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SUMMARY 

Plate bending finite elements based on the Reissner/Mindlin theory offer improved possibilities to pursue 
reliable finite element analyses. The physical behaviour near the boundary can be modelled in a realistic 
manner and inherent limitations in the Kirchhoff plate bending elements when modelling curved boundaries 
can easily be avoided. However, the boundary conditions used are crucial for the quality of the solution. We 
identify the part of the Reissner/Mindlin solution that controls the boundary layer and examine the 
behaviour near smooth edges and corners. The presence of boundary layers of different strengths for 
different sets of boundary conditions is noted. For a corner with soft simply supported edges the boundary 
layer removes the singular behaviour of Kirchhoff type from the stress resultants. We demonstrate the 
theoretical results by some numerical studies on simple plate structures which are discretized by an accurate, 
higher-order plate element. The results provide guidance in choosing efficient meshes and appropriate 
boundary conditions in finite element analyses. 

1. INTRODUCTION 

In finite element analysis, the early plate bending elements have usually been formulated using 
Kirchhoff plate theory. However, elements based on the refined Reissner/Mindlin plate theory 
are increasingly used in research and engineering practice, e.g. References 1-7. These elements are 
attractive, because they are of low order (only continuous interpolations are required) and can 
model both thin and moderately thick plate situations. 

In this context it is important to recognize the differences to the Kirchhoff plate t h e ~ r y . ~  The 
Reissner/Mindlin plate theory is closer to a full 3-D description. It includes shear deformation 
effects, and on the edge of the plate three kinematic variables can be specified instead of only the 
transverse displacement and its normal derivative in the Kirchhoff theory. This makes it easy to 
avoid inherent limitations in the Kirchhoff plate bending elements (overconstraining effects and 
paradoxical results for polygonal domains) and the engineer can obtain much more reliable 
information about the stress state near supporting boundaries (in particular near corners). 
However, to achieve these improvements the appropriate boundary conditions must be imposed. 

The main objective of this paper is to provide insight and guidance into how to choose meshes 
and boundary conditions when using Reissner/Mindlin plate theory based finite elements. The 
essential information is obtained by analysing the boundary layer behaviour near edges and 
corners. Special emphasis is focused on thin plate situations wehre the specification of the three 
boundary conditions for the Reissner/Mindlin plate may not be so obvious. 
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Questions of convergence (in abstract norms) of two-dimensional plate solutions to three- 

dimensional continuum solutions and the relationship between the Kirchhoff and the 
Reissner/Mindlin solutions have been studied by e.g. Ciarlet and Destuynder* and Bathe and 
Brezzi." Important theoretical background results for this work can be found in the publications 
by Friedrichs and Dressler zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA" and Reissner.'Z*13 These authors show that the classical Kirchhoff 
solution may be viewed as a close approximation to the interior portion of the exact solution of 
the original three-dimensional problem, but the details of the edge-zone portion of the solution 
are not in general captured (Figure 1). 

The Reissner/Mindlin theory provides a two-fold improvement over the Kirchhoff theory, 
namely 

(i) a more accurate two-dimensional approximation to the three-dimensional edge-zone 
solution (that in general includes a boundary layer), and 

(ii) an interior solution that includes shear deformation effects. 

These improvements make it possible to specify realistic boundary conditions and obtain 
corrections for shear deformation effects which are of the same nature as the transverse shear 
correction in Timoshenko beams. 

Considering the specifications of boundary conditions, Arnold and Falk have recently studied 
the boundary layers near smooth edges of a Reissner/Mindlin ~ 1 a t e . I ~ '  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAl 5  They use the direct 
approach with transverse displacements and rotations as primary unknowns and develop 
asymptotic expressions for these quantities in powers of the plate thickness. They also give 
rigorous bounds for the errors in the expansions. In this paper we use a different approach and 
give additional results. In our approach the deformation of the plate is represented by the 
transverse displacement of the mid-surface and the local twist of fibres originally perpendicular zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAto 
the mid-surface. The transverse displacement is controlled by a biharmonic differential operator 
whereas the transverse twist is controlled by a singularly perturbed, elliptic differential operator 
which is responsible for the boundary layer (thin plate situations). The coupling between these 
two primary unknowns is obtained through the three boundary conditions. 

We consider the behaviour of the edge-zone part of the Reissner/Mindlin solution for different 
choices of boundary conditions along a smooth edge far from corners. For an engineering 
important case (a plate with simply supported straight edges) we also investigate the theoretical 
behaviour of the Reissner/Mindlin solution on the edges when approaching a corner. We identify 
the non-analytic part of the transverse displacement that produces the singularity in the 
Kirchhoff moment tensor (obtuse corners). For a Reissner/Mindlin plate it is shown how the 
transverse twist removes this singularity and adjusts the moment tensor to zero across an edge 
zone. We also discuss how this affects the capability of modelling curved boundaries and the 
occurrence of possible paradoxical behaviour of the Reissner/Mindlin solution for regular zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

X zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 
n 

Figure 1. Edge zone of a Reissner/Mindlin plate 
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n-sided polygons (Babuska's paradox). Our objective in this paper is not to present a thorough 
mathematical analysis of the phenomena considered, but to present an engineering view of these 
phenomena. We present this view with sufficient rigour to firstly identify the phenomena and then 
to obtain good approximations of the stress quantities considered. 

Using a high-order Reissner/Mindlin theory based plate element and a careful evaluation of 
boundary shearing forces, we demonstrate the theoretical results by finite element analyses of 
some simple plate structures. It is verified that the use of Reissner/Mindlin theory based plate 
elements in thin plate situations may prevent overconstraining (e.g. in the analysis of skew plates) 
if the boundary conditions are properly chosen. 

2. THE REISSNER/MINDLIN THEORY 

Using the notation and sign convention indicated in Figure 2, we summarize the basic continuum 
mechanics relations valid for most of the existing versions of the Reissner/Mindlin plate theory, 
irrespective of how they might have been motivated theoretically. Adopting the Reissner/Mindlin 
assumption of transverse inextensibility and constant transverse shear deformation through the 
thickness of the plate,16s'7 we obtain for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( x ,  y, Z)EA zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx [ - h/2, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh / 2 ]  (A is the region in the xy-  
plane that is occupied by the mid-plane of the plate) a displacement field of the form 

W X ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 = w ( x ,  Y )  (W 
where the three primary unknown fields are the transverse mid-plane displacement w(x ,  y) and 
the rotations @,(x ,y )  and @,(x ,y )  of the normal to the mid-plane about the x- and y-axes, 
respectively. 

