
1

Specifying and Analyzing Dynamic Software Architectures*

Robert Allen, Rémi Douence, and David Garlan

CMU / IRISA-INRIA / CMU

School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA

IRISA, Campus de Beaulieu, 35042 Rennes Cedex, France

Proceedings of
1998 Conference on Fundamental Approaches to Software Engineering

Lisbon, Portugal (March 1998)

Abstract

A critical issue for complex component-based systems design is the modeling and anal-
ysis of architecture. One of the complicating factors in developing architectural models is
accounting for systems whose architecture changes dynamically (during run time). This is
because dynamic changes to architectural structure may interact in subtle ways with on-go-
ing computations of the system.

In this paper we argue that it is possible and valuable to provide a modeling approach
that accounts for the interactions between architectural reconfiguration and non-reconfigura-
tion system functionality, while maintaining a separation of concerns between these two as-
pects of a system. The key to the approach is to use a uniform notation and semantic base
for both reconfiguration and steady-state behavior, while at the same time providing syntac-
tic separation between the two. As we will show, this permits us to view the architecture in
terms of a set of possible architectural snapshots, each with its own steady-state behavior.
Transitions between these snapshots are accounted for by special reconfiguration-triggering
events.

1 Introduction

Recently, there has been considerable progress on the development of architecture description lan-
guages (ADLs [12]) to support software architecture design and analysis. These languages capture
the key design properties of a system by exposing the architectural structure as a composition of
components interacting via connectors. Examples include Wright [1], UniCon [14], Rapide [10],
Darwin [11] and ACME [5].

There are many aspects of a software system that can be addressed in an architectural descrip-
tion, including functional behavior, allocation of resources, performance, fault-tolerance, flexibility
in the face of altered requirements, and so on. Each ADL tends to focus on one or more of these as-
pects.

In this paper we address the problem of capturing dynamic architectures. By “dynamic” we
mean systems for which composition of interacting components changes during the course of a sin-

* Research sponsored by the INRIA, the Defense Advanced Research Projects Agency, and Rome
Laboratory, Air Force Materiel Command, USAF, under agreement number F30602-97-2-0031, and
by the National Science Foundation under Grant No. CCR-9357792. The U.S. Government is autho-
rized to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright
annotation thereon.

The views and conclusions contained herein are those of the authors and should not be interpreted as
necessarily representing the official policies or endorsements, either expressed or implied, of INRIA,
the Defense Advanced Research Projects Agency Rome Laboratory, or the U.S. Government.

2

gle computation. We distinguish this aspect of dynamic behavior from the steady-state behavior, by
which we mean the computation performed by a system without reconfiguration.

We argue that it is both possible and valuable to separate the dynamic re-configuration behavior
of an architecture from its non-reconfiguration functionality. While there exist ADLs, such as Dar-
win, that capture reconfiguration behavior, and facilities such as object-oriented languages that per-
mit the combined description of both dynamic aspects and steady-state behavior, we believe that, at
the architectural level, it is important to provide a notation that supports both aspects of design while
maintaining a separation of concerns. In this paper we illustrate a new technique by which these two
aspects can be described in a single formalism, while keeping them as separate “views”. This facili-
tates the understanding of each aspect in isolation while still supporting analysis of the combined in-
teraction between the two.

By providing a notation that provides a precise interpretation of each of these aspects, we permit
the description to be analyzed for consistency and completeness, as well as for whether the system
has application-specific properties desired by the architect. For example, we would like to guarantee
that reconfigurations occur only at points in the computation permitted by the participating compo-
nents and connectors. Also, whenever a new connection is established, we would like to show that
the participating components exist at the moment of attachment. By considering interactions be-
tween the two forms of description, we can consider whether changing the participants at run time
will result in inconsistencies among participants’ states.

In the remainder of this paper we present our technique using the Wright ADL as our notational
basis. We first review related works (Section 2). We introduce Wright (Section 3) and illustrate the
problem of specifying dynamic architectures (Section 4). Then we show how a language originally
designed for steady-state architectures, such as Wright, can be extended to handle dynamic aspects
of architecture (Section 5). Next, we present the semantic model on which the approach is based
(Section 6). Then we illustrate the kinds of analysis that such a formalism supports (Section 7). Fi-
nally, we discuss possible extensions of our work (Section 8).

2 Related Works

Our work is most closely related to two general classes of research. The first is architecture descrip-
tion languages. While there are a large number of such languages, only a few are capable of model-
ing dynamic architectures. The most prominent among these are Rapide and Darwin. In the case of
Rapide, the notation takes an object-oriented view: new architectural components can be created
much as one would create new objects in a object-oriented programming language [10]. A conse-
quence of this design is that it is in general undecidable what topologies will be created during a
Rapide execution. For this and other reasons, Rapide focuses on simulation and analysis of sets of
execution traces. In contrast, Wright focuses on static checking.

In the case of Darwin, the language is solely concerned with the structural aspects of an archi-
tecture [11]. Thus, the issue of how reconfigurations interact with on-going computations does not
arise. However, their use of the Pi-Calculus to give semantics to reconfiguration is elegant and sug-
gestive of the power of a more flexible “dynamic” process algebras.

