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ORIGINAL SIGNIFICANCE STATEMENT  

Over the last century rhizobia-legume symbioses served as central models of mutualistic 

plant-bacteria interactions. The early stages of these associations have been previously 

investigated with special interest since rhizobial competition for host space begins in the 

rhizosphere before any physical contact between both partners. Genetic studies on how 

rhizobia colonize rhizospheres, however, have been difficult experimentally. Here, using 

signature-tagged mutagenesis, we identified more than a hundred Ensifer meliloti genes that 

are relevant to rhizosphere colonization. Most remarkably, some of those genes were required 

for the rhizobia to express a preferential colonization of both host (Medicago, Trigonella) and 

phylogenetically related nonhost (Trifolium) plants (specificity). These results shed light on 

the genetic and evolutionary basis of the early interaction of rhizobia with roots. 
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ABSTRACT 

 Rhizobia are α- and ß-Proteobacteria that associate with legumes in symbiosis to fix 

atmospheric nitrogen. The chemical communication between roots and rhizobia begins in the 

rhizosphere. Using signature-tagged-Tn5 mutagenesis (STM) we performed a genome-wide 

screening for Ensifer meliloti genes that participate in colonizing the rhizospheres of alfalfa 

and other legumes. The analysis of ca. 6,000 mutants indicated that genes relevant for 

rhizosphere colonization account for nearly 2% of the rhizobial genome and that most (ca. 

80%) are chromosomally located, pointing to the relevance and ancestral origin of the 

bacterial ability to colonize plant roots. The identified genes were related to metabolic 

functions, transcription, signal transduction, and motility/chemotaxis among other categories; 

with several ORFs of yet-unknown function. Most remarkably, we identified a subset of 

genes that impacted more severely the colonization of the roots of alfalfa than of pea. Further 

analyses using other plant species revealed that such early differential phenotype could be 

extended to other members of the Trifoliae tribe (Trigonella, Trifolium), but not the Fabeae 

and Phaseoleae tribes. The results suggest that consolidation of E. meliloti into its current 

symbiotic state should have occurred in a rhizobacterium that had already been adapted to 

rhizospheres of the Trifoliae tribe.
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INTRODUCTION 

 As plant roots develop in the soil and microorganisms interact with those roots, a new 

environment with different physical, chemical, and biologic properties—the rhizosphere—is 

generated (Bruijn, 2013; Prashar et al., 2014; Rasmann and Turlings, 2016; York et al., 

2016). The assimilable-carbon and -nitrogen sources of plant origin present in the rhizosphere 

make this environment a suitable niche for microorganisms to grow and communicate with 

each other. Such a circumstance makes rhizospheres well known active centers for horizontal 

gene transfer (Mølbak et al., 2007), the generation of biodiversity, and the potential 

generation of new adaptive phenotypes in relation to plants (Turner et al., 2013). The 

chemical communication and physical contact between roots and microorganisms in the 

rhizosphere constitute the initial instances in associative processes like that established 

between rhizobia and legumes (Cooper, 2007; Somers et al., 2008). 

 Rhizobia are Gram-negative soil bacteria that establish a nitrogen-fixing symbiosis 

with leguminous plants (Chen et al., 2003; MacLean et al., 2007). The establishment of a 

successful symbiosis is the result of a complex and tightly regulated sequence of coordinated 

interactions between both partners that concludes with the formation of new organs, the 

legume-root nodules, where the bacteria fix atmospheric nitrogen into ammonium ions and, 

in turn, receive photosynthetic carbon from the host plant [reviewed in (Jones et al., 2007; 

Gibson et al., 2008; Oldroyd and Downie, 2008)]. In addition to these clear benefits for both 

partners—and specifically to avoid unnecessary plant superinfections—a strict control exists 

in the number of root infections that will end up in mature root nodules (Bhuvaneswari et al., 

1981; Caetano-Anollés and Bauer, 1988). Rhizobial accessibility to the symbiotic niche is 

naturally limited—with that capacity being regulated by the plant to meet the plant's N needs 

—and within the reach of only the most, so-called, competitive rhizobial strains present 

within the neighboring soil (Triplett, 1988; Triplett and Sadowsky, 1992). 
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 Current evidence indicates that rhizobial competitiveness for nodulation is a complex 

phenomenon in which processes taking place in the rhizosphere are of particular relevance 

(Triplett and Sadowsky, 1992; Savka et al., 2002). The key role of certain surface 

polysaccharides of alfalfa-, bean- and pea-nodulating rhizobia (Lagares et al., 1992; Bittinger 

et al., 1997; Williams et al., 2008) and of the type-III secretion system in the example of 

Lotus-nodulating rhizobia has been demonstrated (Sanchez et al., 2009). In addition to the 

synthesis of surface components, the rhizobial capacity to use specific metabolites such as 

inositol (Fry et al., 2001; Jiang et al., 2001), glycerol (Ding et al., 2012), proline (Jiménez-

Zurdo et al., 1995; Jiménez Zurdo et al., 1997; van Dillewijn et al., 2002), arabinose, and 

protocatechuate (Garcia-Fraile et al., 2015) has been described as a positive attribute for 

competitiveness. The ability to generate specific forms of plant-nodulation factors (Lamrabet 

et al., 1999), to elaborate and tolerate toxins (Triplett and Barta, 1987; Triplett, 1988, 1990; 

Robleto et al., 1998), to lessen the rate of ethylene generation by the plant (Dominguez-

Ferreras et al., 2009), and finally to tolerate abiotic stresses (Draghi et al., 2010) have also 

been reported as positive characteristics for symbiotic competitiveness. Nevertheless, beyond 

this fragmented knowledge, the methodological challenge lies in gaining access into an ever 

more complete overview of the behavior of rhizobia in the rhizosphere. The main limitations 

generally have to do with difficulties in obtaining a sufficient quantity of representative 

samples to undertake classical transcriptomic or proteomic investigations (Jackson and 

Giddens, 2006; Lozano et al., 2011). Few studies have faced the challenge of focusing on the 

first hours of rhizosphere colonization by rhizobia. For example, in-vivo–gene-expression 

technologies have been used to characterize the transcription of Rhizobium leguminosarum 

biovar viceae genes induced in the pea rhizosphere (Barr et al., 2008). Subsequently, in a 

more sophisticated trascriptomic approach, the early adaptation of R.leguminosarum biovar 

viceae Rlv 3841 to different plant rhizospheres was investigated, resulting in the 
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identification of a number of rhizosphere-induced rhizobial genes, several of which loci were 

located in the replicon pRL8 (Ramachandran et al., 2011). Based conceptually on a different 

experimental approach, the screening on an omic scale of mutants created by signature-

tagged mutagenesis (STM) can also serve to identify clones that express specific phenotypes 

(Lehoux et al., 1999; Pobigaylo et al., 2006; van Opijnen and Camilli, 2013). The use of such 

tools adapted to the analysis of rhizosphere colonization was accordingly able to identify six 

R. leguminosarum biovar viceae mutants with rhizosphere-specific phenotypes and to 

demonstrate the relevance of arabinose and protocatechuate metabolism to the colonization of 

pea rhizospheres by those rhizobia (Garcia-Fraile et al., 2015). In the example of E. meliloti, 

the use of STM has thus far concentrated on the screening for genes relevant to symbiosis and 

competitiveness mediated by the use of signature amplification and microarray technologies 

(Pobigaylo et al., 2008). 

