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Topological changes to regions, such as merging, splitting, hole formation and elimina-

tion, are significant events in the evolution of regions. Wireless sensor network technol-

ogy, which provides real-time information about the environment, can play an important

role in detecting and reporting such topological changes.

This thesis provides theoretical foundations and algorithmic solutions to topologi-

cal change detection using sensor networks. Two models, the morphism-based model and

the local tree model, are developed, providing formal semantics of topological changes.

The morphism-based model represents dynamic topological properties of continuously

evolving areal objects, in which basic and complex topological changes are represented

and classified using trees and structure-preserving mappings between them. Based on

this model, this work constructs a normal form and proves that it is the simplest form

that could represent all the changes under consideration. The local tree model represents

discrete and incremental changes of the areal objects based on selected components and

relations between them. It allows us to specify different kinds of topological changes

using information within the locality of the change. Based on the local tree model, we



develop two decentralized and energy-efficient approaches, the transient group-based

(TG-based) and the adaptive group-based (AG-based) approaches, to topological change

detection using sensor networks. The TG-based approach employs the boundary group

framework, which reduces the communication cost by reporting only the group level data

instead of data from each individual node. The AG-based approach further reduces the

communication cost by reusing the time-invariant information.

Experimental results show that when the configurations of sensor networks satisfy

certain density and communication constraints, the proposed approaches are able to

generate correct reports on the topological changes, and at the same time reduce the

communication cost to a level much lower than that of a basic boundary-based data

collection approach.
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Chapter 1

INTRODUCTION

Advances in sensor networks make it possible to produce real-time and nearly continuous

data sets describing geographic phenomena. The data capture not only static but also

dynamic characteristics of the phenomena. When analyzing the sensed data, users

are often interested in discovering salient events, so that they can make appropriate

responses. Such events also provide areas where more detailed data analysis can be

useful. In order for the sensor networks to provide more meaningful information, a

treatment of the dynamic aspects of the phenomena in terms of dynamic happenings

(including events, changes, and processes) is necessary.

1.1 Problem statement

Consider the following examples of topological changes from the domain of meteorology.

Figure 1.1 shows eight consecutive snapshots of ocean areas with sea surface height

(SSH) below a threshold (-15 cm) at the beginning of the onset of El Niño [Shi97]. It is

easy to identify several changes in topological structure during this period, including:

1. Within the area indicated by an ellipse, between t0 and t1, two regions appear.

Between t1 and t2, a region merges with itself and forms a hole, and between t2

and t7, the hole is merged back to the exterior.

1



Figure 1.1 Consecutive snapshots of sea surface height

2. Within the area indicated by a rectangle, between t0 and t2, a new region appears.

Between t2 and t4, another new region appears. Between t4 and t6, three regions

merge together. Finally, between t6 and t7, a third region appears.

In addition to the SSH data, topological changes are common in many other

spatial-temporal data provided by data acquisition technology, such as sensor networks.

Users can be interested in these topological changes. For example, in the case of wildfire,

fire fighters might be interested if the fire zone regions split and become disconnected, so

that they can reorganize the team accordingly. They might also be interested in merging
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fires, as it sometimes slows down the burn when the fires are burning over each other.

In the case of a flood, the emergency services may be interested in the appearance of an

island in the flood, because this indicates the locations of possible safe areas. Instead of

emerging from the flood directly, it is also possible that an island is formed by the flood

engulfing a piece of land. In this scenario, people on the island become separated and

may have difficulty escaping. Therefore, rescue from such a newly formed island might

have higher priority in the overall hazard management strategy.

To enable an event-based approach, it is important to identify a collection of

primitive types of changes that are commonly found in geographic phenomena. These

primitive changes can form the basic elements for querying and reasoning in terms of

events. Examples of previous work that fit into this area include [HE00, Cla95, Ren00].

Such research captures properties of events and changes based on transitions of locations

or identifications of objects, but does not consider topological characteristics, and in

particular does not deal with changes in different kinds of connectivity, such as region

appearance or merge. However, in some applications, especially when objects are derived

from discretization of continuous fields, the topological structure of the objects can be

complex, and changes in the topological structures are pervasive.

This thesis concentrates on the analysis of topological changes during the evolu-

tion of areal objects. In particular, it yields a category of primitive types of topological

changes together with methods for reporting these changes in sensor networks.

