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Progress in uncovering the protein interaction networks of several species has led to questions of what underlying
principles might govern their organization. Few studies have tried to determine the impact of protein interaction
network evolution on the observed physiological differences between species. Using comparative genomics and
structural information, we show here that eukaryotic species have rewired their interactomes at a fast rate of
approximately 10�5 interactions changed per protein pair, per million years of divergence. For Homo sapiens this
corresponds to 103 interactions changed per million years. Additionally we find that the specificity of binding strongly
determines the interaction turnover and that different biological processes show significantly different link dynamics.
In particular, human proteins involved in immune response, transport, and establishment of localization show signs of
positive selection for change of interactions. Our analysis suggests that a small degree of molecular divergence can
give rise to important changes at the network level. We propose that the power law distribution observed in protein
interaction networks could be partly explained by the cell’s requirement for different degrees of protein binding
specificity.
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Introduction

Many partial protein interaction maps for several eukary-
otic species have now been published [1–9], and several
studies have tried to analyse the structure and evolution of
such networks on a topological level [10–16]. The massive
data produced by sequencing efforts has allowed for
comparison of different genomes, giving us much more
information about their organization and evolution than
what would be possible by the analysis of individual genomes
[17–21]. By analogy, to obtain a similar insight into the
structure and evolution of interactomes, different protein
networks would need to be compared, a procedure one could
call ‘‘comparative interactomics.’’ This could be achieved by
studying the conserved interactions between groups of
ortholog proteins in different species, defined as interologs
[1,22,23]. Recent attempts to compare protein interactions
networks of different species [24,25] suggested that, at the
moment, the current data are poorly suited for direct
comparison; the overlap between datasets is small and this
is most likely due to insufficient data quantity and quality. An
alternative approach has been to look for conservation of
network modules between species [26,27]. This has lead to the
development of several network alignment tools and has
largely been more successful at finding conserved interac-
tions [26,28].

These studies have not, however, taken into account the
large evolutionary distance separating the species under
study. In fact, the four eukaryotic species for which we
currently have the most interaction data (Saccharomyces
cerevisiae, Drosophila melanogaster, Caenorhabditis elegans, and
Homo sapiens) shared a common ancestor more than 900
million years (My) ago [29]. This raises the intriguing
hypothesis that this evolutionary distance is too large for
these species to have retained many similarities in their
interaction networks. In fact, the relative success of the
network alignment approaches hints that evolutionary

pressures do not constrain the exact cellular interactions,
but instead constrain the required functional complexes that
emerge. Hence, the lack of overlap would correspond in part
to divergence and not merely to poor coverage.
Even without the ability to compare interactomes directly,

one could try to obtain estimates for the rate of change in
interactomes by mining existing data with comparative
genomics. Previously, Wagner [13,30] used paralogous protein
pairs from S. cerevisiae to estimate that 2 3 10�6 new
interactions are added to the yeast interactome per protein
pair per My, suggesting that, on average, about 50 to 100 new
interactions have arisen every 1 My. The method relied on
very few interactions between paralogous protein pairs,
making it impossible to dissect the different contributions
to the average value. Also, in the last three years, we have
more data available from a greater number of species,
allowing us to compare how interactomes have changed in
more recent evolutionary time and to draw more general
conclusions about these processes.
We have attempted to evaluate the rate of change of

interactions in the interactomes of several eukaryotic species
(S. cerevisiae, D. melanogaster, H. sapiens, and C. elegans). We have
determined that, in all species tested, interactions change at a
rate on the order of 1310�5 interactions per protein pair per
My. The approach used allowed us to explore different
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protein properties influencing interaction turnover. We have
observed that specificity in protein binding and protein
function can determine link dynamics during the evolution of
cellular networks.

Results

Recently Duplicated Proteins of Eukaryotic Species Have a
Fast Rate of Interaction Change

To calculate the rate of interaction change, we have
established for each protein, in all species studied here, an
approximate age of origin, according to the presence or
absence of an identifiable ortholog in several other reference
species (see Materials and Methods). We assumed that any
interaction observed today with a recently duplicated protein
was either inherited in the process of duplication or created
after the process of gene duplication. It has been estimated
that for S. cerevisiae the fraction of gene duplicates with at
least one shared interaction is below 20% after 50 My [13].
For each species, we calculated the fraction of interactions
that were also observed with the closest homolog of the
recently duplicated protein. Within the time frame studied
(20 to 100 My), the fraction of observed conserved inter-
actions after gene duplication was low (1% to 20%, see Tables