The second area of related work is general formalisms for reasoning about architectural designs.
Among these two are most closely related. The first is term rewriting systems. For example, Inverar-
di and Wolf have shown how to model architectures using the CHAM [7]. As a general term rewrit-
ing system, CHAM is can describe arbitrary reconfigurations of architectures. While this approach
has considerable power, the cost is that the description of systems and reconfigurations must be en-
coded in system rewriting rules, which may be far removed from the intuitive descriptions used by
system designers. In contrast, Wright has tried to provide a notation that makes explicit the inten-
tions of a designer for handling reconfigurability.

3

Another general-purpose formalism applied to dynamic architectures is the use of graph gram-
mars to describe the allowable topologies of architectures [9]. Graph grammars provide a nice nota-
tion for capturing patterns of transformation. However, thus far they have not been used to relate the
reconfiguration aspects of an architecture with its behavior. Thus, as before, it is not possible to rea-
son about when it is legal to carry out architectural reconfiguration.

3 Motivating Example

Consider the simple client-server system shown in Figure 1. It consists of one client and one server
interacting via a link connector. Such a system is easy to describe in an ADL such as Wright [1,2].
There are two essential aspects of a Wright description of a system architecture: architectural struc-
ture, and architectural behavior. We illustrate both aspects using the example, which is described in
Wright in Figure 2.

Figure 1 Static Topology : Simple Client-Server System

3.1 Architectural Structure

Wright represents architectural structure as graph of components and connectors. Components repre-
sent architecturally-relevant units of computation and data storage, while connectors represent the
interactions between components. In Wright components and connectors are typed. Thus to define a
system, one first declares a set of component and connector types, termed as a Style. Then one de-
clares a set of instances of these types and the way in which they are assembled.

Style Client-Server
Component Client

Port p = request → reply → p §
Computation = internalCompute → p.request → p.reply → Computation §

Component Server
Port p = request → reply → p [] §
Computation = p.request → internalCompute → p.reply → Computation [] §

Connector Link
Role c = request → reply → c §
Role s = request → reply → s [] §
Glue = c.request → s.request → Glue

[] s.reply → c.reply → Glue
[] §

Constraints
∃! s ∈ Component, ∀ c ∈ Component : TypeServer(s) ∧ TypeClient(c) ⇒ connected(c,s)

EndStyle

Configuration Simple
Style Client-Server
Instances C : Client ; L : Link ; S : Server
Attachments C.p as L.c ; S.p as L.s

Client ServerLink

4

EndConfiguration

Figure 2 Static Wright Specification : Simple Client-Server System

Figure 2 opens with a definition of the Client-Server style by declaring a Client and Server com-
ponent types, as well as a Link connector type. Components have interfaces, which in Wright are
called ports. Any component may have multiple ports, each port defining a logically separable point
of interaction with its environment. Here, both our client and server component types have only one
port p. Connectors also have interfaces, which are termed roles. The roles of a connector identify the
logical participants in the interaction represented by the connector, and (as we will see shortly) spec-
ify the expected behavior of each participant in the interaction. In Figure 2, the Link connector has a
role c for the client and one s for the server. Finally, the constraints define a set of predicates that ev-
ery configurations conforming to that style must satisfy.

A small configuration is also shown in Figure 2. It uses the Client-Server style (making the com-
ponents and connector types available) to declare a single client-server connector. These part are
then assembled. Specifically, the port p of the client C fills the role c of the connector L, while the
port p of the server S fills the role s of the connector.

3.2 Architectural Behavior

Wright focuses on architectural behavior characterized in terms of the significant events that take
place in the computations of a components, and the interactions between components as described
by the connectors. It allows the user to formally specify behavior such as: “the client makes a re-
quest, which is received by the server, and the server provides a response, that is communicated to
the client; this sequence of actions can be repeated many times”. The notation for specifying event-
based behavior is adapted from CSP [6]. Each CSP process defines an alphabet of events and the per-
mitted patterns of events that the process may exhibit. These processes synchronize on common
events (i.e., interact) when composed in parallel. Wright uses such process descriptions in computa-
tion, port, role and glue specifications.

A computation defines a component’s behavior: the way in which it accepts certain events on
certain ports and produces new events on those or other ports. As illustrated in Figure 2, a Client iter-
atively makes a request (p.request) and waits a reply (p.reply) on port p, or terminates successfully
(§*). The use of internal choice () in the specification indicates that it is the client that decides
whether it makes a request or terminates. In contrast, the use of external choice ([]) in the Server
specification indicates that the server is expected to respond to any number of requests, and may not
terminate prematurely. Moreover, because we are interested in how different components control in-
teractions, Wright distinguishes initiated events from observed events by an overbar. For example,
the client initiates requests (e.g., p.request) while the server observes them (e.g., p.request).

A port process defines the local protocol with which the component interacts with its environ-
ment through that port. This protocol is effectively the projection of the component’s computation
onto the particular interface point. For example, the client single port p faithfully reproduces the cli-
ent computation pattern, but hides the internal computation modeled by the event internalCompute.

A role specifies the protocol that must be satisfied by any port that is attached to that role. In gen-
eral, a port need not have the same behavior as the role that it fills, but may choose to use only a sub-
set of the connector capabilities. In our simple case, the link role c and the client port p for example
are identical.

* § is similar to the CSP process TICK, except that § represents a willingness to terminate rather than
a decision to terminate. So, § can occur at choice points (e.g., P [] § and P §), which is illegal in
standard CSP. An alternative definition of the sequencing operator “;” makes this kind of expression
consistent. See [1] for details.

