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S.1 Some preliminary results

In this section we obtain several preliminary lemmas required for the main proofs.

First, let us introduce some notation. Let ‘dot’ denote differentiation:

ḣt(φ) = (∂/∂φ)ht(φ), ḧt(φ) = (∂/∂φ)ḣt(φ).

Let F denote the set of all c.d.f.’s with zero mean and unit variance, i.e,

F := {F ∈ D(R) : F is a c.d.f. with mean 0 and variance 1}.

We say that a sequence of random variables {Zt}t∈N converges to zero exponentially

almost surely, denoted Zt
e.a.s.→ 0, if there exists γ > 1 such that γtZt

a.s.→ 0 as t → ∞. The

norm ‖ · ‖Λ for a continuous matrix-valued function H on a compact set Λ ⊂ Rr1 , that is

H ∈ C[Λ,Rr2×r3 ], is defined by ‖H‖Λ := sups∈Λ ‖H(s)‖, when r1, r2, r3 are known positive

integers. If H is real valued, then ‖H‖Λ = sups∈Λ |H(s)|. We let R̄ := [−∞,∞].

The next lemma shows that F̌n defined by F̌n(x) := n−1
∑n

t=1 I(ε̌t ≤ x), x ∈ R, in (12)

converges to F0 with probability 1.

Lemma S.1. (a) Suppose that Assumptions (A1)–(A4) and H0 hold, and φ0 is an in-

terior point in Φ. Then, d2(F̌n, F0)
a.s.→ 0 as n → ∞. (b) Additionally, assume that

Assumption (A6) is also satisfied, then d2(F̌n, F0)
a.s.→ 0 as n→∞, irrespective of whether

φ0 is in the interior of Φ.

Proof of Lemma S.1. Recall that d2(FX , FY ) is the Mallows metric for the distance be-

tween two probability distributions FX and FY defined by d2(FX , FY ) = inf{E|X−Y |2}1/2,

where the infimum is over all square integrable random variables X and Y with marginal

distributions FX and FY .

Proof of Part (a): Let Hn(x) := n−1
∑n

t=1 I(εt ≤ x), be the e.d.f. of the unobserved errors

{ε1, . . . , εn}. From the triangular inequality

d2(F̌n, F0) ≤ d2(F̌n, Hn) + d2(Hn, F0).

We already have that d2(Hn, F0)
a.s.→ 0 as n→∞ (see, for example, Lemma 8.4 of Bickel and

Freedman, 1981). Thus, it suffices to show that d2(F̌n, Hn)
a.s.→ 0 as n → ∞. To this end,

let J be a random variable having Laplace distribution on {1, . . . , n}, with P (J = i) = 1/n

for each i = 1, . . . , n. Define two random variables X(1) and Y (1) by

X(1) = εJ and Y (1) = ε̌J .
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Then, X(1) and Y (1) have the marginal distributions Hn and F̌n respectively. Therefore,

{d2(F̌n, Hn)}2 = inf{E|X − Y |2} ≤ E{X(1) − Y (1)}2

= n−1

n∑
t=1

(εt − ε̌t)2 = (nσ̂2
n)−1

n∑
t=1

{σ̂nεt − (ε̂t − n−1

n∑
j=1

ε̂j)}2, (S.1)

where σ̂2
n = n−1

∑n
t=1{ε̂t − n−1

∑n
j=1 ε̂j}2.

Since Assumptions (A1)–(A4) are satisfied, and φ0 is an interior point of Φ, QMLE φ̂n

is asymptotically linear and satisfies (10), and hence φ̂n
a.s.→ φ0 and n1/2(φ̂n−φ0) = Op(1),

and it follows that σ̂2
n

a.s.→ 1. Hence, for some constant K > 0, (S.1) is bounded from

above by

Kn−1

n∑
t=1

(ε̂t − εt)2 +Kn−2

( n∑
t=1

εt

)2

+Mn

where Mn is a random variable that converges to zero with probability one. Here we have

used some arguments from the proof of Lemma 6 in Perera and Silvapulle (2021).

Since ht(φ) > ωL > 0 for all φ ∈ Φ, we have that

n−1

n∑
t=1

(ε̂t − εt)2 = n−1

n∑
t=1

ε2
t

[
{ht(φ0)}1/2 − {ht(φ̂n)}1/2

]2
/ht(φ̂n)

≤ ω−1
L n−1

n∑
t=1

ε2
t

[
{ht(φ0)}1/2 − {ht(φ̂n)}1/2

]2
.

From Proposition S.1 below, we obtain that

{ht(φ̂n)}1/2 − {ht(φ0)}1/2 = 2−1(φ̂n − φ0)′ḣt(φ0)/{ht(φ0)}1/2 + op(n
−1/2). (S.2)

Because φ̂n
a.s.→ φ0 and ‖Eε2

t ḣt(φ0)/{ht(φ0)}1/2‖ <∞, then by the Ergodic Theorem

n−1

n∑
t=1

ε2
t [{ht(φ̂n)}1/2 − {ht(φ0)}1/2]

a.s.→ 0 as n→∞.

Hence n−1
∑n

t=1(ε̂t − εt)2 a.s.→ 0. Since Eεt = 0, by the strong law of large numbers we also

have n−2 (
∑n

t=1 εt)
2 a.s.→ 0 as n→∞. Therefore, d2(F̌n, Hn)

a.s.→ 0 and hence d2(F̌n, F0)
a.s.→ 0.

Proof of part (b): Under Assumptions (A1)–(A3), φ̂n converges to φ0 (a.s.), irrespective

of whether φ0 is in the interior of the parameter space (see Lemma 2). Since Assump-

tions (A4)–(A6) are also satisfied, we also have n1/2(φ̂n − φ0) = Op(1) by Lemma 2.

Furthermore, under Assumptions (A1)–(A6), from Proposition S.1 below, (S.2) contin-

ues to hold irrespective of whether φ0 is in the interior of Φ. Since φ̂n
a.s.→ φ0, and

n1/2(φ̂n − φ0) = Op(1), then it follows that d2(F̌n, F0)
a.s.→ 0 by repeating the arguments of

the proof of part (a).

3



For (φ, F ) = (φ0, F0) the data generating model (19) in the main paper is equivalent

to the DGP defined by (1)–(4). Usually, φ0 and F0 are unknown. Hence, in order to

generate data from a model that mimics (1)–(4), one needs to replace (φ0, F0) by some

known (φn, Fn) which is sufficiently close to (φ0, F0). Let (φn, Fn) be such a sequence in

the product space Φ̄∗ ×F , such that (φn, Fn)→ (φ∗0, F
∗
0 ) as n→∞, with ‖φn −φ∗0‖ → 0

and d2(Fn, F
∗
0 ) → 0 as n → ∞. Note that, since (φ∗0, F

∗
0 ) = plim(φ̂n, F̌n), we have

(φ∗0, F
∗
0 ) = (φ0, F0) under H0, and (φ∗0, F

∗
0 ) is the pseudo-true value under H1.

In what follows, when the DGP (19) corresponds to (φn, Fn) instead of using h
(φn,Fn)
t (·)

and τ
(φn,Fn)
t (·), we let the analogs of ht(·) and τt(·) be denoted by hnt(·) and τnt(·), respec-

tively. Note that, under H0, the probability laws of h
(φ0,F0)
t (·) and τ

(φ0,F0)
t (·) are identical to

those of ht(·) and τt(·), respectively.

Recall that Ht denotes the information available up to time t, t ∈ Z.

Lemma S.2. If ‖φn−φ∗0‖ → 0 and d2(Fn, F
∗
0 )→ 0 as n→∞ with E(|Fn−1(Ut)|4+d) <∞,

then for every y ∈ R̄, we have that EI(Y (φn,Fn)
1 ≤ y)→ EI(Y (φ∗

0,F
∗
0 )

1 ≤ y) as n→∞.

Proof. Fix y ∈ R̄. Since Y
(φn,Fn)
t = hnt(φn)F−1

n (Ut), F
−1
n (Ut) := inf{y ∈ R : Fn(y) ≥ Ut},

and {Ut, t ∈ Z} are i.i.d. uniform(0,1), EI(Y (φn,Fn)
1 ≤ y)−EI(Y (φ∗

0,F
∗
0 )

1 ≤ y) can be written as

E
[
E
{
I
(
F−1
n (Ut) ≤ y/hnt(φn)

)
|Ht−1

}]
− E

[
E
{
I
(
F ∗0
−1(Ut) ≤ y/h

(φ∗
0,F

∗
0 )

t (φ∗0)
)
|Ht−1

}]
= E

[
Fn{y/hnt(φn)} − F ∗0 {y/h

(φ∗
0,F

∗
0 )

t (φ∗0)}
]

= E∆n1 + E∆n2, where

∆n1 = Fn[y/hnt(φn)]− Fn[y/h
(φ∗

0,F
∗
0 )

t (φ∗0)], ∆n2 = Fn[y/h
(φ∗

0,F
∗
0 )

t (φ∗0)]− F ∗0 [y/h
(φ∗

0,F
∗
0 )

t (φ∗0)].

Hence, to complete the proof it is sufficient to show that E∆n1 = o(1) and E∆n2 = o(1).