  In this report, we present the use of a genome-wide STM approach aimed at 

the screening of E. meliloti mutants affected in the early colonization of two different 

legume´s rhizospheres. In order to improve the detection of weakly altered phenotypes and 

also to increase the number of different treatments that are simultaneously practicable, we 

used STM technologies coupled to both the amplification of signatures by the polymerase-

chain-reaction (PCR) and high-throughput second-generation DNA sequencing. Through this 

approach, we were able to identify several genes that were relevant for the colonization of 

legume rhizospheres, together with new evidences which are consistent with the existence of 

ancient plant-bacteria coevolution events at this early stage of the interaction. 
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RESULTS 

Genome-wide identification of E. meliloti mutants altered in the ability to colonize the 

rhizosphere of Medicago sativa (alfalfa) 

 In order to identify E. meliloti genetic determinants associated with the early 

colonization of the alfalfa rhizosphere, we used a Tn5-STM approach that allowed for the 

simultaneous phenotypic analysis of thousands of independent mutants. A conservation of 

rhizosphere structure was critical in order to evaluate which mutations altered the ability of 

rhizobia to colonize roots. Thus, to preserve rhizosphere architecture and nutrient gradients, 

plants were grown in plastic pots with vermiculite as a carrier support (Materials and 

Methods). In all the experiments, 15 independent sets of 412 different Tn5-signature-tagged 

rhizobia (Pobigaylo et al., 2006) were used, so that more than 6,000 mutants were analyzed 

for their colonization capabilities. Two underlying central issues were specifically considered 

at the time of the experimental design: a) the use of low rhizobial concentrations, in the range 

of those observed under natural soil conditions (Trabelsi et al., 2009; Somasegaran and 

Hoben, 2012), in order to avoid artificial interactions that could mask or modify early 

competitive phenomena; and b) the need nevertheless to preserve an adequate relative 

representation of each inoculated Tn5 mutant in the inoculant because the higher the number 

of different inoculated mutants in the inoculum, or the lower the total rhizobial concentration; 

the lower will be the representation of each single mutant in the assay. The sampling times 

were chosen based on the root-colonization kinetics displayed by E. meliloti (Fig. S1). A 

steady increase in root colonization was observed during the first 3 days after inoculation, but 

thereafter the values plateaued. In view of these kinetics, rhizospheric bacteria were routinely 

sampled at 3 and 7 days postinoculation (d.p.i.). Fig. 1 summarizes the experimental 

procedures used and the different treatments performed. To assess which mutant rhizobia 

were affected in root colonization, the log
2
 of the ratio of the number of each mutant in the 
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output sample with respect to that same mutant in the input sample (inoculum)—i. e., the M  

value—was determined (see Materials and Methods). Since any given Tn5 mutant bore two  

specific DNA-signature tags (namely, the K and H tags; (Pobigaylo et al., 2006)), the relative  

amount of each mutant in any given sample was quantified by the high-throughput DNA  

sequencing of the bar-coded PCR products that separately contained each of the Tn5  

signature tags (Fig. S2; also cf. Materials and Methods). The experimental approach used  

enabled the analysis of 480 independent experimental conditions to be performed in a single  

sequencing run—i. e., analyses of the colonization of alfalfa roots at two different times (3  

and 7 d.p.i.) and the colonization of the nonhost pea roots at 7 d.p.i.; in both instances with 15  

different mutant sets and four biological replicas per treatment (cf. the experimental scheme  

in Fig. 1). A mutant was considered to be altered in root colonization when, under any given  

condition, both of its signatures (the H and the K tags) had changed in representation in the  

output sample by at least 40% (or a fold change ≤ 0.6) compared to the representation in the  

input sample—i. e., an M value = log2(input/output) of ≤ –0.74 for negatively affected  

mutants (cf. Materials and Methods). This cutoff value was chosen because it gave consistent  

and statistically significant results for both signature tags (with at least p ≤ 0.05 for one of the  

signatures, and p ≤ 0.1 for the other; cf. Fig. 2, Panel C). On the basis of this criterion, 128  

mutants out of the 6,240 analyzed could be identified as potentially altered in the colonization  

of alfalfa roots at 3 d.p.i. (cf. volcano plot in Fig. 2, panels A and B). An analysis of the  

insertion sites of these mutants revealed that more than a hundred different genomic regions  

were affected, in some instances with several insertions within a same gene/operon  

(constituting a redundancy situation; Table S1). A similar STM experiment, but involving the  

collection of rhizobia from the rhizosphere at 7 d.p.i., enabled the identification of 148 Tn5  

mutants affected in root colonization, with most (70%) being mutants in the same genes that  

had been identified at 3 d.p.i. In total, 175 different mutants were found to be impaired in the  
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colonization of alfalfa roots considering the two experimental conditions of 3 and 7 d.p.i. The 

inspection of all Tn5 insertions listed in Table S1 indicated that 166 mutants contained the 

Tn5 insertions within annotated coding regions, and involving 127 different genes. Nine 

mutants—the last 9 itemized in Table S1—had Tn5 insertions within intergenic regions and 

three others within an rDNA (SMc03220). 

 

Validation experiments. Competitiveness of STM-selected mutants against the wild-type 

rhizobia for root colonization in double-inoculation experiments  

 In order to assess whether mutants identified by STM were in fact defective in 

rhizosphere colonization capability, we performed double-inoculation competition 

experiments using a 1:1 mutant:wild-type ratio at the beginning of the assays (ca. 1 x 10
5
 

u.f.c. /ml of each strain) and then counted each competitor rhizobium by plating at 3 d.p.i. 