5

Finally, a glue specification describes how the roles of a connector interact with each other. In
the example, a client request (c.request) must be transmitted to the server (s.request), and the server
reply (s.reply) must be transmitted back to the client (c.reply). We have described in [1,2] how these
formal descriptions can be used to check the consistency and completeness of architectural descrip-
tions. We come back to this topic in section 7.

In this description, the server does not terminate until the client is ready. But, what of a more re-
alistic situation, where the server is running on an unreliable processor over a network, and may
crash unexpectedly? In this case, the architect must consider two aspects of a robust architectural de-
sign. First is the simple view of the normal system behavior, in which the client makes a request of
the server, and receives a response. Second is the architect's solution to the problem of server crashes
(i.e., the way in which a server is restarted or replaced so that there is always a service available for
the client). In the next section we look at one approach to unifying these two aspects of design.

4 Simulating Dynamism

Let us now consider one possible solution (see Figure 3) in which there are two servers: a “primary”
server, which is more desirable to use, but which may go down unexpectedly, and a “secondary”
server, which, while reliable, provides a lesser form of the service. One way to use these is to alter
the architecture such that both servers are present, and when the primary server goes down, the client
uses the secondary server until such time as the primary server returns to service. (This kind of fault-
tolerant architecture is actually used by the Simplex System [13].) The topology of the system is
shown in Figure 3.

A Wright description of a possible client is shown in Figure 4. In this solution the primary server
communicates its status to the client with down and up events when it is about to go down or come
up (resp). (In practise, such events might be supplied by a time-out service.) These events appear in
the Client definition. The port Primary expresses the client assumptions that the primary server can
go down anytime, except in the middle of a request (i.e., not between request and reply), and once it
goes down it provides no service until it comes up. The secondary server is a safe one that is always
ready to serve. It is not concerned with down and up events (which do not occur on the port Second-
ary). The client computation now has two states (UsePrimary and UseSecondary) encoding which is
the active server. The down and up events switch from one state to the other.

Figure 3 Static Topology : Fault-Tolerant Client-Server System

Component Client
Port Primary = § ((request → reply → Primary) [] down → (§ up → Primary))
Port Secondary = § request → reply → Secondary
Computation = UsePrimary

where UsePrimary = internalCompute → (TryPrimary §)
TryPrimary = primary.request → primary.reply → UsePrimary

[] primary.down → TrySecondary
UseSecondary = internalCompute → (TrySecondary §)
TrySecondary = secondary.request → secondary.reply → UseSecondary

Client

ServerLink

ServerLink

6

[] primary.up → TryPrimary

Figure 4 Static Wright Specification : Client Component (Fault-Tolerant Client-Server System)

While this accomplishes what we set out to do, the description of the new architecture has sever-
al disadvantages:

• The simple client-server functional pattern and topology have been lost. In particular, its specifi-
cation is now muddied by the need to consider the effects of reconfiguration at almost each step,
and the client-server style constraint (see Figure 2: exactly one server is connected to every cli-
ents) is no longer true.

• It has been necessary to significantly alter the original simple client in order to accommodate a
change that arguably should occur on the server's side. We have had to duplicate Client’s Port, so
this component now must keep state to know which port to use (i.e., which is the active server).
Ideally, the client should be able to continue to operate as before, but have the system handle re-
routing of requests to the new server.

• Distribution of the configuration state and re-configuration actions in the components makes the
modifications of this system difficult. For example, adding a third backup, or permitting only the
primary to go down once before abandoning it, requires extensive changes to all parts of the sys-
tem, thus reducing the reusability of the constituent elements.

Instead of rigid encoding of the dynamism in the steady state behavior of the components, what
we would like is to provide constructs to describe the dynamics of the system explicitly. In this case,
rather than using a fixed topology of two servers and hiding the changes inside a client component’
“choice” about which server to use, we could describe the server's failures as triggers that change the
topology during computation. In effect, instead of the single configuration shown in Figure 3, we
would have two configurations, shown in Figure 5. These configurations, each simple in itself, alter-
nate as the primary server goes down and comes back up.

Figure 5 Dynamic Topology : Alternating Configurations of a Fault-Tolerant Client-Server System

In order to achieve this effect, we must introduce notations for characterizing changes in the ar-
chitecture during a computation. Such a characterization includes: (a) what events in the computa-
tion trigger a re-configuration, and (b) how the system should be reconfigured in response to a
trigger.

5 Our Approach

Our solution consists of two parts. First, special “control” events are introduced into a component's
alphabet, and allowed to occur in port descriptions. In this way, the interface of a component is ex-
tended to describe when reconfigurations are permitted in each protocol in which it participates. Sec-
ond, these control events are used in a separate view of the architecture, the configuration program,
which describes how these events trigger reconfigurations.

C L C L

Primary Primary

Secondary Secondary

7

To illustrate, consider the fault-tolerant client-server style described in Figure 6. The architectur-
al types (Client, FlakyServer, SlowServer) are declared in the usual way, but they also include events
like down and up, now explicitly marked as “control” rather than “communication” events. The
FlakyServer indicates the states in which it may go down (with control.down) and come up (with
control.up). Specifically, it may go down at anytime, except in the middle of a transaction (i.e., not
between request and reply) and it may come up anytime after a down. These events indicate the
states in which the server accepts a reconfiguration. In the same way, a SlowServer component can
be turned on then off anytime, except in the middle of a transaction. And a FTLink can be reconfig-
ured (changeOk) between request and reply transmissions.

