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ABSTRACT 

Focused on rotor lateral modes, the paper discusses specifics 
of damping evaluation in rotating machines. Rotors force the 
fluid trapped in small rotor-to-stator radial clearances to rotate 
in circumferential fashion. The fluid in circumferential motion 
generates a tangential force acting in feedback on the rotor. 
This force direction is opposite to that of damping force. The 
"effective damping" is, therefore, reduced or even nullified by 
the fluid interaction effects. The classical measures of damping 
in mechanical structures, such as Logarithmic Decrement and 
Amplification Factor, which are used to evaluate machine 
susceptibility to instability based on documented vibration data, 
have to be adjusted to include the fluid interaction effects. 
These measures now represent the measures of Quadrature 
Dynamic Stiffness (QDS). It is shown that they contain the 
expression defined as Stability Margin (or Nondimensional 
Stability Margin), derived from the stability condition of the 
rotor system. A simple model of isotropic rotor lateral 
vibrations is used to obtain the QDS measures. 

1. INTRODUCTION 
There exist several commonly used measures of damping in 

mechanical structures. The practical methods of damping 
evaluation are divided into two fundamental groups: structure 
damping evaluation based on free vibrations and based on 
forced vibrations. For linear models of single degree of freedom 
(the first mode) mechanical systems; all damping measures are 
comparable (some at first approximation); they differ only by 
constant coefficients. When considering multimode structures, 
the damping evaluation methods are usually limited to those 
based on forced vibrations, as the excitation and identification 
of higher mode free vibrations becomes impractical. Using the 
modal approach for the structures with widely spaced natural  

frequencies, the evaluation of modal damping for each separate 
mode is reduced to the same methodology as for a single-
degree-of-freedom oscillator. 

The direct application of all damping evaluation methods 
mentioned above fails in the case of rotating systems. The 
evidences of these failures are reflected in many publications 
(e.g., Vance, 1988, and Lee, 1993) reporting the presence of 
"negative damping" in the system responses. By nature, 
damping, defined as a coefficient of the damping force which re-
sists the motion and dissipates energy, is always positive. The 
reason for inappropriate "negative damping" description lies in 
inadequate modeling of structures which contain a source of 
energy. The rotating structures belong to this category. Rotat-
ing machines represent a large class of the rotating structures. 

In this paper the measures of damping and practical damping 
evaluation methods for rotating machine rotor lateral modes are 
discussed. It is shown that the damping itself does not become 
negative, but, due to rotational motion of the rotor ("source of 
energy"), a new force is generated. This force acts in opposite 
direction to the damping, and its magnitude can exceed that of 
stabilizing damping force. The result, therefore, appears as 
"negative damping." Since in rotating systems damping is not 
the only component contributing to the Quadrature Dynamic 
Stiffness (QDS), it is mandatory to use QDS in dynamic 
considerations instead of just "damping." One of the forces 
generated due to rotor rotation is the fluid-induced tangential 
force which occurs in small rotor-to-stator radial clearances 
(such as in fluid-lubricated bearings, in seals, or in blade-tip 
clearances). This tangential force is the source of rotor 
instability. 

The first section of this paper summarizes the classical 
measures of damping for a single-mode linear oscillator. The 
second section discusses the evaluation of Quadrature Dynamic 
Stiffness and Stability Margin in rotating structures. The 
results are applicable in the field practice. 
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2. CLASSICAL MEASURES OF DAMPING IN 
MECHANICAL STRUCTURES 

The classical damping measures in mechanical structures are 
based on a mathematical model for a single-degree-of-freedom 
linear oscillator. The sununary of these classical measures of 
damping is presented in Table 1. 

3. MEASURES OF "EFFECTIVE DAMPING" OR 
"QUADRATURE DYNAMIC STIFFNESS" IN ROTATING 
STRUCTURES BASED ON ROTOR LATERAL MODES. 

In order to relate to principal physical phenomena, the 
rotating system damping measures will be introduced based on 
the simple mathematical model; these measures can, however, 
be directly applied into the machinery vibration test data. 