1.2 Goal and hypothesis

The main goal of this thesis is to provide a computational foundation for specifying,

classifying, and detecting salient events according to changes in the topological structure

of areal objects. We formally define an areal object later, but for now an areal object

can be thought of as a collection of region components, possibly with holes and islands.
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Formal models are developed to represent the properties of these topological changes

and to serve as a tool for us to determine the type of each change. In addition, the

formalism provides the basis for algorithms to compute and process different types of

topological changes in a selection of applications. We have the following key goals:

(1) Choice and representation of salient static topological properties of areal objects.

(2) Construction of a theory of dynamic topological properties of areal objects.

(3) Development of algorithms for capturing the dynamic topological properties of

areal objects by sensor networks.

Addressing the first goal leads to the identification of the necessary topological

features of areal objects used to distinguish topological changes. Work on the second goal

leads to a development of mathematical models with the following properties: (1) these

models are rich enough to represent the static topological characteristics of areal objects

necessary for the classification of changes. (2) The dynamic topological characteristics

resulting from the evolution of areal objects can be explicitly represented using these

models. The third goal concerns distributed approaches for detecting topological changes

in sensor networks. These goals and problems allow us to make the following hypothesis:

Models that represent dynamic topological properties of areal objects provide the

capability of formally specifying and analyzing topological changes, which go beyond the

models that only represent static topological properties. These models also allow the con-

struction of distributed algorithms of topological change detection that are more energy-

efficient than current approaches, such as the basic boundary-based approach.

1.3 Scope of the thesis

The research in this thesis focuses on the development of models that are useful for

classifying topological changes during geographic events and processes. First, the model
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takes the geographic world as a 2-dimensional space, and the areal objects considered

are 2-dimensional entities with finite connected components. We neither consider 0-

dimensional point-like or 1-dimensional line-like entities, nor do we consider objects

with unbounded components. Second, changes are classified based on dynamic topolog-

ical properties. Therefore when constructing the models for evolving areal objects, only

topological properties of the dynamic areal objects are explicitly represented. Other

properties, such as size, shape, or locations of areal objects, are not represented by the

models. Third, most geographic phenomena evolve continuously, and as a consequence,

in this thesis we assume areal objects also evolve continuously or incrementally. Discon-

tinuous changes, like shifts of county boundaries, are beyond the scope of this thesis.

Fourth, we focus on the analysis of properties of independent objects, not relations

between or among objects. Finally, the models focus on patterns of changes from a

topological perspective, and we do not go into the analysis of internal or external causes

of these changes.

1.4 Approach

In this research, we analyze changes systematically based on their topological char-

acteristics. Applying the concepts of the event-oriented approaches [Wor05], changes

can be partitioned into classes, where each class characterizes common properties of its

members.

Topology is an important component in the analysis of areal objects. The topo-

logical properties of dynamic areal objects can change as they evolve, which causes the

topological changes. Topological changes can be differentiated not based on the static

topological properties of the areal objects, but on their dynamic topological proper-

ties, or the way in which the topological properties change. For example, consider the

changes shown in Figure 1.2. Both changes start with the same state and end with the
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same state, but they are considered to be different changes, as the first change can be

interpreted as a hole evolving its shape to engulf a part of the region that surrounds it,

while the second change can be interpreted as the appearance of an island inside the

hole. In the example shown in Figure 1.3, the areal objects in both cases have different

static topological properties, but both changes are similar and can be classified into the

same type of change, because both of them can be interpreted as the appearances of an

island inside a hole.

Figure 1.2 Examples of different topological changes

Figure 1.3 Examples of topological changes of the same type

In order to differentiate topological changes, models are developed to represent

the dynamic topological properties of these changes. Most existing topological models

represent the static topology of areal objects, and it is difficult to extend them for

the representation of dynamic topology. To represent dynamic topology, we need new

models.

In the first part of this research, we assume that the state of an areal object

under consideration is available at any point in space and time. In this case, the static

topological properties of the areal object can be represented by a rooted tree. A tree

morphism can be built between a pair of consecutive representation trees according to
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their genidentity relation [SG04], a transtemporal relation that relates an continuant

entity to what it comes from. To be more specific, according to [SG04], “the formal-

ontological relation of genidentity, or in other words the being-such-as-to-have-come-

forth-from relation, comes in a number of different varieties. If you cut a chunk of

matter in two, the sum of the remaining pieces is physically completely genidentical to

the chunk before cutting. A new-born baby is biologically partially genidentical to its

mother. Genidentity is thus a transtemporal - which for us means transontological -

generalization of the relations of identity and part-whole among continuant entities.”