Style Fault-Tolerant-Client-Server
Component FlakyServer

Port p = § [] (request → reply → p control.down → (§ [] control.up → p))
Computation = § [] (p.request → internalCompute → p.reply → Computation

 control.down → (§ [] control.up → Computation))

Component SlowServer
Port p = § [] (control.on → µLoop.(request → reply → Loop [] control.off → p [] §))
Computation = § [] control.on → µLoop.

(p.request → internalCompute → p.reply → Loop [] control.off → Computation [] §)

Connector FTLink
Role c = request → reply → c §
Role s = (request → reply → s control.changeOk → s)[] §
Glue = c.request → s.request → Glue

[] s.reply → c.reply → Glue
[] §
[] control.changeOk → Glue

Constraints
∃! s ∈ Component, ∀ c ∈ Component : TypeServer(s) ∧ TypeClient(c) ⇒ connected(c,s)

End Style

Figure 6 Dynamic Wright Specification : Fault-Tolerant Client-Server Style

This new style can be used to build different systems. For example, Figure 7 pictures our version
of the fault-tolerant client-server system. The Configuror is responsible for achieving the changes to
the architectural topology (triggered by up and down) using instances of architecture types (e.g., Cli-
ent, FlakyServer, SlowServer), and new, del, attach, and detach actions, as illustrated in Figure 8.

Figure 7 Dynamic Topology : Alternating Configurations of Fault-Tolerant Client-Server System

C L C L

Primary Primary

Secondary Secondary

Configuror Configuror

8

In this reconfiguration program, unlike the previous solution, the Client component type is iden-
tical to the original one in Figure 2. The initial sequence of actions (new and attach) builds the origi-
nal system. Then WaitForDown describes two situations: the system can run and successfully
terminate (§) or a fault can occur. If the primary server goes down, the secondary server is in state on
and the link connector is reconfigurable, the primary server is detached from the link and is replaced
by the secondary server. The new configuration then resumes its execution until it terminates or the
primary server comes up. In this latter case, WaitForUp specifies that when the secondary server is
off and the link connector is reconfigurable (changeOk), the secondary server is detached from the
link and is replaced by the primary server.

Configuror DynamicClient-Server
Style Fault-Tolerant-Client-Server

new.C:Client
→ new.Primary : FlakyServer
→ new.Secondary : SlowServer
→ new.L : FTLink
→ attach.C.p.to.L.c
→ attach.Primary.p.to.L.s → WaitForDown

where
WaitForDown = (Primary.control.down → Secondary.control.on → L.control.changeOk →

Style Fault-Tolerant-Client-Server
detach.Primary.p.from.L.s
→ attach.Secondary.p.to.L.s
→ WaitForUp)

[] §
WaitForUp = (Primary.control.up → Secondary.control.off → L.control.changeOk →

Style Fault-Tolerant-Client-Server
detach.Secondary.p.from.L.s
→ attach.Primary.p.to.L.s
→ WaitForDown)

[] §

Figure 8 Dynamic Wright Specification : Configuror (Fault-Tolerant Client-Server System)

Thus, this configuror describes three configurations (an initial one, and two alternating configu-
rations). In the configuror, a style annotation specifies the set of component and connector types a
configuration can use and the constraints it must satisfy. Here we use the same style. In general, each
configuration can use a different style. In this example, it is easy to see that the Fault-Tolerant-Cli-
ent-Server style constraint is verified in each of the three possible configurations: in each configura-
tion, the client is connected to one server.

6 Semantics

Thus far we have relied on the reader’s intuition and good faith that the notation outlined above
makes sense. In this section we present the formal basis for this.

The basic idea is to translate the notation into pure CSP [6]. The behavior of the system is con-
structed from the process that defines the constituent components and connectors. Specifically, the
behavior of a system is the parallel composition of all the computation, glue and configuror process-
es. In attempting to provide such a semantics, the key difficulties are to account for the “dynamic”
creation and deletion of processes, and to arrange things so that the alphabets of the evolving topolo-
gy leads to the intended interactions. The problem, of course, is that CSP can only describe a static
configuration of processes. (That is, one can’t create new processes and communication channels “on
the fly”). How then can one give meaning to such actions as new, delete, etc.?

9

Our approach is based on two key ideas. First we restrict systems to those for which there are a
finite (albeit potentially large) set of possible configurations (see section 8 for further discussion of
this issue). Second, in the translation to CSP we “tag” events with the configuration in which that
event occurs. (Because of our restriction to finite set of configurations, there is a finite number of
possible tags.) The effect of a reconfiguration action is to select the properly tagged version of CSP
expressions so that the interactions occur as defined by the new configuration. Thus an (untagged) e,
in one configuration might end up (after tagging) synchronizing with one process in one configura-
tion, but with another in a different configuration.

More formally, each event p.e of the component Cp* is relabelled as Cp.p.e.Cn.r when the port p
of Cp is attached to the role r of the connector Cn. For example, in our fault-tolerant client server
system when the FTLink connector interacts with the Primary server, the “reply” case of L (s.reply
→ c.reply → Glue) is translated to:

L.s.reply.Primary.p → L.c.reply.C.p → Glue

This indicates that a reply received by L on role s (from the Primary server port p) must be transmit-
ted (by L on the role c) to the client C on port p.