For an adequate description of the lowest lateral modes of 
rotating machine rotors, two degrees of freedom have to be 
considered: they _correspond to the two rotor orthogonal lateral 
deflections, orthogonal to the rotor axis of rotation. The 
coupling forces, namely the gyroscopic and the tangential forces, 
are due to rotor rotation. The simplest mathematical model of 
the isotropic rotor first lateral mode is, therefore, as follows: 

+(D+ Ds)i + + Kr+ DAlly = Fcos(wt +5) 

M.) + (D + Ds )p- + Ky - DADc = F sin(wt +45) 

where x(t), y(t) are rotor lateral displacements in two 
orthogonal directions (x = "horizontal," y = "vertical"), 

Ds ,K are rotor modal mass, damping, and stiffness 
respectively, D is rotor-surrounding-fluid damping, is 
fluid circumferential average velocity ratio (Muszynska, 1988, 
Muszynska et al, 1996a), 17 is rotative speed. The product 
D212 represents the fluid-related tangential force coefficient 
often referred to as "cross-coupled stiffness." The parameter I, 
proportional to rotor polar moment of inertia, represents the 
gyroscopic effect. F,a),5 are magnitude, frequency, and 
angular orientation of the externally applied, rotating exciting 
force. In the general case, its frequency o.) is different from 
rotational frequency 12, and independent from it. 

Four eigenvalues of the rotor system (1) can analytically be 
calculated and are as follows: 

D + Ds  (-1Y 	F27-2-  • 11) 
si v  =  	E+ E +L +.1( 	- 

2 M 	442 	 2 M 
(2) 

(-1) v  
,- 	+1,g7-1- L2  a (Re). +jco nv ,i, v= 1,2 , j =1-7 

where 

K 
 L= 
(D+Ds )2  (112)2 	DD( 1(1+ DsI D)) 

E =   + 
M 2M 2M 	 2M  

Among these four eigenvalues, pairs of them share the same 
real parts or imaginary parts. The eigenvalues which predict 
rotor instability are the ones in which the real part (denoted 
(Re) 1  ) can become positive. The imaginary parts represent the 

system natural frequencies and are denoted to„„, v = 1,2. 
The rotor stability condition to assure nonpositive real parts is 
as follows: 

(SA?)  "7-  
(3)  

La 	)2 It, K 	A l2 
2M + 	2A + M 	1+ Ds ID 

which can be transformed into following inequality: 

K D 	
)2( 1,1.(1+ Ds  ID)) 	

0 (4)  
1+Ds ID) 

The 	inequality 	(4) 	can 	further 	be 	solved: For 

/AO + Ds  /DVM the stability condition is: 

a  11122 	+  Ds  /D) 
0 , 

M 1+Ds ID 

and for A.2  <12(1+ D  /D)/ M stability is always assured. 

Following Muszynska, 1990, the (SM) in Eq. (3) is referred 
to as Stability Margin, which will be discussed in section 3.6. 
The inequalities (3) to (5) are often solved for rotative speed 
which results in the "instability threshold." 

3.1 Logarithmic Decrement (Log Dec) 
The free vibration solution of the isotropic rotor model (1) is 

y=±fx , thus the classical definition of the Logarithmic 

Decrement (Log Dec), 9 =114 I A„+,) (e.g. Lee, 1993), for 

both rotor lateral modes remains the same (A„, A n+1  are 
amplitudes of successive free response vibration cycles). For 
the rotor horizontal response as a particular solution of Eqs. (1): 

41) = CC (Re)1 t  COS(CO ni t + 	 (6) 

(where C, e are constants of integration) the Log Dec is as 
follows ( T = 2 fri co ,,,, is the vibration period): 

9 = In —
x(0) 

 - - (Re) 1 
27r 

r(T)  Wn1 = 

( = D + Ds 	1 I 

II 1  E  + Iri-2.---- L2  4°271.  2M n , 

Only one eigenvalue, that with the largest rea part magnitude 
and with forward-mode natural frequency, was chosen here. 
Similarly, Log Dec for other particular solutions including all 
eigenvalues can be presented. A simple transformation of Eq. 
(7) using Eq. (2) provides another look of the Log Dec: 

(5)  

(7) 

2 
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TABLE 1. Classical Measures of Damping for a One-Mode Oscillator Mx + Dx + Kx = F cos w t 

Parameter 

Definition 4- 19 11 
' 	

9) Q (SL) 