1 and S1). Eliminating the interactions likely inherited by
duplication, we were left with protein interactions that were
either gained in the copy we are considering or they were
inherited by duplication and subsequently lost in the
homolog. Either of these cases represents an event of
interaction change that occurred after gene duplication,
and we can thus calculate the rate at which interactions
change (see Materials and Methods). This rate for all species
was approximately on the order of 1 3 10�5 interactions
changed per protein pair per My (see Table 1) and ranged
from 5.36 3 10�6 in H. sapiens to 2.45 3 10�5 in S. cerevisiae.
Considering the possible protein pairs in the different species
(about 1.83107 in S. cerevisiae and 2.33108 in H. sapiens, when
excluding splicing alternatives), this estimate would corre-
spond to a change of approximately 100 to 1,000 interactions
every My.
Due to the low coverage of the current interactomes, it is

quite possible that these values might change as new data is
made available. To study the impact of coverage on the values
mentioned above, we have mimicked the effect of lowering
the coverage of the current datasets by randomly sampling
the interactomes in two ways: randomly removing protein
interactions or randomly removing proteins (and their
interactions).
The percentage of inherited interactions increased with

increasing coverage; approximately linearly in the case of
random node removal and nonlinearly in the case of random
protein removal (see Figure S1). Therefore, the percentage of
inherited interactions is a measure that depends on the size
of the network and is therefore likely to change as more data
is added.
The rate of change of interactions, on the other hand,

appears to be independent of network size. There was no
significant change in the rate in the case of random removal
of proteins. In the case of random removal of interactions,
only when more than 80% of the interactions were removed
was there a significant increase of the rate (see Figure S1). It is
important to note that the trend points to a stabilization of
the value, indicating that further increases in coverage will
not likely change it. We deduce from this result that the rate
of change of interactions is a measure that is mostly
independent of network size and can be used to study the
evolution of protein interaction networks.
To test the robustness of our method for variations in

accuracy of the data, the human interactome was separated
into three subsets, as defined in the Human Protein

Table 1. Eukaryotic Species Had in the Recent Evolutionary Past a Fast Rate of Change of Interactions

Species Studied D. melanogaster C. elegans S. cerevisiae H. sapiens

Approximate divergence from reference species (My) 40 100 20 70

Older proteins with interactions 5,761 1,774 4,190 6,111

Recently duplicated proteins with interactions 788 412 514 266

Interactions to a new protein 3,721 892 1,207 729

Interactions gained or lost 3,615 854 1,120 623

Percentage of interactions conserved after duplication (percent) 3 4 7 15

Rate for change of interactions (per protein pair per My) 1.86E-05 1.05E-05 2.45E-05 5.36E-06

Using estimated times of origin for all the proteins and the currently available protein interaction data, we have calculated the rate of change of interactions and the percentage of these
interactions conserved after the process of gene duplication (see Materials and Methods).
doi:10.1371/journal.pcbi.0030025.t001
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Author Summary

To understand how the cell performs the required biological
functions and reacts to changes in the environment, scientists have
been studying how cellular components interact. In recent years,
new experimental methods have immensely increased our ability to
map out these connections. However, it is important to keep in
mind that biological systems are constantly evolving to cope with
environmental changes. What then is the impact of the genomic
variability brought by point mutations, segmental duplications, etc.,
on these interaction networks? We have tried here to quantify the
rate by which protein interactions changed during the evolution of
eukaryotic cells. According to the authors, about 0.5% to 3% of the
interactions can change every million years. Also, protein properties,
such as binding specificity (defined as the number of binding
surfaces or binding partners) and protein function, help determine
the rate of interaction turnover. This work suggests that protein
interactions are evolutionarily plastic and the fact that a group of
proteins has been conserved in different genomes does not mean
that their interaction repertoire and functions are necessarily
conserved. This work emphasizes the importance of studying
biological systems in the context of evolutionary change.
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Reference Database: (1) yeast two-hybrid (including the two
recent high-throughput studies [3,4]); (2) in vitro studies, such
as GST pull-down; and (3) in vivo studies, such as co-
immunoprecipitation. The in vivo and in vitro subsets
contain only literature-derived interactions and should
therefore be of higher accuracy. The rate of change of
interactions for these three datasets was 1.09 3 10�5, 7.23 3

10�6, and 7.12 3 10�6, respectively (see Table S1). The
calculated rate using the high accuracy datasets was very
similar to the values from the human yeast two-hybrid data
and the data from the other species. We conclude that the
order of magnitude reported is a good approximation for the
rate of change of eukaryotic protein interactions networks.

The Rate of Change of Interactions Correlates with the
Number of Binding Partners of a Protein in All Eukaryotic
Species Studied

Topological analysis of protein interaction networks has
shown previously that the distribution of the number of
interactions follows a power law, such that the frequency of
proteins with n interactions falls off as n�a (where alpha is the
exponent of the power law) [15]. It has been proposed that
the observed power law distributions could arise by network
growth and preferential attachment, where newly created
nodes would preferentially link to already highly connected
nodes [31]. Two independent studies have shown, for S.
cerevisiae, preferential attachment in the protein interaction
network [11,30], supporting the model proposed for the
emergence of the power law distribution (at least in the case
of protein interaction networks).