(validation assays)(see Materials and Methods). Experiments were performed with 14 

mutants covering different M values, and having been recognized by STM as affected at both 

3 d.p.i. and 7 d.p.i.. All the mutants tested (with M values ranging from –5.5 to –1.0) were 

confirmed as being impaired in root colonization compared to the wild-type strain (p <0.05, 

chi-squared test; Fig. 3). This evaluation, along with the analysis of an extensive number of 

mutants (cf. the following sections), demonstrated that the M values obtained from the STM 

experiments (MSTM) were consistent with their corresponding M values calculated from the 

validation experiments (Mplating; Fig. S3). Thus, the STM design presented here proved to be 

an effective and powerful approach to obtain reliable and quantitative estimations of 

colonization phenotypes for thousands of mutants in a single sequence run. The transduction 

of 9 different mutations into the wild-type rhizobia [flgK (two independent Tn5 mutants), 

motD, flgE, Smc03015, Smc01164, Smc03140, Smc04042, and Smc03113 (the unaffected 
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control)] in all instances resulted in colonization phenotypes that were consistent with the 

behavior of the original mutant (data not shown). 

 

Genomic distribution of genetic markers involved in rhizosphere colonization of alfalfa 

plants. Search for orthologs in other rhizobia and in-silico functional analysis 

 The genomic distribution of the genes which contained Tn5 insertions that affected 

root colonization in alfalfa indicated that nearly 80% were located in the E. meliloti 

chromosome (Fig. 4, Panel A), with only 16.2% and 4.4% of the genes being mapped on the 

pSymB and pSymA plasmids, respectively. The average density of genes for rhizosphere 

colonization per replicon length is in the relative order: chromosome > pSymB > pSymA (cf. 

the distribution of red dots in Fig. S4). That 94% of all the chromosomal genes listed in Table 

S1 had been identified as part of the core set of genes shared among the six available E. 

meliloti genomes suggests a common ancestral origin for most of their associated functions. 

The ancient character of the colonization genes is also reflected in a significant conservation 

of this orthologs (≥50%) even in distant members of the Rhizobiacea family including 

mesorhizobia and bradyrhizobia (Fig. S5). In E. meliloti, a minor set of genes required for an 

efficient root colonization are present in the pSymB chromid (22 genes) and in the pSymA 

megaplasmid (6 genes). 

 The cluster of orthologous gene (COG) analysis for those genes whose Tn5 insertions 

compromised root colonization indicated that about 56% were related to the metabolism of 

amino acids, carbohydrates, and cellular energy, among other functions (Fig. 4, Panel B). The 

most negative M values were accordingly observed within these gene disruptions. Of the 

remaining genes identified, ca. 12% were associated with cell motility and chemotaxis and 

were moderately impaired in root colonization (–1.5 < MSTM < –1). Transcription, translation, 

and replication-associated functions were affected in about 7% of the colonization-defective 
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mutants. Finally, ca. 15% of the compromised genes were distributed in other less  

represented COGs.  

  

Growth response in different media of mutants impaired in rhizosphere colonization  

 With the aim at investigating the type of effects that lead to deficiencies in  

rhizosphere colonization, we analyzed: a) the growth response of 15 selected mutants to  

different extracellular-nutrient sources that included alfalfa-root exudates, Evans minimal  

medium, and TY complex medium; along with b) the ability of each mutant to colonize  

alfalfa roots at 3 d.p.i. (Fig. 5). Mutants could be classified into three different groups  

according to their behavior under each of the conditions assayed: Group A contained the  

mutants that exhibited a normal growth in complex medium, but that were restricted in their  

growth in both minimal medium and alfalfa-root exudates. Group B comprised the mutants  

that grew normally in both minimal and complex media, but were affected in their growth  

and/or survival in alfalfa-root exudates (i. e., SMc00963, SMc00406, SMc02407, SMc03140.  

SMc02226, and SMb21263). The functional profile of mutants included in this last group  

suggests that their defects might be related to deficiencies in the use of endogenous  

rhizospheric compounds for nutrition. Group C consisted of mutants characterized by a  

normal growth under all the conditions tested—thus likely expressing no nutritional  

deficiencies—but that still were compromised in root colonization. This last group included  

mutants altered in cell motility (such as motD, SMc03005, flgG, and cheW1), along with  

mutant fbpB (SMc00775) encoding an iron permease.  

  

Direct impact of rhizosphere-colonization ability on competitiveness for nodule  

occupancy  
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 Previous experiments had indicated that different mutants deficient in root 

colonization were also impaired in nodulation competitiveness, thus suggesting that events 

occurring early on in the rhizosphere are relevant in determining which strains will eventually 

occupy the root nodules (Phillips et al., 1998; Entcheva et al., 2002). The quantitative extent 

to which increasing degrees of deficiency in root colonization impact root nodulation, 

however, is still unknown. In order to investigate this question, we tested the nodulation 

competitiveness of mutants that were altered to different extents in root colonization (–4 < M 

< –1), when they were inoculated with the wild type rhizobia in a 1:1 ratio (Fig. 6, Panel A). 

Previous analyses had shown that the log of the ratio of genotypes within the root nodules 

compared to the log of their ratio in the inoculum were in a linear relationship (Beattie et al., 

1989; Lagares et al., 1992). Here we show that—except for mutants whose proportions in the 

root nodules were lower than 15% (e. g., defective in the loci purL and SMc00963)—the 

proportion of a given mutant strain in the rhizosphere at 3 d.p.i. (i. e., its ability to colonize 

the rhizosphere) and the nodulation competitiveness of that strain are directly proportional to 

one another (r
2
 = 0.99, Fig. 6, Panel B). The relevance of the relationship between 

rhizosphere colonization and nodulation also becomes evident in that 20 of the mutants 

previously identified by Pobigaylo et al. (2008) as being deficient in nodulation 

competitiveness were also found to be compromised here in their early interaction with roots 

(e. g., those with Tn5 insertions in the loci ilvC, ilvD, ilvL, metA, ccmC, pyrE, thiC, trpF, and 

clpA, among others; Table S1). 

 

Identification of genetic determinants associated with the preferential colonization of 

host-plant rhizospheres 

 The specificity in the interaction between legume and rhizobia is expressed very early 

in symbiosis—and has been shown to be mediated by soluble signals (e. g., flavonoids, 
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nodulation factors)—even before physical contact between partners (Janczarek et al., 2014).  