Damping Factor 

[zeta] 5 = Tn. 4.  = 1  
2 

C= Sing) = — C 4-  — 4" = 	 
2 I.C/M 2Q (SL)co re., 

Logarithmic Decrement 

9 	In = 8 = 21r4.  [theta] 9 = 7177 9 = 2ir sing) 
2r 

9 = — 
Q 

21r 9 — 
(.51.,)a) re, A.,. 1n1  

Loss Factor 
Vn  — Vn+i 

1.7=24' 
a 

rl = — rr [eta] rf= 2sirqo 
1 

71 ' 
Q 

2 
q= (a)cores 77= 

2IrVn 
Eigenvalue Angle 

—Re(s) 
w = arcsin‘ co = arcsi 

2
7.--"9  

1r 
q,= arcsi —217  (1) = aresin —

1 

= 	
in( 	2 	) 

2Q 
co = arctan 

1 11110 
P 	arcs 	(SL)a) res  

Amplification Factor 

Q = 	for F = const — 

= = 2= —0 
Q = fires 	for F = mra) 2  

Q Q 

Ao 

Q _ 	wres 

- 2 sing, Q = 2 

4) 2 —(0 1 
(Half-Power Band-
width Method) 
Phase Slope at Resonance

A a 
1 

SL = 
2n.  

SL = 
■ 

2 
SL = 

2 SL = 2Q 
SL = [SLope] 

0:ores 8wres ?Mires cores  sin c cores (SL) = 
At)) 

Legend: M,D,K = modal mass, damping, and stiffness respectively, 	x(t) = displacement, t = time, A = response amplitude, a) = forcing frequency, 

at a) = 0, at resonance and at high frequency (but lower than second resonance), V = potential energy, n = cycle 

of exciting force, m,r = mass and radius of unbalance, CO res  = resonance frequency m i  ,a)2  = "half-power bandwidth" 

equal to Ares  /..J , A = increment, a = response phase. 

Ao , Ares , Afro.)= amplitudes 

waveform number, F = magnitude 

frequencies at response amplitudes 
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9 — 

n(D+Ds ) 2 { A4  (i+D‘2,1D) 
2  2 	btO + D ID) 

A } 
( 	

Ad
s 	) 

 

+ D 
(8) 

2
1  ( 	

2M 
+ E +11;2----J) 

In this format the Log Dec (8) contains in the numerator the 
explicit stability condition (4). If it is satisfied, the Log Dec is 
positive and the vibration amplitudes decay (or remain con-
stant). If it is not satisfied, the Log Dec is negative, vibration 
amplitudes increase in time, and the system is unstable. 

The Log Dec as a measure of damping is often used in 
practical impact testing of mechanical structures. If an impact 
testing used on a rotating rotor results in vibrations with 
increasing amplitudes, thus a negative Log Dec, it does not 
mean that the "damping is negative." It means that the system 
instability threshold was exceeded due to the existence and high 
value of the tangential force represented in the model (1) by the 
ratio X . As a matter of fact, damping practically has no effect 
on the instability threshold (usually D>> D, thus 1+ 
+41D f.t: 1). The gyroscopic term alone does not affect the 

stability, but it modifies the system natural frequencies and 
causes the stability threshold to increase (up to infinity, if for 
2> 0 there is 1> WV +D,/D). 

3.2 Loss Factor 
The Loss Factor 77 , as a measure of the system potential 

energy lost during vibration (see Table 1), is mainly used to 
evaluate structure elastic member material damping or 
structural damping in joints, as discussed by Nashif et al, 1985. 
With approximation, there is , where 9 is the Log 
Dec. The Loss Factor for the rotor models is not used. 

3.3 Eigenvalue Angle 
A useful measure of "effective damping," developed from 

free vibrations and based directly on system eigenvalues, is the 
angle co , defined as the arctangent of the ratio of the real and 
imaginary parts of a specific eigenvalue s, plotted in orthogonal 
coordinates (Re(s), Im(s)) (Decay/Growth Rate, Natural Fre-

quency) called the "Root Locus Plane" (Fig. 1): 

—Re(s) 
= =tan 	

1 	
(9) 

1 144  

Re(s) 

Re(s) 	 I Decay/Growth 
Rate 

Fig. 1. Root Locus Plane and Eigenvalue Angle co. 