The recursion relation (19) yields the following Volterra series expansion of h
(φ∗

0,F
∗
0 )

t (φ∗0):

h
(φ∗

0,F
∗
0 )

t (φ∗0) = b∗0 + b∗0

∞∑
k=1

∞∑
−∞<sk<...<s1<t

b∗t−s1b
∗
s1−s2 . . . b

∗
sk−1−sk [F ∗0

−1(Us1)]
2 . . . [F ∗0

−1(Usk)]2,

where b∗0 = ω∗0/(1 −
∑p2

j=1 β
∗
0j) and the weights b∗j , j ≥ 1, are defined by the generating

function Aφ∗
0
(z)/Bφ∗

0
(z) =

∑∞
j=1 b

∗
jz
j. Recall that φ∗0 = (ω∗0, α

∗
01, . . . , α

∗
0p1
, β∗01, . . . , β

∗
0p2

)′,

Aφ∗
0
(z) =

∑p1
j=1 α

∗
0jz

j and Bφ∗
0
(z) = 1−

∑p2
j=1 β

∗
0jz

j.

Similarly, with φn = (ωn, αn1, . . . , αnp1 , βn1, . . . , βnp2)
′, b

(n)
0 = ωn/(1 −

∑p2
j=1 βnj) and

b
(n)
j , j ≥ 1 defined by the generating function Aφn

(z)/Bφn
(z) =

∑∞
j=1 b

(n)
j zj, one obtains

hnt(φn) = b
(n)
0 + b

(n)
0

∞∑
k=1

∞∑
−∞<sk<...<s1<t

b
(n)
t−s1b

(n)
s1−s2 . . . b

(n)
sk−1−sk [Fn

−1(Us1)]
2 . . . [Fn

−1(Usk)]2.
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Write hnt(φn)− h
(φ∗

0,F
∗
0 )

t (φ∗0) = (b
(n)
0 − b∗0) +

∑∞
k=1

∑∞
−∞<sk<...<s1<t{D

∗
n1 +D∗n2}, where

D∗n1 = (b
(n)
0 b

(n)
t−s1 . . . b

(n)
sk−1−sk − b

∗
0b
∗
t−s1 . . . b

∗
sk−1−sk)[Fn

−1(Us1)]
2 . . . [Fn

−1(Usk)]2,

D∗n2 = b∗0b
∗
t−s1 . . . b

∗
sk−1−sk{[Fn

−1(Us1)]
2 . . . [Fn

−1(Usk)]2 − [F ∗0
−1(Us1)]

2 . . . [F ∗0
−1(Usk)]2}.

Since φn → φ∗0, E(|Fn−1(Ut)|4+d) < ∞ and the weights b∗j , b
(n)
j , j ≥ 1, are exponentially

decaying, we have that
∑∞

k=1

∑∞
−∞<sk<...<s1<tD

∗
n1

a.s.→ 0. Since d2(Fn, F
∗
0 )→ 0 and b∗j , j ≥ 1,

are exponentially decaying, it also follows that
∑∞

k=1

∑∞
−∞<sk<...<s1<tD

∗
n2

a.s.→ 0. Therefore,

|hnt(φn)− h
(φ∗

0,F
∗
0 )

t (φ∗0)| ≤ |b(n)
0 − b∗0|+

∣∣∑∞
k=1

∑∞
−∞<sk<...<s1<t(D

∗
n1 +D∗n2)

∣∣ a.s.→ 0.

In what follows C > 0 denotes a generic constant, which may take different values at

different places. Since supζ∈D ‖h
(ζ)
t (·)‖Φ̄∗ > ωL > 0 and |hnt(φn) − h

(φ∗
0,F

∗
0 )

t (φ∗0)| a.s.→ 0 we

obtain that |∆n1| ≤ yω−2
L C|hnt(φn)−h

(φ∗
0,F

∗
0 )

t (φ∗0)| a.s.→ 0, and hence E∆n1 = o(1). Similarly,

since d2(Fn, F
∗
0 )→ 0, E|∆n2| ≤ Cd2(Fn, F

∗
0 )→ 0, and hence E∆n2 = o(1).

Recall that τnt(φ) := ḣnt(φ)/hnt(φ) where hnt(φ) = h
(φn,Fn)
t (φ).

Lemma S.3. For every nonrandom sequence ζn := (φn, Fn) ∈ Φ̄∗×F with ‖φn−φ∗0‖ → 0

and d2(Fn, F
∗
0 )→ 0, where E(|Fn−1(Ut)|4+d) <∞, we have that E‖τ (φ∗0,F

∗
0 )

1 (φ∗0)‖2 <∞ and

E‖ḧ(φ∗
0,F

∗
0 )

1 (φ∗0){h(φ∗
0,F

∗
0 )

1 (φ∗0)}−1/2‖2 < ∞. Furthermore, E[τn1(φn)] → E[τ
(φ∗0,F

∗
0 )

1 (φ∗0)] and

E[ḧn1(φn){hn1(φn)}−1/2]→ E[ḧ
(φ∗

0,F
∗
0 )

1 (φ∗0){h(φ∗
0,F

∗
0 )

1 (φ∗0)}−1/2] as n→∞.

Proof. Since hnt(φn), h
(φ∗

0,F
∗
0 )

t (φ∗0) > ωL > 0,

|τnt(φn)− τ (φ∗0,F
∗
0 )

t (φ∗0)|

=

∣∣∣∣∣ḣnt(φn)

(
1

hnt(φn)
− 1

h
(φ∗

0,F
∗
0 )

t (φ∗0)

)
+

ḣnt(φn)− ḣ
(φ∗0,F

∗
0 )

t (φ∗0)

h
(φ∗

0,F
∗
0 )

t (φ∗0)

∣∣∣∣∣
≤ ‖τn1(φn)‖ω−1

L |hnt(φn)− h
(φ∗

0,F
∗
0 )

t (φ∗0)|+ ω−1
L ‖ḣnt(φn)− ḣ

(φ∗
0,F

∗
0 )

t (φ∗0)‖. (S.3)

From the proof of Lemma S.2, |hnt(φn) − h
(φ∗

0,F
∗
0 )

t (φ∗0)| a.s.→ 0. By arguing as in the proof

of Proposition S3 of Perera and Silvapulle (2022), ‖ḣnt(φn) − ḣ
(φ∗

0,F
∗
0 )

t (φ∗0)| a.s.→ 0. Further-

more, from Propositions S3 and S4 of Perera and Silvapulle (2022), E‖τ (φ∗0,F
∗
0 )

1 (φ∗0)‖2 <∞

and E‖ḧ(φ∗
0,F

∗
0 )

1 (φ∗0){h(φ∗
0,F

∗
0 )

1 (φ∗0)}−1/2‖2 < ∞. Since E‖τn1(φn)‖2 < ∞, by the above two

convergence results and the inequality (S.3), we obtain that |τnt(φn) − τ (φ∗0,F
∗
0 )

t (φ∗0)| a.s.→ 0,

and hence E[τn1(φn)] → E[τ
(φ∗0,F

∗
0 )

1 (φ∗0)]. By using similar arguments we also obtain that

E[ḧn1(φn){hn1(φn)}−1/2]→ E[ḧ
(φ∗

0,F
∗
0 )

1 (φ∗0){h(φ∗
0,F

∗
0 )

1 (φ∗0)}−1/2].
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Lemma S.4. Suppose that either (a) Assumptions (A1)–(A3) and H0 are satisfied and

{Yt}t∈Z is square integrable, or (b) Assumptions (B1) and (B2) are satisfied and H1 holds.

Then, for every ζ = (φ, F ) ∈ Φ̄∗ × F , the model (19) has a unique stationary ergodic

solution {Y (ζ)
t : t ∈ Z} with finite second moments.

Proof. Let ζ = (φ, F ) ∈ Φ̄∗ × F be fixed and arbitrary. Since F has zero mean and unit

variance, the condition
∑p1

i=1 αi +
∑p2

j=1 βj < 1 is necessary and sufficient for the process

{Y (ζ)
t ; t ∈ Z} to be strictly stationary and have finite second moments with E(Y

(ζ)
t ) = 0 and

E[{Y (ζ)
t }2] = ω/(1−

∑p1
i=1 αi−

∑p2
j=1 βj); see, e.g., Nelson (1990); Chen and An (1998).

Lemma S.5. Suppose that the assumptions of Lemma S.4 are satisfied and ζn := (φn, Fn)→

ζ∗0 := (φ∗0, F
∗
0 ), with E(|Fn−1(Ut)|4+d) < ∞, ‖φn − φ∗0‖ → 0 and d2(Fn, F

∗
0 ) → 0, where

ζn ∈ Φ̄∗ ×F . Then, for every constant C <∞,

sup |h1/2
nt (b)− h

1/2
nt (a)− 2−1(b− a)′ḣnt(a)h

−1/2
nt (a)|h−1/2

nt (a) = op(n
−1/2),

where the supremum is taken over 1 ≤ t ≤ n and over {(b,a) : b,a ∈ Φ̄∗, n1/2‖b−a‖ ≤ C}.

Proof of Lemma S.5. LetD := Φ̄∗×F , p = p1+p2+1. Let ℘nt(φ) = {hnt(φ)}1/2 for φ ∈ Φ̄∗.

Let ∆nt(a, b) := h
1/2
nt (b)− h

1/2
nt (a)− 2−1(b− a)′ḣnt(a)h

−1/2
nt (a). Let a, b ∈ Φ̄∗ be fixed but

arbitrary. Then, for each n ∈ N, there exists δn1 ∈ Rp, such that b = a+n−1/2δn1. Hence,

∆nt(a, b) = ℘nt(b)−℘nt(a)− n−1/2δ′n1℘̇nt(a). Therefore, by the Mean Value Theorems for

functions from Rp to R, and Rp to Rp, with right partial derivatives, for every n ∈ N, there

exist δn2, δn3 ∈ Rp with ‖δn3‖ ≤ ‖δn2‖ ≤ ‖δn1‖, such that

∆nt(a, b) = n−1/2δ′n1

[
℘̇nt(a+ n−1/2δn2)− ℘̇nt(a)

]
= n−1δ′n1℘̈nt(a+ n−1/2δn3)δn2,

where

℘̈nt(φ) =
1

2

ḧnt(φ)

{hnt(φ)}1/2
− 1

4

τnt(φ)ḣ ′nt(φ)

{hnt(φ)}1/2
.

