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Specificity Evaluation and Disease 
Monitoring in Arthritis Imaging 
with Complement Receptor of 
the Ig superfamily targeting 
Nanobodies
Fang Zheng1,2,3, Harris Perlman4, Patrick Matthys5, Yurong Wen6, Tony Lahoutte7,8, 
Serge Muyldermans2, Shemin Lu1, Patrick De Baetselier2,3, Steve Schoonooghe2,3,*, 
Nick Devoogdt2,6,* & Geert Raes2,3,*

Single-photon emission computed tomography combined with micro-CT (SPECT/µCT) imaging using 
Nanobodies against complement receptor of the Ig superfamily (CRIg), found on tissue macrophages 
such as synovial macrophages, has promising potential to visualize joint inflammation in experimental 
arthritis. Here, we further addressed the specificity and assessed the potential for arthritis monitoring. 
Signals obtained with 99mTc-labelled NbV4m119 Nanobody were compared in joints of wild type (WT) 
versus CRIg−/− mice with collagen-induced arthritis (CIA) or K/BxN serum transfer-induced arthritis 
(STIA). In addition, SPECT/µCT imaging was used to investigate arthritis development in STIA and in 
CIA under dexamethasone treatment. 99mTc-NbV4m119 accumulated in inflamed joints of WT, but 
not CRIg−/− mice with CIA and STIA. Development and spontaneous recovery of symptoms in STIA 
was reflected in initially increased and subsequently reduced joint accumulation of 99mTc-NbV4m119. 
Dexamethasone treatment of CIA mice reduced 99mTc-NbV4m119 accumulation as compared to 
saline control in most joints except knees. SPECT/µCT imaging with 99mTc-NbV4m119 allows specific 
assessment of inflammation in different arthritis models and provides complementary information 
to clinical scoring for quantitatively and non-invasively monitoring the pathological process and the 
efficacy of arthritis treatment.

Rheumatoid arthritis (RA) is a chronic destructive in�ammatory disease of the joints, featuring a mixed mono-
nuclear and granulocytic cellular in�ltration in the in�amed joints1. Over the past years, RA treatment has shi�ed 
from controlling symptoms with non-steroidal anti-in�ammatory drugs and glucocorticoids such as dexameth-
asone, to controlling the disease process with anti-proliferative or cytotoxic drugs like methotrexate, alone or in 
combination with biologics2,3.

Rodent arthritis models have contributed greatly to the overall knowledge of RA and allow preclinical assess-
ment of novel diagnostic and therapeutic interventions3. Type II collagen induced arthritis in DBA/1 mice 
(CIA) represents the current gold standard and has been used extensively for evaluation of novel therapies3. CIA 
requires speci�c disease-susceptible inbred mouse strains (DBA/1 and B10.RIII) and places a heavy emphasis on 

1Department of Biochemistry and Molecular Biology, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, 
P. R. China. 2Research group of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, B-1050, 
Belgium. 3Laboratory of Myeloid Cell Immunology, VIB Inflammation Research Center, Ghent, B-9052, Belgium. 
4Division of Rheumatology, Feinberg School of Medicine, Northwestern University, Chicago, IL60611, USA. 
5Laboratory of Immunobiology, Rega Institute, Katholieke Universiteit Leuven, Leuven, B-3000, Belgium. 6Center for 
Translational Medicine, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, P. R. China. 
7In Vivo Cellular and Molecular Imaging Center, Vrije Universiteit Brussel, Brussels, B-1090, Belgium. 8Department 
of Nuclear Medicine, UZ Brussel, Vrije Universtiteit Brussel, Brussels, B-1090, Belgium. *These authors contributed 
equally to this work. Correspondence and requests for materials should be addressed to G.R. (email: Geert.Raes@
vib-vub.be)

Received: 08 July 2016

Accepted: 05 October 2016

Published: 25 October 2016

OPEN

mailto:Geert.Raes@vib-vub.be
mailto:Geert.Raes@vib-vub.be


www.nature.com/scientificreports/

2Scientific RepoRts | 6:35966 | DOI: 10.1038/srep35966

the early inductive phase of disease4. However, most transgenic and knockout strains of mice are in a C57BL/6J 
background (H-2b), which is regarded to be relatively resistant to arthritis induction5. In this context, it has been 
reported that C57BL/6J mice are indeed susceptible to arthritis induced by chicken type II collagen with a modi-
�ed immunization protocol. �e development of collagen induced arthritis is associated with a very strong T cell 
response that remains elevated for up to 3 months post-immunization6. KRN mice expressing the KRN transgenic 
T cell receptor and MHC class II molecule Ag7 develop severe in�ammatory arthritis7. Transfer of arthritogenic 
serum of KRN and nonobese diabetic (K/BxN) mice leads to induction of robust and reproducible disease in 
several mouse strains (K/BxN serum-transfer-induced arthritis [STIA])8. Interestingly, the sterile in�ammatory 
arthritis of STIA is transient, o�en spontaneously resolving a�er 15–30 days. Similar to human arthritis, STIA fea-
tures high expression of pathogenic autoantibodies to glucose-6-phosphate isomerase (GPI), making this model 
ideal for the identi�cation of the e�ector pathways involved in the arthritis process9.

Standard non-invasive readouts of disease severity such as paw thickness/volume or clinical scores mainly 
emphasize the oedema component of arthritic disease10. Other non-invasive readouts to monitor disease evo-
lution or treatment e�cacy, such as near-infrared, PET or SPECT imaging and scintigraphy, possibly combined 
with anatomical imaging techniques such as X-ray, ultrasonography and magnetic resonance imaging, can pro-
vide information on underlying molecular and cellular in�ammatory processes as well as bone destruction. 
Tracers used for molecular arthritis imaging include 18F-�uoro-2-deoxy-D-glucose for visualizing glucose metab-
olism and 99mTc-methylenediphosphonate for monitoring bone turnover11. Various stroma-targeting tracers  
have been described for imaging arthritic synovitis, including 99mTc-anti-E-selectin-Fab for targeting activated 
endothelium12, radiolabelled antibodies targeting �broblast activation protein for detection of �brobolast-like 
synoviocytes13 or probes targeting activated macrophages such as 18F-polyethyleneglycol-folate14,15 or 
111In-anti-F4/80-A3-116. In addition, radiolabeled biologicals such as anti-CD3, anti-CD4, anti-CD20 and 
anti-TNF have been evaluated for imaging RA13. As new tools being introduced in this �eld, Nanobodies are 
tracers combining the speci�city of antibodies with the pharmacokinetics of small molecules, thus yielding 
high contract images within hours a�er inoculation17. In a preclinical setting, Nanobodies allow convenient 
SPECT imaging a�er standard tricarbonyl-chemistry-based labelling with 99mTc on their carboxy-terminal 
hexahistidine-tag18, distant from the antigen-binding site and thus not interfering with antigen recognition19.