The Eigenvalue Angle is useful for analytical evaluation of a 
separate mode "effective damping" (Quadrature Dynamic 
Stiffness) or the Stability Margin, as discussed by Muszynska 
(1994, 1996b). The Root Locus Technique serves very 
efficiently in parametric analysis to assess the effect of 
parameter value changes on the Stability Margin in the system. 

3.4 Nonsynchronous Amplification Factor for Direct 
Resonance at Forward Perturbation  

This method is based on the system forced response, excited 
by an external periodic force with frequency to independent 
from the rotative speed £2. In a particular case, the periodic 
excitation may come from rotor unbalance, and then 0 = 12. In 
the first case the excitation is referred to as "nonsynchronous," 
and in the particular case as "synchronous" to the rotative 
speed. In the general case the Amplification Factor should also 
be referred to as "nonsynchronous" to distinguish it from the 
synchronous case. For to > 0 in the model (1) the rotating 
exciting force has the same direction as the rotor rotation. This 
type of excitation is referred to as Forward Perturbation. 
Forward and backward sweep frequency perturbation technique 
is customarily used for identification of modal parameters of 
rotors with fluid interaction (Muszynska, 1990, 1995). 

The forced response of the rotor model, Eqs. (1), is as 
follows: 

x = A cos (cot + , 	y = A sin (cut + 
	

(11) 

where A, a are the response amplitude and phase respectively, 

Natural Frequency 
Im(s) 

Im(s) 

A-  
Al(K + 112co — M w 2 )2  +RD + D s )o.) — DA...01 2  

For the rotor model eigenvalue 
Angle is as follows: 

9 = 
arctant —(Re), 	arctan' 9 

k 2g ) 

where 9 is the Log Dec, Eq. (7) or (8). 

(12) 
(D  + D s )w — D.112 

a = — arctan 
K + 12co — Mco 2  

(10) 	The following expressions in Eqs. (12) are defined as compo- 
nents of Complex Dynamic Stiffness (Muszynska, et al, 1990): 

F 

K + Law — Mai 2  n Direct Dynamic Stiffness (DDS) 	(13) 

s I I (Eq. (2)) the Eigenvalue 

4 
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a single-degree-of-freedom oscillator all definitions converge to 
the same results (Table 1), their practical applications using 
vibrational data carry different levels of inaccuracy. The 
response resonance peak amplitudes of real structures are 
usually affected by nonlinearities, thus the practical evaluation 
of the amplitude ratio results in a smaller value. In the 
amplitude ratio definition, the important information contained 
in the response phase a is not included. That is why the first 
definition of the Amplification Factor, since it is less accurate, 
may be used only in very rough estimates. The expressions of 
Q for a simplified rotor model (I) (I = 0, Ds  =0) are 

presented in Table 2. 
The definition of Q based on the Half-Power Bandwidth 

(16) 	method, 

Q  _  ores  

0 1 

(D +Ds )a)– DA12 Quadrature Dynamic Stiffness (QDS) (14) 

Note that QDS contains not only damping, as in stationary 
mechanical structures, but also the tangential force component. 

With an approximation, the peak response amplitude Arm  

occurs when DDS = 0 , i.e., K + 1.0co– Mo.) 2  =0 , thus 

= 11)  res 2M 	2M 	M 
ID 1(1.0)2  K 

+ — +— 
1 	 (15) 

and from Eqs. (12) and (15): 

Ares = 

 

Ores –5-90 
(D + Ds  )(ores – 

The resonance frequency (15) corresponds to the forward mode 
natural frequency to m  given by Eq. (2), and calculated at the 
instability threshold, when the inequality (3) converts into 
equality. The real peak amplitude occurs closer to the actual 
value a) = a',,1 . The amplitude given by Eq. (16) is, therefore, 
an approximation of the actual peak amplitude. The smaller 
damping D is in the system, the better amplitude 
approximation (16) results. With increasing damping D, the 
actual resonance frequency decreases, and the amplitude peak 
becomes lower. For a high overcritical damping D the 
resonance frequency approaches the value 

(19) 

is practically insensitive to nonlinearities, and includes both 
amplitude and phase information. The method can be used for 
any separate, widely spaced mode of a structure. In Eq. (19) 
cal , a)2 are frequencies at which the amplitude is 1/.5 

times the peak amplitude Ares , and the response phases differ 

by ±45°  from the phase a at resonance (16). The Half-Power 
Bandwidth frequencies a) 1 ,a)2 can be calculated from the 
second Eq. (12): 