We asked if there was also a correlation between the
number of partners of a protein and the rate of change of its
interactions. Given that the rate of change was calculated as
the number of changed interactions per protein pair per My,
no bias was expected for proteins having different degrees of
connectivity. Using the data for different species, we observed
a linear correlation between the number of binding partners
and the link turnover for all species studied (Figure 1). The
correlation in all cases is strong with R2 of 0.94 for S. cerevisiae,

0.97 for D. melanogaster, 0.96 for C. elegans, and 0.93 for H.
sapiens. From these results we can conclude that there is
preferential turnover of interactions in eukaryotic interac-
tomes with highly connected proteins having a faster rate of
change in their interactions.

Domain Binding Characteristics Influence the Rate of
Change of Interactions
The initial observations about the robustness of power law

networks to random node removal [32] and the correlation
between protein essentiality and the number of interactions
[15] led to the idea that the overall structure of interactomes
could be the outcome of selection for robustness to gene
deletion. Wagner [30] suggested that there is no need to
invoke natural selection to explain the network topology,
since the local preferential attachment and network growth
observed in the S. cerevisiae interactome suffice to create
power law networks. We showed above that preferential
turnover is a property of the protein interactions networks of
all species studied, but what might determine this behavior at
a molecular level?
It is known that interfaces of transient protein–protein

interactions are less restricted in evolution than the binding
surfaces of permanent complexes. Also, interacting residues
of transient complexes are less likely to co-evolve than
interaction residues of permanent complexes [33]. It is
plausible that different types of interactions have different
likelihoods of changing their interactions over a given
evolutionary period. To test this in an unbiased fashion, we
first aimed to determine the protein domains that contribute
more to the fast rate of change. We considered only domains
that conferred a rate of change to a group of proteins that
was larger than average in at least three of the four species
studied (see Materials and Methods). All of the domains
selected by this criteria (see Table 2) are currently known to
mediate protein–protein interactions. Interestingly, five of
the eight domains are known to form domain–peptide
interactions, as opposed to domain–domain interactions,
suggesting that proteins containing peptide-binding domains

Figure 1. Preferential Interaction Turnover Is Observed in All Eukaryotic Interactomes

We have binned proteins according to their average number of interactions and calculated for each bin the rate of change of interactions. There is a
very strong correlation between the degree of connectivity and the interaction turnover.
doi:10.1371/journal.pcbi.0030025.g001
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are more likely to change their interactions faster over the
same evolutionary time than other types of domains [34].

Many domain–peptide interactions involved a globular
domain binding to a peptide that does not adopt a regular
secondary structure and that is not part of the globular
region of the target protein [35]. Since the interaction area is

small, changes in the critical residues can easily abolish
binding. Also, random point mutations in the proteome can
more easily create new binding sites for these domains. This
could explain their fast link turnover.
To test this hypothesis further, we analyzed a database

containing structures of interacting protein domains [36] to
search for domains with different degrees of specificity. Here,
we define a ‘‘specific protein’’ as one that has few ligands and
few interaction surfaces, while an ‘‘unspecific protein’’ is one
that has many potential ligands and/or many different
interaction surfaces. Therefore, promiscuous protein-binding
domains are those that have been observed in close physical
contact with a high number of other types of domains. We
have binned proteins containing domains with increasing
number of known structural interactions with other domains
and calculated for each bin the rate of change (see Materials
and Methods and Figure 2). Using the human dataset of
literature-derived protein interactions, we observed that
groups of proteins having domains capable of interacting
with a higher number of other domains tend to have higher
rates of change of their interactions.
For promiscuous proteins (containing domains capable of

interacting with 15 or more other domains), we calculated the
rate of change of interactions and compared this value with
that obtained for proteins containing more specific domains
(fewer than five structural interactions in iPfam) and the
average for all proteins. We observed that peptide-binding
domains and promiscuous domains have a higher rate of
change of interactions (p-value , 0.02 for both groups with a
Mann Whitney U test) than the average for the proteome (see
Table 3). The difference between these two groups is not
statistically significant (p¼ 0.06 with a Mann Whitney U test).
Proteins having more specific binding domains have a rate of

Table 2. Domains Found to Contribute to the Fast Rate of Change of Interactions in at Least Three of the Four Species Studied

Domain Name Description

BTB/POZ The BTB (for BR-C, ttk, and bab) or POZ (for Pox virus and Zinc finger) domain mediates homodimerisation and in some in-

stances heterodimerisation

Band 4.1 (Contains Pleckstrin homology-type and FERM domains). It is a conserved domain of about 150 residues, involved in the

linkage of cytoplasmic proteins to the membrane. The PH domain is described to also mediate protein–protein interactions

[56]

UBA Ubiquitin-associated (UBA) domains are a commonly occurring sequence motif of approximately 45 amino acid residues.