Since supζ∈D ‖h
(ζ)
t (·)‖Φ̄∗ > ωL > 0, for any given constant C > 0, w.p. 1,

max
1≤t≤n

sup
a,b∈Φ̄∗,n1/2‖b−a‖≤C

n1/2|∆nt(a, b)|h−1/2
nt (a) ≤ ω

−1/2
L n−1/2C2 max

1≤t≤n
‖℘̈nt‖Φ̄∗ .

Since n−1/2 max1≤t≤n ‖℘̈nt‖Φ̄∗ = op(1), see, e.g. proof of Lemma 4 in Perera and Silvapulle

(2021), it follows that max1≤t≤n supa,b∈Φ̄∗,n1/2‖b−a‖≤C |∆nt(a, b)|h−1/2
nt (a) = op(n

−1/2).
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The next lemma follows from the proof of Theorem 13.1 in Billingsley (1968) and an

application of the Cauchy-Schwarz inequality; see also Lemma 5.1 in Stute (1997). We

restate this result here for the ease of reference. This lemma is useful for establishing the

tightness of certain processes.

Lemma S.6. Let {(ai, bi); 1 ≤ i ≤ n} be i.i.d. square-integrable bivariate random vectors

with E(ai) = E(bi) = 0, 1 ≤ i ≤ n. Then we have that E{(
∑n

t=1 ai)
2(
∑n

j=1 bj)
2} ≤

nE(a2
1b

2
1) + 3n(n− 1)E(a2

1)E(b2
1).

For the proof of Lemma 1 we make use of the following proposition.

Proposition S.1. Suppose that the assumptions of Lemma 1 hold. Then, for every K <∞,

n1/2 sup | h
1/2
t (b) − h

1/2
t (a) − 2−1(b − a)′ḣt(a)h

−1/2
t (a) | h

−1/2
t (φ0) = op(1), where the

supremum is taken over 1 ≤ t ≤ n and over {(b,a) : b,a ∈ Φ, n1/2‖b− a‖ ≤ K}.

Proof. The proof follows as a special case of the proof of Lemma S.5.

S.2 Initialization effect

In this section we obtain several technical results to establish that the effect of initializa-

tion in the bootstrap data generation is asymptotically negligible. First let us introduce

some notation.

If data are generated from (19) for t ≥ −m, conditional on a vector of starting values

ς0 = (y0, · · · , y1−q, s0, · · · , s1−p)
′, then we use the superscript “(m, ζ)” instead of “(ζ)”,

where ζ = (φ, F ). For example, h
(m,ζ)
t (·) and τ

(m,ζ)
t (·) are the analogues of h

(ζ)
t (·) and

τ
(ζ)
t (·), respectively, when the data generating model obeys (19) for t ≥ −m, conditional

on the starting values ς0.

Lemma S.7. Suppose that the assumptions of Lemma S.4 are satisfied. Then, there exists

a compact set K1 ⊆ Φ̄∗, which contains φ∗0, such that supζ∈K ‖h
(m,ζ)
t − h

(ζ)
t ‖K1

e.a.s.→ 0 and

supζ∈K ‖ḣ
(m,ζ)
t − ḣ

(ζ)
t ‖K1

e.a.s.→ 0 as t→∞, where K = K1 ×F .

Proof. The proof follows from the verifications of Conditions (M1) and (M2) in Perera

and Silvapulle (2022) for the GARCH(p1, p2) setup, with the set Kθ being replaced by F .

Sine everything follows after suitable modifications of the arguments already developed in

Perera and Silvapulle (2022), we omit the details.
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Conditional on (Y1, . . . , Yn), and using the notation introduced above, we have

{Y ∗t , h∗t (φ), τ ∗t (φ)} ≡ {Y (0,ζ∗)
t , h

(0,ζ∗)
t (φ), τ

(0,ζ∗)
t (φ)}, φ ∈ Φ, t ∈ N, (S.4)

where ζ∗ = (φ̂n, F̌n) for the bootstrap method in Section 3.2, and ζ∗ = (φ̂
†
n, F̌n) for the

bootstrap method in Section 4.2 with φ̂
†
n given by (22). Similarly, let the bootstrap process

generated by (19), conditional on (Y1, . . . , Yn), without any initialization, be defined as

{Y ∗(∞)
t , h

∗(∞)
t (φ), τ

∗(∞)
t (φ)} = {Y (ζ∗)

t , h
(ζ∗)
t (φ), τ

(ζ∗)
t (φ)}, φ ∈ Φ, t ∈ Z, (S.5)

where ζ∗ = (φ̂n, F̌n) and ζ∗ = (φ̂
†
n, F̌n) for the bootstraps in Section 3.2 and Section 4.2,

respectively. This notation is similar to the one used in Section 3.3 in Perera and Silvapulle

(2018) to define a similar hypothetical bootstrap process. Thus, {Y ∗(∞)
t , h

∗(∞)
t (φ), τ

∗(∞)
t (φ)}

represents a hypothetical (non-operational) bootstrap process generated by (19), without

any initialization. Further, let

φ̂
∗(∞)

n = arg min
φ∈Φ

n∑
t=1

`
∗(∞)
t (φ), `

∗(∞)
t (φ) = log h

∗(∞)
t (φ) +

{Y ∗(∞)
t }2

h
∗(∞)
t (φ)

,

U∗(∞)
n (y,φ) = n−1/2

n∑
t=1

(
{Y ∗(∞)

t }2

h
∗(∞)
t (φ)

− 1

)
I(Y ∗(∞)

t−1 ≤ y), y ∈ R, φ ∈ Φ.

Since no initialization is used in the bootstrap data generation in (S.5), the marked empir-

ical process U∗(∞)
n (y, φ̂

∗(∞)

n ), unlike U∗n(y, φ̂
∗
n), is not subject to any initialization error.

The next lemma shows that, conditional on (Y1, . . . , Yn), for the bootstrap method in

Section 3.2, U∗n(y, φ̂
∗
n) and U∗(∞)

n (y, φ̂
∗(∞)

n ) are uniformly close, in probability.

Lemma S.8. Suppose that the assumptions of Theorem 2 are satisfied with φ0 being an

interior point in Φ, or the assumptions of Theorem 3 are satisfied. Then, conditional on

(Y1, . . . , Yn), supy∈R | U∗n(y, φ̂
∗
n)− U∗(∞)

n (y, φ̂
∗(∞)

n ) |= o∗p(1), in probability.

Proof. Fix a sample path along which φ̂n → φ0 and d2(F̌n, F0) → 0 (this approach is

similar to the one used in the proof of Lemma 7 in Perera and Silvapulle (2022)). Assume

without loss of generality that Y ∗t ≤ Y
∗(∞)
t . Then, we have

U∗n(y, φ̂
∗
n)− U∗(∞)

n (y, φ̂
∗(∞)

n )

= n−1/2

n∑
t=1

(
{Y ∗t }2

h∗t (φ̂
∗
n)
− {Y ∗(∞)

t }2

h
∗(∞)
t (φ̂

∗(∞)

n )

)
I(Y ∗(∞)

t−1 ≤ y)

+ n−1/2

n∑
t=1

(
{Y ∗t }2

h∗t (φ̂
∗
n)
− 1

)
I(Y ∗t−1 ≤ y < Y

∗(∞)
t−1 )

= I + II, say. (S.6)
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Since Lemma S.7 shows that |h∗t (φ̂n) − h
∗(∞)
t (φ̂n)| e.a.s.→ 0 as t → ∞, from Lemma 2.1 in

Straumann and Mikosch (2006), |{h∗t−1(φ̂n)}1/2 − {h∗(∞)
t−1 (φ̂n)}1/2| e.a.s.→ 0, as t→∞, and

hence from Lemma 2.3 in Straumann and Mikosch (2006), it follows that

|Y ∗t−1 − Y
∗(∞)
t−1 | = |ε∗t−1||{h∗t−1(φ̂n)}1/2 − {h∗(∞)

t−1 (φ̂n)}1/2| e.a.s.→ 0, as t→∞,

and hence the sum II in (S.6) is of order o∗p(1), uniformly in y ∈ R, along the fixed

sample path.

The first sum in (S.6) is bounded as

|I| ≤ n−1/2

n∑
t=1

∣∣∣∣ {Y ∗t }2

h∗t (φ̂
∗
n)
− {Y ∗(∞)

t }2

h
∗(∞)
t (φ̂

∗(∞)

n )

∣∣∣∣
≤ n−1/2

n∑
t=1

{Y ∗t }2

∣∣∣∣ 1

h∗t (φ̂
∗
n)
− 1

h
∗(∞)
t (φ̂

∗(∞)

n )

∣∣∣∣+ n−1/2ω−1
L

n∑
t=1

∣∣{Y ∗t }2 − {Y ∗(∞)
t }2

∣∣
= IA + IB, say.

Since |{Y ∗t }2 − {Y ∗(∞)
t }2| = |ε∗t |2|h∗t (φ̂n) − h

∗(∞)
t (φ̂n)| e.a.s.→ 0, as t → ∞,

∑n
t=1 |{Y ∗t }2 −

{Y ∗(∞)
t }2| converges a.s. as n→∞, by Lemma 2.1 in Straumann and Mikosch (2006), and

hence sum IB is of order o∗p(1) along the fixed sample path.