Different types of topological changes can be specified by tree morphisms. Based

on the tree and morphism representation, some important properties of different types

of topological changes can be revealed and proved.

In real-world monitoring, it is impossible to make perfect observations and sens-

ing reports are usually generated at discrete locations and discrete times; therefore,

continuous changes are often approximated by a series of discrete transitions. In each

transition, a transition region topologically equivalent to a disk is added to or removed

from the areal object. It turns out that the topological changes resulting from a tran-

sition can be classified according to the topological structures of the regions and holes

that are connected to the transition region. These topological structures can be repre-

sented by a single rooted tree, and all kinds of specific types of topological changes can

be specified based on the structure of the representation.

Because the model of basic transitions classifies the changes based on information

only from the area where the change is observed, it allows us to design a distributed

algorithm for sensor networks to detect such topological changes with low communication

cost. Therefore, along with the theoretical research, algorithmic approaches to detecting

the topological changes in sensor networks are also presented and tested.
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1.5 Major results

The major achievement of this research is the construction of mathematical Models

representing the dynamic topology of areal objects. These models explicitly represent the

dynamic topology during the evolution of the areal objects, and capture the semantics

of topological changes. The major results are as follows:

1. Models that specify primitive topological changes in which evolving areal objects

can participate.

2. Proof of an important property of topological changes, namely that any topological

change to the structure of regions can be formed as an ordered composition of

primitive topological changes.

3. Identification of the important features necessary for classifying topological changes.

4. Design of distributed algorithms for capturing and classifying topological changes

using real-time detection.

These results can be applied to the implementation of a sensor network monitor-

ing system which is able to track dynamic geospatial phenomena and form qualitative

reports describing their evolution in terms of topological changes. In addition, this re-

search provides a foundation for further study in spatial and temporal queries in terms

of topological changes. With the formal model, primitive types of changes can be in-

corporated into query languages, and this makes it possible to form queries concerning

the dynamic topological properties of phenomena. Examples of such queries include,

(1) Retrieve the data describing the events in the forest when a wild fire appears, (2)

Retrieve the data describing the typhoons that occurred last year and split during their

evolution.

8



1.6 Intended audience

The intended audience of this thesis primarily consists of researchers and developers

who are interested in qualitative approaches to spatio-temporal changes, especially the

modeling of changes from a topological perspective. The audience also includes experts

from the fields of computer science whose research focuses on spatial or spatio-temporal

information processing.

1.7 Organization of the remaining chapters

The remainder of the thesis is organized as follows.

Chapter 2 reviews research areas related to modeling and detecting topological

changes. Research on dynamic phenomena modeling and classifications of events and

changes is presented. The importance of topological property of spatial objects and

different topological models are discussed. Related work in the literature of sensor

networks is also introduced.

Chapter 3 presents the first model of topological change we proposed. A tree

structure is employed to represent static topological properties of an areal object. Tree

morphisms are used to represent dynamic topological changes of an areal object. Basic

and complex topological changes are specified and classified based on the morphism

representation. Finally, a normal form is constructed for the simplification of complex

topological changes.

Chapter 4 studies theoretical foundations for topological detection in sensor net-

works. It focuses on discrete and incremental transitions of areal objects. A local tree

model is proposed in ℜ2 which represent the topological properties of a basic transition.

Based on the local tree model different types of topological changes are specified. It also
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presents a sensor network framework that captures the necessary information required

by the tree model.

Chapter 5 creates two algorithms for topological change detection that incorpo-

rate the analysis results of Chapter 4. By focusing on capturing the fundamental infor-

mation required by the local tree model, both proposed approaches are able to provide

sensing reports on topological changes during the discrete and incremental changes of

areal objects. By employing the group based framework and reusing the time-invariant

group level data, energy-efficiency is achieved.

Chapter 6 describes the experiments that were conducted in order to test the

proposed topological change detection approaches. The experimental results are also

evaluated.

Chapter 7 concludes this thesis. It presents a summary, the major results and

limitations of this thesis. It also provides discussions of future research areas.
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Chapter 2

RELATED WORK

This research is related to the following two areas: (1) the development of models for

representing changes to the topological properties of evolving regions, and (2) the con-

struction of distributed algorithms of environmental monitoring using sensor networks.

This chapter presents the previous work in both areas.

2.1 Modeling dynamic phenomena

Entities in the world are divided into two categories: continuant (e.g., a human being),

which have continuous existence and a capacity to endure through time, and occurrents

(e.g., a wild fire), which occur and unfold themselves through a period of time [GS04].