Comparison of UBA structures reveals that similar folds and a conserved large hydrophobic surface patch that may be a

common protein-interacting surface present in diverse UBA domains.

Protein kinase Eukaryotic protein kinases are enzymes that belong to a very extensive family of proteins that share a conserved catalytic

core common with both serine/threonine and tyrosine protein kinases.

SH2 The Src Homology 2 (SH2) domains function as regulatory modules of intracellular signalling cascades by interacting with

high affinity to phosphotyrosine-containing target peptides in a sequence-specific manner, SH2 domains recognize between

three and six residues c–terminal to the phosphorylated tyrosine in a fashion that differs from one SH2 domain to another,

in a strictly phosphorylation-dependent manner.

PDZ PDZ domains are found in diverse signalling proteins in bacteria, yeasts, plants, insects, and vertebrates. They bind either

the carboxyl-terminal sequences of proteins or internal peptide sequences. Peptide binding of the ligand takes place in an

elongated surface groove as an antiparallel beta strand interacts with the betaB strand and the B helix.

SH3 SH3 (Src Homology 3) domains are small protein modules containing approximately 50 amino acid residues. The surface of

the SH3 domain bears a flat, hydrophobic peptide ligand–binding pocket which consists of three shallow grooves defined

by conservative aromatic residues in which the ligand adopts an extended left-handed helical arrangement.

SH3 variant This is a structural variant of the SH3 (Src Homology 3) domain.

We have binned proteins according to the protein domains defined by Interpro [55]. To find protein domains that conferred an above-average rate in most species, we selected bins with
an average rate greater than average in at least three of the four species.
doi:10.1371/journal.pcbi.0030025.t002

Figure 2. Protein Binding Domains with Many Structural Interactions

Observed Have a Higher Link Turnover

We have grouped proteins containing domains with increasing observed
structural interactions with other domain types and calculated for each
bin the rate of change of interactions. Proteins containing domains
known to interact with many other different domains have a higher rate
of change of interactions than proteins containing domains with few
known interactions.
doi:10.1371/journal.pcbi.0030025.g002
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change of interactions not significantly different from the
average value (p ¼ 0.86 with a Mann Whitney U test).

We have also studied domains with different binding
specificities as defined by their number of observed physical
interactions. Using the iPfam [36] database, we were able to
assign plausible binding interfaces to roughly 20% of human
interactome (see Materials and Methods). We then searched
for proteins that had multiple interactions occurring through
the same domain, and we compared this group to another
having proteins with a similar number of interactions
through more than one domain (see Figure S2). Given the
same number of interactions, proteins that preferentially
bind through one domain (more promiscuous) have on
average a higher rate of change of interactions than proteins
interacting through multiple domains. For protein hubs
having 10 to 50 interactions, the rate is 2.2 times higher for
the promiscuous domains (p-value ¼ 0.0089 with a Mann
Whitney U test) than the more selective domains with the
same average number of interactions.

We conclude from these results that the specificity, as
defined by the number of binding surfaces or physical

interactions, of a binding domain is a strong determinant
of the rate of change of interactions, with more promiscuous
binding correlating with higher rates of evolution.

Human Proteins Related to Immune Response, Transport,
and Localization Have Likely Been Under Positive
Selection for Change of Their Interactions in the Recent
Evolutionary Past
The results above suggest that specificity, as defined here,

determines link dynamics, affecting the rate at which proteins
might explore possible beneficiary interactions and remove
deleterious ones. Innovation explored in this way is grounds
for natural selection to act upon during evolution. It is then
plausible that proteins belonging to different functional
classes might have different rates of change of interactions
due to differential selection pressures. To study this, we have
binned human proteins according to Gene Ontology bio-
logical processes [37] (see Materials and Methods) and have,
for each biological process, calculated the average number of
interactions and the rate of change (see Figure 3). To reduce
the number of functions and increase the reliability of the

Table 3. Specificity of Protein Binding Is an Important Factor Determining the Rate of Change of Interactions

Proteins Selected Average for Proteome Selective Domains Peptide-Binding Domains Promiscuous Domains