Y 
Figure 2. Notation and sign convention 
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The bending and twisting moments may be expressed in te rm of rotations by the relations 

and 

with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

D, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 
12(1 - v 2 )  

where E and v are the Young’s modulus and Poisson’s ratio, respectively. The shearing forces are 
given in terms of the transverse displacement zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw(x, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy )  and the rotations Ox(x, y )  and @,(x, y )  by 
the constitutive relations 

where 
Ek  

D2 = ~ 

2(1 + v) 

with k as a shear correction factor. 

obtained as 
An important quantity in the following investigation is the local transverse twist (Cl) which is 

where o is the local rotation 

1 av au 
= z ( d x - y )  

The local rotation in the mid-plane is always zero since in our bending theory the mid-plane 
cannot deform in its own plane. However, in planes parallel to the mid-plane the local rotation 
and the in-plane shear will in general be non-zero. 

The equilibrium equations are 
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Here zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp(x, y )  is the applied pressure load. The stress resultants zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM,,, M,, and T,  in Figure 2 are 
defined with respect to co-ordinate directions n and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs, normal to and along the (boundary) curve. 
Relevant formulas valid in this natural system can be found in the Appendix. 

In this study the applied load is chosen to depend on the plate thickness h in such a way that the 
limit problem (h + 0) will produce solutions that are neither infinite nor zero. This is achieved by 
letting the prescribed pressure ( p )  and stress resultants be proportional to h3:  

M,, = D ,  h3Mxx  (10) 

etc. 

where ?',, n?,,, etc. are scaled stress quantities. We also suppose that the fixed function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf (x, y) is 
smooth with well-defined derivatives of sufficiently high order. The interior part of the limit 
transverse displacement function will be the solution of a corresponding Kirchhoff problem and, 
as such, independent of the plate thickness, since the factor h3 cancels out in the governing 
equation. 

Observing that 

1 
D J D 2  = 6k(l - V )  

and using equations (2)-(3) and (6)-(8) we obtain the following fundamental relations: 

and 

__+.=-f aT, a?' 
ax a y  

0 = - - +  aw h2 - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
x a x  6k(i - v)  Tx 

aw h2 - 
TS a y  6k(i - v)  

0 = - - +  

- a h2 h2(i  + v) aj  
12/41 - v)  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAax 

a y  12k 12k(l - v)& 

T, = - -(V2w) + __ V2 Tx - 
ax 12k 

- a h2 - h2(1 + v)  a f  
T y  = - -(V2w) + __ V2 T,, - 

- a z w  a2w 
xx 

a x 2  a y 2  
M = - - - v - +  

- a2w h2 ( aT, 2)  
M,, = - ( I  - v)- +-- 

v 'f V 4 w = f -  

- + - -  
axay 12k a y  

h2 
6k(l - V )  
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Remark zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI .  It is clear that these expressions reduce to those of the Kirchhoff plate theory when 
k zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACO, i.e. when we force the Reissner/Mindlin plate to become a Kirchhoff plate by a 
constitutive prescription. When h + 0 the situation is much more complicated. In this paper we 
will concentrate on the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlocal behaviour of the Reissner/Mindlin solution near edges and corners 
during such a limit process. 

The structure of the transverse shearing forces is revealed if we rewrite the relations (14a) and 
(14b) in the form 

a h2 a f  h2 
Tx +--(v2w) a x  + 6k(l - v )  ax 12k 

and 

a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAhZ a f  h2 
Ty + -(v2w) a y  + 6k(l - v )  a y  12k 

Using equations (12) and (16) and the right hand side of equations (17a) and (17b) we obtain 

Hence, the transverse shearing forces may be written 

and 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY is a stress function. Inserting equations (19a) and (19b) into equations (17a) and (17b) 
gives 

and 

" (Y - i zkv2Y ax h2 ) = o  

Thus, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY is determined by an elliptic differential operator: 

From equation (21) we conclude that for small h (or large zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk) the stress function exhibits a strong 
boundary layer behaviour within a distance of the order of Jm from the boundary. Using 
the relations (21), (19a), (19b), (13a) and (13b) we obtain 
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which means that the stress function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY is essentially equal to the local transverse twist R: 

Y zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= - (1 - v)R (23) 

In the following we prefer R to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY since R has a physical interpretation. Equations (16) and (21) are 
the two fundamental (decoupled) differential equations in the Reissner/Mindlin plate theory, l 2  

when it is formulated in terms of the transverse displacement w and the transverse twist R. The 
coupling between w and R is achieved through the boundary conditions. According to relation 
(16) the transverse displacement w is determined by the usual biharmonic differential operator, i.e. 
w has no boundary layer. However, it will contain shear deformation corrections of 'interior' 
type. The transverse twist alone governs the edge-zone behaviour of rotations and stress 
resultants. This may be seen more clearly by substituting equations(19a) and (19b) into the 
formulas (13)-(15). We use the natural co-ordinates (n, s) and limit ourselves to quantities that are 
employed to specify the most common boundary conditions (see Appendix). Thus, along any 
smooth (boundary) curve we have zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

h2 a w  
a n  6k(l - v)%(  

a v 2 w +  @ = - - -  

h2 

a w  
as 6k(i - v ) a s  

@ = - - -  

- aR 
a s  a ( 6k(l - v) a n  

T s = - -  V 2 w +  h 2 f  )+ (1 - v)- 

6k(l - V )  
- 

6k(l - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV)  
- 
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anas a2w 6k h2 anas a 2  (v2w+ 6k(l zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- V )  

- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
M,, = - (1 - v)- - -~ 

6k _ _ _ _ _ _ _ _ - _ _ _ _ - _ _ - _ _ - _  -_-----  - - - - - _  -------- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Here, 8 = d q / a s  denotes the curvature of the (boundary) curve. If the function f happens to be 
undefined on the boundary curve, we suppose that there exists a unique continuous extension of 
f that is defined on the boundary curve. We also assume that all (higher-order) differentiations 
can be performed without difficulties. Using the relations (A l ) ,  (A2) and (16) several alternative 
forms of the formulas (24)-(26) can be derived. 

Remark 2. The replacement of w, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0, and 0, by w and Q might look like a complication. 
However, in this way we obtain a formal decomposition of the solution in parts which we can 
compare with corresponding Kirchhoff expressions. In equations (24)-(26) the parts underlined 
with dashed lines correspond to boundary layer corrections that are predominant in the edge 
zone (when h is small). The transverse twist 0 is by definition different from zero only for truely 
two-dimensional problems, i.e. there is no boundary layer for one-dimensional problems (e.g. 
problems involving axisymmetry or Timoshenko beams). Specializing to one dimension we see 
that the parts underlined with solid lines correspond to the second-order corrections for the shear 
deformation in the Timoshenko beam theory. 