With an aim at exploring the possible existence of plant specificity during the colonization of  

alfalfa by E. meliloti compared to the interaction with other plants, we investigated whether  

or not any of the genetic regions affected in the mutants listed in Table S1 were associated  

with a preferential colonization of host plants compared to the colonization of other nonhost  

roots. To explore this possibility, STM experiments were also performed with roots of the  

nonhost pea (Pisum sativum) as outlined in the scheme of Fig. 1. Out of the 131 Tn5-mutants  

listed in Table S1, 23 exhibited: a) a significant difference between the abilities to colonize  

alfalfa and pea roots—i. e., a ∆(Malfalfa – Mpea) with a p <0.05 for one of the bar code  

signatures (either the H or K tag; Fig. S2) and a p <0.1 for the other signature—and b) Mpea  

values not lower than –0.4. Out of these 23 Tn5-mutants, 10 were confirmed with a higher  

degree of impairment in the colonization of alfalfa roots compared to pea roots (Fig. 7)  

confirming a differential behavior depending on the plant used. Nine of these mutants were  

altered in genes for motility and chemotaxis (with at least one Tn5 insertion in the loci fliF,  

visN, fliM, SMc03023, fliL, flgB, flgG, and flgE). None of those nine were motile in agar- 

plate tests. The only mutant whose mutation was not directly related to motility and  

chemotaxis, SMc03140—that mutant being motile in agar-plates—also manifested a plant- 

specific phenotype in being more defective in alfalfa than in pea. In view of these results, and  

in order to evaluate how extensive was the participation of the specific genes identified in the  

colonization of different legume roots, similar experiments were performed to evaluate four  

of the same mutants (e. g., fliM, fliL, flgB, and flgG) in their ability to colonize the roots of  

particular members of the Trifoliae tribe (Medicago truncatula, Trigonella foenum-graecum  

L., and Trifolium repens) and the Phaseoleae tribe (Glycine max; Fig. 8). The results  

demonstrated that the rhizospheric specificity observed is not in all instances related to the  

host or nonhost character of the given plant species. Rather, the mutants that were specifically  
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compromised in the colonization of M. sativa were also deficient in the colonization of roots 

of other nonhost plant species of the same tribe, such as those of Trifolium repens. In 

contrast, a much lower (and in some cases not detectable) affection was observed for the 

same mutants in their rhizosphere colonization  of P. sativum (Fabeae tribe) or G. max 

(Phaseoleae tribe).  
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DISCUSSION 

 In this work we searched—on a genomic scale—for the genetic information required 

by the model rhizobium E. meliloti to colonize the rhizospheres of host and nonhost plants. 

The previous experimental approaches to characterize genetic markers involved in 

rhizosphere colonization by rhizobia have been systematically focused on the analysis of 

individual mutants (Ormeño‐Orrillo et al., 2008) or recombinant strains (Robleto et al., 

1997). Using a phenomic approach, we could identify the collection of genetic markers 

involved in the rhizobial colonization of rhizospheres. By means of a similar strategy, several 

mutants of R. leguminosarum bv viciae with decreased rhizosphere fitness had been recently 

reported (Garcia-Fraile et al., 2015). The experimental protocol that was used in the present 

work combined the power of high-throughput nucleotide sequencing to quantify (i. e., count) 

the presence of specific mutants in the rhizosphere, with the possibility of simultaneously 

investigating the colonization phenotype of ca. four hundred different mutants per inoculum 

at a total rhizobial concentration of ca. 10
5 

total c.f.u./mL. Such experimental condition was 

used in order to avoid the masking of relevant colonization phenotypes by the use of 

unnaturally high rhizobial titers. Through the analysis of 15 independent mutant sets we 

could screen the phenotype of more than 6,000 Tn5 insertions distributed all over the genome 

at comparable densities (Fig. S4) and covering more than 40% of the annotated open reading 

frames (ORFs). A major advantage in the use of a Tn5-STM technology was the associated 

possibility to easily recover each mutant of interest from the stock collection for the 

validation assays. On the basis of the analyses at both 3 and 7 d.p.i. more than hundred genes 

proved to be relevant for the colonization of the alfalfa rhizosphere. The defective 

colonization phenotype was validated without exception in randomly selected mutants, with 

Mplating values that correlated very well with the MSTM values (cf. Fig. 6, Panel B). The 

robustness of the technology and the conditions used were also supported by the 
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identification of several defective mutants with independent Tn5 insertions within the same 

gene (redundancy). The interruption of most of the 136 genes identified interfered with root 

colonization at both of the times sampled (i. e., at 3 and 7 d.p.i.), with only certain mutants 

being more adversely affected at one of the two postinoculation times. This observation 

suggests that most of the genes identified were likely associated with the initial stages in the 

rhizobia's approach to the root, thus compromising the colonization phenotypes at both 3 and 

7 d.p.i.. The results of the screening revealed that E. meliloti devotes more than 2% of its 

genome to encoding functions that are relevant to the colonization of roots, thus providing 

quantitative evidence in support of the importance of that phenotype to the bacterial 

interaction with plants. That no mutations had strong positive effects on rhizosphere 

colonization by the rhizobia was also remarkable. The volcano plots (M values vs. p-values) 

in Fig. 2 evidenced the absence of E. meliloti Tn5 mutants with strongly improved fitness in 

the rhizosphere (no mutants with MSTM > 1.5), suggesting that during their evolution rhizobia 

have minimized the presence of genes deleterious to the early interaction with roots. 

Experiments to evaluate nodulation competitiveness of mutants with different negative M 

values revealed how a rapid access to the root environment determined the ability of rhizobia 

to compete for nodule occupancy (Fig. 6). While certain E. meliloti infection-defective 

mutants are known to be affected in nodulation competitiveness (Lagares et al., 1992), we 

have now characterized here a broad set of genetic determinants that modulate 

competitiveness for nodulation from the very early interaction of rhizobia with roots, even 

before physical contact between both symbionts occurs. 

 In an attempt to recognize general phenotypic groups affected in root colonization in 

our set of mutants, we identified: (a) auxotrophs (certain mutants from Group A, Fig. 5), (b) 

mutants having no detectable differences in their growth in minimal medium or in root 

exudates compared to the wild-type strain (e. g., the mutants from the Group C of Fig. 5, such 
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as those affected in motility and/or chemotaxis), and (c) other mutants that were impaired in 

their growth in root exudates as the only C- and N-source (e. g., the mutants from Group B of 

Fig. 5, such as those compromised in the loci SMc00406, SMc03140, and SMc02226). The 

biochemical analysis of mutants from Group B is expected to elucidate as-yet-unknown 

rhizobial activities associated with the response to and use of rhizospheric metabolites of 

plant origin. The genes from this group might also be associated with an enhancement of the 

rhizobial tolerance to abiotic stresses generated by compounds in the root exudates, such as 

the locus SMc00406 encoding a ferredoxin protein and the downstream ORF SMc00407 

encoding a putative glutathione S-transferase. The in-silico global prediction of functions 

associated with the complete set of genes listed in Table S1 indicated that more than 50% of 

the insertions that disturbed root colonization were related to metabolic functions; with half 

of those being involved in the metabolism of amino acids (Fig. 4, Panel B), thus pointing to 

the more relevant pathways for rhizobial life in the rhizosphere. This finding is in agreement 

with previous transciptomic results obtained from the interaction between R. leguminosarum 

and pea roots (Ramachandran et al., 2011). We do not know yet which ones and how many of 

the E. meliloti genes required to colonize the root are inducible by interaction with plant 

compounds. Ramachandran et al. (2011) had already reported 138 up-regulated genes at 7 

d.p.i. when R. leguminosarum bv. viciae Rlv3841 was inoculated onto pea roots. We 

observed several differences upon comparison of the rhizosphere-induced genes in R. 