Number of Interactions 5.17 5.92 11.26 11.48

Rate 6.21 3 10�06 6.35 3 10�06 1.23 3 10�05 1.81 3 10�05

Ratio to average rate 1.02 1.98 2.92

p-Value Mann U Test 0.866 0.015 5.767 3 10�08

We separated human proteins that likely originated before the split with M. musculus into three groups: proteins having domains with five or fewer physical contacts with other domains
in the iPfam structural database—likely to be more selective domains; proteins having domains with 15 or more structural contacts with other domains in the iPfam structural database—
likely to be more promiscuous domains; and proteins containing well-known peptide binding domains (SH3, SH2, Protein kinase, WW, and PDZ). We counted the average number of
interactions of these proteins (with other proteins originating before the split) with the reference species, and we calculated the rate of change of interactions. We compared these values
with the values obtained with all proteins originating before the split with the reference species.
doi:10.1371/journal.pcbi.0030025.t003

Figure 3. Biological Process Can Determine Link Dynamics Independently of the Number of Interaction Partners

We have binned proteins according to the biological processes, defined in Gene Ontology, and calculated for each bin the average number of
interactions and average rate of change of interactions (see Materials and Methods). The black line represents the expected rate of change for proteins
with increasing numbers of interactions.
doi:10.1371/journal.pcbi.0030025.g003
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calculated rates, we have considered only GO processes with
at least 150 proteins present in the current human
interactome (excluding yeast two-hybrid interactions). We
compared the values obtained with the expected rates for
proteins with increasing average connectivity (black line in
Figure 3).

Most groups of proteins had average rates of change that
were not much different than groups of proteins with a
similar connectivity. Within these groups we could distin-
guish between processes that have proteins with similar or
lower-than-average rates (such as metabolism) and biological
processes that have above-average rates (such as intracellular
signaling, phosphorylation, regulation of cellular processes,
and regulation of apoptosis). These results confirm the
suggestion of Kunin et al. [38] that the functional role of
proteins poses constraints on the evolution of new inter-
actions. We suggest this is due to differential usage of protein
binding specificity in the different cellular processes.

More interestingly, we found some biological processes
(immune response, transport and localization, cell adhesion,
and response to stress/stimulus) that showed higher link
dynamics than one would expect from their average number
of interactions. On Table 4 we list the biological processes
that have a rate significantly higher (p-value , 0.05 with a
Mann Whitney U test) than expected from their average
connectivity.

We redid this analysis removing GO annotations inferred
electronically. Although roughly 50% of the annotations were
lost, most of the results remain qualitatively the same
(unpublished data). Importantly, we still see GO functions
that have a rate significantly higher than expected from their
average connectivity (organismal physiological process, de-
fense response, immune response, and response to biotic
stimuli). We hypothesize that the groups of proteins deviating
from the linear preferential turnover have been under
particularly strong positive selection for the change of their
interactions.

Discussion

In the seminal work of King and Wilson [39] (‘‘Evolution at
two levels in humans and chimpanzees’’), it was proposed
that, given the small differences observed between the

proteins in both species, the most likely mechanism that
could account for the differences between humans and
chimpanzees would be changes in gene expression. In fact,
in the 30 years following, a considerable amount of evidence
has surfaced to support this view (for a review see [40]).
However, as we have shown above, it is quite possible that in
the time since the divergence of these two species, a
significant change in protein interactions could have taken
place, and, therefore, changes in protein interaction net-
works can have a similar important role in species evolution.

Calculation of the Rate of Change and Potential Caveats
Extending on the work of Wagner [13,30] for S. cerevisiae, we

have shown here that the interactomes of several eukaryotic
species have high rates of change of their interactions.
According to our calculations, 100 to 1,000 interactions might
change every My in eukaryotic interactomes. Estimating that
in the current interactomes proteins have on average four to
ten interactions, then the link turnover would change 0.5% to
3% of the interactions every My. This estimate clearly points
to an important effect of link dynamics in the evolution of
cellular interactions.
Some caveats to our estimated rate should be noted.

Namely, we have focused our attention on the evolution of
protein interactions of single gene duplicates. The effects of
single gene duplication could be considerably different from
large segment or whole-genome duplication events [41]. If a
protein that is part of a complex duplicates, the changes in
gene dosage might unbalance the complex stoichiometry and
cause a reduction in fitness to the species [42]. On the
contrary, if the whole complex is duplicated, as would occur
in a full-genome duplication event, the balance between the
complex components would be maintained. We can speculate
that a single-gene duplicate might have a stronger pressure to
diverge in its interactions to avoid a gene imbalance effect,
when compared with proteins originated from a full-complex
duplication. However, it is also known that living systems
have mechanisms to guarantee the right expression level
when dealing with important complexes. A good example is
the case of tubulin where the stability of the mRNA depends
on the existence of unpaired a or b subunits [43]. In fact, it is
almost impossible to keep the right stoichiometry in a
complex simply due to noise fluctuations, unless there are

Table 4. Biological Processes with Above-Average Rate of Change of Interactions

Biological Process Number of Proteins Rate of Change of Interactions p-Value Mann U Test