Our transformation also introduces the “plumbing” that allows selection of the proper version:
each version of a transformed component begins with a Cp.go.p1.Cn1.r1…rn.Cnn.rn event selecting
the version of Cp, where its port p1 is attached to the role r1 of Cn1,… and its port pn attached to the
role rn of Cnn. For example, the connector L is translated to:

L = L.go.c.C.p.s.Primary.p → Glue1
[] L.go.c.C.p.s.Secondary.p → Glue2

Glue1 = L.c.request.C.p → (L.s.request.Primary.p → Glue1 [] …
Glue2 = L.c.request.C.p → (L.s.request.Secondary.p → Glue2 [] …

Finally, the configuror definition is transformed into a CSP process too, where the new, del, at-
tach and detach actions are transformed into the previous Cp.go… events that select the proper con-
figuration of the components at each reconfiguration step. For example, the following configuror
portion:

new.L → Attach.C.p.to.L.c → Attach.Primary.p.to.L.s → …

is transformed to L.go.c.C.p.s.Primary.p → …

∀ Cp: Component and Ports(Cp) = {p1, … pn}
TComp [[Cp]] = TComp1[[Computation(Cp)]]

TComp1[[P]] = µCp.main.
§ []
(∀ Cn1: Connectors ∪ {Void},…,∀ Cnn: Connectors ∪ {Void}
∀ r1: Roles(Cn1),…,∀ rn: Roles(Cnn)
[]
(Cp.go.p1.Cn1.r1…pn.Cnn.rn → P [Cp.p1.e.Cn1.r1 / p1.e]

…
[Cp.pn.e.Cnn.rn / pn.e]
[Cp.e / e]
[Cp.control.evt → Cp.main / control.evt → Computation]))

Figure 9 Component Cp Semantics

* In the rest of this paper, Cp designates a Wright component, p a port, Cn a connector, r a role, and
C a component or a connector.

10

The component transformation TComp is formally defined in Figure 9. The transformation
TComp1 introduces a main label (to restart the component in its initial state) and enumerates the dif-
ferent versions of the code with the help of the CSP notation ∀ i : {1, 2, 3} [] Pi = P1 [] P2 [] P3. In
each version the events are renamed according to the current attachments (an unattached port is treat-
ed as attached to the role void of the dummy connector Void). The next to last substitution renames
the internal events, and the last one restarts the process in its initial state after each control event, so
that a different version can be selected. If a control event occurrence is followed by an arbitrary ex-
pression (rather than the label Computation), an auxiliary definition should be introduced and com-
piled similarly.

The connector definitions are “compiled” in the same way. The Glue transformation (not shown
here) is symmetric: rather than enumerating all possible roles that may attach to the given port, we
vary the ports, while holding the role fixed. The renaming pattern is similar to that of Figure 9 (i.e.,
Cp.p.e.Cn.r), so that it matches the “compiled” component events.

The grammar in Figure 10 defines legal configurors. An initial sequence of action events build-
ing the original system is followed by re-configuration rules. Basically, a reconfiguration rule is de-
fined by a triggering sequence of control events followed by a sequence of action events. Several
rules can compete in parallel (Rule1 [] … [] Rulen); one of them is selected as the components pro-
duce the proper control events. Every rule is followed by a piece of configuror (i.e., the next rules to
apply). The success process § terminates the reconfigurations and recursion permits infinite reconfig-
uration sequences.

Main = Action+ → Configuror where A+ = A → A+ | A
Configuror = (Rule1 [] … [] Rulen) | µX.Configuror(X)
Rule = § | C.control.evt+ → Action+ → Configuror
Action = new.C | del.C | attach.Cp.p.to.Cn.r | detach.Cp.p.from.Cn.r

Figure 10 Configuror BNF Grammar

The Configuror transformation TConf is defined in Figure 11 with the help of a config argument
recording the current configuration. In order to make the transformation simpler, we assume a first
pass has reordered all actions so that each reconfiguration rule follows the sequence: detachments,
deletions, attachments and creations. The first rule in Figure 11 reproduces the control events, the
second and fourth ones maintain the config argument. The rule for new produces go events according
to config. The rule for del produces nothing, since according to our transformation in Figure 9 after a
control event the component or connector is in its initial state waiting for a go. The seventh case de-
tects the end of a rule and resumes (go events) the components and connectors which triggered the
current rule and haven’t been deleted, then it calls TConf2. The four TConf2 rules reproduce the con-
figuror structure.

TConf [[C.control.e → P]] config = C.control.e → TConf [[P]] config
TConf [[detach.Cp.p.from.Cn.r → P]] config = TConf [[P]] (detach Cp.p Cn.r config)
TConf [[del.C → P]] config = TConf [[P]] (del C config)
TConf [[attach.Cp.p.to.Cn.r → P]] config = TConf [[P]] (attach Cp.p Cn.r config)
TConf [[new.Cp → P]] config = Cp.go.p1.Cn1.r1…pn.Cnn.rn → TConf [[P]] (new Cp config)
TConf [[new.Cn → P]] config = Cn.go.r1.Cp1.p1…rn.Cpn.pn → TConf [[P]] (new Cn config)
TConf [[P]] config = Cp1.go.p11.Cn11.r11…p1n.Cn1n.r1n →

…
Cnm.go.rm1.Cpm1.pm1…rmp.Cpmp.pmp →
(TConf2 [[P]] config)

TConf2 [[Rule1 [] … [] Rulen]] config = (TConf [[Rule1]] config) [] … [] (TConf [[Rulen]] config)
TConf2 [[µX.P(X)]] config = µX.(TConf [[P(X)]] config)
TConf2 [[X]] config = X
TConf2 [[§]] config = §

11

Figure 11 Configuror Semantics

7 Analysis

Having specified a system and given its semantics, we would now like to analyze it. The formal se-
mantics based on CSP allows us to adapt or extend the consistency and completeness analysis pro-
vided by (static) Wright. First, we formally present these checks in our dynamic context. Then we
apply them to our fault-tolerant client-server example. Finally we show how to check the equivalence
of a dynamic system with a static one.