WreSq = A.0/(1+ Ds  /D) yin (17) 
– 

arctan (D + 133 )c 1.) – DAD 
	 – 5 900  + (-1)i  45° , i = 1,2 (20) 
K + 112a) –Mw, 

which corresponds to the zero of Quadrature Dynamic Stiffness 
(14), and for which the peak amplitude (12) is 

Ares = 	  , a resq  = 5-0°  = 8 (18) 
q K + 112 2  A.– M22.02  

The resonar;ce expressed by Eq. (16) is referred to as 
"Direct" or "Mechanical" resonance, while the one expressed by 
Eq. (18) is referred to as "Quadrature" or "Fluid-Related" 
resonance (Muszynska, 1995). The discussion on Amplification 
Factors for the Quadrature resonance, as well as for the case of 
Backward Perturbation, will be given in section 3.7. 

There are two major definitions of the Amplification Factor, 
Q: the first one is based on the ratio of resonance peak to 
nonresonance amplitudes. The second definition is based on the 
Half-Power Bandwidth Method. *  While for the linear model of 

• The name "Half-Power Bandwidth" originated from the voltage response 
vector of an electrical circuit This vector amplitude is usually plotted in 
logarithmic scale. The response amplitudes at which the phases differ by 

±45° from the phase at resonance have the value which is a 

fraction of the resonance amplitude. Since power is proportional to square 
of the voltage, these two amplitude points also represent the half-power 

points of voltage. The voltage amplitude ratio 	corresponds to a 3 

dB or approximately 30% peak amplitude reduction. Thus these voltage 

From here: 
wi  (_ 1); D 	+ 117 

2M 2M 
(21) 

411[0); D+D, + In 12 K
(-1)i 122—n  i = 1,2 

	

2M 2M M 	M 

The difference a)2 – col can be approximated as follows: 

D+Ds 	r  
02 – 1 -.4    Vores 10/(1 + /El (22) 

I KM + (/.012)
2 

The Nonsynchronous Amplification Factor (19) results: 

Q 	  = 
co ra 	+ (Lf2/2)2  

(D+Ds )(sm) 
	 (23) 

The denominator of Q in Eq. (23) contains the stability 
condition (3), thus the closer parameters are to the stability 

points are called 70% or -3 dB amplitude points, and they define the 
frequency bandwidth used to calculate the Amplification Factor. 

5 
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TABLE 2. Measures of Isotropic Rotor Quadrature Dynamic Stiffness With No Gyroscopic Effect (I = 0), 
and No Rotor Damping (D = 0 Based on Forced Vibration 

A
m
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n  
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c t
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,  Q
  

N
on
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nc

hr
on

ou
s  

Direct 
Resonance 
Forward 

F =const 
(Amplitude ratio) 

	

4 K 2 4. D2 A202 	4„.2,42 E-22 +pm 	liA 722202 4.  Kym  
''' 	 J Q= ___, ,--- 	, 	. 	 - 

vt,ipm - A.9 	24 1:111 - A.C2) 	2ONSM)4KIM 

Amplitude ratio for F =mrco2  and
Half-Power Bandwidth Method for an 
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K 	 1 	 1 Q . _ 
D(J)-A2) 	

. 
S1) IQ 24P/SM) 

,IKIA1 

Quadrature 
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(Amplitude ratio) 

Q = 1,I K2  + D2  A2  0 2 	11(4‘2 A202  +KIM)KIM 	V44-2 ,1202  4. KIM 
. 	  

K- M2202 Khti - A2r2 	(NSM)(1+ AD/ IFy/tif 
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A2 C22 	 1 	 1 _ = Q- 	1 	, , 	KIM 

	

Ki M - All - 	 1 	 (NSMX 1,17ti + Ail) 
222 

Direct 
Resonance 
Backward 

F =const 
(Amplitude ratio) 

42 +D22202 	444.22202 + Kim  
Q= 	, 	1 	= 	_, 

	

IA 1,MTI + AC2) 	241 IIRTI + Af2) 

Amplitude ratio for 	F = mrco 2 
and Half-Power Bandwidth Method 
for both F=const and F=mrco2  

K 	 1 _ Q- 
D( 1.171171 + I Q) 	241+ M4E7TO 

Synchronous (F =- mr122) Q
33

.. = 
Ill - AI 
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e  
S
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,  S
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 Direct Resonance Forward 
1 	 1 14-76-11 SL - 	 = J 	 - 

 
,
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D 	 24*  IrCird 	 2‘ 

SL= 	 = 
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_
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IIT-14 	 1 2[  SL  - 	, 

D(,,frCrAi+ 	
. 