In an approach of targeting markers expressed on macrophages for non-invasive in�ammation tracking, we 
reported before that radiolabelled Nanobodies targeting the macrophage mannose receptor (NbMMR), initially 
described as e�ective probes for in vivo imaging of tumor-associated macrophages in hypoxic tumor areas20,21, 
also accumulate in joints of CIA mice22. Similarly, joint accumulation of the anti-CRIg Nanobody NbV4m119, 
as determined via SPECT/µ CT imaging and quanti�cation of radioactivity in dissected joints, correlates with 
arthritic scores and re�ects disease severity over a range of scores in di�erent joints23. Whereas osteoclasts and 
macrophages express similar levels of MMR22, CRIg is readily detected on macrophages but not osteoclasts 
(data not shown). Immuno�uorescence microscopy has revealed that NbV4m119 speci�cally targets a subset of 
CD68-positive macrophages in synovium of DBA/1 CIA mice23. In line with a lower signal in non-arthritic joints, 
and thus a higher contrast for NbV4m119 as compared to NbMMR, accumulation of 99mTc-NbV4m119 in knees 
of mice developing CIA could even be detected before the onset of macroscopic clinical symptoms.

In concordance with CRIg expression on tissue macrophages such as Kup�er cells, 99mTc-NbV4m119 uptake 
in the liver was shown to be higher as compared to a non-targeting control Nanobody in WT but not CRIg−/− 
C57BL/6J mice23. In the current study, we further con�rmed the speci�city of CRIg targeting by NbV4m119 in 
arthritic joints of WT versus CRIg−/− C57BL/6J CIA mice. In addition, STIA was induced through transfer of 
arthritogenic serum of K/BxN mice, progeny of KRN mice, transgenic for a T cell receptor recognizing an epitope 
of bovine RNase, and nonobese diabetic mice7,8. Interestingly, the sterile in�ammatory arthritis of STIA is tran-
sient, spontaneously resolving a�er 15–30 days9, thus allowing assessment of 99mTc-NbV4m119-based monitor-
ing of the onset, development and recovery of arthritis symptoms of C57BL/6J STIA mice. Finally, we also used 
99mTc-NbV4m119 to monitor dexamethasone treatment e�ects in DBA/1 CIA mice.

Results
Immunofluorescence microscopy to assess macrophage-specific NbV4m119 targeting in joints 
of collagen-induced arthritis mice. As a �rst step in addressing the target speci�city at the level of the 
cell-type expressing CRIg that is being targeted by the NbV4m119, CIA was induced in DBA/1 mice and immu-
no�uorescence microscopy was performed on tissue sections of decalci�ed ankles exhibiting di�erent arthritic 
scores. Especially in sections of ankles exhibiting higher arthritic scores, staining by the NbV4m119 could be 
detected (see Supplementary Fig. S0). Moreover, the staining pattern of NbV4m119 overlapped with that one 
of an antibody targeting the macrophage marker F4/80, indicating that NbV4m119 is indeed binding to mac-
rophages in the arthritic joints.

Specificity of NbV4m119 targeting CRIg in C57BL/6J mice with CIA. Another approach to assess 
speci�city of targeting, is to compare targeting in WT versus CRIg−/− mice. Since CRIg−/− mice are not available 
in the DBA/1 background and C57BL/6J mice are relatively resistant to CIA5, we used a modi�ed immunization 
protocol to induce CIA in WT and CRIg−/− C57BL/6J mice (Fig. 1a). Yet even when using this protocol, both 
WT and CRIg−/− C57BL/6J mice showed a low disease incidence (2 out of 7 mice developing symptoms in each 
group) as evaluated in two separate experiments and in fact, arthritic scores of individual paws tended to be 
even lower in CRIg−/− C57BL/6J as compared to WT C57BL/6J mice (see Supplementary Fig. S1a). As depicted 
in the experimental time lines in Fig. 1a, imaging using 99mTc-NbV4m119 was performed at day 34 in the four 
symptomatic mice and four asymptomatic mice (two WT and two CRIg−/− C57BL/6J mice). As had been doc-
umented and quanti�ed before23, 99mTc-NbV4m119 targeted CRIg speci�cally in liver of naïve and arthritic WT 
mice, but not in CRIg−/− mice (see whole body images in Supplementary Fig. S1b). Signals that were detected for 
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99mTc-NbV4m119 in the kidneys and the bladder were also observed for a control, non-targeting 99mTc-NbBCII10 
and are not attributable to speci�c targeting, but to the fast �ltration of unbound Nanobody from the blood-
stream through the renal route. As far as the uptake in joints is concerned, in WT mice 99mTc-NbV4m119 showed 
higher uptake in in�amed joints as compared to asymptomatic joints (Fig. 1b, le� of the dotted line). In contrast, 
in�amed joints of CRIg−/− C57BL/6J mice (score 3 as compared to score 0) only showed a slightly higher uptake 
of 99mTc-NbV4m119 that may be due to joint oedema (Fig. 1b, le� of the dotted line). Moreover, when comparing 
joints with the same arthritic score 3, 99mTc-NbV4m119 signals were much higher in WT versus CRIg−/− mice, 
indicating the antigen-speci�city of these signals.