From the proof of Lemma 8 in Perera and Silvapulle (2017), n1/2(φ̂
∗
n − φ̂

∗(∞)

n ) = o∗p(1).

By Lemma S.7, supφ∈K1
|h∗t (φ) − h

∗(∞)
t (φ)| e.a.s.→ 0 for some compact set K1 ⊆ Φ̄∗. Hence,

Lemma 2.3 in Straumann and Mikosch (2006) yields that sum IA is also of order o∗p(1),

along the fixed sample path. Since φ̂n
a.s.→ φ0 and d2(F̌n, F0)

a.s.→ 0, as n → ∞, it follows

that supy∈R | U∗n(y, φ̂
∗
n)− U∗(∞)

n (y, φ̂
∗(∞)

n ) |= o∗p(1), in probability.

The next lemma shows that, conditional on (Y1, . . . , Yn), for the bootstrap method in

Section 4.2, U∗n(y, φ̂
∗
n) and U∗(∞)

n (y, φ̂
∗(∞)

n ) are uniformly close, in probability.

Lemma S.9. Suppose that either assumptions of Theorem 4 or Theorem 5 are satis-

fied. Then, conditional on {Y1, . . . , Yn}, supy∈R | U∗n(y, φ̂
∗
n) − U∗(∞)

n (y, φ̂
∗(∞)

n ) |= o∗p(1),

in probability.

Proof. The proof follows from arguing as for the proof of Lemma S.8 with φ̂n replaced

by φ̂
†
n.

Lemmas S.8 and S.9 show that the effect of initialization in the bootstrap data gener-

ation is asymptotically negligible. Hence, in the next section we only focus on U∗n(·, φ̂
∗
n).
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S.3 Main proofs

This section provides the proofs of the main results stated in the paper.

Proof of Lemma 1. First, partition Un(·, φ̂n ) as follows.

Un(y, φ̂n)− Un(y,φ0)

= n−1/2

n∑
t=1

{Y 2
t /ht(φ̂n)− Y 2

t /ht(φ0))}I(Yt−1 ≤ y)

= n−1/2

n∑
t=1

ε2
t{ht(φ0)/ht(φ̂n)− 1}I(Yt−1 ≤ y)

= −n−1/2

n∑
t=1

ε2
t

(
ht(φ̂n)− ht(φ0)

ht(φ0)

)
I(Yt−1 ≤ y) (S.7)

+n−1/2

n∑
t=1

ε2
t

(
ht(φ̂n)− ht(φ0)

)( 1

ht(φ0)
− 1

ht(φ̂n)

)
I(Yt−1 ≤ y).

Since E(ε2
0) = 1 and n1/2(φ̂n − φ0) = Op(1), by applying Proposition S.1 and the Ergodic

Theorem to the expansion (S.7), we obtain that, uniformly in y ∈ R,

Un(y, φ̂n) = Un(y,φ0)− n−1

n∑
t=1

{ε2
tn

1/2(φ̂n − φ0)′τt(φ0)}I(Yt−1 ≤ y) + op(1)

= Un(y,φ0)− n1/2(φ̂n − φ0)′E[τ1(φ0)I(Y0 ≤ y)] + op(1).

For the proof of Theorem 1 we introduce the following additional notation. For d ≥ 1,

let Cd ≡ C([−∞,∞],Rd) denote the space of continuous functions from [−∞,∞] into Rd.

A sequence of d-dimensional stochastic processes (with cadlag paths) is said to be C-tight

if it has associated laws that are tight and whose limit points are concentrated on the set

of continuous paths Cd.

Proof of Theorem 1. From Lemma 1 and (10), we obtain that, uniformly in y ∈ R,

Un(y, φ̂n) = Un(y,φ0)

−E[τ ′1(φ0)I(Y0 ≤ y)]Σ−1
n (φ0)n−1/2

n∑
t=1

(ε2
t − 1)τt(φ0) + op(1). (S.8)

By the Ergodic Theorem (e.g., Theorem 2.5.2 of Giraitis et al., 2012) Σn(φ0)
a.s.→ Σ(φ0), as
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n→∞. Hence, by using the above asymptotic uniform expansion of Un(·, φ̂n), we derive

Cov{Un(x, φ̂n),Un(y, φ̂n)} = K(x, y) + J ′(x,φ0)E[M1(φ0)M ′
1(φ0)]J ′(y,φ0)

−J ′(x,φ0)E[(ε2
1 − 1)M1(φ0)I(Y0 ≤ y)]

−J ′(y,φ0)E[(ε2
1 − 1)M1(φ0)I(Y0 ≤ x)] + o(1), x, y ∈ R.

Hence, Cov{Un(x, φ̂n),Un(y, φ̂n)} = Cov{U0(x),U0(y)} + o(1), x, y ∈ R, where U0 is the

centred Gaussian process in Theorem 1. The convergence of finite dimensional distributions

of Un(·, φ̂n) can be derived by e.g. an application of Theorem 18.3 in Billingsley (1999).

To show that Un(y, φ̂n) is tight, let G−1(u) := inf{y ∈ R : G(y) ≥ u} and

Ūn(u,φ) := n−1/2

n∑
t=1

{
Y 2
t

ht(φ)
− 1

}
I(Yt−1 ≤ G−1(u)), u ∈ [0, 1], φ ∈ Φ.

Then, by standard quantile representation, we have that Un(y,φ) = Ūn(G(y),φ) for y ∈ R̄.

Let 0 ≤ u1 ≤ u ≤ u2 ≤ 1 be fixed but arbitrary. Set

at = {ε2
t − 1}I(G−1(u1) < Yt−1 ≤ G−1(u)),

bt = {ε2
i − 1}I(G−1(u) < Yt−1 ≤ G−1(u2)).

Note that E(at) = E(bt) = 0 and atbt = 0. Further, Ūn(u,φ0)− Ūn(u1,φ0) = n−1/2
∑n

t=1 at

and Ūn(u2,φ0)− Ūn(u,φ0) = n−1/2
∑n

j=1 bj. Therefore, from Lemma S.6, we obtain that

E[{Ūn(u,φ0)− Ūn(u1,φ0)}{Ūn(u2,φ0)− Ūn(u,φ0)}]

= n−2E{(
n∑
t=1

at)
2(

n∑
j=1

bj)
2} ≤ [nE(a2

1b
2
1) + 3n(n− 1)E(a2

1)E(b2
1)]/n2

= 3n(n− 1)n−2[E{ε2
1 − 1}2]2(u− u1)(u2 − u)

≤ 3(κε − 1)2(u2 − u1)2.

Since u1 and u2 are arbitrary, then it follows that Un(·,φ0) is C-tight, e.g. by Theorem 15.7

of Billingsley (1968). Since G is continuous, the last term in (S.8),

E[τ ′1(φ0)I(Y0 ≤ y)]cΣ−1
n (φ0)n−1/2

∑n
t=1 τt(φ0)%(εt),

is asymptotically C-tight, and hence Un(·, φ̂n) is also asymptotically C-tight. From the

latter fact and the convergence of finite dimensional distributions of Un(·, φ̂n) to those

of U0(·), it follows that Un(·, φ̂n)
w⇒ U0(·) in D(R), where ‘

w⇒’ denotes weak convergence

of processes.

11



We next state the proof of Theorem 2. In view of Lemmas S.8 and S.9, and the

continuous mapping theorem, the effect of initialization in the bootstrap data generation

is asymptotically negligible. Therefore, in the next proof, and in the sequel, we do not

distinguish between {Y ∗(∞)
t , h

∗(∞)
t (φ), τ

∗(∞)
t (φ)} in (S.5), and the operational bootstrap

process {Y ∗t , h∗t (φ), τ ∗t (φ)} in (S.4).

Note that, since (φ∗0, F
∗
0 ) = plim(φ̂n, F̌n), we have (φ∗0, F

∗
0 ) = (φ0, F0) under H0, and

(φ∗0, F
∗
0 ) is the pseudo-true value under H1.

Proof of Theorem 2. By extending the arguments of Lemma 1 to a triangular array

setup, we obtain that, conditional on {Y1, . . . , Yn}, uniformly over y ∈ R,

U∗n(y, φ̂
∗
n) = U∗n(y, φ̂n)− 1

n

n∑
t=1

(ε∗t )
2n1/2(φ̂

∗
n − φ̂n)′τ ∗t (φ̂n)I(Y ∗t−1 ≤ y) + o∗p(1),

= U∗n(y, φ̂n)− 1√
n

n∑
t=1

(φ̂
∗
n − φ̂n)′τ ∗t (φ̂n)I(Y ∗t−1 ≤ y) + o∗p(1), (S.9)

in probability. Since plim φ̂n = φ0, and φ0 is an interior point in Φ, one obtains

n1/2(φ̂
∗
n − φ̂n) = −Σ∗n

−1(φ̂n)n−1/2

n∑
t=1

(1− ε∗t
2)τ ∗t (φ̂n) + o∗p(1), (S.10)

Σ∗n(φ) := n−1

n∑
t=1

τ ∗t (φ)τ ∗t (φ)′, τ ∗t (φ) := ḣ∗t (φ)/h∗t (φ), φ ∈ Φ;

this follows from the proof of Proposition 3.2 in Hidalgo and Zaffaroni (2007), pp. 850-

851. More precisely, H∗T (θ̂) and T 1/2h∗T in Hidalgo and Zaffaroni (2007) are the same

as 2−1n−1
∑n

t=1(∂2/∂φ∂φ)`∗t (φ̂n) and 2−1n−1/2
∑n

t=1(1 − ε∗t
2)τ ∗t (φ̂n), respectively, in our

notation. Note that `∗t (φ) = log h∗t (φ) + [Y ∗2t /h∗t (φ)]. By a routine application of Slutzky’s

theorem Σ∗n
−1(φ̂n) − [n−1

∑n
t=1(∂2/∂φ∂φ)`∗t (φ̂n)]−1 = o∗p(1), and hence the arguments in

Hidalgo and Zaffaroni (2007) leading to T 1/2(θ̂∗−θ̂) = −H∗−1
T (θ̂)T 1/2h∗T+o∗p(1) imply (S.10).