leguminosarum bv. viciae with the E. meliloti genes that affected the colonization of alfalfa 

roots in this study. Although the genes for motility and chemotaxis were relevant in our 

phenotypic analysis (12% of the mutants in Table S1), those loci were down-regulated in R. 

leguminosarum bv. viciae in the root environment (as could be expected for rhizobia that had 

already reached the rhizosphere). Conversely, some genetic markers overexpressed in the pea 

rhizosphere were not present in our STM experiments. Within this group, of particular 
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interest was the absence of nod mutants in our screening, thus making unlikely any 

significant role of those genes in the early rhizobial approach to the roots. Though nodD3 and 

nodJ mutants had been found to have attenuated symbiotic phenotypes (Honma and Ausubel, 

1987; Pobigaylo et al., 2008), deficiencies in those loci do not appear to be associated with a 

diminished rhizospheric colonization. Observations like these indicated that conjoint 

transcriptomic and phenomic approaches are both complementary and necessary. 

 That some of the defective genes in the Tn5 mutants listed in Table S1 had been 

previously associated with the colonization of alfalfa roots supported the robustness and 

validity of the experimental approach used here. Examples of those genes include putA 

(metabolism of proline, and stachydrine; (Phillips et al., 1998)) and bioN (SMc00963; 

(Entcheva et al., 2002)). Furthermore, in agreement with our results, the role of motility and 

chemotaxis for rhizosphere colonization was also previously demonstrated in other systems 

such as Pseudomonas fluorescens-alfalfa, -tomato, and -potato (De Weger et al., 1987; De 

Weert et al., 2002; Capdevila et al., 2004). That other genes found to be relevant to the 

colonization of pea roots by R. leguminosarum bv. viciae—such as araE (arabinose 

catabolism) and pcaM (protocatechuate transport; (Garcia-Fraile et al., 2015))—did not prove 

to be as relevant for the colonization of alfalfa roots by E. meliloti is indeed of interest. In 

view of these data, future studies should be performed to investigate if the compositional 

profiles of root exudates from different legumes correlate with the catabolic capabilities of 

the associated symbiont rhizobia. 

 The role of the amino-acid metabolism in relation to symbiosis has been extensively 

studied, particularly with respect to the late stages of the symbiotic interaction (i. e., 

infection, nodulation (Dunn, 2014)). Beyond their nutritional role, certain rhizobial genes 

related to amino-acid metabolism—such as leuA (Sanjuán-Pinilla et al., 2002), metZ (Taté et 

al., 1999), and cysG (Tate et al., 1997)—have proved to be relevant in preinfection processes. 
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Our results clearly demonstrated the relevance of amino-acid metabolism to rhizobial fitness 

during rhizosphere colonization. Similarly, amino-acid biosynthesis has also shown to be 

required for an efficient root colonization of tomato roots by Pseudomonas flourescens 

(Simons et al., 1997). Moreover, recent metabolomic analyses indicated that branched-chain 

amino acids were observed at relatively high levels in the rhizosphere of Medicago 

truncatula (Watson et al., 2015), with mutations in certain of the corresponding biosynthetic 

genes accordingly producing some of the greatest impairments in rhizosphere colonization 

observed—i. e., the ilvL2, leuA, ilvD2, ilvC, and leuB mutants with MSTM values ranging 

between –4.10 and –5.86. Our results suggest that either the amount of these amino acids in 

the rhizosphere is insufficient to satisfy the early symbiotic requirements, or that this 

biosynthetic route plays an additional nonnutritional role in rhizosphere colonization. With 

respect to valine metabolism in particular, whether the impaired rhizosphere colonization by 

iolA mutants results exclusively from the function of the iolA-gene product in the catabolism 

of inositol (Kohler et al., 2010), in the catabolism of valine (Kohler et al., 2011), or in another 

yet unknown process is still not clear. While iolR, iolA, iolC, iolD, and iolE mutants have 

previously proved to be unable to grow with inositol as the sole carbon source and highly 

deficient in nodulation competitiveness (Kohler et al., 2011); we did not observe any defect 

in rhizosphere colonization in independent mutants bearing Tn5 insertions within the iolB, 

iolD, and iolE. This observation contrasts with the decrease in rhizosphere colonization 

observed in the iolR mutant (Table S1) and to a less extent in the iolA mutant and at the same 

time points to the participation of iolR as well as iolA in other cellular processes unrelated to 

inositol metabolism that could be necessary for rhizosphere colonization. 

 Concerning cdiGMP, a second messenger associated to diverse cellular processes, the 

STM library included 21 mutants with Tn5 insertions within 12 different GGDF- and/or EAL 

domain-encoding genes. In our STM experiments none these mutants showed to be impaired 
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in rhizosphere colonization. We did not investigate, however, the effects of double or 

multiple mutants in those same genes. While no effects in symbiosis were previously 

observed in single inoculation assays(Schäper et al., 2016), a decreased competitiveness for 

nodulation was reported for some single mutants affected in cdiGMP metabolism (Wang et 

al., 2010). Such results and our data taken together suggest that any role in symbiosis of 

individual genes related to cdiGMP metabolism should be related to associative stages that 

take place later than rhizosphere colonization (i.e. root adhesion, infection). 

 The chromosomal location of most genomic localization of the Tn5 insertions listed in 

Table S1 implies that the genetic information for an efficient colonization of plant roots is an 

ancestral character in E. meliloti, and most likely also in other rhizobia and rhizobacteria that 

share several homologues to the genes identified here. The ancestral character of the 

chromosome, together with the patchy distribution of the colonization genes within the 

chromosome—i. e., therefore not having been simultaneously acquired by horizontal gene 

transfer—strongly suggests that the bacterial ability to colonize rhizospheres could have been 

acquired even earlier than the rhizobial association with legumes (i. e., before 60 million 

years ago; (Hirsch et al., 2001; Sprent, 2007). Previous results along with those from this 

work have indicated that specific rhizospheric preferences exist between certain legumes and 

rhizobia. Thus, the mutation of two R. leguminosarum genes specifically up-regulated in the 

pea rhizosphere reduced colonization of the pea but not the alfalfa rhizosphere 

(Ramachandran et al., 2011). Conversely, mutations in E. meliloti motility genes reduced the 

colonization of alfalfa, Trigonella foenum-graecum L., and clover roots, but did much less or 

not at all with respect to pea and soybean roots (this work). According to the currently 

accepted dating for the evolution of legumes, the specific E. meliloti phenotype associated 

with the root colonization of members of the Trifolieae tribe (Medicago, Trigonella, 