Remark 3. Using space-theoretical concepts it is possible to prove convergence of the 
Reissner/Mindlin solution to a corresponding Kirchhoff solution in various Sobolev norms. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA14* 

However, in an engineering context local (pointwise) convergence is of primary concern. We will 
see that there is a region of non-uniform convergence near the boundary, and local convergence 
to the Kirchhoff solution (measured by e.g. an absolute supremum norm) is not guaranteed on the 
boundary for all stress resultants. 

3. EDGE-ZONE BEHAVIOUR 

Letting h 4 0, we study the behaviour of the solution (w, Q) of the sixth-order system 

v 2f 
h2 

V 4 w = f -  
6k(l - V )  

h2 -v2a - R = 0 
12k 

with appropriate boundary conditions specified for transverse displacement, rotations or stress 
resultants (expressed in terms of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw and SZ according to the relations (24)-(26)). Considering 
equation (27b), it is clear that for decreasing h the transverse twist Q plays an increasingly smaller 
role in the interior part of the plate. In thin plate situations Q will be substantially different from 
zero only near the boundary and equation (27b) can be considered as a singular perturbation" of 
the equation 

Q = O  (28) 

Hence, in any interior domain the Reissner/Mindlin solution can be expected to converge for 
h + 0 uniformly to a limit solution which is the corresponding Kirchhoff solution (see e.g. 
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References 14 and 15). However, as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ 0 the boundary layer will shrink to zero width, ultimately 
including only the boundary curve. 

In thin plate situations we want to look upon the Reissner/Mindlin solution (w ,R)  as a 
perturbed Kirchhoff solution (characterized by w = w, and R = Q,, = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0). Hence, the following 
asymptotic expansions in powers of h are assumed, see References zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA14 and 15 

w = W, + hw, + h2wz + .  . . 
R = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa,, + x(R, + h a ,  + h2R, + . . .) 

(294 

(29b) 

where wi are smooth interior expansion functions (independent of h). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx is a smooth cut-off 
function equal to one in the boundary layer zone and zero outside that region. Ri are boundary 
layer functions of the form 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIC = ,,k% and s is a co-ordinate along the boundary curve and p the distance from the 
point under consideration to the nearest point on the boundary (hence measured in the opposite 
direction of the external normal n to the boundary curve, see Figure 1). For a given h, f i i ( p / h ,  s) is 
a smooth function of s and the stretched variable p / h .  The resulting 'one-dimensional' boundary 
layer function in equation (30) is strictly applicable to a smooth boundary curve with no corners. 
The functions hiRi represent boundary layers of different strengths (we use the power of h for the 
first non-vanishing term in the boundary layer expansion as a measure of the strength). 

The expansion (29a) can be characterized as a regular perturbation expansion since w and all 
its derivatives converge uniformly (h -, 0) to its leading term, the Kirchhoff solution w, and its 
derivatives, in the whole domain A. The expansion (29b) is a singular perturbation expansion that 
adds corrections for the boundary layer to its leading term. In the limit (h -+ 0) when the interior 
domain has expanded up to the boundary, the final remaining difference (if any) between the limit 
(Reissner/Mindlin) solution and the corresponding Kirchhoff solution should therefore be sought 
on the boundary curve. 

Inserting the expansions (29) in the differential equations (27) and in the boundary conditions 
using the relations(24)-(26) and equating coefficients of equal powers of h gives a series of 
boundary value problems for wi and Ri. These are solved in succession: w, -+ R, -+ w, -+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR, 
-+ w, -+ R, 4. . . in such a way that the boundary conditions are specified in terms of solution 
functions already determined by previous problems. 

R~ = Gi(i(p/h, s)epKpih (30) 

3.1. Simply supported edge 

We start by considering a simply supported edge defined by the hard conditions 
- 

w = o ,  o,=o, M,,=O (31) 

Using the differential equations (27a, b) and the expressions (24b) and (26c) for the boundary 
conditions (remembering that a w / a s  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd 2  w/asz  = 0 and that a differentiation of Ri in the normal 
direction picks out an inverse power of h)  we can derive the boundary conditions for the series of 
boundary value problems for wi and R,. To simplify the algebra somewhat we use the 
expression (24b) together with a pair of new ones, derived from equations (24b), (26a) and (31): 

ao, - 
(1 - v)-- as + M,, = 0 

1 -((l-v)x+AT"" a = o  
as 
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6 k ( l  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- V )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa 2 W  a Z w  . aw  h 2 f  

an2 as2 
v'p- - - _ _ - _ _ _  

hZ . aR 
+ - ( 1  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- v ) q - = o  

6 k  as  
and 

6 k ( l  - V )  6 k ( l  - V )  
?( V2W + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
8.9 

as 
+ -(1 - v ) q  - 

h2 
6 k  

Equation (32a) gives the moment boundary conditions for wi, and equation (24b) together with 
equation (32b) gives the Neumann boundary conditions for R,. We obtain the following list of the 
first four pairs of boundary value problems (DE denotes differential equations and BC boundary 
conditions): 

DE: V 4 w d = f  

azW0 . awo 
BC: WO = 0 , T  + V V -  0 

a n  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa n  

DE: V4w1 = O  

a2wl . awl 
BC: W I  = 0,- + 'pv- = 0 

a n  

1 

6k ( l  - V )  
DE: V4w2 = - V Z f  

a 2  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw2 aw2 BC: W ,  = 0, __ a n 2  + t jv-  dn 

f = -  

+ ( 1  - v)- 

DE: V 4 w 3 = O  

BC: 
a2w, . aw, 

~3 = 0,- an, + 'pv--- an 

+ ( 1  - v)-- as 

h2 
12k 
- V2Ro - Qo = 0 

hZ 
12k 
__ V t R ,  - n, = 0 

h2 
12k 
- V2Q2 - R, = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 

hZ 
12k 
- VZR, - Q, = 0 

a(hn,)=d(. a w , )  
an  as 
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From (33a) it follows that R, = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0. Hence, in general the resulting transverse twist is of the form zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Sz = hQ, + h2Rz + . . . , i.e. a relatively 'weak' boundary layer. But from equations (24b) and 
(32b) it is also seen that the curvature controls the boundary layer. If the curvature zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACi, is identically 
zero, R vanishes (all R, = 0 in equations (33)) and there is no boundary layer effect at all. 