A reduced accumulation of NbV4m119 in CRIg−/− mice as compared to WT mice could not only be due to 
the absence of CRIg as a target in these mice, but could also be related to a functional e�ect of the absence of CRIg 
on the intensity of the arthritic in�ammation or oedema that would a�ect the tissue penetration of Nanobodies 
in general, independent of the target speci�city. To exclude this possibility we also included NbMMR in this 
study as a Nanobody of which the target is still expected to be present in CRIg−/− mice. �ereby, the uptake of 
99mTc-NbMMR was quanti�ed via SPECT/µ CT imaging in the same mice at day 38 post immunization (see exper-
imental time lines in Fig. 1a). As reported before22, NbMMR targets MMR in several organs and tissues, including 
myocardium, bone marrow, spleen and liver, but also accumulates in joints of CIA mice (see Supplementary 
Fig. S1b). Notably, and in contrast to the results obtained with 99mTc-NbV4m119, uptake of 99mTc-NbMMR was 
enhanced in in�amed versus asymptomatic joints in both WT mice and CRIg−/− C57BL/6J mice (Fig. 1b, right 
of the dotted line), arguing against a reduced joint in�ammation in CRIg−/− CIA mice being the cause for the 
lower 99mTc-NbV4m119 uptake. Furthermore, reconstructed SPECT/µ CT images revealed hot spots of radioac-
tive signals only in symptomatic wrists in WT mice injected with 99mTc-NbV4m119 and WT or CRIg−/− mice 
injected with 99mTc-NbMMR, but not in 99mTc-NbV4m119 injected CRIg−/− mice or in mice injected with a 
control, non-targeting NbBCII10 (at day 42 post immunization), con�rming speci�city of the 99mTc-NbV4m119 

Figure 1. SPECT/CT quanti�cation and imaging of 99mTc-NbV4m119, 99mTc-NbMMR or 99mTc-
NbBCII10 accumulation in WT and CRIg−/− (KO) C57BL/6J mice with CIA a�er the onset of the 
arthritis symptoms. (a) Experimental timelines for C57BL/6J mice with CIA; IFA =  Incomplete Freund’s 
Adjuvant; M.t =  Mycobacterium tuberculosis strain H37RA; Sac =  mice were sacri�ced. SPECT/micro-CT 
imaging was performed 3 h post intravenous injection of 99mTc-labeled NbV4m119, NbMMR or NbBCII10. 
(b) Signals obtained in the joints with score 3 and joints with score 0 were grouped in four symptomatic and 
four asymptomatic mice (two WT and two KO mice in each group). Data are expressed as mean values of % 
of injected activity (%IA) of 99mTc-Nanobodies obtained from the limbs (front paws, metatarsal joints and 
ankles). **p <  0.01 and ***p <  0.001. (c) Representative SPECT/µ CT image of front paws in CIA mice, 3 h post 
injection with 99mTc-labeled NbV4m119, NbMMR or NbBCII10. Clinical scores are indicated next to each joint. 
Representative images of 1 mouse per group are shown using National Institutes of Health color scale and are 
scaled to maximum in the whole image. �e data are representative of two independent experiments.
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signals (see cropped images focusing on front paws in Fig. 1c). Similar conclusions were obtained for signals in 
other joints such as ankles or knees (see whole body images in Supplementary Fig. S1c).

Specificity of NbV4m119 targeting in STIA C57BL/6J mice. Next, STIA was induced in C57BL/6J 
mice, whereby 8 days later one group of mice was used for imaging using 99mTc-NbV4m119 and another group of 
mice was used for imaging using 99mTc-NbMMR (see experimental time lines in Fig. 2a). Symptoms were mainly 
observed in the ankles, whereas some of the wrists seemed to remain asymptomatic at day 8 (see Supplementary 
Fig. S2a,S2b). For imaging with 99mTc-NbV4m119, 4 WT and 4 CRIg−/− serum injected mice at day 8 (all mice 
developing symptoms) were compared to 3 WT and 3 KO naive mice. �e mean levels of 99mTc-NbV4m119 
uptake in wrists and ankles of WT arthritic mice, which developed symptoms, were higher as compared to naive 
WT and CRIg−/− mice (Fig. 2a). �e signal of 99mTc-NbV4m119 uptake in symptomatic wrists and ankles of 
CRIg−/− mice was not di�erent as compared to non-symptomatic joints or naive joints in CRIg−/− mice. �e same 
conclusions were obtained via measurement of radioactivity in dissected joints of euthanized mice as compared 
to quanti�cation of the imaging data (see Supplementary Fig. S2c). Representative images cropped to focus on 
hind legs are shown in Fig. 2c, and whole body images including also front paws are shown in Supplementary Fig. 
S2e, highlighting focal signals of 99mTc-NbV4m119 uptake in ankles of arthritic WT mice, but not of naïve WT or 
arthritic or naïve CRIg−/− mice (Fig. 2c).

A di�erent set of mice was imaged with the 99mTc-NbMMR, whereby 4 WT and 4 CRIg−/− serum injected 
mice at day 8 were compared to 3 WT and 3 CRIg−/− naive mice. �e wrists and ankles showed signi�cantly 
higher signals in symptomatic WT mice (score >  0) as compared to naive WT mice (Fig. 2b,c and Supplementary 
Fig. S2d). Of note, in this experiment the symptomatic CRIg−/− mice had a lower score in ankles than the WT 
mice, suggesting CRIg de�ciency may (variably) a�ect arthritis development in these mice (Supplementary Fig. 
S2b). Accordingly, 99mTc-NbMMR uptake was signi�cantly higher in the ankle joints but not in wrists of sympto-
matic WT as compared to symptomatic CRIg−/− mice. Yet, in contrast to the results obtained with NbV4m119, 
NbMMR uptake in CRIg−/− mice was increased in ankles and wrists of symptomatic mice as compared to naive 

Figure 2. In vivo SPECT/CT imaging with an anti-CRIg tracer (NbV4m119) or an anti-MMR tracer 
in arthritic joints of C57BL/6J WT and CRIg−/− (KO) mice with STIA. Experimental timelines and 
quanti�cation of tracer accumulation in wrist and ankle joints of C57BL/6J mice with STIA which were injected 
with KBxN serum and monitored via SPECT/micro-CT imaging using 99mTc-NbV4m119 (a) or 99mTc-NbMMR 
(b) at day 8 post serum transfer. For each tracer, 4 KO and WT mice were injected with serum and 3 naïve 
KO and WT mice were used as control. Imaging & Sac =  mice were imaged and sacri�ced. �e % of injected 
activity (%IA) was quanti�ed for the wrist or ankle area in SPECT imaging (mean ±  SEM, ***p <  0.001, ns: not 
signi�cant). Naive: naive mice without serum injection; Score >  0: the ankles with arthritis score 1, 2 or 3. (c) 
Representative SPECT/µ CT image of STIA C57BL/6J mice, 3 h post injection with 99mTc-labeled NbV4m119 or 
99mTc-labeled NbMMR. Clinical scores are indicated next to each joint. Representative images of ankles in 1 out 
of 4 mice per group are shown using National Institutes of Health color scale and are scaled to maximum in the 
whole image.
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mice (Fig. 2b,c and Supplementary Fig. S2d,S2f), indicating that the lack of accumulation of 99mTc-NbV4m119 
in ankles and wrists of symptomatic versus asymptomatic CRIg−/− mice truly re�ects the absence of speci�c 
targeting to in�amed joints in the KO mice rather than merely reduced in�ammation in joints of CRIg−/− mice.