Protein transport 272 1.12E-05 0.000627

Establishment of localization 705 8.78E-06 0.000731

Intracellular transport 284 1.01E-05 0.000755

Response to external stimulus 171 1.34E-05 0.001371

Organismal physiological process 619 8.62E-06 0.001461

Response to other organism 211 1.31E-05 0.004489

Response to pest, pathogen, or parasite 206 1.29E-05 0.005542

Response to biotic stimulus 375 1.30E-05 0.011637

Defense response 350 1.28E-05 0.016926

Immune response 327 1.25E-05 0.027447

We have binned proteins according to the biological processes defined in Gene Ontology and selected bins with an average rate that was significantly higher than the expected rate for
groups of proteins with the same average number of interactions.
doi:10.1371/journal.pcbi.0030025.t004
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mechanisms that control possible imbalances. Thus, although
it is intuitive that whole-genome duplication could exert less
pressure for divergence, this does not necessarily need to be
true.

Also, it has been proposed that duplicate genes pass
through a period of relaxed selection after gene duplication
[21] possibly accompanied by a relaxation in the selection for
maintenance of their interactions. As a result of this, the link
dynamics are likely higher for recently duplicated genes than
for proteins with established functions. However, experimen-
tal studies estimated that 69% to 84% of interactions
between ancient proteins have diverged when comparing S.
cerevisiae with C. elegans [22]. The authors tested 216
interactions that were known from S. cerevisiae among 282 C.
elegans proteins (that are conserved in S. cerevisiae). Of these,
35 interactions were experimentally observed in C. elegans. We
can estimate that approximately 5 3 10�6 interactions have
changed per protein pair per My among these ancient
proteins. This is roughly half of what we proposed as an
estimate for the rate of change for eukaryotic interactomes,
but it considers only removal of interactions and not
addition. Due to the reasons mentioned above, we think that
the rate that we have calculated might be an overestimate of
the rate for the whole interactome, but currently available
data suggests that even among ancient proteins there is
considerable change of their interactions.

Other studies also point to the importance of change of
interactions after gene duplication. In studies of S. cerevisiae
complexes, it was observed that 7% to 20% of those
complexes arose by duplication [44,45]. However, in most of
the instances (67% to 90%), only partial duplication was
observed. Detailed studies of some of the duplicated com-
plexes have shown that even in the case where general
function and localization is maintained, it is possible that the
specific activity of the complex has changed. These results
suggest that, at least in the case of protein complexes, there is
a very significant gain and loss of single interactions that can
lead to the formation of new complexes with different
specificities.

Binding Properties and Function Determine the Rate of
Change

In a recent review [34], Neduva and Russell postulated that
linear motifs might act as ‘‘evolutionary interactions
switches.’’ The authors claimed that, due to binding to a
linear peptide stretch and due to the small number of
determinants for binding, a random mutation in the
proteome can easily create or destroy such binding sites.
We have shown that specificity of binding is a key factor
determining the evolvability of the interaction networks.
More promiscuous domains, such as peptide binding domains
and domains able to interact with common structural
elements, are more likely to change interactions faster over
a given evolutionary period. This implies that some biological
processes where these binding domains are involved (such as
signal transduction) will also have a higher link turnover than
others (such as metabolism). In fact, proteins related to
intracellular signaling cascades are two times more likely to
interact with recently duplicated proteins than proteins
involved in primary metabolism. If protein properties impact
on how they add and lose interactions, then the power law
distribution observed in protein interaction networks is in

part determined by the cell’s use of different degrees of
binding specificity.
We reported that proteins involved in the immune

response, responses to external stimuli, transport, establish-
ment of localization, and organismal physiological processes
show signs of such positive selection for new interactions.
Interestingly, most of these biological processes are known to
have an excess of proteins under positive selection as shown
by sequence studies [46,47]. Our results suggest that positive
selection for sequence change in proteins is propagated to
faster rates of change at the network level. Alternatively, it is
possible that the preferential fixation of duplicated proteins
involved in these biological functions might partly explain
this observation.

Link Dynamics and Cellular Evolution
This study opens up interesting questions regarding the

evolution of cellular functions. Some challenges faced by the
cells require the interaction of several components to
integrate information and provide a solution. One example
would be the decision to divide or differentiate given a set of
external conditions. It could be said that these challenges
require a network solution as opposed to some metabolic
problems, such as adapting an enzyme to do a required
metabolic step.
In network challenges as defined above, selection forces

would not restrain the exact binary interactions, but rather
the functional complexes arising from them. It is plausible
that the fast link dynamics are then advantageous to the cell,
given that it allows for exploration of different network
conformations from where innovation might arise.
If there is indeed a fast turnover of interactions that are

material for selection to act upon, then we expect to see
convergent network motifs that are optimal for solving
particular cellular problems. An example of what might be
an optimal network solution is the coupling of slow and fast
positive feedbacks in cell decision processes [48].
If fast link dynamics is important for the cell to search for

optimal solutions to network problems, then is it also likely
that the rate of change itself might be under constraint and
therefore under natural selection. Hence, during cellular
evolution, the selection of different degrees of specificity is
not only important for the functional role of the proteins but
it also has direct consequences with regard to the evolvability
of the whole cellular network.
Further work on protein interaction maps will help us

understand to what extent evolvability constrains the differ-
ential usage of protein domains in cellular networks. As was
the case for comparative genomics, the availability of more
and complete interactomes for different species will vastly
increase our understanding of how the cell’s complexity
arises from the interactions of its components and evolves to
cope with changing environments.