Since U∗n(y, φ̂n) = n−1/2
∑n

t=1(ε∗t − 1)2I(Y ∗t−1 ≤ y), by using Lemma S.2, for every

x, y ∈ R, with x ∧ y := min(x, y), we derive that

cov∗{U∗n(x, φ̂n),U∗n(y, φ̂n)} = n−1

n∑
t=1

E∗(ε∗t − 1)2I(Y ∗t−1 ≤ x ∧ y)

= (κε − 1)EI(Yt−1 ≤ x ∧ y) + op(1)

= K(x, y) + op(1).

Further, by substituting the above expansion for n1/2(φ̂
∗
n− φ̂n) in (S.9), and arguing as for

Theorem 1 in a triangular array, we also obtain that

cov∗{U∗n(x, φ̂
∗
n),U∗n(y, φ̂

∗
n)} = K(x, y) + g∗(x, y,φ0) + op(1), x, y ∈ R,
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where

g∗(x, y,φ0) = J ′(x,φ0)E[M1(φ0)M ′
1(φ0)]J ′(y,φ0)

−J ′(x,φ0)E[(ε2
1 − 1)M1(φ0)I(Y0 ≤ y)]

−J ′(y,φ0)E[(ε2
1 − 1)M1(φ0)I(Y0 ≤ x)].

By using the Cramer-Wold device and a CLT for triangular arrays of row-wise independent

mean zero r.v.’s (e.g., Corollary 3.3.1 of Hall and Heyde, 1980) we obtain that the finite

dimensional distributions of U∗n(·, φ̂
∗
n) converge to those of U0, in probability, where U0

is the centred Gaussian process in Theorem 1. Further, by extending the arguments of

Theorem 1 to a triangular array we also obtain that U∗n(·, φ̂
∗
n) is asymptotically C-tight.

Hence Part 1 follows. Since U∗n(·, φ̂
∗
n) converges weakly to U0, and n1/2(φ̂

∗
n − φ̂n) = O∗p(1),

in probability, from an application of the continuous mapping theorem,

T ∗1 = KS∗
d∗→ sup

y

∣∣U0(y)
∣∣, T ∗2 = CvM∗

d∗→
∫
U2

0 (y)dG(y),

in probability, and hence Part 2 also holds for the KS and CvM functional forms.

Proof of Theorem 3. If some components of φ∗0 lie on the boundary of the parameter

space; i.e., φ∗0i = 0 for some i = 2, . . . , p1 + p2 + 1, then the proof follows from arguing

as in the proof of Theorem 5. Hence, here we only consider the case φ∗0 is in the interior

of Φ. Since Assumptions (B1) and (B2) hold, and (φ̂n, F̌n)
p→ (φ∗0, F

∗
0 ), by applying

Lemmas S.2 and S.3 and arguing as in the proof of Theorem 2, conditional on {Y1, . . . , Yn},

the process U∗n(·, φ̂
∗
n) converges weakly to the centred Gaussian process U †0(·) specified by

Cov{U †0(x),U †0(y)} = E({F ∗0
−1(Ut)}2 − 1)2I(Yt−1 ≤ x ∧ y)

+J ′(x,φ∗0)E[Vt(φ0)V ′t (φ
∗
0)]J ′(y,φ∗0)

−J ′(x,φ∗0)E[({F ∗0
−1(Ut)}2 − 1)Vt(φ

∗
0)I(Yt−1 ≤ y)]

−J ′(y,φ∗0)E[({F ∗0
−1(Ut)}2 − 1)Vi(φ

∗
0)I(Yt−1 ≤ x)],

in probability, where U = {Ut, t ∈ Z} are i.i.d. uniform(0,1) random variables,

Vt(φ) := −Σ−1(φ)[1− {F ∗0
−1(Ut)}2]τt(φ), φ ∈ Φ.

Therefore, it suffices to show that n−1/2|Un(y, φ̂n)| = Op(1), for some y ∈ R. Under the

assumptions of Theorem 3 there exists a y ∈ R satisfying E[{h1/h1(φ∗0)− 1}I(Y0 ≤ y)] 6= 0
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under H1. Fix such a y. Under H1, εt = Yt/
√

ht, where ht = E[Y 2
t | Ht−1], t ∈ Z. Therefore,

n−1/2|Un(y, φ̂n)| ≤
∣∣n−1

n∑
t=1

ε2
tht
[
h−1
t (φ̂n)− h−1

t (φ∗0)
]
I(Yt−1 ≤ y)

∣∣
+
∣∣n−1

n∑
t=1

{
ε2
t

(
ht/ht(φ

∗
0)
)
− 1
}
I(Yt−1 ≤ y)

∣∣. (S.11)

Since Assumptions (B1) and (B2) are satisfied and H1 holds, by applying Lemma S.5, on

the set n1/2‖φ̂n − φ∗0‖ ≤ K, the first term on the right hand side of (S.11), is bounded by

ω−1
L n−1

n∑
t=1

Y 2
t

∣∣(φ̂n − φ∗0)′τt(φ
∗
0)
∣∣+ op(n

−1/2).

By the Ergodic Theorem, and because φ̂n
p→ φ∗0, n−1

∑n
t=1 Y

2
t |(φ̂n − φ∗0)′τt(φ

∗
0)| = op(1).

Hence, the first term on the right hand side of (S.11) is of order op(1). Since n1/2(φ̂n−φ∗0) =

Op(1), then by using an extended Glivenko-Cantelli type argument, we obtain that

n−1/2|Un(y, φ̂n)| = |E
(
[h1/h1(y,φ∗0)− 1]I(Y0 ≤ y)

)
|+ op(1) under H1.

Since E[{h1/h1(φ∗0)− 1}I(Y0 ≤ y)] 6= 0, then the proof follows.

Proof of Theorem 4. Irrespective of whether φ0 is in the interior or on the boundary of

the parameter space, by arguing as in the proof of Lemma 1, we obtain that

sup
y∈R
| Un(y, φ̂n)− Un(y,φ0) + n1/2(φ̂n − φ0)′J(y,φ0) |= op(1), (S.12)

with Un(·,φ0) converging weakly to a centred Gaussian process with covariance kernel

K(x, y) = (κε − 1)G(x ∧ y), x, y ∈ R.

To establish the validity of the bootstrap tests we first consider the case φ0 is in the

interior of the parameter space. Since φ̂n is the QMLE in (5),

n1/2(φ̂n − φ0) = Zn + op(1), (S.13)

where Zn := −Σ−1
n (φ0)n−1/2

∑n
t=1(1 − ε2

t )τt(φ0) and Σn(φ) := n−1
∑n

t=1 τt(φ)τt(φ)′, and

hence, with the asymptotic uniform expansion of Un(·, φ̂n) in (S.12), it follows as in the

proof of Theorem 1 that Un(·, φ̂n) converges weakly to U0(·) in D(R), where U0 is the

centred Gaussian process given in Theorem 1.

In the method of bootstrap data generation in Section 4.2 the transformed estimator

φ̂
†
n plays the role of the true parameter φ0; recall that φ̂

†
n = (φ̂†n1, . . . , φ̂

†
n(1+p1+p2))

′ where
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φ̂†ni := φ̂niI(φ̂ni > cn), i = 1, 2, . . . , 1 + p1 + p2, and (cn) is a non-random sequence with

cn → 0 and n1/2cn →∞ as n→∞. Let Ani = {φ̂ni > cn}, i = 1, 2, . . . , 1 + p1 + p2. Since

φ0 is an interior point, we have φ0j > 0, j = 1, . . . , 1+p1 +p2. Further, as cn converges to 0

at a rate slower than n−1/2 and n1/2(φ̂n−φ0) = Op(1), we obtain that P (∩1+p1+p2
i=1 Ani)→ 1

as n → ∞. Since φ̂
†
n = φ̂n on the set ∩1+p1+p2

i=1 Ani, then the asymptotic validity of the

bootstrap tests follows from the same arguments used in the proof of Theorem 2.

Next, we consider the validity of the bootstrap tests for the case some components of

φ0 lie on the boundary of the parameter space; i.e., φ0i = 0 for some i = 2, . . . , p1 + p2 + 1.

Since φ0 is not an interior point, in this case, the limiting behaviour of n1/2(φ̂n − φ0) is

not linear as in (S.13), and as in the proof of Theorem 2 of Francq and Zakoian (2007),

n1/2(φ̂n − φ0) = λΛ
n + op(1), λΛ

n := arg inf
λ∈Λ

(Zn − λ)′Σn(φ0)(Zn − λ). (S.14)

The vector λΛ
n is the orthogonal projection of Zn on the convex set Λ for the inner product

〈x, y〉 := x′Σn(φ0)y, and it is characterized by λΛ
n ∈ Λ, 〈Zn−λΛ

n , λ
Λ
n−λ〉 ≥ 0, ∀λ ∈ Λ; see e.g.

Lemma 1.1 in Zarantonello (1971). Thus, by arguing as in the proof of Theorem 2 in Francq

and Zakoian (2007) we obtain that n1/2(φ̂n−φ0)
d→ λΛ := arg infλ∈Λ(λ−Z)′Σ(φ0)(λ−Z).