If we change the condition zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0, = 0 to M,, = 0, i.e. we prescribe the more natural (soft) 
conditions 

- - 
w = 0, M,, = 0, M,, = 0 (34) 

we do obtain a boundary layer even for zero curvature. Then equations (26a) and (26c) give the 
following new boundary value problems for wi and R ,  respectively: 

DE: V4w,=f 

DE: V4w, = O  

v2.f 
1 

6k(l - V) 
DE: V4w,= - 

f = -  

h2 
12k 
- v2no - Ro = 0 

h2 
12k 
__ VZR, - 0, = 0 

h2 
12k 
- VZR, - R, = 0 

a2w2 
0 2  = __ 

anas 

etc. 
The physical interpretation of the application of these boundary conditions is that we 

introduce a transverse twist (local rotations in planes parallel1 to the mid-plane) near the 
boundary to make the in-plane shearing stresses (and hence the twisting moment) zero. The 
restulting transverse twist is of the form R = R, + ha, + hZRz + . . . , which gives a 'strong' 
boundary layer. 

Using equations (29b) and (35a) and retaining only the first term we obtain following approx- 
imate expression for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ close to the boundary: 

(36) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA~ ( p ,  s) x fi,(p/h, s)e-"P/' 
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where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa z w 0  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa& = 0, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs) = __ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( p  = 0, s) 
anas 

Inserting relation (36) in formulas (25a), (25b) and (26c) and neglecting the transverse shear 
correction term we can write down the following approximate expression for T,, ?;, and 

(374 

(37b) 

(374 

- a 
T,,(s, p )  = - - (V2wo)  - (1 - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv) 

- a azw, 
T,(s, p )  = - - (V2wo) + (I - v)  ~ - e-'(Plh 

an 

as dnas h 

a2wo a2Wo zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- K p / h  
- 

M,,,(s, p )  = - (1 - v )  __ + (1 - v )  -e 
anas anas 

where the derivatives of the Kirchhoff solution wo are evaluated on the boundary ( p  = 0). In thin 
plate situations these formulas often give satisfactory engineering accuracy (see Figures 3 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 
and Reference 19). 

0 5 ,  

U 2 -0.5 0-0 0,free zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
o-n Qszero  

-'.O tl 
Distance from boundary t.O.06 h 
(h:0.025a) 
x approx. function 

- 2 o p  

Figure 3. Shearing force distribution near the boundary 

0.5, 

- # C L O ' - y I - - - -  

0.4 s/a 0 2  0.3 

cl 

vl -l0I - 1  5 

- 0, zero 

Distonce from boundary = 0 8 h  
(h = 0 025a) 

x \ opprox 

* j functions 
- 2.0 

Figure 4. Shearing force distribution near the boundary 
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3.2. Clamped edge 

In the same way we can consider a clamped edge defined either by 

or 
w zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0, = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0, 0, = 0 (hard conditions) 

w = 0, M,, = 0, 0, = 0 (soft conditions) 

The hard geometric conditions 0, = 0, 0, = 0 give, with equations (24a) and (24b), the 
following boundary value problems for wi and a ,  respectively: 

k2  
12k 

~ v2a, - sz, = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 DE: V4w0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA=f 

DE: V4w1 = O  

v2.f 
1 

6k(l - V )  
DE: V4w2 = - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

DE: V 4 w 3 = O  

1 8 ( V 2 W 1 )  - _  - 
6 k ( l  - V )  a n  

- = o  a(n,) 
a n  

h2 
12k 
--v2a1 - n, = 0 

h2 
12k 
- V2R2 - R, = 0 

a(hR,) 1 8(V2w,) ____- 
a n  1 - v  as 

h2 
12k 
-V2R3 - R3 = 0 

(394 

1 asz, 
6k as (39d) 

etc. 
We see that the resulting transverse twist is of the form R = hR, + h2R, + . . . , i.e. a 'weak' 

boundary layer. Here R is activated by the second-order transverse shear correction term in 
equation (24). 

For the soft condition R?,, = 0, equations (24a) and (26c) are combined to form a new relation 

ao - 
- ( 1  - v ) I  + M", = 0 as 
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or zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
. a51 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

h 2 f  ) - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(1 - v) cp- + (1 - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv)51 = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 (40) 6k(l - V )  6k a n  

Using this relation, we obtain the following new boundary value problems for Cl,: 
h2 
12k 

DE: __ V2Q0 - Cl,  = 0 

(4 1 4  
BC: O O = O  

h2 
12k 

DE: -Vz511 - 51, = 0 

etc. 

In general, the resulting transverse twist is of the form 51 = h2R2 + . . . , i.e. a ‘very weak’ 
boundary layer. From equation (40) it follows that the curvature together with the second-order 
transverse shear correction term control the boundary layer. If the curvature 4 is identically zero, 
51 vanishes and there is no boundary layer effect. 

3.3. Free edge 

(26c) and derive the following three relations 
For the free edge, defined by ?;, = 0, MnS = 0 and M,, = 0 we use equations (25a), (26a) and 

for the determination of the boundary conditions corresponding to moment, transverse force and 
transverse twist, respectively: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

a 2  a2w h 2 f  h2 a2 - __ - 
a n 2  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(as2 + @ %) - 6k( 1 - v) + 6k (ds’) (viw + 6k( l -  v) 

(424 

6k(l - V )  
-”( v 2 w  + 

a n  6k(l - V)  

a a2a 
6k (1 - v) - as (~ as2 + g) = 0 (42b) 
h2 -- 

aa 
a n  

--(1 - ~ ) @ - + ( 1 - ~ ) 5 1 = 0  (42~)  
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The first three pairs zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof boundary value problems are: 

DE: V 4 w , = @  

DE: V4w1 = O  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
h2 

1 2 k  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-- v%?, - R, = 0 

azw, 
R0=-+O zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

anas 

hZ 
1 2 k  
__ VZR, - R2 = 0 

d2w1 ri, a(hR,) 
anas 6 k  an 

RI =- +--- 

hZ 
~ VZR, - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARz = 0 
1 2 k  

azw, P W ,  ri, d(hR,) 
R, = ~ +-- 

anas 6 k  an 

+ 6 k ( i  - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv )  as 

V 2 f  
1 

DE: V4w2 = - ~ _ _  
6 k ( l  - V )  

BC: ~ 

ans 

1 a 2  ri, ~ ( V 2 W o )  + - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 (VZW,) 
f - _  - 