Materials and Methods

Estimating protein time of origin. For each protein of S. cerevisiae,
D. melanogaster, C elegans, and H. sapiens, we have established a likely
time of origin by looking for putative orthologs in several other fully
sequenced genomes (that we refer to here as reference species) using
the orthologs defined in the Inparanoid database (http://inparanoid.
sbc.su.se [49]). For the species not covered in the Inparanoid
database, we have used the reciprocal BLAST best-hit method.
Succinctly, we considered that if two proteins were the reciprocal
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best blast hit between two species, then these proteins are likely
orthologs.

We established putative orthologs between S. cerevisiae and the
following species: S. bayanus, Candida glabrata, Kluyveromyces lactis, Asphis
gossypii, C. albicans, Debaryomyces hansenii, Yarrowiya lipolytica, Neurospora
crassa, Schizosaccharomyces pombe. For D. melanogaster, we used as
reference species D. pseudoobscura, Anolpheles gambiae, C. elegans, and
S. cerevisiae. For H. sapiens proteins we have looked for putative
orthologs in Mus musculus, Fugu rubripes, D. melanogaster, and S.
cerevisiae. For C. elegans proteins, we have searched for putative
orthologs in C. briggsae, D. melanogaster, and S. cerevisiae.

We considered that proteins with no apparent ortholog in any of
the reference species likely originated after the divergence of the
most recently diverged reference species. S. cerevisiae proteins with no
putative ortholog in any of the reference species most likely
originated after the divergence of S. cerevisiae and S. bayanus, ;20
My ago [50]. D. melanogaster proteins with no apparent ortholog are
younger than the split with D. pseudoobscura (;40 My ago) [51]. C.
elegans proteins with no apparent ortholog are younger than the split
with C. briggsae (;100 My ago) [52]. H. sapiens proteins with no
apparent ortholog is younger than the split with M. musculus (;70 My
ago) [53].

Calculating the rate of change of interactions. The interactomes
used for C. elegans, S. cerevisiae, and D. melanogaster were extracted from
BIND (http://bind.ca [54]), including only direct protein–protein
interactions. To create the human interactome used here, we added
protein interactions from two recent studies of yeast two-hybrid
studies [3,4] to the literature-derived interactions compiled in the
human protein reference database (taking only direct protein–
protein interactions) [2].

We considered that an interaction was inherited in the process of
duplication when an interaction to a recently duplicated protein was
also observed with its closest homolog. Removing these interactions
we were left with protein interactions that were either gained in the
copy we are considering or were inherited by duplication and
subsequently lost in the homolog. Either of these cases represents an
event of interaction change that occurred after the gene duplication
event.

The rate of change of interactions can be calculated by: rate ¼
changed interactions/(possible protein pairs * divergence time).
Designating the recently duplicated proteins as Pnew and proteins
originated before the split with the most recently diverged reference
species as Pold, then: changed interactions ¼ changed interactions
among Pnew þ changed interactions between Pnew and Pold. Possible
protein pairs¼ Pnew * Pold þ (Pnew * (Pnew� 1)/2). Divergence time¼
divergence time of the most recently diverged reference species (see
above).

Preferential interaction change, protein domains, and biological
processes. To determine if the number of interaction partners of a
protein correlates with the rate of change of interactions, we have
binned all proteins in Pold according to the number of interactions to
other proteins in Pold. We considered bins of proteins with i to iþ 5
interactions, with i ranging from one to 20. For each of these bins,
Pold(bin), the rate of change of interactions was considered to be: rate
of change (bin) ¼ changed interactions between Pnew and Pold(bin)/
(Pold(bin) 3 Pnew 3 divergence time).