Therefore, for a continuous G, the term n1/2(φ̂n − φ0)′J(y,φ0) in (S.12) is asymptotically

C-tight, as is Un(·,φ0) by Lemma 1 and Theorem 1.

Next, consider the bootstrap data generation as in Section 4.2. Since φ̂
†
n converges to

φ0, a.s., by a triangular array version of the proof of Lemma 1 replacing φ̂n and φ0 by φ̂
∗
n

and φ̂
†
n, respectively, we obtain that conditional on {Y1, . . . , Yn}, uniformly in y ∈ R,

U∗n(y, φ̂
∗
n) = U∗n(y, φ̂

†
n)− n1/2(φ̂

∗
n − φ̂

†
n)′J∗(y, φ̂

†
n) + o∗p(1), (S.15)

in probability, where

J∗(y,φ) = E∗[τ ∗1 (φ)I(Y ∗0 ≤ y)], τ ∗t (φ) :=
(∂/∂φ)h∗t (φ)

h∗t (φ)
, φ ∈ Φ.

Since U∗n(y, φ̂
†
n) = n−1/2

∑n
t=1(ε∗t − 1)2I(Y ∗t−1 ≤ y), by using Lemma S.2, for every x, y ∈ R,

with x ∧ y := min(x, y), we obtain that

cov∗{U∗n(x, φ̂
†
n),U∗n(y, φ̂

†
n)} = n−1

n∑
t=1

E∗(ε∗t − 1)2I(Y ∗t−1 ≤ x ∧ y)

= (κε − 1)EI(Yt−1 ≤ x ∧ y) + op(1)

= cov{Un(x,φ0),Un(y,φ0)}+ op(1). (S.16)
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Further, it follows from Lemma S.2 that J∗(y,φ) = E[τ1(φ)I(Y0 ≤ y)] + op(1).

Therefore, in order to establish that the conditional weak limit of U∗n(·, φ̂
∗
n) is the same

as that of Un(·, φ̂n), in probability, we need to first show that the conditional limiting

distribution of n1/2(φ̂
∗
n − φ̂

†
n) is the same as that of n1/2(φ̂n − φ0), in probability. To this

end, it suffices to show that, conditional on {Y1, . . . , Yn},

n1/2(φ̂
∗
n − φ̂

†
n) = λΛ

n + o∗p(1), in probability. (S.17)

In order to obtain (S.17) we consider a triangular array version of the proof of (S.14).

In the proof of (S.14) in Francq and Zakoian (2007), first λΛ
n is represented as the

orthogonal projection of Zn on the convex set Λ, for the inner product 〈x, y〉 := x′Σn(φ0)y,

and then this projection is approximated by that of Zn on the set n1/2(Φ − φ0). Since Φ

contains the hypercube Φ̄ = [ωL, ωU ]× [0, ε]p1+p2 which includes φ0, see Assumption (A1),

the set n1/2(Φ−φ0) increases to Λ as n→∞. This plays a key role in the proof of (S.14).

Recall that,

Λ = Λ1 × Λ2 × · · · × Λp1+p2+1,

where Λ1 = R, and for each i = 2, . . . , p1 + p2 + 1, denoting φ0 = (φ01, . . . , φ0(1+p1+p2))
′,

Λi = R if φ0i 6= 0 and Λi = [0,∞) if φ0i = 0. In order to extend the proof of (S.14) to

the triangular array setup of the bootstrap data generation, we need to replace φ0 by the

bootstrap true parameter φ̂
†
n. However, to ensure that n1/2(Φ − φ̂

†
n) increases to Λ, we

need to show that φ̂
†
n satisfies two important conditions. First, to allow the set Φ̄∗ in (18),

which contains φ0, to also contain φ̂
†
n with probability converging to one, we need to have

φ̂
†
n → φ0 in probability as n→∞. (S.18)

Further, φ̂
†
n should satisfy the following rate of consistency property.

n1/2(φ̂†ni − φ0i) =

 op(1), if φ0i = 0

Op(1), if φ0i > 0
, i = 1, 2, . . . , 1 + p1 + p2. (S.19)

Since at least one component of φ0 is zero, the rate of consistency (S.19) ensures that

n1/2(Φ− φ̂
†
n) = n1/2(Φ− φ0)− n1/2(φ̂

†
n − φ0) converges to Λ in probability.

The consistency of φ̂
†
n follows from that of φ̂n, and hence (S.18) holds. Since cn con-

verges to 0 at a rate slower than n−1/2, (S.19) follows by arguing as in the proof of Lemma 1

in Cavaliere et al. (2022). Hence, by a triangular array extension of the proof of Theorem 2

of Francq and Zakoian (2007), under Assumption (A5), we obtain that (S.17) holds; e.g.,
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by arguing as in the proof of Proposition 3.2 in Hidalgo and Zaffaroni (2007); see also the

discussion under Assumption E2 in Andrews (1997). Therefore, from (S.12)–(S.15), and

the asymptotic tightness of U∗n(·, φ̂
†
n), we obtain that the conditional weak limit of U∗n(·, φ̂

∗
n)

is the same as that of Un(·, φ̂n), in probability. Hence, the continuous mapping theorem

yields that the bootstrap test based on Tj is asymptotically valid (j = 1, 2).

Proof of Theorem 5. If φ∗0 is an interior point, then the proof follows from Theorem 3.

Therefore, we only consider the case some components of φ∗0 lie on the boundary of the

parameter space; i.e., φ∗0i = 0 for some i = 2, . . . , p1 + p2 + 1. Since Assumptions (B1),

(B2) and (A5) hold, with (φ∗0, F
∗
0 ) being the pseudo-true value under H1, by applying

Lemmas S.2 and S.3 and arguing as in the proof of Theorem 4, for every y ∈ R, we have that

U∗n(y, φ̂
†
n) = O∗p(1), in probability. Therefore, it suffices to show that n−1/2|Un(y, φ̂n)| =

Op(1), for some y ∈ R. Under the assumptions of the theorem there exists a y satisfying

E[{h1/h1(φ∗0)− 1}I(Y0 ≤ y)] 6= 0. Fix such a y. Under H1, εt = Yt/
√

ht, where ht = E[Y 2
t |

Ht−1]. Hence, by using Assumptions (B1) and (B2), Lemmas S.2 and S.3, and arguing as

in the proof of Lemma S.5, on the set n1/2‖φ̂n − φ∗0‖ ≤ C, where 0 < C <∞, we obtain

∣∣n−1

n∑
t=1

Y 2
t

[
h−1
t (φ̂n)− h−1

t (φ∗0)
]
I(Yt−1 ≤ y)

∣∣
≤ ω−1

L n−1

n∑
t=1

Y 2
t

∣∣(φ̂n − φ∗0)′τt(φ
∗
0)
∣∣+ op(n

−1/2).

By the Ergodic Theorem, and because φ̂n
p→ φ∗0, the sum in the above upper bound is

op(1), and hence n−1/2|Un(y, φ̂n)| is bounded from the above by |n−1
∑n

t=1

{
ε2
t

(
ht/ht(φ

∗
0)
)
−

1
}
I(Yt−1 ≤ y)| up to a term of order op(1). Since n1/2(φ̂n − φ∗0) = Op(1), then the proof

follows by an extended Glivenko-Cantelli type argument as in the proof of Theorem 3.

S.4 Additional simulation results

In this section we provide some simulation results to support the Monte Carlo simulation

experiments discussed in Section 5 in the main paper. More specifically, in Section S.4.1

below we provide additional simulation results to complement the Monte Carlo simulation

study discussed in Section 5.2.1 in the main paper, in order to analyze the empirical re-

jection probabilities of the tests under the null hypothesis. In Section S.4.2 we provide

simulation results to evaluate the empirical power of the tests under the alternative hy-

pothesis. In Section S.4.3 we discuss the choice of the shrinkage sequence {cn} on our
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bootstrap tests and compare with the choice of the length of the bootstrap samples for the

‘m out of n’ bootstrap.

S.4.1 Uniform size properties near and away from the boundary

In this section we provide more detailed simulation results for the Monte Carlo simulation

study discussed in Section 5.2.1 in the main paper for evaluating the (uniform) finite sample

size properties of the tests when some component of the true parameter is near and away

from the boundary of the parameter space. The simulation results are presented in Table S1

and Figure S1 below. The DGPs and the null hypothesis are as described in Section 5.2.1

in the main paper.

S.4.2 Empirical power

In this subsection we investigate the empirical rejection probabilities of the null hypothesis

H0 specified by ht(φ) in (24) in the main paper against several fixed and local alternatives.

First we investigate the empirical power of the tests against the following DGPs:

DGP C1 [GJR-GARCH(1,1)]: ht = 0.10 + 0.1Y 2
t−1 + 0.5ht−1 + 0.3Y 2

t−1I(Yt−1 < 0),

DGP C2 [EGARCH(1,1)]: ln ht = 0.1 + 0.4 ln ht−1 + 0.2(|εt−1| − E|εt−1|)− 0.2εt−1,

DGP C3 [Threshold GARCH(1,1)]: ht = 0.10 + 0.1Y 2
t−1 + 0.5ht−1 + 0.3ht−1I(Yt−1 < 0).

None of the DGPs C1–C3 is nested into the GARCH specification in (24). Hence, according

to the theory results we expect that our bootstrap tests would reject H0 as n diverges. The

simulation results for the sample sizes n = 500, 1000 and 2000, at the nominal 10% level of

significance, are presented in Table S2. In these simulations the shrinking based, standard

and ‘m out of n’ bootstrap methods all perform very similarly and exhibit excellent empiri-

cal power properties. The empirical powers of the tests based on hybrid bootstrap approach

are slightly lower than those based on the other three bootstrap methods, particularly for

n = 500. However, the hybrid bootstrap approach catches up with the other bootstrap

methods (in terms of empirical power of the tests) as the sample size increases to 2000.