Trifolium) should have likely been acquired between 17 to 45 million years ago after the 
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divergence of the Phaseoleae and the Fabeae tribes (http://www.timetree.org/, (Hedges et al., 

2015)) but before the time at which the rhizobia became specialized in the nodulation of 

alfalfa and clover (Fig. 9, gray shadowed area). Thus, modern day recognition of clover 

rhizospheres by E. meliloti is likely reminiscent of an ancient bacterial adaptation to the 

Trifolieae ancestors.  
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EXPERIMENTAL PROCEDURES 

Bacterial strains and growth conditions 

 Fifteen sets of E. meliloti signature-tagged mutants from a previously reported mini-

Tn5-transposon library were used (from mutant mix 1 to mutant mix 15 (Pobigaylo et al., 

2006)). E. meliloti cells were grown at 28 °C in tryptone-yeast (TY) complex medium 

(Beringer, 1974) or in Evans defined minimal medium (Evans et al., 1970), containing 

glucose (10 g/L) and ammonium chloride (0.7 g/L) as the respective carbon and nitrogen 

sources, as indicated. For solid media, 15 g of agar per liter of medium was added. When 

required, the media were supplemented with neomycin (120 µg/mL) and/or streptomycin 

(400 µg/mL). Transductions were done with the phage ΦM12 as previously described (Finan 

et al., 1984). 

 

Collection of alfalfa-root exudates and exudate-growth assays 

  For exudate-growth assays, alfalfa-root exudates were collected in Fåhraeus 

medium (Fahraeus, 1957), as described in Supplementary methods. 40 µL of an inoculum 

containing ca. 1 x 10
5 

colony-forming units (c.f.u.)/mL of a 1:1 ratio of wild-type E. meliloti 

2011 that was green-fluorescent-protein–positive (GFP+)(Pistorio et al., 2002) and a given 

mutant was mixed with 800 µL of exudates in a 48-well plate and incubated under the same 

growth conditions as for bacterial cultivation. Four days after inoculation, dilutions were 

plated in TY medium supplemented with streptomycin and counted under a fluorescence 

stereomicroscope (Leica MZFL III). The proportion of wild-type and mutant rhizobia were 

calculated as the ratio of GFP+/total bacteria or as (1 – GFP+)/total bacteria, respectively. 

 

Screening of STM mutants in colonization experiments 

 Seed sterilization protocol and plant cultivation conditions are described in 
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Supplementary methods. In order to prepare the initial inoculum, each of the 15 different 

STM mutant mixes were freshly grown in TY to an optical density at 600 nm [OD600] 

roughly between 0.2–0.3. Each mutant-mix culture was diluted in a flask containing 3 L of 

Fåhraeus medium to a concentration of approximately 1 x 10
5
 c.f.u./mL, and the resulting 

dilution used to flood vermiculite-containing plastic pots (4 replicates pots for each condition 

to be studied). The flooded pots were then drained. A part of each original culture was stored 

and used as a reference (i. e., constituting the input sample or inoculum). After inoculation, 

10–12 alfalfa seedlings were planted in each pot. In the pea-containing pots, 4 seedlings were 

used. Plants were grown for 3 or 7 days depending on the condition studied. For the 3-days-

postinoculation (3 d.p.i.) experimental group, plants were stirred gently to remove the bulk of 

vermiculite carrier adhering to the root and were then harvested in 10 mL tubes containing 5 

mL of Fåhraeus medium. The tubes were then shaken for 20 s to extract the bacteria from the 

rhizosphere. For the 7 d.p.i. group, plants were removed from the pots and the aerial parts cut 

off. The roots were stirred gently and harvested in 50 mL tubes containing 10 mL of Fåhraeus 

medium and were then also shaken for 20 s to extract bacteria from the rhizosphere (those 

being the 7 d.p.i. output samples). The samples extracted from the plants were all treated as 

follows: 1.8 mL were mixed with 200 µL 10X suspension buffer (0.5 M Tris-HCl, 0.1 M 

ethylenediaminetetraacetic acid, 0.5 M NaCl; pH 8) and centrifuged for 10 min at 14,000 x g. 

Of the supernatant, 1.8 mL was discarded and the remaining 200 µL of 1X suspension buffer 

containing the bacteria extracted from roots was stored at –80 °C until the time of DNA 

extraction. DNA extraction method is described in Supplementary methods. 

 

Amplification of mutant signatures by qPCR through the use of bar-coded 

oligonucleotides 

 As previously reported, different mixes of 412 mini Tn5 mutants were constructed for 
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STM studies (Pobigaylo et al., 2006). The identity of any individual mutant within a given 

mix could be achieved by the identification of either of the two (H and K) DNA signatures 

present within the mini Tn5. In order to identify and quantify specific mutants in any mutant 

mix (i. e., in initial inocula, or in extracts of plant rhizospheres at the end of the experiments), 

the H and K signatures were independently amplified by real-time PCR (qPCR) through the 

use of specific pairs of 5´–bar-coded primers P1, P2, P3, and P4 as summarized in Fig. S2 

(Pobigaylo et al., 2006). For the primer bar-coding, different randomly generated 4-base-pair 

sequences were added to primers P1, P2, P3, and P4, followed by the addition of a terminal 

adenine. All 62 different primers used in this work are listed in Table S2. The bar codes 

present in primers P2 and P4 indicated the mutant-mix number, while the bar codes present in 

primers P1 and P3 indicated the specific experimental condition used and the replica number. 

qPCR amplification conditions are described in Supplementary methods.  

 

Mixes of PCR products, high-throughput DNA sequencing, and sequence processing 

 In order to obtain a similar number of reads for each experimental condition, 

equivalent amounts of each one of the PCR-amplification products were mixed. To this end, 

the maximum intensity achieved in the qPCR reaction—i. e., the fluorescence intensity 

obtained for each tube in the plateau—was taken into consideration. In order to mix 

comparable amounts of all PCR products, volumes between 2.5 and 4.5 µL of each sample 

were mixed. Samples from treatments corresponding to mutant set 11 in the 3 d.p.i. alfalfa 

group were not sequenced since the qPCR evidenced that the initial amount of DNA was 

insufficient to insure that the signatures would be representative. DNA sequencing 

specifications are described in Supplementary methods. Sequence analysis was done using 

Galaxy platform (Blankenberg et al., 2010) as described in Supplementary methods. 
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Data analysis 

The consolidated data for each experimental condition and each mutant mix consisted 

in a 412 x 8 count matrix (for either the H or the K data) including: 412 rows (i. e., for the 

different mutants analyzed), 4 columns for the input replicates, and 4 columns for the output 

replicates. A spreadsheet template was used for the statistical calculations. For each 

experimental condition and mutant mix the proportion of a specific mutant in the mix was 

calculated as the number of counts for that mutant (i. e., its sequence reads) over the total 

number of counts obtained for the corresponding experimental condition. The proportions of 

input and output replicates were separately averaged. The MSTM value for a given “i” mutant 

under a specific condition was calculated as follows: 

MSTM = log2 {[proportion of mutant “i” in the output sample (rhizosphere)]/[proportion 

of mutant “i” in the input sample (inoculum)]} / {[proportion of wild-type strain in the 

output sample (rhizosphere)]/[proportion of wild-type strain in the input sample 

(inoculum)]} 

For each mutant under all the conditions studied, MSTM values were obtained for both the H 

and the K signature. The statistical significance for differences between MSTM values was 

estimated by the Student t test. 