 A.Q) 	4/17217 +AC2) 

Synchronous 
2M 	 1 

SL = 	
l - 	I 	

= 

	

DlA 	 411 - .1.1 KIM 

Nondimensional Stability Margin, NSM 
AO 

(NSM) 	1 = Damping Factor 
D 

4.- 
2 I
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AD 	112 .4112 )2  K + — + — 

1+ DsID 2M 2M M 

\I
TC  2  II

2
2  MO+ Ds / D) 

M 1+Ds ID 

• 

threshold, the larger an Amplification Factor results. At the 
instability threshold the Amplification Factor becomes infinite. 
Unlike to "static" mechanical structures, the value of the 
Amplification Factor is not inversely proportional to damping 
alone, but to its product with the Stability Margin (3). 

= res 
The Nonsynchronous Amplification Factor, Eq. (23), can be 

expressed by using the response phase slope as follows (the 
minus sign in (24) is dropped): 

Q = (SL) 4° 	 (25) 
2 

where the slope, (SL), can practically be obtained from the 
machine response phase data as SL = Aal Aco (z = an 

increment around the resonance frequency co ra  ). 

3.6 Nondimensional Stability Martin  
In sections 3.1 to 3.5 various classical measures of damping 

in mechanical systems were adapted to the simplest rotor model 
(1). For rotating systems the classical "measures of damping" 
must be interpreted as "measures of Quadrature Dynamic 
Stiffness." While the idea of Direct and Quadrature Dynamic 
Stiffness applies mainly to the systems with periodic external 
excitation, it is convenient to use it as a descriptor of rotating 
system dynamic characteristics. 

The rotor stability condition (3) can be interpreted in terms of 
the Stability Margin. The Stability Margin (SM) in Eq. (3) is 
defined as the difference between zeros (roots) of Direct and 
Quadrature Stiffnesses as functions of frequency (Muszynska, 
1990): 

(SM) = w r„ — 2.f2/(1+ Ds  /D) 	 (26) 

where co res  is the solution (root) (15) of the equation "Direct 

Dynamic Stiffness (13) equals to zero," and 212/(1+ AID) 
is the root of Quacirature Dynamic Stiffness (14). The Stability 
Margin (26) has the frequency dimension. In order to be able to 
compare various systems, it is reasonable to introduce the 
Nondimensional Stability Margin (NSM) as follows: 

 	 RP+ „ID)  
VM 1+D /DVP  

(27) 
cores 

The nondimensionalizing multiplier of (SM) within the brackets 

in Eq. (27) has a positive value, and exists for 2 2  >1 2 M 

(if 22  5 I 2/M , then the system is always stable). This 
multiplier was introduced to simplify the final expression in Eq. 
(27): the numerator contains the stability condition (5), the 
denominator contains the Direct Resonance frequency. For 
stable systems the values of (NSM) may vary between one and 
zero. A negative (NSM) means that the system is unstable. 

The Nondimensional Stability Margin (NSM) better describes 
and quantifies the system stability situation than the Stability 
Margin (SX). The comparison of the Nondimensional Stability 
Margin with other Quadrature Dynamic Stiffness measures for 
the rotor model without gyroscopic effect and rotor external 
damping (1), = 0, I = 0) is given in Table 2. 

3.7 Amplification Factor for Direct Resonance at 
Backward Perturbation 

The exciting force in the model (1) was assumed rotating in 
the direction of rotor rotation (to > 0) . If w has a negative 

value, backward excitation (perturbation) results (rotating 
exciting force in the direction opposite to rotation). The 
response amplitude A b and phase ab will now differ from 
Eqs. (12) by the sign of co : 

tf(K _I.oø_M02)22)2 +RD + D .,)n) + DA.f21 2  

a b = 5 + 
=tan (D + Do)s) + DAS2  

K — 1 flo.)— Mco 2  

The backward perturbation excites the backward mode 
associated with the natural frequency com (see Eq. (2)) and 
results in Direct Resonance when w = W There isresb 

no Quathature Resonance for backward excitation, as the 
Quadrature Dynamic Stiffness remains always negative, and 
does not provide any zero value (root). 