Using 99mTc-NbV4m119 for monitoring arthritis progression in STIA. Next, we evaluated 
99mTc-NbV4m119 for monitoring the initial induction and later recovery of RA symptoms in STIA. 12 C57BL/6J 
mice were injected with K/BxN serum on day 0. Mice were imaged with 99mTc-NbV4m119 at 2 days (onset of 
RA), 8 days (peak of RA) and 15 days (recovering phase of RA) a�er initial immunization (Fig. 3a). �e scores of 
these mice increased from day 2 to day 8 and subsequently decreased a�er 15 days (Fig. 3b and Supplementary 
Fig. S3a). Signi�cant 99mTc-NbV4m119 uptake was mainly observed in in�amed joints in hind legs (Fig. 3c) and 
in front paws (see Supplementary Fig. S3b) of arthritic mice. When assessing probe accumulation in individual 
wrists and ankles, 99mTc-NbV4m119 uptake at day 8 was signi�cantly increased as compared to day 2 (Fig. 3d). 
In line with the observation that the symptoms were reduced in mice beyond day 8, the 99mTc-NbV4m119 accu-
mulation in the wrists and ankles signi�cantly decreased at day 15 as compared to day 8 (Fig. 3d). �ese results 
demonstrate that 99mTc-NbV4m119 can sense the CRIg level in vivo from the onset, peak and recovery of arthritis.

Monitoring the effect of dexamethasone therapy for RA using 99mTc-NbV4m119 in CIA DBA/1 
mice. Finally, we evaluated the use of 99mTc-NbV4m119 for monitoring the e�ects of therapeutic intervention. 
In order to obtain a maximum sensitivity for the e�ect of the therapeutic treatment, we used the gold-standard 
model of CIA in arthritis-sensitive DBA/1 mice for these experiments. Two groups of mice (n =  10) were com-
pared to allow monitoring the e�ect of the dexamethasone treatment: one group received dexamethasone i.p. 
daily 28 days a�er arthritis-induction and the second group was injected with saline as control. Each group 
was imaged with 99mTc-NbV4m119 at day 28 (before treatment) and day 42 (after treatment) after initial 
immunization (Fig. 4a). Before the start of treatment at day 28, mice in both groups had an average cumula-
tive arthritic score of 4. In contrast to the saline injected group, the scores of the mice in the dexamethasone 
treated group decreased to nearly baseline treatment till day 40. We also noticed that as soon as the dexameth-
asone treatment stopped on day 41, the arthritis scores of this group rebounded again on day 42 (Fig. 4b). �e 
total 99mTc-NbV4m119 accumulation in four limbs of mice in the dexamethasone treated group (at 42 days post 

Figure 3. In vivo SPECT/CT imaging with an anti-CRIg tracer for monitoring arthritis recovery in STIA 
C57BL/6J mice. (a) Experimental timelines for 12 WT mice injected with KBxN serum and imaged at day 2, 
day 8 and day 15 post serum transfer. Imaging =  SPECT/µ CT imaging. (b) �e clinical arthritic scores (additive 
scores for all 4 paws of each mouse, expressed as group mean ±  SEM) were measured at day 2, day 8 and day 15 
a�er immunization. (c) Representative SPECT/µ CT image of ankles in STIA serum transfer arthritis mice, 3 h 
post injection with 99mTc-labeled NbV4m119. �e same arthritic mice displaying symptoms of arthritis showed 
speci�c uptake of 99mTc-labeled NbV4m119 in in�amed joints on day 2, day 8 and day 15 post serum injection. 
Clinical scores are indicated next to each joint. Representative images of 1 out of 12 mice per group are shown 
using National Institutes of Health color scale and are scaled to maximum in whole image. (d) Uptake of 99mTc-
NbV4m119 in individual wrists and ankles of mice. �e % of injected activity (%IA) was quanti�ed for the wrist 
area. score 0: the wrists with score 0; S >  0: the wrists with arthritis score 1, 2 or 3. �e % of injected activity 
(%IA) was quanti�ed for the ankle area. (mean ±  SEM, *P <  0.05, **P <  0.01, *** P<  0.001, ns: not signi�cant).



www.nature.com/scientificreports/

6Scientific RepoRts | 6:35966 | DOI: 10.1038/srep35966

immunization) was signi�cantly lower than in the saline treated group, which correlated with decreasing clinical 
scores (Fig. 4c,d). Similar conclusions were obtained in ankles, but no signi�cant di�erence was detected among 
knees of dexamethasone treated and control mice. Hot spots of 99mTc-NbV4m119 accumulation were observed 
in knees of both groups of mice (see Supplementary Fig. S4). Notably, in all joints, the recorded imaging readout 
values in the dexamethasone injected group at day 42 remained at least as high as those recorded at day 28 (i.e. 
before the onset of therapy) (Fig. 4c).