6 k ( l  - v)  6 k  d s  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
6 k  

a 
an 
- (VZW,) + (1  - v) - 

(434 

The resulting transverse twist zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi s  of the form Cl = R, + ha, + h2R, + . . . , i.e. we obtain a 
‘strong’ boundary layer. 
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3.4. Resulting strengths zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof boundary layers zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Considering the nature of the coupling between w and R in the boundary conditions for the Qi- 
problems we find that the strong boundary layers (for soft simply supported and free plates) are 
activated by the second-order (moment type) derivatives of w. The weak boundary layers for the 
clamped plate are activated by the second-order transverse shear correction terms, proportional 
to derivatives of V2wi zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( i  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0, 1,2, 3, . . .) (i.e. the non-harmonic content of wi). Also, one should 
note the role played by the curvature for the existence of the weakest boundary layers. The 
following list, valid for homogeneous boundary conditions along a smooth boundary curve of a 
Reissner/Mindlin plate, shows the resulting relative strengths of the different types of boundary 
layers (the h-power of the first non-vanishing boundary layer term is indicated in parentheses): 

simply supported 
- - 

w = 0, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM,, = 0, M,, = 0 

Ts(h- ' ) ,  T,(ho), n?,,(h'), n?,,(h'), n?,,(ho), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOS@') and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOn@') 
w = 0, 0, = 0, M,, = 0 

T,(ho), T,(h'), n?,,(h2), n?,,(h2), n?,,(h'), 0 , ( h 2 )  and 0 , ( h 3 )  

(soft conditions) 

(hard conditions) 

(no boundary layers for zero curvature!) 

- 

clamped 
- 

w = 0, M,, = 0, 0, = 0 

T,(h'), T,(h2),  n?,,(h3), n?,,(h3), n?,,(h'), 0 , ( h 3 )  and 0,(h4)  

w = 0, 0, = 0, 0, = 0 

T,(ho), T,(h'), n?,,,(h2), n?,,(h2), n?,,(h'), OS@') and 0 , ( h 3 )  

(soft conditions) 

(no boundary layers for zero curvature!) 

(hard conditions) 

free 
- - 

T, = 0, M,, = 0, M,, = 0 

T,(h - '), T,(ho), n?,,(h '), n?,,(hl), n?,,(ho), @,(h') and 0 , ( h 2 )  

Remark 4. The clamped plate with soft conditions (surprisingly not with the hard conditions) 
has the weakest boundary layer of all cases and the solution, incIuding all stress resultants, will 
converge to the corresponding Kirchhoff solution even on the boundaries. On the other hand, the 
simply supported plate with soft conditions and the free plate have the strongest boundary layers 
and here the convergence to the Kirchhoff solution is not guaranteed for the transverse forces and 
the twisting moment on the boundary curve. 

In specifying boundary conditions in classical plate theory two of the three stress resultants are 
contracted to one, resulting in the two stress resultants 

and 

as anas 
- - aA,,- a 

as an 
R , = T , + - -  - - ( V ' w o ) - ( l - V ) -  - 

where wo denotes the Kirchhoff displacement solution and kn the 'equivalent transverse shearing 
force'. If we use the ReissneriMindlin solution w to form the same stress resultants we obtain 
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from equations (25a), (25b), (26a), (26c) and (29) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

6 k ( l  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV )  

- aM,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR n = T n + - -  - -- as an 

h2 a2Fn h2 a(@,) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
+-r--- 6k as 6k as 

a 
an 

+ - - ( V 2 w 0 ) - ( l  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(45) 

when h + 0, except in points on the boundary where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ, Tn or T, have an unsmooth behaviour as 
functions of h (e.g. (h2 /6k)  (a2 Tn/as2) does not converge to zero as h -+ 0). In these points (e.g. 
corners) formulas (44) and (45) suggest additional contributions that will be exemplified in the 
next section. Hence, even if Tn and a,, do not converge separately to the corresponding 
Kirchhoff expressions the combination Rn = Fn + an?,,/as does. This is a natural consequence of 
force equilibrium of the shrinking boundary layer zone: the resulting total transverse stress on the 
inner part of the boundary layer, given by the Kirchhoff solution, must be in equilibrium with the 
resulting total transverse stress on the outer part (boundary curve), given by the Reissner/Min- 
dlin solution. 

Remark 5.  The case with non-homogeneous boundary conditions can be treated in a similar 
way except that now the Kirchhoff component w o  must satisfy the imposed non-homogeneous 
boundary conditions (or the corresponding Kirchhoff versions, aw/as # 0, a2w/as2 # 0, etc.). As 
a result there will be a boundary layer behaviour even for straight edges with zero curvature. 

4. BOUNDARY LAYERS NEAR A CORNER 

In the preceding section we identified how a non-zero transverse twist adjusts the interior 
Kirchhoff solution to the boundary conditions of Reissner/Mindlin type within a narrow edge 
zone. However, in a corner some of the involved Kirchhoff stress resultants might be unlimited 
and if the corresponding Reissner/Mindlin quantities are prescribed to have finite values (e.g. 
zero) on the boundary curve, then the transverse twist removes the singularity and adjusts the 
solution to the prescribed boundary value within the edge zone. In the following we limit our 
discussion to the engineering important case of a corner (angle zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa, 0 < a < n) with simply 
supported straight edges. This case clearly demonstrates the smoothing effect of the transverse 
twist. For simplicity we also assume that the solution is symmetric with respect to the bisecting 
line (as in rhombic or regular polygonal plates) and that the loading is sufficiently smooth: f (x, y) 
= constant uniformly over the plate. This simplified approach will enable us to interpret the 

results of the numerical experiments in Section 5. 
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Thus, we consider the solution of system (27) near a corner with simply supported edges. The 

transverse Reissner/Mindlin displacement contains, besides the smooth particular pzrt, a bihar- 
monic part that dominates near the corner. Using polar co-ordinates zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( I ,  4), this part can be 
written (see e.g. WilliamsZ0 or Morley" where the corresponding Kirchhoff solution is treated) 

w zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= (a, + blr2)rn" sin(4n/a) + smoother terms (461 

( I  = the distance from the corner, 0 < zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 < U, 0 < U < zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn) 
which means that some stress resultants might become unlimited at the corner (see equations 
(24)-(26)). The second-order derivatives of w behaqe as rf f ia- '  and third-order derivatives seem to 
behave as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArnia-3.  However, it should be noted that the component in relation (46) that essentially 
controls the singular behaviour (alrnia sin(4nla)) is harmonic, i.e. satisfies V2w = 0, implying that 
the third-order derivatives are zero. Thus, the second-order shear correction terms in equations 
(24)-(26) that contain derivatives of V 2  w do not lower the regularity of the rotations and stress 
resultants but give a second-order contribution (proportional to h2) for the biharmonic term 
b l r2 r f f i z  sin(4n/a). In our analysis we wili assume that thc co-ordinate axis for s is a straight line 
with the corner as origin (s = 0). The n-axis is perpendicular to the s-axis, pointing in the negative 
+direction (Figure 5). It is illustrative to list the Kirchhoff stress resultants and rotations for the 
dominating (harmonic) component: 