When comparing the relative performance of KS and CvM tests it can be seen that, for

each bootstrap method and sample size, the CvM test exhibits better performance than the

KS test when the DGP is either C1 or C2, and when the DGP is C3 the KS test performs

better than the CvM test. The LBQ test does not exhibit any notable empirical power.
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Table S1: Empirical rejection probabilities for testing the null hypothesis H0 : ht = ht(φ) =

ω + α1Y
2
t−1 + α2Y

2
t−2 + β1ht−1 + β2ht−2, for some ω > 0, α1, α2, β1, β2 ≥ 0.

Shrinking based Standard ‘m out of n’ Hybrid

bootstrap bootstrap bootstrap bootstrap

n KS CvM KS CvM KS CvM KS CvM LBQ(15)

DGP Dn1 : (ω0, α01, α02, β01, β02) = (0.3, 1.4n−1/2, 0.25, 0.35, 0.25)

100 0.111 0.106 0.106 0.095 0.137 0.111 0.031 0.032 0.026

200 0.097 0.099 0.090 0.089 0.109 0.100 0.032 0.035 0.023

400 0.098 0.101 0.094 0.095 0.104 0.098 0.037 0.039 0.018

600 0.102 0.105 0.098 0.100 0.100 0.103 0.040 0.045 0.016

800 0.105 0.106 0.102 0.102 0.099 0.102 0.044 0.044 0.015

1000 0.106 0.107 0.101 0.101 0.093 0.098 0.060 0.059 0.015

1200 0.101 0.105 0.098 0.096 0.095 0.100 0.073 0.069 0.013

1400 0.102 0.104 0.101 0.102 0.095 0.096 0.086 0.085 0.012

1600 0.105 0.109 0.102 0.104 0.098 0.103 0.092 0.094 0.013

1800 0.097 0.100 0.093 0.094 0.088 0.096 0.087 0.089 0.012

2000 0.107 0.109 0.104 0.104 0.090 0.098 0.099 0.100 0.014

DGP Dn2 : (ω0, α01, α02, β01, β02) = (0.3, 0.25, 0.25, 1.4n−1/2, 0.35)

100 0.116 0.111 0.107 0.100 0.140 0.120 0.029 0.029 0.021

200 0.099 0.098 0.096 0.094 0.113 0.101 0.031 0.032 0.021

400 0.097 0.092 0.096 0.091 0.091 0.089 0.040 0.039 0.017

600 0.097 0.099 0.097 0.101 0.093 0.093 0.041 0.043 0.018

800 0.100 0.098 0.100 0.098 0.094 0.096 0.046 0.045 0.017

1000 0.102 0.101 0.104 0.102 0.091 0.094 0.054 0.055 0.017

1200 0.100 0.097 0.099 0.097 0.090 0.095 0.066 0.062 0.016

1400 0.098 0.099 0.099 0.099 0.093 0.096 0.074 0.076 0.016

1600 0.104 0.103 0.103 0.103 0.094 0.099 0.084 0.085 0.016

1800 0.095 0.094 0.095 0.094 0.085 0.094 0.083 0.082 0.015

2000 0.101 0.106 0.101 0.106 0.088 0.099 0.094 0.099 0.016

Notes: The true parameter is in the interior. The nominal level is 10%. The shrinking-

based bootstrap uses cn = 1.6n−0.45, m-out-of-n bootstrap uses mn = 1.5n/ log(n), and for

the hybrid bootstrap Cn = {kcn : k = 0.1, 0.2, . . . , 0.9}.
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Figure S1: Empirical size at the nominal 10% significance level for testing the null hypoth-

esis ‘H0 : ht = ω + α1Y
2
t−1 + α2Y

2
t−2 + β1ht−1 + β2ht−2, for some ω > 0, α1, α2, β1, β2 ≥ 0’.

The DGPs are D(α) : Yt = h
1/2
t εt, ht = 0.3 + 0.25Y 2

t−1 + αY 2
t−2 + 0.35ht−1 + 0.25ht−2 and

D(β) : Yt = h
1/2
t εt, ht = 0.3 + 0.25Y 2

t−1 + 0.25Y 2
t−2 + 0.35ht−1 + βht−2.
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In order to obtain further empirical power comparisons we also consider tests for the null

specification ht(φ) in (24) when the true DGP satisfies one of the following specifications:

M1(δ) : Yt = h
1/2
t εt, ht = 0.3 + 0.25Y 2

t−1 + 0.35ht−1 + δY 2
t−1I(Yt−1 ≤ 0),

M2(δ) : Yt = h
1/2
t εt, ht = 0.3 + 0.25Y 2

t−1 + 0.35ht−1 + δht−1I(Yt−1 ≤ 0),

with the standard normal error distribution and with δ in the set {0, 0.04, 0.08, 0.12, ..., 0.4}.

The DGPs M1(δ) and M2(δ) satisfy the null hypothesis of correct specification when δ = 0,

and both DGPs move away from the boundary into the alternative space as δ increases.

Figure S2 provides the empirical null rejection probabilities of the tests, at the nominal

10% level of significance, as functions of the parameter δ. The sample size is n = 1000 and

the simulation is based on 20,000 Monte Carlo replications. In these simulations, when the

DGPs move away from the boundary and move further into the alternative space, all four

bootstrap approaches provide very similar results in terms of empirical power for both KS

and CvM. The empirical null rejection probabilities of KS and CvM tests increase with δ,

as expected. For the DGP M1(δ) the CvM test performs better than the KS test under each

of the bootstrap methods, however, when the DGP is M2(δ) the KS test exhibits better

performance than the CvM test. Note that the DGP M1(δ) moves into the alternative space

in the direction of a misspecification of the ARCH parameters, and hence the simulation

results seem to suggest that the CvM test is better suited than the KS test in detecting

misspecifications of the ARCH parameters. Similarly, since the DGP M2(δ) moves in the

direction of a misspecification of the GARCH parameters, it appears that the KS test is

more suitable than the CvM test in detecting misspecifications of the GARCH parameters.

The LBQ test does not exhibit any notable power.

We end this subsection by investigating the empirical power properties of the tests

against the following two sequences of local alternative DGPs:

L1n : Yt = h
1/2
t εt, ht = 0.3 + 0.2Y 2

t−1 + 0.15Y 2
t−2 + 0.35ht−1 + 4n−1/2Y 2

t−1I(Yt−1 ≤ 0)

L2n : Yt = h
1/2
t εt, ht = 0.3 + 0.2Y 2

t−1 + 0.15Y 2
t−2 + 0.35ht−1 + 4n−1/2ht−1I(Yt−1 ≤ 0),

with the standard normal error distribution. The tests are evaluated for testing the null

hypothesis H0 specified by ht(φ) in (24). Thus, L1n and L2n both define sequences of local

alternatives that approach the null model at the rate of Op(n
−1/2).

Figure S3 presents the results on empirical power of the tests against local alternatives

at 10% level of significance, for the DGPs L1n and L2n, based on 10,000 Monte Carlo
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Table S2: Empirical power at 10% nominal level for testing H0 : ht = ht(φ) = ω+α1Y
2
t−1 +

α2Y
2
t−2 + β1ht−1 + β2ht−2, for some ω > 0, α1, α2, β1, β2 ≥ 0.

Shrinking based Standard ‘m out of n’ Hybrid

bootstrap bootstrap bootstrap bootstrap

n KS CvM KS CvM KS CvM KS CvM LBQ(15)

DGP C1: ht = 0.10 + 0.1Y 2
t−1 + 0.5ht−1 + 0.3Y 2

t−1I(Yt−1 < 0)

500 0.468 0.571 0.468 0.572 0.527 0.588 0.451 0.560 0.017

1000 0.776 0.855 0.775 0.856 0.811 0.865 0.775 0.855 0.019

2000 0.974 0.991 0.974 0.991 0.979 0.991 0.974 0.991 0.019

DGP C2: ln ht = 0.1 + 0.4 ln ht−1 + 0.2(|εt−1| − E|εt−1|)− 0.2εt−1

500 0.732 0.811 0.736 0.813 0.787 0.831 0.210 0.347 0.017

1000 0.963 0.983 0.964 0.983 0.970 0.984 0.951 0.979 0.018

2000 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.018

DGP C3: ht = 0.10 + 0.1Y 2
t−1 + 0.5ht−1 + 0.3ht−1I(Yt−1 < 0)

500 0.546 0.521 0.553 0.522 0.605 0.545 0.385 0.346 0.016

1000 0.852 0.821 0.855 0.821 0.878 0.832 0.847 0.811 0.016

2000 0.992 0.983 0.992 0.983 0.993 0.984 0.992 0.983 0.015

Notes: The DGPs C1–C3 are under the alternative. The shrinking-based bootstrap uses

cn = 1.6n−0.45, m-out-of-n bootstrap uses mn = 1.5n/ log(n), and for the hybrid bootstrap

Cn = {kcn : k = 0.1, 0.2, . . . , 0.9}.

replications (the results for standard bootstrap are not included in Figure S3 as they turn

out to be similar to those for shrinking based bootstrap). In view of the simulation results all

the bootstrap tests exhibit non-trivial empirical power against the two sequences of local

alternatives L1n and L2n. The LBQ test does not exhibit any notable empirical power.