Discussion
Molecular imaging of arthritis, which includes anatomical imaging techniques such as ultrasonography and MRI 
or molecular imaging such as optical imaging or nuclear imaging, will improve the understanding of the patho-
genesis and development of the disease. MRI imaging produces anatomically detailed images of cartilage, ten-
dons, synovial membrane and bone which ultrasonography could not penetrate11. It provides a higher contrast 
resolution, allowing detection of synovial hyperplasia, cartilage and bone degradation, in�ammation and oste-
itis and is able to show signs of early arthritis in patients24. Molecular imaging can provide molecular informa-
tion on the underlying biochemical and in�ammatory processes, that is complementary to anatomical imaging. 
Development of metal plasmonic nanoparticles for MRI25 allows using MRI also for molecular imaging in addi-
tion to its use for anatomical imaging. Other molecular probes being developed for molecular arthritis imaging 
include �uorescence and near-infrared labelled probes26 for optical imaging or radioisotopes labelled probes for 
scintigraphy, PET or SPECT14. Nuclear imaging techniques generate deeper tissue penetration and lower back-
ground than optical imaging techniques and are more sensitive than structural imaging11. In the current study, 
we built on previous results obtained with NbV4m119 as a probe for molecular imaging of arthritic in�amma-
tion23. Despite the low incidence of arthritis in the CIA model in C57BL/6J mice, we obtained antigen-speci�c 
99mTc-NbV4m119 signals in arthritic WT mice but not in arthritic CRIg−/− mice. Also in the STIA model, which 

Figure 4. Monitoring the clinical scores and uptake of 99mTc-NbV4m119 in the four limbs of DBA/1 mice 
with CIA following dexamethasone therapy. (a) Experimental timelines for the CIA therapy monitoring 
experiment; CFA =  Complete Freund’s Adjuvant; IFA =  Incomplete Freund’s Adjuvant; Imaging =  SPECT/µ CT 
imaging; Sac =  mice were sacri�ced. Mice (n =  10) were immunized with type II collagen in complete Freund’s 
adjuvant. �e treatments were started at 28 days and �nished at 41 days a�er initial immunization. Treatments 
consisted of daily i.p. injection with 100 µ l saline control or 0.25 mg/kg dexamethasone. (b) �e clinical additive 
scores of the RA mice were measured until 42 days a�er immunization. *p <  0.05, **p <  0.01, and ***p <  0.001. 
(c) SPECT/CT image quanti�cation of 99mTc-NbV4m119 in all 4 limbs of CIA DBA/1 mice (sum of ankles 
and front paws) at 28 days and 42 days a�er immunization were quanti�ed as %IA. Data are expressed as 
mean ±  SEM. ns: not signi�cant, **p <  0.01. (d) Representative SPECT/µ CT image of front paws in CIA DBA/1 
mice, 3 h post injection with 99mTc-labeled NbV4m119. �e same arthritic mice displaying symptoms of arthritis 
showed speci�c uptake of 99mTc-labeled NbV4m119 in front paws on 28 days and 42 days post serum injection. 
Clinical scores are indicated next to each joint. Representative images of front paws in 1 out of 10 per group 
CIA DBA/1 mice are shown using National Institutes of Health color scale and are scaled to maximum in whole 
image.
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is readily inducible in C57BL/6J mice, 99mTc-NbV4m119 speci�cally detected the in�amed lesions in the arthritic 
WT mice but not in the CRIg−/− mice. �roughout these di�erent experiments in the CIA and STIA models, 
hot spots of 99mTc-NbV4m119 accumulation in arthritic joints of CRIg−/− mice were never detected. Moreover, 
sustained joint accumulation of 99mTc-NbMMR in CRIg−/− mice indicates that the impaired accumulation of 
99mTc-NbV4m119 in symptomatic CRIg−/− mice truly re�ects the absence of speci�c targeting in CRIg−/− mice, 
rather than reduced joint in�ammation.

99mTc-NbV4m119 signals provide a quantitative read-out for disease development and resolution in the STIA 
model. �e detection of hot spots of NbV4m119 signal in some of the score 0 joints at day 2, suggests that the  
in vivo imaging is more sensitive than the classic scoring system. �ese �ndings o�er perspectives for monitoring 
disease evolution, either spontaneous or under therapy, provided that baselines can be established allowing com-
parison of the obtained signals. Increased resolution when switching from SPECT to PET imaging and increased 
joint size in humans as compared to rodents, thereby hold potential for increased contrast upon clinical transla-
tion of such in�ammation imaging.

Non-invasive imaging can monitor the same animal at di�erent time points before or a�er the onset of arthritis,  
allowing to follow up a therapy or treatment. MRI-based outcome measures have recently been adopted by 
pharma companies for clinical trial research to measure clinical trial outcome of therapy such as anti-TNF agents, 
including adalimumab, in�iximab, etanercept and golimumab. �ese enable earlier assessment of drug e�cacy 
than radiographic outcomes27. In a recent study using 111In-labelled antibodies targeting �broblast activation pro-
tein, macrophages and integrin α vβ 3, decreased joint uptake of tracers was observed in arthritic mice undergoing 
etanercept treatment28. In the current study using 99mTc-NbV4m119 in CIA DBA/1 mice receiving dexametha-
sone as therapy, the recorded signals at day 42 were lower in the dexamethasone injected group as compared to 
the saline control group, but remained at least as high as those recorded at day 28 (i.e. before the onset of therapy). 
At the level of the knees, wherein 99mTc-NbV4m119-based imaging is a sensitive indicator of in�ammation29, 
similar signals were even detected in the dexamethasone treated group as in the control group. �ese data are in 
line with the observation that the clinical scores rose immediately as soon as dexamethasone treatment stopped, 
con�rming that dexamethasone is better at providing symptom relief than at altering disease progression30 and 
indicating that SPECT/µ CT imaging can indeed provide complementary molecular information on the e�ect of 
the therapy on the underlying disease pathology in the various joints as compared to the clinical score.

Our studies have confirmed that Nanobodies targeting CRIg constitute a specific tool for non-invasive 
SPECT/CT imaging as a way of assessing in�ammation in arthritis models in vivo. Moreover, the monitoring 
studies indicate that imaging arthritic mice using 99mTc-NbV4m119 appears to serve as a non-invasive means for 
tracing disease evolution and response to therapy, providing complementary and more sensitive information as 
compared to paw swelling and clinical scoring.

Materials and Methods
Ethical approval. Animal studies were performed according to the European Community Council Directive 
2010/63/EU and were approved by our university’s Ethical Committee for Animal Experiments (Approval N°12-
220-6; 24/09/2012).

Mice. Male C57BL/6J (8–12 week-old) and DBA/1 mice (8 week-old) were purchased from Janvier Sas. 
CRIg−/− mice (C57BL/6J background) were generously provided by Genentech (San Francisco, CA).