- 
T, = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 

I 

T, = 0 

6, - (n/CI)rnla-' cos(4n/a) 
(47) 

Hence, for the Kirchhoff plate the moment tensor (G",,, fins: Gns) is different from zero at the 
corner and has a singularity there when U > n/2. The harmonic component is 'supported' only by 
moments (no transverse shearing forces at the boundaries). However, if we impose soft simply 

R 

Figure 5. Transverse twist at a corner of a simply supported plate 
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supported boundary conditions for a Reissner/Mindlin plate the moment tensor is forced to take 
the value zero at the corner zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(A?,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= Mss = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM,, = 0) and will approach zero within a boundary 
layer in a direction from the interior domain of the plate. This means that restrictions are imposed 
on the derivatives of the transverse twist R in the formulas (24)-(26) such that they contain 
singularities that ‘neutralize’ the singularities in the derivatives of the transverse displacement zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw. 
In the following we study this interaction between the transverse twist and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw along the straight 
edge when approaching the corner. It should also be noted that the physcial interpretation of i2 
shows directly that along certain lines (curves) towards the corner its behaviour may be 
exceptional. Consider e.g. the line zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx = y in a square plate (Figure 5),  along which (due to 
symmetry) Q and its directional derivatives are zero. 

4.1. The transverse twist along an edge 

straight edge (equation (26c)) through the corner, 
The soft boundary condition MnS = 0 gives the following differential equation for R on a 

or 

where we have introduced the characteristic ‘width’ h, of the boundary layer on the edge near the 
corner, defined by 

h2 
(ho)2 = - 

6k (49) 

(note that h, # Jm which is the ‘width’ applicable to the normal direction of an edge far 
from a corner) and the notation 

X 

Figure 6. FE-model for a square plate 
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Strictly, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF is also dependent on R via zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw. However, in thin plate situations w is almost equal to the 
Kirchhoff solution wo everywhere in the plate so this dependency can be neglected. The solution 
of equations (48) can be written on the general form 

sinh zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(p) 
R(s) = Q(0) + F(t)sinh ( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc (&)E) sinh(%) 

Q(0) and R(b) are boundary values that in general depend on h. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAb is typically taken greater than 

A usable approximation is obtained if we introduce exponentials and rearrange terms (assum- 
5ho. 

ing that e(s-b)iho < 1). Thus for small zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs 

and 
R(s) z R(0)e-"/ho + I , @ )  sinh (;) + I 2 ( s )  

where 

and 

I , ( s )  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1; F ( t )  cosh ( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy) h0 

(52) 

(53) 

(54) 

The interaction between the possible singularities of F ( t )  for t = 0 and the boundary layer is 
contained in the integrals I l(b), 12(s)  and 13(s).  

4.2. A general corner 

the dominating (non-analytic) biharmonic component on the edge 
In the general case, for a corner with an angle a (./a not equal to an integer), we can write for 

a2w h2 d2 

anas + 6k(l - v )  dnds 
F ( s )  = __ - (VZW) 

z - - ( ~ - ~ ) ( a l + ~ l  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7-c a a  6k(l 4h2 - V )  (71 U + l ) ) s ~ / a - 2 c o s ( ~ 7 - c , U )  N - U 

Since R = 0 along a symmetry line through the corner, we obtain Q(0) = 0. Thus zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
n(s) z I , @ )  sinh (&) + 12(s)  
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(55 )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

and 

We note that the expression for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAO(s) contains non-analytic components zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(./a # an integer) that 
neutralize the singularity in the twisting moment of the dominating biharmonic component, (al 

+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAb,  sin(q5nla). 

Remark 6. Equation (56) indicates that a Q ( s ) / d s  (and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT,) will pass through zero close to the 
corner for small ho. A formal equation for the zero passage is obtained from equation (56): zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

[l- (: + I)cosh(s/h,)) l / (nla - 1) 

slh, = (57) 
n/a - 1 + cosh(s/h,) 

which can be solved iteratively for s/h,. szero/ho decreases slowly from 1.3 (for a = n/2) to 0 7  (for 
a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn). Since our approach is based on the assumption that dominates the solution near the 
corner the formula (57) is expected to be applicable when a > n/2. Since the derivative in 
equation (56) (and hence the transverse shearing force) has a very large slope near the corner for 
n/2 < a < n, the location of the zero passage may be used as a measure of the steepness of the 
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boundary layer. In any case, it should be an important parameter to consider when choosing a 
finite element mesh that will resolve the boundary layer behaviour. It is also clear that the value at 
the corner of the transverse shearing force corresponding to the dominating harmonic component 
determines if the boundary layer will be observable or not. From equation (56) we obtain 

Hence for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc1 > zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn/3 a boundary layer should eventually appear if the plate thickness is decreased 
sufficiently. The applicability of formulas (57) and (58) is checked in numerical experiments 
(Section 5). Based on equations (57) and (58) the results for a corner with simply supported edges 
(soft conditions) can be summarized as follows. For n/3  < zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa < zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn the transverse shearing forces 
will have an observable boundary layer that passes zero close to the corner and the slope at the 
corner will be infinite if n/2 < a < zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn. For obtuse angles the boundary layer becomes ‘steeper’ for 
increasing angles (‘steepness’ measured by the inverse of the distance from the corner to the point 
of zero). The bending moments will approach zero within an edge zone in the interior of the angle 
field with an increasingly steeper slope as a increases (the underlying Kirchhoff singularity 
becomes more severe). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Remark 7. For a simply supported, regular n-sided polygonal Kirchhoff plate, that is inscribed 
in a circle, there is a paradoxical behaviour as n increases and the polygon approaches the circle 
(Babuska’s paradox ”). Since the twisting moment cannot be specified separately in the Kirchhoff 
theory, the moment tensor will be non-zero (and, as we have seen, even singular) on the boundary 
of the polygon and the limit configuration will not be moment free on the boundary. For the 
Reissner/Mindlin plate the moment tensor becomes zero (across the edge zone) in every point of 
the polygonal boundary curve. The interior part of the solution approaches a rotationally 
symmetric state that is supported on the inner part of the edge zone by a system of stress 
resultants that is in equilibrium with the moment free boundary forces. Since this is valid for every 
value of n it is also valid for the limit configuration, where the transverse twist has approached 
zero throughout the plate (rotational symmetry). 

Remark 8. It is easily seen that for a hard simply supported corner there is no boundary layer 
and the solution will be of Kirchhoff type with corner singularities and only a second-order shear 
correction improvement. Possible Kirchhoff singularities can only be removed if a boundary 
layer exists. 