The occurrents include events and changes, and differ from continuants in that they

have temporal parts [Sim87]. This section reviews previous work relating to occurrents.

2.1.1 Definition of events

The definition of events has been the focus of considerable debate among philosophers.

There are multiple definitions of events in the literature [PV00]. The extent of existing

definitions of events may also contain other occurrents, such as processes or states,

therefore in this subsection we do not distinguish events from occurrents.
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Montague [Mon69] defines events to be properties of moments or intervals of

time. The sun’s rising is an example of an event defined as a property of a moment of

time; that is, the property of being the moment at which the sun rises. The American

presidential campaign belongs to the category of events identified with properties of

intervals, rather than moments, of time.

Chisholm [Chi70] identifies both events and propositions to be species of states of

affairs. As defined in [Chi70], a state of affairs here refers to “anything capable of serving

as the object of belief, or of hope, or of wonderment, or of any of those other intentional

attitudes that take things other than attributes or individuals as their objects.” In his

definition, a proposition is defined to be a special type of state of affairs which satisfies

that either it or its negation always holds, and an event is defined to be any contingent

state of affairs which is not a proposition and which implies change. As indicated in

[Chi70], the state of affairs that “John walking at 3 P.M. on Feb 5, 1970” is a proposition,

whereas, “John walking” is an event. “John sitting” is a state of affairs that is neither

a proposition nor an event, for it does not imply any changes.

Quine [Qui64] gives events the same status as objects in four-dimensional space-

time. In his definition, both events and objects are considered to comprise simply the

content of some portion of space-time. By this definition, events are not distinguished

from objects. Moreover, different events occupying the same space-time are not dis-

tinguished from each other. For example, if the Earth is rotating and simultaneously

heating up, then by Quine’s definition, the rotation and the heating up of the Earth

are one and the same event, even though the property of rotating and the property of

heating up are distinct.

Kim [Kim73] defines an event to be a concrete object (or an n-tuple of objects)

exemplifying a property (or a n-adic relation) at a time. The event defined in this way

can be described as “object (or a n-tuple object) x has property P at time t.” Identical
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events must be exemplifications of the same property (or relations) by the same object

(or n-tuples) at the same time. Therefore, the rotation and the heating up of the Earth

are different by this definition, as they involve exemplifications of distinct properties.

Davidson [Dav80] identifies events by their positions in a causal network. He

defines events to be the same if and only if they have exactly the same causes and

effects. This definition gives each event a unique position in the framework of causal

relations between events, which is in somewhat the same way as objects having a unique

position in the spatial framework of objects.

None of the above definitions are perfect, and a common definition of events

agreed upon by everyone has not yet been reached. However, each of the definitions

contributes to our understanding.

2.1.2 Events and objects

It is generally agreed that events and objects are ontologically different. However, from

a modeling perspective, events and objects can be treated in many ways as structurally

similar [WH04]. Several facts support this argument. First, similar to classes and in-

stances in the object world, there are generic event-types and individual event-tokens

for events [Gal00]. Second, like objects, events might have instances (occurrences), at-

tributes, belong to a subsumption hierarchy, and have relations to other events [Wor05].

Finally, facts coming from the field of psychology also emphasize the analogy of events

and objects. Zacks and Tversky [ZT01] have shown that event perception could be re-

garded as the temporally extended analog of object perception. As stated in the paper

[ZT01], “events are objects in the manifold of the three dimensions of space plus the one

dimension of time.” Hence, modeling events in the same way as objects are modeled

also meets the nature of human perception and conceptualization.
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The similarities between events and objects allow applying object-oriented ap-

proaches to event modeling. Worboys and Hornsby [WH04] propose a unified modeling

approach for both events and objects. This model extends the geospatial object model

to encompass both geospatial objects and events with their geosettings. Zhang [Zha05]

applies the abstraction processes in the object-oriented paradigm, generalization and

aggregation, to event modeling. The results of the abstraction are different event hier-

archies that define mappings from specialized events (low-level events) to more general

events (higher-level events). The generalization describes the is − a relation between

events, which leads to the event taxonomy. The aggregation explains the compositional

structure of complex events and establishes the part−of relations between events, which

leads to the event partonomy.

As Galton points out [Gal04], there is no clean separation between (spatial)

objects and (temporal) events, since in the real world we can find many phenomena that

are not easy to fit into a simple object/event dichotomy, and can be viewed in multiple

aspects. [Gal04] gives various examples of multi-aspect phenomena, including floods,

wild fires, storms, weather fronts, epidemics, pollution incidents, invasions, processions,

protest marches, traffic jams, bees swarming, and a plague of locusts.