We observed a very strong preferential turnover in all species such
that proteins with a higher degree of connectivity have a higher rate
of change. For proteins with k interactions, the rate of change, r, can
be calculated by:

rðH:sapiensÞ ¼ 93 10�7 � k� 93 10�7

rðD:melanogasterÞ ¼ 43 10�6k� 23 10�6

rðC:elegansÞ ¼ 43 10�6 � k� 73 10�7

rðS:cerevisiaeÞ ¼ 33 10�6k� 23 100�6

rðC:elegansÞ ¼ 43 10�6 � k� 73 10�6

To determine which domains correlated with higher rates of change
of interactions, we binned proteins in Pold according to the protein
domains defined by Interpro [55]. For each protein domain, we
retrieved all proteins in Pold where this domain was observed and
calculated the rate of change of interactions as above. To select
protein domains that conferred an above-average rate in most

species, we selected bins with at least 20 proteins (to increase the
reliability of the calculated rate) and with a rate greater than average
in at least three of the four species. There are 96 protein domains
that are represented by 20 or more proteins in at least three species.
Of these, eight have an above average rate of change in at least three
of the four species studied. The effect of both constrains (number of
proteins and average rate) is detailed in Table S2.

To study protein domains with different binding specificity, we
binned proteins containing domains with increasing number of
interactions with other domains (extracted from the iPfam database)
and calculated for each bin the rate of change. We considered bins of
proteins in Pold having proteins domains with i to i þ 10 iPfam
interactions with i ranging from one to 15. We calculated the rate of
change (bin) as above.

We have used the iPfam database to search for plausible binding
interfaces in all human interactions derived from the human protein
reference database. We could assign a possible binding interface to
;20% of the human interactome. We then built two groups of
proteins according to the number of binding interactions per
domain. We selected a group of proteins that had three or more
interactions through one domain (likely more promiscuous domains),
and a second group of proteins that interacted with three or more
partners via multiple domains (likely more selective domains). We
then further subdivided the two groups into bins protein with i to iþ
5 interactions with i ranging from five to 15 and calculated the rate
(bin) as above (see Figure S1).

To study the different biological processes, we have binned
proteins in Pold according to the biological processes defined in
Gene Ontology [37] (downloaded from http://www.geneontology.org
on 29 January 2006). For each Gene Ontology biological process, we
have selected all proteins defined as participating in that biological
process or any of its GO term children processes. For all such bins of
proteins, we have calculated the rate of change of interactions as
above.

Supporting Information

Figure S1. Dependence of the Calculated Rate of Change and
Fraction of Conserved Interactions After Duplication on Network
Size

(A,B) Sampling of S. cerevisiae interactome. (C,D) Sampling of D.
melanogaster interactome. (E,F) Sampling of H. sapiens interactome.
(G,H) Sampling of C. elegans interactome.
(A,C,E,G) Sampling was done by randomly removing interactions.
Any protein with no interaction is no longer considered as part of
interactome.
(B,D,F,H) Sampling was done by randomly removing proteins and
their interactions. Any protein with no interaction is no longer
considered as part of interactome. Filled squares (&), rate of change of
interactions. Open squares (&), fraction of interactions conserved
after duplication.

Found at doi:10.1371/journal.pcbi.0030025.sg001 (48 KB PDF).

Figure S2. Specificity of Binding Can Determine the Rate Change of
Interactions in Groups of Proteins with the Same Connectivity

(A) We binned all proteins according to the number of interactions
with proteins originated before the split with the reference species
and calculated the rates of change of interactions with recently
duplicated proteins.
(B) We mapped the most likely interacting domains in the human
interactome using the database of interacting motifs. We selected two
groups of proteins: blue circles (�), proteins having three or more
interactions through at least two or more domains; red circles (�),
proteins having three or more interactions through the same domain.
We binned both groups according to the number of interactions
occurring in the full interactome with proteins originated before the
split with the reference species and calculated the rates of change of
interactions with recently duplicated proteins.

Found at doi:10.1371/journal.pcbi.0030025.sg002 (36 KB PDF).

Table S1. The Estimated Rate Calculated Is Robust to Variation in
Accuracy of the Datasets Used

To test for a possible bias of the experimental method used in
determining protein interactions, we divided the interactions of the
human dataset into three subsets, as defined in the Human Protein
Reference Database: yeast two-hybrid, in vitro studies such as GST
pull-down, and in vivo studies such as co-immunoprecipitation. The
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estimated rate of change of interactions calculated with the yeast two-
hybrid method (including human high-throughput studies) was only
marginally higher than those observed with the other two datasets
(obtained exclusively from literature-derived protein interactions).

Found at doi:10.1371/journal.pcbi.0030025.st001 (31 KB DOC).

Table S2. Impact of Constraining the List of Domains by Represen-
tation in the Difference Species and by the Average Rate of Change

To increase the reliability of the rate of change for each domain, we
have selected only domains that were represented in most species by
at least 20 domains. Of all Interpro domains, 96 observe this
condition. Of these 96 domains, eight have an above average rate
of change for at least three species studied. We can say that these
eight domains consistently contribute to the fast rate of change in
most species.

Found at doi:10.1371/journal.pcbi.0030025.st002 (26 KB DOC).
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