7.1 Formal Tests Definition

As a configuror describes a sequence of steady state systems, the original Wright checks can be easi-
ly adapted to the dynamic extension. In this section, we review and adapt two of the most relevant
Wright checks in our example. (A complete presentation of the original tests can be found in [1,2].)
We then propose a new test dealing with the configuror and the dynamic aspects of the system.

7.1.1 Connector Consistency

In Wright the connector roles specify the expected behaviors of connected components and the glue
specifies the coordination of these behaviors. Thus, inconsistencies between the participants in an in-
teraction and the coordination of the glue are detected by the following check (using the CSP process
labelling operator label:process):

Check 1 (C.Glue | | r1:(C.r1) | | … | | rn:(C.rn)) is deadlock free.

Another kind of inconsistency is also detectable as deadlock: if a role specification is internally
inconsistent. In a complicated role specification, there may be errors that lead to a situation in which
no event is possible for that participant, even if the glue were willing to take any event. This is detect-
ed by another test:

Check 2 Each role r1,…rn of the connector C is deadlock free.

Both checks can be directly reused in our dynamic extension. They are easily performed with the
help of the FDR model checker [4]. In case of failure, the tool provides the execution traces leading
to the deadlock. This information may help the user to debug his specifications.

7.1.2 Attachment Consistency

In Wright, a port is a specification of a component, as it is seen from the point of view of a single in-
teraction. A role, on the other hand, acts has a placeholder representing the range of potential partic-
ipants in the interaction described by a connector. An important check is whether the port of a
component is “consistent” with respect to a role to which it is attached (see especially [2]). Specifi-
cally, the port-role consistency check must ensure that when in a situation described by the role pro-
tocol, the port must always continue the protocol in a way that the role could have. This property can
be expressed with a CSP refinement check. When the role r of the connector Cn is attached to the
port p of the component Cp, we must check:

Check 3 R ⊆ (P | | det(Cn.r)) with P = (Cp.p | | Stopαr\αp) and R = (Cn.r | | Stopαp\αr)

As the role specifies the range of behavior that the component may have, and it circumscribes the
behaviors over which the connector’s rules are expected to apply, the check uses its deterministic
version det(Cn.r) to constraint the port behavior. The CSP refinement operator P ⊆ Q requires P and
Q have the same alphabet. Stop processes, in the previous check, are used to extend the port and role
alphabets.

12

This check must be redefined in our dynamic context. First, because of reconfigurations, it may
not be a port which is attached to a single role in a dynamic system, but a sequence of ports as de-
scribed by the configuror. For each role, a corresponding “virtual” port must be constructed using the
configuror and port definitions. If a control event e has several occurrences in a port (e.g., p = … con-
trol.e → E1 … control.e → E2 …), we cannot select either E1 or E2 when e occurs. We must assume
the component can be in any of these states and use the virtual port expression control.e → (E1 E2).
Second, the ports and roles use different control events, which are associated by the configuror rules.
So, the configuror must appear on both sides of the refinement checks. Third, a re-configuration rule
expresses the rendez-vous of several components (the re-configuration actions are performed once
all parts are ready). To express this synchronization, the control events of the port and role, and the
control events sequences of the configuror rules are bracketed by a shared event Synchro (see exam-
ple in section 7.2). With these transformed expressions (noted as E’’), the port-role compatibility
check becomes:

Check 4 (Cn.r’’ | | Configuror’’) ⊆ (Virtual.p’’ | | det(Cn.r’’) | | Configuror’’)

Wright provides other tests, which are easily adapted to our extension. We do not detail them here.
These tests include: component consistency checks (is a port a projection of the computation?), at-
tachment completeness checks (does an unattached port expect to interact with its environment?),
style checks (is a style constraint satisfied by a configuration?) and initiator checks (are the initiated-
observed annotations consistent?). However, our dynamic context provides also new opportunities
for checking.

7.1.3 Configuror Consistency

Consistent configurors must guarantee that when the event new.C occurs, C does not already belong
to the current configuration. As the configuror is defined in CSP, the test of this property can be for-
mally expressed as a CSP refinement check:

Check 5 (prop = (new.C → (del.C → prop[] §)) [] §) ⊆ configuror

Similar properties dealing with attachments can be expressed and checked in the same way. Al-
so, more configuror checks can be defined. These tests include: configuror-connector consistency (do
a glue and the configuror agree on next control events?), and configuror-component consistency (do
a computation and the configuror agree on next control events?).

7.2 Applications

In this section, we apply the previously-defined checks to our fault-tolerant client-server system
specifications (Figures 6 and 8).