2.1.3 Classification of events

The analogy between events and objects also sheds light on event classification. Ob-

jects with similar properties can form a class and be described by a concept (e.g., lakes

or mountains). These concepts form the basis of a domain ontology [Gua98]. Simi-

larly, events can be classified according to certain criteria to form event classes. In the

literature, some research has been done to classify events and to form event classes.

Based on three basic components of geo-objects [Arm88], eight change scenarios

are proposed [RK95], including change in geometry, change in topology, change in at-
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tribute, change in topology and attribute, change in attribute and geometry, change in

geometry and topology, change in geometry, topology and attribute, and no change.

Hornsby and Egenhofer [HE00] present research on specifying identification based

change. They systematically analyze changes with respect to states of existence and

nonexistence for identifiable objects. In their work, an object is modeled by its identifi-

cation. The status of an object can be one of: existence, non-existence without history,

and non-existence with history. The changes of the object are tracked by the changes in

the status of its identification. These identification changes can be classified according to

the status of the object before and after the changes. According to the model, the iden-

tification changes of a single object can be classified into types of continue non-existence

without history, create, recall, destroy, continue existence, eliminate, forget, reincarnate,

and continue non-existence with history. More types of identification changes are spec-

ified by considering interactions between the objects. Based on the identification based

changes to simple objects, the effects of temporal zooming on the transitions between

the identity states of the objects are discussed in [HE99], and the identification-based

change operations to composite objects are analyzed in [HE98].

Claramunt [Cla95] analyzes possible changes that could take place in objects

and categorizes them into three different classes: evolution concerning a single entity,

evolution in the functional relations between several entities, and evolution in spatial

structure involving several entities.

Renolen [Ren00] identifies, by case study, six types of changes according to the

transitions of objects. They are creation (an object is created), alteration (an object is

changed or modified), cessation (an object is destroyed or removed), reincarnation (an

object that previously has been destroyed or removed is reintroduced), split/deduction

(an object is subdivided in two or more new objects, or one or more objects is deducted
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from an existing object), and merge/annexation (two or more objects are joined together

to form a new object, or one or more objects are “swallowed” into another object).

Galton and Worboys [GW05] discuss the ontological categories of events and

states in dynamic geo-networks and possible kinds of causal relations. Three classes of

events in networks are distinguished, namely, changes to the structure of the network

itself (e.g., introduction of a new link), changes which do not affect the structure of

the network itself but which may affect the flows in the networks (e.g., removal of an

obstruction), and changes that occur in the flows themselves (e.g., creation of a new

flow on a link).

Wilmsen [Wil06] analyzes identities and topological states of objects in snapshots

and derives different types of changes, including continuous changes (such as growing,

shrinking, and moving), as well as discrete changes (such as splitting and merging).

Coan and Egenhofer [CE96] studies the possible types of changes incurred by

erosion and accretion of small islands Nantucket Sound off the Cape Cod shoreline, and

develops a concise formal model that summarizes these changes.

2.2 Representation of topological properties

Many fields of science and engineering dealing with spatial data benefit from formal

models that are capable of defining and representing essential topological properties of

spatial objects. The following subsections present various approaches to represent the

topology of space and objects.

2.2.1 Point-set approach

In this approach, each object that occupies space is modeled as a set of points. The

open sets defined on the space provide a framework to specify the topological properties

of the objects.
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Definition 2.1. Let X be a set of points. A topology τ on X is a collection of subsets

of X, such that

1. ∅ ∈ τ , and X ∈ τ .

2. The union of any collection of sets in τ is in τ .

3. The intersection of any finite number of sets in τ is in τ .

The elements in τ are called open sets, and their complements in X are closed

sets. Usually X is considered to be the 2-dimensional Euclidean space ℜ2, and the

topology defined on it is the usual topology, which is a collection containing all the

unions of open discs
{
(x, y) : (x − a)2 + (y − b)2 < r2, a ∈ ℜ, b ∈ ℜ, r ∈ ℜ

}
.

From the definition of an open set, the most important concepts in spatial data

modeling, including continuity, interior, boundary, exterior, and different kinds of con-

nectivity can be derived. These definitions are given here for the sake of completeness.

A further account, which motivates and explains the definitions, can be found in [Lip65].

Definition 2.2. Let X1 and X2 be topological spaces with topology τ1 and τ2, respectively.

A function f from X1 to X2 is continuous iff ∀H ∈ τ2, f−1[H] ∈ τ1.