Calculated by Half-Power Bandwidth Method, the 
Amplification Factor for the Direct Resonance at backward 
perturbation is as follows: 

JKM + (H2/2) 
Q= 	 (29) 

D + Ds  + D2.121 comb   
where from Eqs. (28) 

112 11( 112 ) 
2M 	

2  K 
2M M 

3.5 Response Phase Slope at Direct Resonance  
The derivative of the rotor response phase (12), which 

represents the phase slope (SL) at direct resonance, ca.„ (Eq. 
(15)) is as follows: 

(Sr.') = 
da 
d w 	

J./  2 /22 + 41cm  
(24) 

(D+1)5 )0.),„, — D1r2 

(Nal) =
(SM) 

(Ores 

(28) 
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Rotor modal damping, stiffness, and mass 
respectively 
Rotor surrounding fluid damping 
Tangential force coefficient ("cross coupled 
stiffness") 
Exciting force magnitude, frequency, and 
angular orientation 
Mass and radius of unbalance respectively 
Nondimensional Stability Margin and Stability 
Margin respectively 
Amplification Factors for nonsynchronous and 
synchronous excitation 
Response phase slope (versus excitation 
frequency) at resonance 
Damping Factor 

Fluid circumferential average velocity ratio 
Rotative speed 
didt 

NOTATION 

DLO 

F,a),(5 

m,r 
NSM , SM 

Q,Q.syn 

SL 

.C2 

The comparison of Amplification Factors for the rotor model 
without gyroscopic effect and Ds = 0 are given in Table 2. 

3.8 Phase Slopes for Guadrature Resonance and for Direct 
Resonance at Backward Perturbation  

Similarly to Eq. (24) the phase slope at Quadrature 
Resonance can be calculated. Instead of 	co = ar ms., the 

substitution now is o.) = w raq  

d 
(SL)=--a 

s D+D
(30) 

K - - .112 2 (MA— I) da)  w = DI Ds ) 

In comparison to Eq. (24) the phase slope for the Quadrature 
Resonance is less steep. 

The phase slope for the Direct Resonance at backward 
perturbation is as follows: 

(D+Ds )comb  +D217 

The slope has much lower value than the slope for the forward 
perturbation, Eq. (24). 

5. FINAL REMARKS 
The measures of Quadrature Dynamic Stiffness developed 

from classical measures of damping and adapted to simple 
isotropic rotor lateral mode model were discussed in this paper. 
The emphasis was on the Quadrature Dynamic Stiffness, which 
for stationary structures and simple oscillators equals the 
damping terms, but for the rotor models must be complemented 
by the tangential force components. This tangential component 
most often appears out of phase to damping, so that the entire 
Quadrature Dynamic Stiffness may become nullified. It is 
shown that the classical measures of damping adapted for rotors 
contain an expression similar to the stability condition. A new 
related expression was introduced, namely, Nondimensional 
Stability Margin (NSM) as a derivative of the stability 
condition. The Quadrature Dynamic Stiffness measures can 
efficiently be expressed as functions of the NSM (Table 2). 
These measures apply directly to the rotating machine 
vibrational data in order to assess the machine susceptibility to 
instability. More detailed considerations on the topic can be 
found in the paper by Muszynska (1996b). 

In rotors a distinction should be applied for the cases of 
forward and backward excitation, as well as for cases of Direct 
(low damping) and Quadrature (high damping) Resonances. 

The developed measures apply to the isotropic one-mode 
lateral model. They may also be applied to higher lateral modes 
of the rotor, provided they are widely spaced. These Quadrature 
Dynamic Stiffness measures fail in case of closely spaced 
modes. One common case in rotor modeling is the 
anisotropically supported rotor. Its two orthogonal lateral 
modes have different, but close, frequencies. In synchronous 
response Bode and polar plots the rotor support anisotropy 
introduces "split resonances." Such double peaks do not qualify  

for applying ,classical measures such as the Amplification 
Factors, as the peak values are not only functions of the 
Quacirature Dynamic Stiffiiesses and Stability Margins, but also 
functions of "split" frequency differences. In these cases new, 
different measures have to be developed. 
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