 

Validation assays. Direct estimation of the competitiveness for root colonization by 

individual coinoculation experiments 

 For the validation experiments the same plant inoculation and cultivation system used 

in the STM experiments was employed. In this instance, the vermiculite-containing pots were 

inoculated with a 1:1 mixture of wild-type E. meliloti 2011-GFP+ and a given mutant (ca. 2 x 

10
5
 c.f.u. for both). The initial inoculum and the bacteria recovered from the rhizosphere after 

3 or 7 d.p.i. were diluted and plated in TY medium supplemented with streptomycin. The 
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GFP+ and the total bacteria were counted in a fluorescence stereomicroscope (Leica MZFL 

III) and the respective proportions of wild-type or mutant bacteria calculated as [(GFP+)/total 

bacteria] or as [(1 – GFP+)/total bacteria]. These proportions were used to calculate M values 

that were based on the results of the colony counts (Mplating). 

 

Evaluation of nodulation competitiveness 

  In the experiments to evaluate the nodulation competitiveness of mutants 

compromised to a different extent in their rhizosphere colonization, plants were inoculated 

with a 1:1 mixture of wild-type strain to mutant rhizobia (neomycion-resistant) and then were 

grown for 4–5 weeks until mature nodules developed. The nodules were harvested, surface-

sterilized with H2O2 (20 %) for 10 min, and washed with abundant sterile water. The 

sterilized nodules were then crushed in 50 µL of Fåhraeus medium and plated in TY 

supplemented with neomycin, where only the mutants were able to grow. For each 

competition experiment, 18 to 35 nodules collected from 30 to 40 plants were analyzed and 

the mean value for the percent of the nodules occupied by the mutant calculated. 
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FIGURE LEGENDS 

Fig. 1. General experimental design for the identification of E. meliloti Tn5 mutants 

affected in rhizosphere colonization through an STM approach coupled with high-

throughput DNA sequencing. The scheme summarizes the experimental design used to 

evaluate the root-colonization phenotype of more than 6,000 Tn5 mutants distributed in 15 

sets of ca. 412 mutants each (Pobigaylo et al., 2006). Experiments were performed in plastic 

pots containing sterile vermiculite inoculated by flooding with ca. 10
5 

rhizobia c.f.u./mL 

(input sample). The proportion of each mutant in the input and output samples—the latter 

recovered from roots at 3 d.p.i. or 7 d.p.i.—was estimated by bar-coded PCR of specific Tn5 

signatures followed by high-throughput DNA sequencing (Illumina-HiSeq) of the amplified 

products (cf. details in Materials and Methods). For each set of mutants, under any of the 

indicated experimental conditions, four biological replicas were included. A decreased 

abundance of a specific mutant in the output sample compared to the abundance of the same 

mutant in the inoculum was indicative of a Tn5 insertion that possibly affected root 

colonization. The experiments were performed with the roots of alfalfa and pea as host and 

nonhost plants, respectively. 

 

Fig. 2. Selection of miniTn5 mutants affected in rhizosphere colonization on the basis of 

their MSTM and p values. The panels in the figure represent the volcano plots of the MSTM 

values for the K (Panel A) and the H (Panel B) signatures evaluated at 3 d.p.i. versus their 

corresponding statistical significances (p values). In Panel A, the p value of the K tag is 

plotted on the y-axis versus the M value of the K tag on the x-axis; in Panel B, the p value of 

the H tag on the y-axis is plotted versus the M value of the H tag on the x-axis; and in Panel 

C, the p value of the H tag on the y-axis is plotted versus the p value K tag on the x-axis. The 

data for each panel represent all those mutants whose number of sequence reads was higher 
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than 70. The gray shadowed boxes in panels A and B contain the group of negatively affected 

mutants that were associated with an MSTM <.–0.7 and a p < 0.1 for either the K signature 

(Panel A, 223 mutants) or the H signature (Panel B, 209 mutants). Panel C plots the p values 

of those mutants from A and B that have in both signatures (K and H) MSTM values < –0.7, 

and the light-blue shadowed region includes only those mutants with at least p ≤ 0.05 in one 

of the signatures, and p ≤ 0.1 in the other (Those mutants correspond to the ones listed in 

Table S1.). 

 

Fig. 3. Evaluation of specific mutants in the ability to colonize alfalfa roots in 

competition experiments against the wild-type rhizobia. One-day-old alfalfa seedlings 

were planted in plastic pots with vermiculite that had been previously inoculated with a mix 

of wild-type E. meliloti 2011 (GFP+):mutant rhizobia at a 1:1 ratio. The proportions of 

mutants in the inoculum and in the rhizosphere were calculated as the corresponding ratios of 

nonfluorescent/total rhizobia. Mutant 1.01.E07 was used as an unaffected control for root 

colonization (MSTM = 0.11). The results for each mutant correspond to the average of three 

biological replicates. All the mutants proved to be significantly affected in root colonization 

(p < 0.05, Chi-squared test). Indicated on the x-axis for each mutant is the gene disrupted by 

the Tn5 insertion, the MSTM corresponding to an average of the M values obtained from 

colonization experiments in alfalfa at 3 and 7 d.p.i. (cf. the values in Table S1), and the 

Mplating for the present colonization trial with these mutants. The bars represent standard 

errors. NS, insertion site unknown. 

 

Fig. 4. Genomic location and functional prediction of the E. meliloti Tn5-mutated genes 

associated with rhizosphere colonization. Panel A: Genomic location of Tn5 insertions in 

the mutants listed in Table S1. The results are expressed as the percent of Tn5 insertions 
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located in each E. meliloti replicon (pSymA, pSymB, or chromosome). Panel B: Functional 

prediction of the Tn5-disrupted genes listed in Table S1 according to their associated cluster 

of orthologous genes (COGs). The pie chart to the left illustrates, for genes that affect 

rhizsphere colonization, the percent contribution of each of the functional categories itemized 

on the right. Numbers in brackets indicate the percent contribution of each functional 

category when considering all Tn5-mutated genes in the STM library. 