Remark 9. From the formulas (24), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(40) and (42c) it follows that there will be no boundary layer 
on the edge towards the corner for the other types of homogeneous boundary conditions. The 
pure edge type boundary layers will occur near corner under the same conditions as stated in 
Section 3. 

4.3. The right-angle corner 

( s “ ” - ~  = so) as a first approximation of F(s)  near the corner. Here we choose 
For a soft simply supported corner with a right angle (a = n/2), we can use a constant function 

azw, a2w, 
anas corner anas 

F(s)  = F ,  = -1 = - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(s = 0) 
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in the formulas (52) and (53) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(wo is the Kirchhoff solution). Thus 

= Fo(l - ePSiho) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(59) 

and 

Here we have utilized that i2 = 0 in the corner, see Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5. From equation (25a) and the 
differentiai equation (48) we obtain on the edge far from the corner 

h 2 f  \ 
6k( l  - V )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas 6k( l  - v)) 

- ( l - v ) - ( - )  a a z w 0  

as anas 

and near the corner 

6k(1 - V)  

- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
T , , z  -- 

a n  

x --( a v2wo + h2 f ) - ( I  -v)--(---)-(l a a2wo -v)Ae-S/ho F 
an 6k( l  - V) as anas h0 

F 
(62) x - (1 - y)Le-S/ho 

h0 

From the results contained in equations (61) and (62), we can conclude (as a consequence of 
force equilibrium of the edge zone) that in the limit ho 0, the transverse boundary force 
distribution will approach a force distribution that is predicted on the basis of the contracted 
Kirchhoff boundary relations (including the concentrated forces). Thus, the (conventional) equival- 
ent transverse shearing force distribution according to Kirchhoff can be thought of as a limit 
distribution for physically well-behaved Reissner/Mindlin force distributions when the plate 
thickness h is decreased, see also Remark zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4. In the limit the quantity D, h3 Tn(0)ho represents a 
concentrated force of magnitude 

FO 

anas a2wo I corner 

b 

D, h3 '' ?;, d t  x - D, h3 [ ( 1  - v) - e-t/ho dt 
J o  J o  h0 

= - ~ , h 3 ( 1 -  v)-- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBANN D, h3 Tn(0)ho 
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However, it should be observed that, for a plate with given finite thickness zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh, this limit 
distribution gives no reliable information about the stress state (including transverse shear 
stresses) around the corner. The applicability of formula (63) is checked in a numerical experiment 
(see Figure 7 and Table I). Of course, the moment tensor on the boundary will zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnot converge to the 
corresponding Kirchhoff quantity. If we substitute in equation (62) more accurate Kirchhoff 
approximations such as9 

F ( s )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= F ,  cos(ns/a) (64) 

(a is the side-length, see Figure 6) and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 
9 

h Z f  ) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz (0.917 sin(ns/a) + - sin(3ns/a) v 2 w ,  + 
6k(l - V )  

1 1 
25 49 

+ - sin(5ns/a) + - sin(7ns/a) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
O I  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

4: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
W 
U m 0 

cl 
z 

U 0.: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
B 
a 
Y 
vl 

-I.( 

-1 5 

A-A h/a=O.l 

0-0 h/a=0.05 

Figure 7. Shearing force distribution along AB 

Table I 

h la  0.1 0.05 0.025 

hola 0.0447 0.0224 0.0112 

1.5 - 2.91 

-- '' *n(o)(equation (63)) - 0.0344 - 0.0335 - 0.0332 
a U P  
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we obtain the expression zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Tn zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 1 .  1 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
f a  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx 2  9 25 49 
- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz - (0917 sin(xs/u) + - sin(3ns/a) + - sin(5ns/a) + - sin(7m/a) 

U 
x sin(xs/a) - - e-s/ho zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

ho 

(here (1 - v)F, is given the 'Kirchhoff' value 0.0325fu2) which reproduces the behaviour of T,, 
near the corner very accurately (especially for thin plates, see Figure 8). A characteristic feature of 
the formula (66) is that it predicts that T,, passes zero increasingly closer to the corner when the 
plate becomes thinner. 

5. NUMERICAL EXPERIMENTS 

We demonstrate the theoretical results by some numerical experiments with simply supported 
plates with corner angles ranging from U = 30" to o! = 150". In the finite element calculations we 
use the accurate 16-node plate element available in ADINA.24 

Figure 6 shows a finite element model of a quarter of a simply supported square plate subjected 
to uniform pressure p (in the negative z-direction). From the boundary nodal point reaction forces 
along the edge AB a virtual work equivalent transverse shearing force distribution was computed. 
The shearing force is assumed to vary as a third-order (Lagrange) polynomial along each element 
side forming the edge AB. 

Figure 9 shows the calculated transverse shearing force distribution along AB when the normal 
rotation is prescribed to zero (0, = 0) on the boundary. Since the values for the two thickness/ 
length ratios coincide, the solution can be considered to have effectively converged to the thin 
plate limit. The figure indicates that the finite element model fails to describe the tendency of a 
simply supported plate to rise at the corners. The reaction forces at the corners are computed to 

0.5, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

A-A h/a=Ol 

0-0 Wa.0.025 

Figure 8. Shearing force distribution along AB obtained by approximate functions 
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be zero and the shearing force distribution coincides very accurately with a theoretical curve that 
is obtained by disregarding the twisting moment contribution in the equivalent Kirchhoff 
shearing force. That part is taken up as moment reactions at the boundary and Figure 10 shows 
that this distribution is in good agreement with the thin plate theory prediction zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(Mns). Thus, all 
boundary layer effects have been filtered out by this choice of boundary conditions. If the normal 
rotation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0, is left free (MnS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0 in the finite element model) we obtzin the results depicted in 
Figure 7. 

According to equation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(46) a2w/anas is approaching a constant value in the corner and the 
‘Kirchhoff contribution’ to the shearing force distribution is approaching zero. But the relations 
(62) and (66) indicate that a boundary layer is anticipated in the Reissner/Mindlin shear force 
distribution. In Figure 7 a ‘natural’ shearing force distribution is obtained. For decreasing h it 
converges towards the theoretical equivalent Kirchhoff solution in the interior and at some 
distance from the corner. In Figure 8 the approximative function values are computed with 
expression (66). Good agreement with the finite element results can be noted for thin plates. Using 
the calculated solution in Figure 7 we obtain the results in Table I. 

According to Kirchhoff theory’ the concentrated force at the corner has the value 0.0325 a2p.  
In Table I we have used k = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5/6.  