Definition 2.3. Let A be a subset of ℜ2.

1. The union of all open sets of X contained in A is called the interior of A. The

intersection of all the closed sets of X containing A is called the closure of A. The

difference between the closure and interior of A is the boundary of A.

2. A is defined to be disconnected if there exist open subsets G and H of X such that

A ∩ G and A ∩ H are disjoint non-empty sets whose union is A. A is connected

if it is not disconnected.
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Figure 2.1 Examples of subsets of the topological space

3. A is defined to be path connected, if for any two points a,b ∈ A, there exists a path

in A which connects a and b; that is, there is a continuous function f : [0, 1] → A

with f(0)=a and f(1)=b.

4. A is defined to be simply connected if 1) it is path connected, and 2) every closed

path can be contracted to a point; that is, given any continuous function f from

the unit circle to A, there exists a continuous function F from a closed unit disk

to A such that the restriction of F to the unit circle is f .

As an example, Figure 2.1 shows two subsets T1 and T2 in space. T1 is simply

connected, whereas T2 is not, because two different paths connecting points a and b in

T2 form a closed path that is impossible to be contracted to a point such that it would

be in T2.

An important property of the elements in the 2-dimensional Euclidean space is

the Jordan Curve Theorem, stated as follows. Let c be a simply-closed curve (a Jordan

curve) in ℜ2. Then the complement of the image of c consists of two distinct connected

components. One of these components is bounded and the other is unbounded. Also, c

is the boundary of both components.

The usual topology defined on the 2-dimensional Euclidean space forms the basis

of formalizing topological concepts of spatial objects. However, as the number of open

sets in the usual topology are infinite, and computers are only capable of dealing with
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finite-precision information, additional data structures on the points in space are needed

in order to compute their topological properties.

2.2.2 Graph based representation

An elementary structure that can be handled easily on computers is a graph. Graphs,

including trees, are widely used in modeling topology.

In the field of image processing, the region adjacency graph (RAG) [Pav81] is

a commonly-used representation of topological structures in an image. A RAG is an

undirected graph G(N, A) that stores region adjacency information. Each vertex n ∈ N

of the graph represents a connected component in the image. Two vertices are connected

by an arc a ∈ A in the graph if, and only if, the components they represent are adjacent.

As an example, Figures 2.2(a) and (b) present an image and its corresponding RAG.

A RAG provides a way to transfer the image comparison into graph matching. The

comparisons are independent of geometry and are tolerant to deformation as long as

the topology of the image is preserved. Therefore, a RAG with its extensions has a

wide application in region-based image processing, including image retrieval [FTGL04],

image registration [AHF05], and building image pyramids [Kro95].

Figure 2.2 An example of a region adjacency graph
(a) regions, and (b) RAG

As a special case of a RAG, it has been proved by Rosenfeld [Ros74] that the

region adjacency graph of a binary image is a tree. Each node of the tree represents a
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connected component of the image, and each edge of the tree represents, in addition to

the adjacent relation, the surrounding or inside relation between the components. As

the surrounding and inside relations are relations with strict partial order, the tree is in

fact a rooted tree with the node that represents the background component being the

root. Image processing based on the region adjacency tree is faster than that based on

the RAG, as efficient algorithms of tree comparison exist. As an example, Costanza and

Robinson [CR03] apply the region adjacency tree to encode the topology of fiducials

(distinctive markers) for real-time recognition. Figures 2.3(a) and (b) show an example

of a binary image (a fiducial) and its representation tree.

Figure 2.3 Example of region adjacency tree
(a) a fiducial, and (b) an adjacency tree

From another perspective, objects can also be represented explicitly by different

cells in a subdivision of the space [Ape04]. Incidence relations between cells are impor-

tant topological relations that can be represented by incidence graphs. As the incidence

relation is asymmetric, an incidence graph is a directed acyclic graph. The nodes of the

graph correspond to the cells of the object, and an edge of a graph is defined to be from

an (i + 1)-dimensional cell C1 to an i-dimensional cell C2 that is incident to C1. Figure

2.4(a) shows an object, and its corresponding incidence graph is shown in Figure 2.4(b).

Trees are employed in the CAD field to represent the hierarchy formed by the

disconnected regions and holes. One example is the disassociative area model (DAM)
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Figure 2.4 Example of incidence graph
(a) an object, and (b) an incidence graph

[KVW89]. In this model, an area map is first dissected into a set of non-overlapping

primitive regions, whose boundaries are simple closed loops. The representation of the

topology hinges on the boundary of these primitive regions. The outer boundary of a

primitive region is known as an enclosing boundary, and any inner boundary is known as

a hole. The containment relations between a complete set of boundaries form a hierarchy,

which can be represented by a rooted tree. An example of such a representation is shown

in Figures 2.5(a)-(c).

