limit theorems apply

so that 1√
n

∑n
j=1 ϑ (Xj)ω(Xj)εj and 1√

n

∑n
j=1 ϑ (Xj)ω

′′
(Xj)εj have expectation zero

and they are bounded in probability. Specifically,

V1n = C
γn

n3/2hd
+ op

( γn
n3/2hd

)
. (45)

Further, the term V2n can be bounded as follows,

|E (V2n)| ≤ sup
x
|m (x)− m̂S (x)| 1

nh2d

∫
E |ε1|K2

(
x−X1

h

)
ω (x) dx.
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Then integrating by substitution

|E (V2n)| = Op

(
sup
x
|m (x)− m̂S (x)| 1

nhd

)
+ op

(
sup
x
|m (x)− m̂S (x)| 1

nhd

)
.

Using assumptions (C.1) and (H.1) and recalling that h ∈ Hn,

|E (V2n)| = op
(
n−1h−d/2

)
. (46)

For the variance expression we obtain

Var (V2n) =
1

n4h4d

n∑
j=1

Var

[∫
εj (m (Xj)− m̂S (Xj))K

2

(
x−Xj

h

)
ω (x) dx

]
,

|V ar (V2n)| ≤ C

{
1

n4h4d

n∑
j=1

V ar

[∫
|εj|K2

(
x−Xj

h

)
ω (x) dx

]}(
sup
x
|m (x)− m̂S (x)|

)2

Integrating by substitution, using conditions (C.1) and (H.1) and recalling that h ∈ Hn,

|V ar (V2n)| = op

(
1

n2hd

)
. (47)

Then, from (40), (41), (45), (46) and (47) we finally get

Vn = C ′γn
1

n3/2hd
+ op

(
γn

1

n3/2hd

)
+ op

(
n−1h−d/2

)
.

Apply conditions (A.1) and (H.1) and for all h ∈ Hn the proof is done.

Lemma 10. Under the assumptions of Theorem 2 we have for any h ∈ Hn and as n

tends to infinity: Wn = op(Un).

Proof of Lemma 10. The proof of this result is based on the proof of Lemma 4. The

bias term is E (Wn) = 0. For the variance term proceed as in the proof of Lemma 7

but using H1, and therefore equality (39). We obtain E (W 2
n) ≤ Cγ2n

n
. This closes the
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proof of the Lemma.

Lemma 11. Under the assumptions required either for Theorem 1 or Theorem 2, we

have |tα| ≤M <∞.

Proof of Lemma 11. Because of Lemmas 7 and 8, under the conditions of either

Theorem 1 or 2 we have maxh T̂h = maxh Th0 + op(1). So it suffices to see that

∀ h, Th0 = Op

(
nhd/2

)
(48)

to get the proof. Note that (48) is obtained as long as we have

∀ h, I0
h (η1, η2, θ) ≤ C <∞ (49)

which is easy to obtain by working the terms out.

Lemma 12. Under the assumptions of Theorem 2, and n→∞, we have for any z

P

(
max
h∈Hn

|Th − Th0| > z

)
→ 1.

Proof of Lemma 12. Using the same kind of decomposition as in Lemma 5 the

claimed result follows directly from Lemmas 9, 8, 10 and 11.

Proof of Theorem 2. Note that for the proof of Lemma 6 we did not use the

null hypothesis H0. So, the results of this lemma are still available here. Under the

alternative, H1, and adding assumptions (A.1) to (A.3) the results in Lemma 7 also

apply. So, by combining results of Lemmas 6 and 7, we get directly that

max
h∈Hn

Th0 = max
h∈Hn

T̂h + op(1).
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So it suffices to combine this with Lemma 12 to close the proof of Theorem 2.
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