7.2.1 Connector Consistency

The FTLink connector consistency checks are expressed as:

Claim 1 (FTLink.Glue | | c:(FTLink.c) | | s:(FTLink.s)) is deadlock free.

Claim 2 Roles FTLink.c and FTLink.s are deadlock free.

Checking these properties with FDR, we discover that the connector of Figure 6 is, in fact, not
deadlock-free (Claim 1 fails). Indeed, if a reconfiguration (changeOk) occurs after the client has sent
a request (c.request), but before it has been transmitted to the server (s.request), the connector will
deadlock. On the other hand, we do not have to worry about reconfiguration when the Link is trans-
mitting a reply back to the client. In this case we can postpone the reconfiguration until the end of the
transaction.

13

This failure has an intuitive explanation. In a concrete implementation, if the active server goes
down in the middle of a request transmission (between c.request and s.request), the reconfiguration
must be taken into account or the connector will try to send the request to the wrong server. But, if
the active server goes down in the middle of a reply transmission (between s.reply and c.reply), the
FTLink connector can still send the reply to the client, before reconfiguring its attachments with the
servers.

This specification and its analysis can help the programmer modify the original Link definition
(Figure 2) to achieve a fault-tolerant one. In practice, the code dealing with reconfiguration (e.g.,
switching the communication channel) should not be simply inserted in the original Link definition
as a new fourth case, but it must also be interleaved with the transmission of a request. A correct ver-
sion of Link’s Glue is detailed in Figure 12.

Glue = c.request → (s.request → Glue [] control.changeOk → RequestToSend)
[] s.reply → c.reply → Glue
[] §
[] control.changeOk → Glue

where RequestToSend = s.request → Glue [] control.changeOk → RequestToSend

Figure 12 Dynamic Wright Specification : Deadlock Free FTLink Connector

Finally, this example reveals a point about fault-tolerance: this kind of system requires a buffer to
handle transient states. In our case, a request is stored in the connector until a stable configuration
with a working server is reached (see RequestToSend).

7.2.2 Attachment Consistency

In our dynamic fault-tolerant client-server system, the FTLink connector is alternatively attached to a
FlakyServer and a SlowServer. So, the “virtual” server port attached to L.s is:

Virtual.p1 = § [] (request → reply → Virtual.p1 Primary.control.down → Virtual.p2)
Virtual.p2 = request → reply → Virtual.p2 [] Secondary.control.off → Virtual.p1 [] §

Then, the shared event Synchro is introduced in the port, role and configuror definitions. Because
of space constraints we have abstracted the sequences of actions in the configuror as a single actions
event. The resulting process definitions are:

Virtual.p1’’ = § [] (request → reply → Virtual.p1’’
 Synchro → Primary.control.down → Synchro → Virtual.p2’’)

Virtual.p2’’ = request → reply → Virtual.p2’’
[] Synchro → Secondary.control.off → Synchro → Virtual.p1’’ [] §

Link.s’’ = (request → reply → Link.s’’
 Synchro → Link.control.ChangeOk → Synchro → Link.s’’) [] §

Configuror = actions → WaitForDown
where
WaitForDown = § [] (Synchro → Primary.control.down → Secondary.control.on →

L.control.changeOk → Synchro → actions → WaitForUp)
WaitForUp = § [] (Synchro → Primary.control.up → Secondary.control.off →

L.control.changeOk → Synchro → actions → WaitForDown)

Finally, the attachment consistency of the connector L role s is checked as:

Claim 3 (Link.s’’ | | Configuror’’) ⊆ (Virtual.p1’’ | | Configuror’’ | | det(Link.s’’))

We do not detail here application of the configuror consistency checks to our simple system.

14

7.3 Equivalence

The previous analysis ensures that the system satisfies certain consistency properties. Another appli-
cation of our semantics is to prove that a dynamic system (or sub-system) is equivalent to some
steady-state one. This is a useful result because for certain purposes we can treat the dynamic system
as a static one. For instance, as in the previous example, we might like to show that the reconfig-
urable client-server system is equivalent to a simple client-server system in which the server never
goes down.

In order to compare a dynamic system with a static one, the control and go events must be hid-
den, the remaining communication events should be stripped of their configuration encoding part
(i.e., renaming Cp.p.e.Cn.r into Cp.p.e) and some components may have to be renamed (e.g., Prima-
ry and Secondary are unified with S). The following check ensures that our fault-tolerant system has
the functionality of a simple client-server system:

Rename(Strip(DynamicClient-Server \ {_.control._, _.go…})) = Simple

With the tool FDR [4], we discover that these two systems are nearly equivalent: they have the same
traces and failures, but Simple never diverges, while the left-hand side system may diverge (perform-
ing no “useful” communication, but only an infinite sequence of reconfigurations). This discrepancy
indicates that without some additional guarantees of fairness, the two systems are not, in fact, identi-
cal. However, although it is not possible to add fairness to our CSP description, in practice it would
not be difficult to ensure this property for an implementation.

Finally we can examine the reusability of code. Our definitions of the client component are the
same in the first Client-Server steady-state system (Section 3) and in the fault-tolerant Client-Server
dynamic system (Section 5). We did not have to introduce control events in the client definition. So,
in an implementation the same client code could be used in both steady-state and dynamic systems.