Besides representing the topology of an object, a tree is capable of representing

the topology of contours in a scalar field, which is usually referred to as a contour tree.

The contour tree is obtained by continuous contraction of each contour to a single point.

Adjacent contours are contracted to adjacent points. Distinct contours are contracted

to distinct points [CSA00]. The resulting tree satisfies that:

1. Each leaf vertex represents the creation or deletion of a component at a local

extreme of the parameter.

2. Each interior vertex represents the joining and/or splitting of two or more com-

ponents at a critical point.
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Figure 2.5 An example of DAM model
(a) a set of primitive regions, (b) boundary of regions, and (c) representation tree

3. Each edge represents a component in the level sets for all values of the parameter

between the values of the data points at each end of the edge.

Figure 2.6 shows an example of a scalar field together with its corresponding

contour tree.

2.2.3 Topological representation of areal objects

Topological features are important in spatial data modeling for characterizing relation-

ship between spatial objects, such as adjacency, connectivity, and inclusion. Points,

lines, and polygons are provided by most spatial data models. Usually, the polygons

supported by data models are topologically equivalent to disks. There is some research

on extending these spatial data types with more complex semantics that support the

representation of richer topological properties.
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Figure 2.6 A scalar field and its contour tree

The first type of extension aims at supporting representations of regions that are

not simply connected. Examples include [ECF94, SV92], in which a region with holes

is represented by a set of simple polygons. One of the polygons represents the region,

and the others represent the holes contained in the region. Another modeling approach,

commonly used in VLSI design or image analysis, represents a spatial region with holes

by a single polygon. It connects the boundaries of holes to the outer boundary of the

region by introducing an additional line segment for each hole [Kil86, Kro95]. The

polygon resulting from the insertion of “bridges” is no longer simple, but many graphics

and geometric algorithms handle this type of polygon successfully.

Figure 2.7 An example of areal object with ambiguity

More complex topological properties have also been considered, where areal ob-

jects can be disconnected. An areal object can be composed of one or more components,

and each component is allowed to have holes. This requires the models to represent a

hierarchy of regions, holes, regions with holes, which contain islands with holes to any
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finite level. The representation becomes more complex if weakly connected components

are considered; that is, the boundaries of an areal object are allowed to touch at a sin-

gle or a finite number of points. This brings in an ambiguity. For example, the areal

object shown in Figure 2.7 has two interpretations. It can either be interpreted as a

region with two holes that are weakly connected, or be interpreted as two regions being

weakly connected at three points. Examples of models of areal objects representing

richer topological properties include [SB06, WB93].

In [SB06], the regions with richer topological properties are called complex spatial

regions. Complex spatial regions are built from simple regions, which are regularly

closed regions homeomorphic to closed disks. In the model any complex spatial region

is composed of a set of simple regions, a subset of which represents holes. Several

conditions are set up to avoid ambiguity, which include:

1. the boundary between any pair of single regions can touch in at most one point,

2. open hole chains are prevented, and

3. close hole chains are prevented.

Here, an open hole chain is a sequence of holes in which any two subsequent holes

meet, and both the first and the last hole touch the boundary of the outside region. A

close hole chain is a sequence of holes in which two subsequent holes meet, and both

the first and the last holes in the sequence meet. The three conditions ensure a unique

interpretation of the complex regions. Under these conditions, the example in Figure 2.7

can only have the second interpretation since the first interpretation leads to an open

hole chain, which is prevented by condition 2.

In [WB93], both graphs and trees are used to model areal objects. The areal

objects are built up from basic objects called atoms, which are defined as those subsets

of ℜ2 topologically equivalent to the closed disk. This model is extended by aggre-
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gating atoms to regularly closed areal objects, termed base areas, whose structure is

described by skeleton graphs. Based on the atoms and base areas, the generic areas are

constructed, in which the recursive construction of areal objects with holes and islands

within holes are represented by trees.

In [Pai98], graphs are used to represent the topological invariants of a spatial

scene (a set of spatial objects and their embeddings in space). A node of a graph

represents an object, and the arcs represent the topological relations between the objects

in the scene. A spatial scene with various topological relations, such as meet, disjoint

and coveredBy, is described by one or more graphs in a hierarchy. Using the graph based

representation, the equivalence between a pair of spatial scenes can be evaluated.