 

Fig. 5. Growth phenotypes in root exudates and in culture media of selected E. meliloti 

mutants affected in rhizosphere colonization. Sixteen selected mutants from those listed in 

Table S1 were characterized for growth in root exudates and in different culture media. As in 

Fig. 3, also included in the assay as a positive control was the Tn5-mutant strain 1.01.E07 

(disrupted in open-reading frame SMc03113) that was unaffected in rhizosphere-colonization 

ability (MSTM = 0.11). Mutant and wild-type rhizobia were inoculated in comparable amounts 

into each nutrient source (1:1 ratio, at concentrations that ranging between 10
4
 and 10

5
 

c.f.u./mL each). The gray bars represent the percentage of mutant rhizobia in the inoculum, 

the green bars the percentage of mutants in the alfalfa-root exudates at 4 d.p.i., and the blue 

bars the percentage of mutants in the alfalfa rhizosphere at 3 d.p.i. The ability of each mutant 

to grow in Evans minimal medium or in TY medium is indicated below the figure. Whereas 3 

of the mutants failed to grow in Evans minimal medium, all the mutants grew in TY medium. 

As indicated in the text, the colonization-defective mutants were classified into three different 

groups (A–C, bracketed above the figure) according to the behavior observed under each of 

the conditions studied. The final values are the average of three biological replicates. The 

bars indicate standard error. All the mutants proved to be significantly affected in root 

colonization (blue bars; p <0.05, Chi-squared test). NS, insertion site unknown. 
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Fig. 6. Nodulation competitiveness of E. meliloti mutants with different degrees of 

disability in rhizosphere colonization. Mutants with increasing degrees of disability in 

rhizosphere colonization were inoculated with the wild-type rhizobia in a 1:1 ratio onto 

alfalfa plants. As in Figs. 3 and 5, also included in this experiment as a positive control was 

the Tn5-mutant strain 1.01.E07 (disrupted in open-reading frame SMc03113) that was 

unaffected in rhizosphere-colonization ability (MSTM = 0.11). Panel A: In the figure, the 

percent of each of the mutant strains occupying the nodules on the left y-axis (blue bars) and 

the M value for that same mutant on the right y-axis (red bars) are plotted for each of the 

mutant strains indicated on the x-axis. Panel B: Relationship between the capability of a 

mutant to occupy the rhizosphere (2
M

) and its competitiveness for nodulation. In the figure, 

the percentage of nodules containing mutant strains is plotted on the y-axis as a function of 

the proportion of mutants present in the rhizosphere on the x-axis. The least-squares–

regression equation is shown below in the figure, and the straight line representing the 

corresponding locus of points is drawn in black. 

 

Fig. 7. Evaluation of the ability of specific mutants to colonize alfalfa and pea roots in 

competition experiments against the wild-type rhizobia. Alfalfa and pea seedlings were 

planted in plastic pots with vermiculite that had been previously inoculated with a mix of 

wild-type E. meliloti 2011 (GFP+):mutant rhizobia in a 1:1 ratio. The proportion of each 

mutant in the inoculum and in the rhizosphere at 7 d.p.i. were calculated as the corresponding 

ratios of nonfluorescent/total rhizobia. In the figure, the % of a given signature-tagged–

mutagenesis mutant in the wild type–mutant mixture in the inoculum (light brown bars), in 

the alfalfa rhizosphere at 7 d.p.i. (blue bars), or in the pea rhizosphere (gray bars) is plotted 

on the y-axis for each of the mutants listed on the x-axis. The bars represent standard errors. 

The results for each mutant correspond to the average of three biological replicas. All 

Page 40 of 51

Wiley-Blackwell and Society for Applied Microbiology

This article is protected by copyright. All rights reserved.



41 

 

 

mutants proved to be significantly defective in the colonization of alfalfa roots (p <0.05, Chi-

squared test). In addition, all mutants showed to be significantly more affected in alfalfa than 

in pea (p <0.05, Chi-squared test)(plant-specificity effect). 

 

Fig. 8. Evaluation of the ability of specific mutants to colonize different legume roots in 

competition experiments against the wild-type rhizobia. Seedlings of the indicated plants 

were planted in plastic pots with vermiculite that had been previously inoculated with a mix 

of wild-type E. meliloti 2011 (GFP+):mutant rhizobia in a 1:1 ratio. The proportions of 

mutants in the inoculum and in the rhizosphere at 7 d.p.i. were calculated as the 

corresponding ratios of nonfluorescent/total rhizobia. In the figure, the percent of a given bar-

coded mutant in the inoculum and in the rhizospheres of the indicated plants is plotted on the 

y-axis for each of the mutants listed on the x-axis. Key to bar colors: light brown, inoculum; 

blue, M. sativa (alfalfa); light gray, Medicago truncatula; yellow, Trifolium repens (clover); 

blue-green, Trigonella foenum-graecum L.; medium gray, Pisium sativum (pea); dark gray, 

Glycine max (soybean). The bars represent standard errors. The results correspond to the 

average of three biological replicas for all the experiments except for the fliM mutant in 

Trifolium repens and the SMc03140 mutant in Trifolium repens and in Trigonella foenum-

graecum L. that correspond to the average of two biological replicas. All the mutants proved 

to be significantly defective in the colonization of alfalfa roots (p < 0.05, Chi-squared test). 

 

Fig. 9. Time-scaled schematic representation illustrating the diversification of the 

Fabeae, Phaseoleae, and Trifolieae tribes; indicating the estimated period (gray-

shadowed box) for the appearance of the specific rhizospheric effects described in this 

work for E. meliloti and different members of the Trifolieae tribe. The estimations of 

node positions were performed according to TimeTree (www.timetree.org) based on data 
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previously published (Hedges and Kumar, 2009; Hedges et al., 2015). In brief, two species or 

higher taxa are queried in the time tree of life (TTOL) to find their most recent common 

ancestor (MRCA). When one or both of the species is not present in the TTOL, the taxonomy 

from the National Center for Biotechnology Information is scanned to find the closest 

relatives of the species or higher taxa that was requested. Those taxa are used as proxies to 

find the MRCA for the given query. Finally, the divergence time for the MRCA is retrieved 

from the TimeTree database. In the figure, the time scale is expressed in millions of years ago 

(MYA). The red dots indicate the estimated divergence positions for the taxa of interest with 

their confidence intervals in brackets. The gray-shadowed box denotes the time period where 

the specific rhizospheric effect between E. meliloti and members of the Trifolieae tribe (see 

text) could have appeared. 
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