Considering the uncertainties in the choice of k, etc., the table indicates that the shearing force 
distribution converges towards a distribution with concentrated forces of a magnitude that is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 4  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 3  

0 2  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4 o-a hla-0.5 
E 0 1  
d 
@ o  

C’lB 

W 
U CL zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

o--o hla.0025 
X 

0 4 .  
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0.2 

C’lB 

W 
U CL 

9 

01 0.2 0.3 0.4 slo 
@ o  

Figure 9. Shearing force distribution along AB 
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predicted on the basis of the contracted (equivalent) boundary conditions in the Kirchhoff theory. 
Figures zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 show the boundary layer behaviour of the Reissner/Mindlin shearing force 
distribution. Figure 3 shows the shearing force distribution (T,) in the row of Gauss points next to 
the boundary AB (distance zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0.06h). The curve -0- represents the case with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0, free and the 
curve zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-0- the case with 0, fixed ( = 0). The change of the shearing force distribution from values 
on the boundary (Figure7) to those at the distance 006h (Figure 3) is reproduced by the 
expression e-"p/h, where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp is a co-ordinate normal to the boundary (see equation(37a)). In 
Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 the same quantities are shown for a distance of 0.8h from the boundary. Here, except 
near the corner, the shearing force distributions already almost coincide. Also, the boundary layer 
is already of the pure 'edge-type' (l /h) ,-',Ih near s = 0 (see equation (37b) with s -+ n and p + s, 
T, along a cutting surface is equal to T, for the adjacent perpendicular boundary surface). In 
Figures 3 and 4 the approximative function values are computed with equations (37a) and (37b), 
respectively. Thus, on the whole Figures 3,4 and 7 confirm the boundary layer descriptions given 
by equations (37) and (66) with different decay lengths for 'pure' edges and corners. 

We also discuss briefly some results for skew plates (uniform pressure p in positive z-direction, 
h/a=O.O25) and apply the formulas (57)-(58). By leaving the normal rotation, OS, free along the 
edge OB of the rhombic plate in Figure 11 (n/a = 6 / 5 ,  n/a = 6) we obtain the transverse shearing 
force along OB shown in Figure 12 and the bending moment distributions along OA shown in 
Figure 13. From equation (58)  we obtain T,(O) - h: in corner B and T,(O) - in corner 0 
and hence an observable boundary layer is not expected in corner B but in corner 0, where the 
trend to infinity of the 'Kirchhoff contribution' is abruptly broken by the boundary layer. The 
formula(57) gives 0 0 0 9 ~  for the location of the zero value near corner 0. The moment 

t, +s 

Figure 11. Rhombic plate (30") 

Figure 12. Shearing force distribution along OB 
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distributions in Figure 13 show good agreement with the Kirchhoff theory (solid curves), even 
quite near the corner. However, as anticipated, the moments approach zero within a boundary 
layer for the Reissner/Mindlin plate. 

When zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0, was restrained to zero along OB for the same model we obtained an overconstrained 
finite element model with oscillations in bounday shearing forces and a bad representation of the 
bending moments along OA, typically of a response prediction obtained with Kirchhoff theory 
based elements. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

A transverse shearing force distribution (Figure 14) of somewhat different qualitative appear- 
ance is obtained in the analysis of a less skewed plate in Figure 15 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(./a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 18/7, ./a = 18/11). In zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0.02 

0.01 

0 

- 0 0 1  

- 0.02 

1 : :  : : 4 

FE - MESH 

Figure 13. Bending moment distribution along OA 

I J 

Figure 14. Shearing force distribution along OC 
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Figure 15. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARhombic plate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(70") 

this case equation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(58)  predicts zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT,(O) - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh; l S / l 1  in corner C and T,(O) - h i3 j7  in corner 0 and 
hence a boundary layer is expected in both corners. The formula (57) gives 0012a for the location 
of the zero passage near corner C.  For corner 0 we obtain (as expected for acute angles) the less 
accurate value 0.02~. 

6. CONCLUDING REMARKS 

Substantial improvements in the description of the physical behaviour of plate structures may be 
obtained by using plate elements based on the Reissner/Mindlin theory. However, a reliable use 
demands proper specifications of the boundary conditions. For smooth edges (far from corners) it 
is shown in this paper that the transverse twist, the rotations.and the stress resultants have 
boundary layers of different strengths and for some choices of boundary conditions (hard simply 
supported and soft clamped) there are no boundary layers for straight edges. For a corner with 
simply supported edges the behaviour of the boundary layer is studied along the edges. To satisfy 
the Reissner/Mindlin boundary condition of zero moment a boundary layer is set up near the 
corner that neutralizes the 'Kirchhoff singularity' and yields a complete solution for the moments 
and shear forces that is smooth although with high gradients. The theoretical predictions of the 
boundary layers are verified in numerical experiments with simply supported plates loaded by 
uniform pressure. 

The results provide guidance in choosing meshes and proper boundary conditions in finite 
element analyses. For example, the need for fine meshes to resolve the edge zone behaviour may 
be anticipated from the expected strength of the different boundary layers. In an obtuse corner 
(soft simply supported edges), especially the inner part of the boundary layer puts great demands 
on the mesh resolution to capture the maximum bending moments. Valuable information about 
the physical behaviour near and on the boundary may be filtered out by an unfortunate choice of 
boundary conditions. Since the curvature of the boundary curve sometimes controls the bound- 
ary layer, care must be taken when modelling curved boundaries using plate bending elements 
with straight sides. When hard simply supported or soft clamped boundary conditions are chosen 
the boundary layers may be unintentionally suppressed, leading to an error that might not be 
negligible in a larger part of a moderately thick plate. Also, the removal of a Kirchhoff singularity 
presupposes a boundary layer. Since these two kinds of boundary conditions give rise to an 
unphysical behaviour they should be used with caution (see Reference 22). An important 
conclusion is that, in finite element analyses it is, provided the physical situation permits it, 
preferable to leave the rotation normal to the boundary free (soft conditions). Numerical 
experiments indicate that this usually prevents overconstraining in models of generally shaped 
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plates and is effective even if the purpose of the analysis is not primarily to resolve the boundary 
layers. 
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APPENDIX 

For the natural co-ordinate system (n, s) in Figure 2 we obtain the curvature of the boundary as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
6 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= acp/ds, where cp also satisfies acp/an = 0. The following formulas are valid:23 

a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
+ & - = O  

a a  a a  
anas a s a n  a~ 
_---- 

and 

The bending and twisting moments are expressed in terms of rotations by 

and 

The local transverse twist zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ is defined by 

The transverse shearing forces are given by 

- 6k(l zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- v )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdw 
T, = h2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(x+@') 

The equilibrium equations are 

an?,,, an?,, -+- + qqn?,, - n?,,) = F, 
an  as 

an?,, an?,, -+- + 24Mns = T, 
a n  8s 

aF, aT, - 
an as ---+-+@T,= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-f 
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