Arthritis models. CIA was induced in WT and CRIg−/− C57BL/6J male mice using a modi�ed immuni-
zation involving two 21-day-separated subcutaneous injections of 100 µ L of 4 mg/mL chicken collagen type II 
(Sigma-Aldrich) in acetic acid, emulsi�ed in incomplete Freund’s adjuvant with added 3.3 mg/mL heat-killed 
Mycobacterium tuberculosis strain H37RA (Difco Laboratories), at two sites (the base of the tail and a slightly more 
anterior location) a�er anesthesia. Each limb was scored for severity of arthritis for CIA as follows: 0 =  normal;  
1 =  redness/swelling of one joint; 2 =  redness/swelling of more than one joint; 3 =  swelling of entire paw; 
4 =  ankylosis and/or deformity. For dexamethasone treatment e�cacy monitoring and immuno�uorescence 
microscopy, cohorts of DBA/1 mice were used for CIA induction as described23 and were treated daily with i.p. 
0.25 mg/kg dexamethasone in 100 µ L saline or saline control from day 28 to day 41.

STIA mice were sensitized via an i.v. injection in the tail of C57BL/6J mice with 60 µ L of arthritogenic serum 
from K/BxN mice as described8. All paws were assigned a score for in�ammation in STIA on a scale of 0 to 3: 
1 =  mild swelling of the ankle insu�cient to reverse the normal V shape of the foot; 2 =  swelling su�cient to 
make the ankle and midfoot approximately equal in thickness to the forefoot; 3 =  reversal of the normal V shape 
of the foot. �e thickness of the ankles and the wrists were monitored using a calliper across the ankle or wrist 
joint at the widest point.

Nanobodies. Nanobodies against CRIg (NbV4m119), the β -lactamase BCII enzyme of Bacillus cereus 
(NbBCII10) and MMR (NbMMR) were generated as described19,22,23. For 99mTc labelling, the Nanobodies were 
subcloned into the pHEN6c vector introducing a hexahistidine-tag. All Nanobodies were produced in, and puri-
�ed from, the periplasm of Escherichia coli WK6 cells.

99mTc-Nanobody labelling and pinhole SPECT/µCT analysis. Nanobodies were labelled with 99mTc 
via the hexahistidine tag, puri�ed via NAP-5 column (Sephadex G-25, GE Healthcare) and 0,22 µ m membrane 
�ltered as described18. Radiochemical purity was determined using instant thin-layer chromatography (Pall 
Corp., Life Sciences) in acetone solvent, revealing the amount of Nb-complexed and unincorporated 99mTc at 
the application and the solvent front, respectively18. 52.8 ±  0.01 MBq of 99mTc-Nbs activity in 80–100 µ L (at 192 
MBq/nmol) was injected. 3 h post injection, anesthetized mice were imaged using µ CT (Skyscan 1178; Skyscan) 
followed by pinhole SPECT (e.cam180; Siemens Medical Solutions) as described23. Images were reconstructed 
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as described31, using an iterative reconstruction algorithm and corrected for attenuation and scatter. Micro-CT 
images were reconstructed using �ltered backprojection (NRecon; SkyScan). Images were viewed and analyzed 
using AMIDE: A Medical Image Data Examiner so�ware32. A calibration factor, obtained by SPECT image anal-
yses of syringes with known activities, is used to convert SPECT image pixels to radioactivity levels. Regions of 
interest were drawn, recorded amounts of radioactivity in these regions were divided by the amount of injected 
activity (corrected for decay) and expressed as percentage of injected activity (% IA).

To determine biodistribution ex vivo, mice were sacri�ced and tissues were dissected and weighed, and their 
radioactivity content was measured using an automated γ -counter (Cobra II Inspector 5003; Canberra-Packard, 
Schwadorf, Austria). Organ uptake was calculated as the percentage of injected activity per gram (% IA/g) and 
corrected for decay.

SPECT/µCT imaging time lines for the different arthritis models. (1) In vivo imaging monitoring 
the modi�ed CIA model in WT (n =  2) and CRIg−/− (n =  2) C57BL/6J mice. �e imaging was performed at day 
34, day 38 and day 42, using 99mTc-NbV4m119, 99mTc-NbMMR, or 99mTc-NbBCII10 respectively. �e clinical 
scores of the wrists and ankles were monitored. (2) In vivo imaging monitoring STIA at day 8. WT and CRIg−/− 
C57BL/6J mice (n =  4, 14 weeks old) received the KBxN mouse serum administration. �e clinical scores and 
the thickness of the wrists and ankles were monitored at day 8. �e arthritic WT and CRIg−/− mice were injected 
with 99mTc-NbV4m119 or 99mTc-NbMMR and imaged by SPECT/CT on day 8 post serum injection. A�er the 
anesthetized mice were imaged using µ CT followed by pinhole SPECT, mice were sacri�ced, wrists and ankles 
were dissected and weighed, and their radioactivity content was measured using an automated γ -counter. (3) 
In vivo imaging monitoring the STIA pathological process. WT C57BL/6J mice (n =  12, 10 weeks old) received 
the KBxN mice serum administration. �e clinical scores and the thickness of the wrists and ankles were mon-
itored till day 15. �e arthritic WT C57BL/6J mice were injected with 99mTc-NbV4m119 each time and imaged 
by SPECT/CT on day 2 (onset of RA), day 8 (peak of RA) and day 15 (RA partly resolved) post serum injection. 
Anesthetized mice were imaged using µ CT followed by pinhole SPECT. (4) Treatment e�cacy monitoring by 
99mTc-NbV4m119. For evaluation of the dexamethasone therapy by imaging, beginning on 28 days a�er the ini-
tial immunization, cohorts of CIA DBA-1 mice (n =  10) were treated i.p. with dexamethasone (daily) or received 
saline (daily) and served as control. �e treatments were �nished at day 41. Till day 42, the scores were monitored 
for each mouse every two days. �e arthritic mice were injected with 99mTc-NbV4m119 and imaged by SPECT/
CT before (day 28) and a�er (day 42) the dexamethasone or saline treatments.