8 Future Work and Discussion

We believe that a number of technical extensions of the research are worth exploring. First, fault-tol-
erance introduces notions (e.g., time-out, preemption) along with idiomatic encoding (e.g., replacing
the absence of event by a time-out event, or set an interruptible interpretative cycle). We think style
libraries with specialized analyses and transformations might support these idioms.

Wright provides abstract specifications of software architectures. Our central configuror may not
be realistic in a concrete implementation. In this case, a partial evaluation of the specifications could
distribute the configuror actions in the components and connectors to be closer to real code.

Our semantics is a formal basis to further develop analysis and transformations. Intractable anal-
ysis could be replaced by proofs based on the semantic expressions and CSP. For example, a case
study in [1] does not rely on model checking to study the deadlock freedom of a buffered connector
style. Also, we restricted our study to dynamic systems with a finite number of configurations. The
subordination CSP operator (//) can be used to dynamically duplicate processes by recursion. For ex-
ample, [6] gives a definition of a factorial process where each level of recursion declares a new local
process to deal with the recursive call. This technique might allow us to express semantics of dynam-
ic architectures with regular pattern topology involving an unbounded number of configurations.

The present work focuses on protocols and deadlock freedom. Other properties should be stud-
ied in Wright. For example, [3] proposes a security analysis based on information flow in CSP ex-
pression. We think, this work could be adapted to Wright by introducing extra information
specifying information flows hidden by the specifications. Finally, all interesting properties can’t be
expressed in CSP, but our framework and the tagging technique of our semantics could be reused
with another formalism (e.g., CSP which lacks fairness must be replaced by temporal logic [8]).

15

In this paper, we have described an approach to architectural specification that permits the repre-
sentation and analysis of dynamic architectures. The approach is based on four ideas:

• Localization of reconfiguration behavior, so that it is possible to understand and analyze statically
what kinds of dynamic (topological) architectural changes can occur in a running system.

• Uniform representation of reconfiguration behavior and steady state behavior, so that interactions
between the two can be analyzed.

• Clearly delimited interactions between the two kinds of behavior through the use of control
events, so that one can explicitly identify the points in the steady state behavior at which reconfig-
urations are permitted.

• Semantic foundations based on CSP, so that we can exploit traditional tools and analytic tech-
niques based on process algebras.

To make this approach work we have limited ourselves to dynamic architectures that have a fi-
nite number of possible reconfigurations. Thus we have made a tradeoff between generality and pow-
er: by considering a restricted set of dynamic architectures we are able to provide strong support for
static reasoning and automated analysis.

Because of space constraints, we illustrated the approach with a very simple example, showing
how specification and analysis could help us detect and then fix a bug in the description. However we
are confident that our extension scales up to realistic systems, as static Wright does [1]. Indeed, our
checks remain local, and identical checks can be shared in systems with a high degree of symmetry
(e.g. multiple instances of the same component). Further study would be necessary.

References
[1] R. J. Allen. A Formal Approach to Software Architecture. Ph.D. Thesis, Carnegie Mellon Uni-

versity, School of Computer Science, available as TR# CMU-CS-97-144, May 1997.

[2] R. J. Allen and D. Garlan. A Formal Basis for Architectural Connection. In ACM Transactions
on Software Engineering and Methodology, July 1997.

[3] J.-P. Banâtre, C. Bryce and D. Le Métayer. Compile-time detection of information flow in se-
quential programs. In Proc. of Research in Comp. Security, Springer Verlag, LNCS 875, 1995.

[4] Failures Divergence Refinement: User Manual and Tutorial. Formal Systems (Europe) Ltd.,
Oxford, England,1.2β edition October 1992.

[5] D. Garlan, R. T. Monroe and D. Wile. ACME: An Architecture Description Interchange Lan-
guage. Submitted for publication, January 1997.

[6] Hoare, C.A.R. Communicating Sequential Processes. Prentice Hall, 1985.

[7] P. Inverardi and A. Wolf. Formal Specification and Analysis of Software Architectures Using
the Chemical Abstract Machine Model. In IEEE Trans on SW Eng., 21(4), pp. 373-386, 1995.

[8] L. Lamport. The Temporal Logic of Actions. In ACM TOPLAS, 16(3), pp. 872-923, 1994.

[9] D. Le Métayer. Software Architecture Styles as Graph Grammars. In Proceedings of the Fourth
ACM Symposium on the Foundations of Software Engineering, ACM SIGSOFT, 1996.

[10] D. C. Luckham, L. M. Augustin, J. J. Kenney, J. Vera, D. Bryan and W. Mann. Specification
and Analysis of System Architecture Using Rapide. In IEEE Trans. on Soft. Eng., 21(4), 1995.

[11] J. Magee and J. Kramer. Dynamic Structure in Software Architectures. In Proc. of the Fourth
ACM SIGSOFT Symposium on the Foundations of Software Engineering, pp. 3-14, 1996.

[12] N. Medvidovic.A Classification and Comparison Framework for Software Architecture De-
scription Languages. Univ. of Irvine, Dept. of Information and Computer Science, 1997.

[13] L. Sha, R. Ragunathan and M. Gagliardi. Evolving Dependable Real-Time Systems. Carnegie
Mellon University SEI Report CMU-SEI-95-TR-005, 1995.

[14] M. Shaw, R. DeLine, D. V. Klein, T. L. Ross, D. M. Young and G. Zelesnik. Abstractions for
Software Architecture and Tools to Support Them. In IEEE Trans. on Soft. Eng., 21(4), 1995.