The relative performance between KS and CvM tests, in terms of their empirical power

against local alternatives, is similar in pattern to the previous setting on their empirical

power against fixed alternatives. More specifically, for each bootstrap method, when the

DGP is L1n (with misspecified ARCH parameters) the CvM test exhibits better empirical

power than the KS test, and when the DGP is L2n (i.e. when the GARCH parameters are

misspecified) the KS test performs better than the CvM test in terms of empirical power.
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Figure S2: Empirical rejection probabilities of the tests at the nominal 10% significance

level for testing the null hypothesis H0 : ht = ht(φ) = ω+α1Y
2
t−1 +α2Y

2
t−2 +β1ht−1 +β2ht−2,

for some ω > 0, α1, α2, β1, β2 ≥ 0. The sample size n = 1000.
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S.4.3 The choice of the shrinkage sequence

In order to investigate the effect of the choice of the shrinkage parameter cn we evaluate

the performance of the shrinking-based bootstrap tests while considering different choices

for cn. More specifically, we set cn := vn−ε, with ε = 0.45, and the tuning parameter

v is chosen in the set V := {0.2, 0.4, 0.8, 1.2, 1.6, 2.0}. Similarly, for the ‘m out of n’

bootstrap implementation, we set mn := cn/ log(n) with the tuning parameter c in the set

C := {1, 1.5, 2, 2.5, 3, 3.5}. Similar choices for cn and mn are also considered in Cavaliere

et al. (2022). The results on empirical size and power presented above and in the main

paper are based on v = 1.6 and c = 1.5.

Tables S3 and S4 provide the empirical null rejection probabilities, at the nominal 10%

level of significance, for the shrinking-based and ‘m out of n’ bootstrap tests. The tests

are evaluated when the parametric form ht(φ) under H0 is of the form (24), with the above
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Figure S3: Empirical power against local alternatives at the nominal 10% significance level

for testing ‘H0 : ht = ω+α1Y
2
t−1+α2Y

2
t−2+β1ht−1+β2ht−2, for some ω > 0, α1, α2, β1, β2 ≥ 0’,

for the DGPs L1n and L2n. The simulation is based on 10,000 Monte Carlo replications.
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choices of cn and mn. The DGPs D1–D5 are as defined in (25) in the main paper. The

sample sizes n = 100, 600 and 2000 are considered. The simulation is based on 20,000

Monte Carlo replications. In these simulations, for the sample sizes n = 100 and n = 600,

the tests based on the shrinking-based bootstrap show some sensitivity to the choice of

the shrinkage parameter cn. For example, when n = 100, the empirical null rejection rates

of the CvM test for the DGP D2 varies between 9.5% and 11% as the tuning parameter

v varies between 0.2 and 2.0. However, as the sample size increases to n = 2000, the

shrinking-based bootstrap performs consistently well throughout with good empirical size

properties for both KS and CvM tests and the test results do not vary significantly on the

choice of the shrinkage parameter cn. By comparison, the empirical rejection probabilities

of the tests given by the ‘m out of n’ bootstrap exhibit significant sensitivity to the choice

of the tuning parameter mn, even when the sample size is as large as n = 2000, particularly

when it comes to the KS test.
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Table S3: Empirical size (%) of the KS test for shrinking-based and ‘m out of n’ bootstrap

implementations with varying cn and mn parameters.

Shrinking based boot (cn = vn−ε) ‘m out of n’ boot (mn = cn/ log(n))

v c

n 0.2 0.4 0.8 1.2 1.6 2.0 1 1.5 2 2.5 3 3.5

DGP D1: (ω0, α01, α02, β01, β02) = (0.3, 0.5, 0.45, 0, 0)

100 10.7 10.7 11.0 11.1 11.2 11.4 13.9 11.7 11.2 10.7 10.6 10.5

600 9.3 9.4 9.4 9.5 9.5 9.6 8.0 8.1 8.4 8.4 8.8 9.0

2000 9.5 9.5 9.5 9.5 9.5 9.5 7.6 7.8 8.6 8.5 8.8 8.7

DGP D2: (ω0, α01, α02, β01, β02) = (0.3, 0.2, 0.3, 0.45, 0)

100 10.0 10.1 10.3 10.6 10.8 11.0 14.6 11.9 11.0 10.3 10.1 9.8

600 9.6 9.6 9.7 9.7 9.7 9.7 9.2 8.6 9.0 8.9 9.1 9.0

2000 10.0 10.0 9.9 10.0 10.0 10.1 8.1 8.6 8.9 9.2 9.2 9.6

DGP D3: (ω0, α01, α02, β01, β02) = (0.3, 0, 0.4, 0, 0.55)

100 10.8 10.8 10.9 10.8 10.9 10.9 18.1 14.7 13.3 11.9 11.4 10.8

600 10.5 10.5 10.5 10.5 10.5 10.5 11.1 10.2 10.0 10.2 10.2 10.2

2000 10.4 10.3 10.3 10.3 10.3 10.3 9.5 9.9 9.7 10.1 10.0 10.1

DGP D4: (ω0, α01, α02, β01, β02) = (0.3, 0, 0.4, 0.55, 0)

100 9.2 9.4 9.7 9.9 9.9 9.9 14.9 12.4 11.3 10.4 10.1 9.6

600 9.8 9.9 10.0 10.0 10.1 10.2 10.7 9.8 9.3 9.6 9.6 9.4

2000 10.1 10.1 10.2 10.3 10.5 10.5 8.9 9.4 9.7 9.8 9.7 9.6

DGP D5: (ω0, α01, α02, β01, β02) = (0.3, 0.2, 0.25, 0.2, 0.3)

100 10.1 10.1 10.2 10.6 10.7 10.7 14.5 12.5 11.4 10.5 9.7 9.6

600 9.8 9.8 9.9 9.9 9.9 9.9 9.7 9.0 9.3 9.4 9.4 9.3

2000 10.1 10.1 10.1 10.2 10.2 10.2 8.6 9.2 9.2 9.4 9.1 9.3

Notes: The DGPs D1–D5 are of the form Yt = h
1/2
t εt, ht = ω0+α01Y

2
t−1+α02Y

2
t−2+β01ht−1+

β02ht−2. The null hypothesis is H0 : ht = ht(φ) = ω + α1Y
2
t−1 + α2Y

2
t−2 + β1ht−1 + β2ht−2,

for some ω > 0, α1, α2, β1, β2 ≥ 0. The nominal level is 10%. The simulation is based on

20000 Monte Carlo replications.
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Table S4: Empirical size (%) of the CvM test for shrinking-based and ‘m out of n’ bootstrap

implementations with varying cn and mn parameters.

Shrinking based boot (cn = vn−ε) ‘m out of n’ boot (mn = cn/ log(n))

v c

n 0.2 0.4 0.8 1.2 1.6 2.0 1 1.5 2 2.5 3 3.5

DGP D1: (ω0, α01, α02, β01, β02) = (0.3, 0.5, 0.45, 0, 0)

100 10.2 10.2 10.4 10.6 10.7 11.0 11.6 11.0 10.6 10.2 10.3 10.2

600 9.4 9.4 9.5 9.5 9.6 9.6 8.6 9.2 9.1 9.1 9.3 9.4

2000 9.3 9.3 9.5 9.6 9.6 9.6 8.8 8.6 8.8 8.8 8.6 8.8

DGP D2: (ω0, α01, α02, β01, β02) = (0.3, 0.2, 0.3, 0.45, 0)

100 9.5 9.6 9.8 10.0 10.4 11.0 11.2 10.5 10.5 10.0 9.4 9.2

600 9.5 9.5 9.5 9.5 9.6 9.6 8.9 8.8 9.1 9.2 9.2 9.1

2000 9.6 9.6 9.6 9.6 9.6 9.7 8.8 9.0 9.1 9.3 9.3 9.4

DGP D3: (ω0, α01, α02, β01, β02) = (0.3, 0, 0.4, 0, 0.55)

100 10.6 10.6 10.7 10.7 10.7 10.7 13.9 12.8 12.0 11.7 11.1 10.6

600 10.4 10.5 10.6 10.6 10.6 10.6 10.4 10.3 10.0 10.4 10.2 10.3

2000 10.3 10.3 10.3 10.3 10.3 10.3 10.2 10.3 10.3 10.3 10.3 10.3

DGP D4: (ω0, α01, α02, β01, β02) = (0.3, 0, 0.4, 0.55, 0)

100 9.0 9.1 9.3 9.6 9.8 9.8 11.1 10.2 10.1 9.6 9.0 9.0

600 9.5 9.6 9.8 10.0 10.2 10.2 9.7 9.7 9.5 9.8 9.4 9.4

2000 10.1 10.2 10.3 10.4 10.4 10.4 9.3 9.7 10.0 10.1 9.9 10.0

DGP D5: (ω0, α01, α02, β01, β02) = (0.3, 0.2, 0.25, 0.2, 0.3)

100 9.9 9.8 10.1 10.4 10.6 10.7 11.6 11.0 10.8 10.2 9.7 9.6

600 9.1 9.1 9.1 9.2 9.3 9.4 9.1 9.1 9.1 9.4 9.3 9.0

2000 9.9 9.9 9.9 9.9 9.9 10.0 9.2 9.7 9.6 9.7 9.4 9.5

Notes: The DGPs D1–D5 are of the form Yt = h
1/2
t εt, ht = ω0+α01Y

2
t−1+α02Y

2
t−2+β01ht−1+

β02ht−2. The null hypothesis is H0 : ht = ht(φ) = ω + α1Y
2
t−1 + α2Y

2
t−2 + β1ht−1 + β2ht−2,

for some ω > 0, α1, α2, β1, β2 ≥ 0. The nominal level is 10%. The simulation is based on

20000 Monte Carlo replications.
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