Immunofluorescence microscopy. CIA was induced in DBA/1 mice. Mice were sacri�ced under anes-
thesia and ankles exhibiting di�erent arthritic scores were removed and �xed in 4% paraformaldehyde solution 
for 24 hours. Ankles were decalci�ed in 10% EDTA pH 7.4 (Sigma, USA) for 4 weeks (EDTA solution refreshed 
once a week) then embedded in para�n. 8 µ m sections were prepared from para�n-embedded tissues. �e 
sections were incubated in 1% blocking reagent (Roche) in PBS (1% PBS/BR) containing detection antibodies. 
Anti-F4/80(Cl:A3-1)/Alexa �uor 488 was purchased from AbD Serotec and anti-HA-tag (16B12)/Alexa Fluor 
594 was purchased from Invitrogen. Each section was incubated overnight with 2 µ g of antibody and Nb. Speci�c 
labelling was detected with anti-HA/Alexa �uor 549 in 1% PBS-BR. Fluoro-Gel II/DAPI (Electron Microscopy 
Sciences) mounted slides were used for �uorescence microscopy with a UPlanFI 10x, 20x or 30x objective on a 
OLYMPUS BX51 microscope with OLYMPUS DP71 CCD and OLYMPUS DP Controller so�ware.

Statistical analysis. Signi�cance analysis of data was conducted using a two-tailed unpaired Student’s T test 
when two groups were analyzed or one-way ANOVA analysis of variance multiple–comparison post-test. Prism 
6.0 (Graphpad so�ware) was used for statistical analyses and graph creation. P-values ≤  0.05 were considered 
signi�cant.

References
1. Klareskog, L., Malmstrom, V., Lundberg, K., Padyukov, L. & Alfredsson, L. Smoking, citrullination and genetic variability in the 

immunopathogenesis of rheumatoid arthritis. Seminars in immunology 23, 92–98, doi: 10.1016/j.smim.2011.01.014 (2011).
2. Colmegna, I., Ohata, B. R. & Menard, H. A. Current understanding of rheumatoid arthritis therapy. Clinical pharmacology and 

therapeutics 91, 607–620, doi: 10.1038/clpt.2011.325 (2012).
3. Upchurch, K. S. & Kay, J. Evolution of treatment for rheumatoid arthritis. Rheumatology 51 Suppl 6, vi28–vi36, doi: 10.1093/

rheumatology/kes278 (2012).
4. Jirholt, J. et al. Genetic linkage analysis of collagen-induced arthritis in the mouse. Eur J Immunol 28, 3321–3328, doi: 10.1002/

(SICI)1521-4141(199810)28:10&#60;3321::AID-IMMU3321&#62;3.0.CO;2-M (1998).
5. Inglis, J. J., Simelyte, E., McCann, F. E., Criado, G. & Williams, R. O. Protocol for the induction of arthritis in C57BL/6 mice. Nat 

Protoc 3, 612–618, doi: 10.1038/nprot.2008.19 (2008).
6. Geboes, L. et al. Proin�ammatory role of the �17 cytokine interleukin-22 in collagen-induced arthritis in C57BL/6 mice. Arthritis 

Rheum 60, 390–395, doi: 10.1002/art.24220 (2009).
7. Ditzel, H. J. �e K/BxN mouse: a model of human in�ammatory arthritis. Trends Mol Med 10, 40–45 (2004).
8. Misharin, A. V. et al. Nonclassical Ly6C(−) monocytes drive the development of in�ammatory arthritis in mice. Cell Rep 9, 591–604, 

doi: 10.1016/j.celrep.2014.09.032 (2014).
9. Monach, P. A., Mathis, D. & Benoist, C. The K/BxN arthritis model. Curr Protoc Immunol Chapter 15, Unit 15 22, doi: 

10.1002/0471142735.im1522s81 (2008).
10. Arnett, H. A. & Viney, J. L. Considerations for the sensible use of rodent models of in�ammatory disease in predicting e�cacy of 

new biological therapeutics in the clinic. Advanced drug delivery reviews 59, 1084–1092, doi: 10.1016/j.addr.2007.06.013 (2007).
11. McQueen, F. M. MRI in rheumatoid arthritis: a useful tool for the clinician? Postgraduate medical journal 90, 332–339, doi: 10.1136/

postgradmedj-2013-132121 (2014).
12. Jamar, F. et al. Scintigraphy using a technetium 99m-labelled anti-E-selectin Fab fragment in rheumatoid arthritis. Rheumatology 

(Oxford) 41, 53–61 (2002).



www.nature.com/scientificreports/

9Scientific RepoRts | 6:35966 | DOI: 10.1038/srep35966

13. Laverman, P. et al. Immuno-PET and Immuno-SPECT of Rheumatoid Arthritis with Radiolabeled Anti-Fibroblast Activation 
Protein Antibody Correlates with Severity of Arthritis. Journal of nuclear medicine: o�cial publication, Society of Nuclear Medicine 
56, 778–783, doi: 10.2967/jnumed.114.152959 (2015).

14. Gandjbakhch, F. et al. Determining a magnetic resonance imaging in�ammatory activity acceptable state without subsequent 
radiographic progression in rheumatoid arthritis: results from a followup MRI study of 254 patients in clinical remission or low 
disease activity. �e Journal of rheumatology 41, 398–406, doi: 10.3899/jrheum.131088 (2014).

15. Matteson, E. L. et al. Assessment of disease activity in rheumatoid arthritis using a novel folate targeted radiopharmaceutical 
Folatescan. Clinical and experimental rheumatology 27, 253–259 (2009).

16. Terry, S. Y. et al. (1)(1)(1)In-anti-F4/80-A3-1 antibody: a novel tracer to image macrophages. European journal of nuclear medicine 
and molecular imaging 42, 1430–1438, doi: 10.1007/s00259-015-3084-8 (2015).

17. Schoonooghe, S. et al. Novel applications of nanobodies for in vivo bio-imaging of in�amed tissues in in�ammatory diseases and 
cancer. Immunobiology 217, 1266–1272, doi: S0171-2985(12)00173-8 [pii] 10.1016/j.imbio.2012.07.009 (2012).

18. Xavier, C. et al. Site-speci�c labeling of his-tagged Nanobodies with (9)(9)mTc: a practical guide. Methods Mol Biol 911, 485–490, 
doi: 10.1007/978-1-61779-968-6_30 (2012).

19. Vincke, C. et al. General strategy to humanize a camelid single-domain antibody and identi�cation of a universal humanized 
nanobody sca�old. J Biol Chem 284, 3273–3284 (2009).

20. Movahedi, K. et al. Nanobody-based targeting of the macrophage mannose receptor for e�ective in vivo imaging of tumor-associated 
macrophages. Cancer Res 72, 4165–4177, doi: 10.1158/0008-5472.CAN-11-2994 (2012).

21. Blykers, A. et al. PET Imaging of Macrophage Mannose Receptor-Expressing Macrophages in Tumor Stroma Using 
18F-Radiolabeled Camelid Single-Domain Antibody Fragments. J Nucl Med 56, 1265–1271, doi: 10.2967/jnumed.115.156828 
(2015).

22. Put, S. et al. SPECT imaging of joint in�ammation with Nanobodies targeting the macrophage mannose receptor in a mouse model 
for rheumatoid arthritis. Journal of nuclear medicine: o�cial publication, Society of Nuclear Medicine 54, 807–814, doi: 10.2967/
jnumed.112.111781 (2013).

23. McQueen, F. M. et al. MRI osteitis predicts cartilage damage at the wrist in RA: a three-year prospective 3T MRI study examining 
cartilage damage. Arthritis research & therapy 16, R33, doi: 10.1186/ar4462 (2014).

24. McQueen, F. M. Imaging in early rheumatoid arthritis. Best practice & research. Clinical rheumatology 27, 499–522, doi: 10.1016/j.
berh.2013.09.005 (2013).

25. Popovich, I., Dalbeth, N., Doyle, A., Reeves, Q. & McQueen, F. M. Exploring cartilage damage in gout using 3-T MRI: distribution 
and associations with joint in�ammation and tophus deposition. Skeletal radiology 43, 917–924, doi: 10.1007/s00256-014-1869-7 
(2014).

26. Gompels, L. L. et al. In vivo �uorescence imaging of E-selectin: quantitative detection of endothelial activation in a mouse model of 
arthritis. Arthritis Rheum 63, 107–117, doi: 10.1002/art.30082 (2011).

27. McQueen, F. M. & Chan, E. Insights into rheumatoid arthritis from use of MRI. Current rheumatology reports 16, 388, doi: 10.1007/
s11926-013-0388-1 (2014).

28. Terry, S. Y. et al. Monitoring Therapy Response of Experimental Arthritis with Radiolabeled Tracers Targeting Fibroblasts, 
Macrophages, or Integrin alphavbeta3. J Nucl Med 57, 467–472, doi: 10.2967/jnumed.115.162628 (2016).

29. Zheng, F. et al. Monitoring liver macrophages using nanobodies targeting Vsig4: concanavalin A induced acute hepatitis as 
paradigm. Immunobiology 220, 200–209, doi: 10.1016/j.imbio.2014.09.018 (2015).

30. Kang, I., Lee, W. W. & Lee, Y. Modulation of collagen-induced arthritis by IL-4 and dexamethasone: the synergistic e�ect of IL-4 and 
dexamethasone on the resolution of CIA. Immunopharmacology 49, 317–324 (2000).

31. Vanhove, C., Defrise, M., Bossuyt, A. & Lahoutte, T. Improved quanti�cation in single-pinhole and multiple-pinhole SPECT using 
micro-CT information. European journal of nuclear medicine and molecular imaging 36, 1049–1063 (2009).

32. Loening, A. M. & Gambhir, S. S. AMIDE: a free so�ware tool for multimodality medical image analysis. Mol Imaging 2, 131–137 
(2003).

Acknowledgements
We thank Cindy Peleman for technical assistance. This project was financially supported by the Research 
Foundation Flanders (FWO-Vlaanderen), the Flanders Government Agency for Innovation by Science and 
Technology (IWT), the Belgian Interuniversity Attraction Poles, the Concerted Research Actions of the Regional 
Government of Flanders and by the National Natural Science Foundation of China (81501527). TL is senior 
clinical investigator for the Research Foundation Flanders and the National Fund for Scientific Research-
Flanders. �e work has been supported by a scholarship from the Top-Notch Student Scholarship Fund of the 
China Scholarship Council to FZ.

Author Contributions
All authors were involved in dra�ing the article or revising it critically for important intellectual content, and all 
authors approved the �nal version to be published. Z.F. had full access to all of the data in the study and takes 
responsibility for the integrity of the data and the accuracy of the data analysis. Study conception and design: F.Z., 
H.P., P.M., T.L., S.M., P.D.B., N.D., S.S. and G.R. Acquisition of data: F.Z., N.D. and S.S. Analysis and interpretation 
of data: F.Z., Y.W., S.L., P.D.B., N.D., S.S. and G.R.

Additional Information
Supplementary information accompanies this paper at http://www.nature.com/srep

Competing �nancial interests: �e authors declare no competing �nancial interests.

How to cite this article: Zheng, F. et al. Speci�city Evaluation and Disease Monitoring in Arthritis Imaging with 
Complement Receptor of the Ig superfamily targeting Nanobodies. Sci. Rep. 6, 35966; doi: 10.1038/srep35966 
(2016).

�is work is licensed under a Creative Commons Attribution 4.0 International License. �e images 
or other third party material in this article are included in the article’s Creative Commons license, 

unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, 
users will need to obtain permission from the license holder to reproduce the material. To view a copy of this 
license, visit http://creativecommons.org/licenses/by/4.0/
 
© �e Author(s) 2016

http://www.nature.com/srep
http://creativecommons.org/licenses/by/4.0/

	Specificity Evaluation and Disease Monitoring in Arthritis Imaging with Complement Receptor of the Ig superfamily targeting Nanobodies
	Introduction
	Results
	Immunofluorescence microscopy to assess macrophage-specific NbV4m119 targeting in joints of collagen-induced arthritis mice
	Specificity of NbV4m119 targeting CRIg in C57BL/6J mice with CIA
	Specificity of NbV4m119 targeting in STIA C57BL/6J mice
	Using 99mTc-NbV4m119 for monitoring arthritis progression in STIA
	Monitoring the effect of dexamethasone therapy for RA using 99mTc-NbV4m119 in CIA DBA/1 mice

	Discussion
	Materials and Methods
	Ethical approval
	Mice
	Arthritis models
	Nanobodies
	99mTc-Nanobody labelling and pinhole SPECT/μCT analysis
	SPECT/μCT imaging time lines for the different arthritis models
	Immunofluorescence microscopy
	Statistical analysis

	Additional Information
	Acknowledgements
	References