2.2.4 Binary topological relations

An active research area related to topological representation is the study of binary topo-

logical relations. Topological relations are spatial relations invariant under topological

transformations, such as translation, rotation, and scaling.

Based on the 4-intersection framework [EF91], in which the intersections of the

interior and boundary of two simple regions are considered, eight topological relations be-

tween simple regions can be specified, namely, disjoint, meet, equal, inside, contains, cov-

ers, coveredBy and overlap. The 9-intersection model [EH90] extends the 4-intersection

model [EF91] by considering the intersections with respect to the object’s exterior. The

intersection models have also been applied to study the topological relations between

regions with holes [ECF94, EV07], between a line and a region [EM95], between directed

line segments [KE06], and between two regions on the sphere [Ege05].

Another extension of the 4-intersection is described in [EF95], which refines the

model of empty/non-empty 4-intersections with further topological invariants to account

for more details about topological relations. The result of the extension is a model that
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is capable of classifying all the topological relations between 2-dimensional regions with

non-empty boundary-boundary interactions.

Binary topological relations can be used to derive some types of changes if objects

are restricted to be simply connected [Wil06]. For example, let A0 and A1 be the regions

before and after the change respectively. A growing occurs if A1 contains or covers A0.

A shrinking occurs if A1 is inside or is covered by A0. A moving occurs if A1 overlaps,

meets, or is disjoint with A0. Finally, no change occurs, if A1 equals A0. In addition,

if there are two objects in the scenario, the types of changes can be identified according

to the sequence of topological relations that hold between the objects over time.

Existing research also focuses on the analysis of transition between binary topo-

logical relations [EAT92]. Research in this area aims at building conceptual neighbor-

hood graphs in order to describe possible direct transitions between certain kinds of

binary topological relations during the continuous change of two spatial objects. This

research has similarities to our work; however, the study of transitions between topo-

logical relations is different from the study of changes in topological structure. In the

former, the emphasis is on exploring the constraints that continuity imposes on tran-

sitions between binary topological relations. In our work, the topological structure of

spatial objects is more complex, for example allowing objects to have holes, and our

analysis focuses on changes in the structure of such complex objects.

In the field of qualitative spatial reasoning, Cohn and Bennett et al. [CBGG97]

developed the Region Connection Calculus (RCC). RCC is a topological approach to

spatial representation and reasoning where spatial regions are non-empty regular sub-

sets of some topological space. In this work, topological relations between regions are

formalized based on a single primitive relation - the “connected” relation C. For any

spatial regions S1 and S2, C(S1, S2) holds if and only if the closures of S1 and S2 are

connected, or share a common point. Based on the connected relation, eight basic topo-
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logical relations can be formally defined, including P(x, y) (x is a part of y), PP(x, y)

(x is a proper part of y), EQ(x, y) (x is equal to y), O(x, y) (x overlaps y), PO(x,

y) (x partially overlaps y), DR(x, y) (x is discrete from y), EC(x, y) (x is externally

connected with y), TPP(x, y) (x is a tangential proper part of y), NTPP(x, y) (x is

a non-tangential proper part of y). The formal semantics associated with the relations

form a foundation of reasoning about the spatial relations [CR07, Haz05].

The work of RCC is extended to the “Egg-Yolk” theory [CG96], in which a region

with undetermined boundaries is represented by a pair of concentric regions, each with

a determinate boundary. Based on an adaptation of the RCC, 46 possible relations

between egg-yolk pairs are generated.

2.3 Sensor networks

In recent years, sensor networks have attracted a lot of attentions from researchers in

both academia and industry [EGHK99, CK03]. A sensor node is a small embedded

device able to acquire, process, and transmit data. There are different types of sensor

nodes capable of monitoring a wide variety of ambient conditions, such as temperature,

light, humidity, pressure, and noise level. By communicating with each other, sensor

nodes form networks and work together to cover a larger sensing area.

Many research topics are related to sensor networks. In this section, we first

present the characteristics of sensor networks agreed upon by the research community,

and then we briefly review literature relevant to environmental data collecting and topol-

ogy processing in sensor networks.

2.3.1 Characteristics of sensor networks

Sensor networks have the following characteristics. First of all, sensor nodes have limi-

tations in energy, memory and computational capacities. As sensor nodes are deployed
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with non-rechargeable batteries in many applications, the constraint in energy is the

most critical concern among all these limitations [EGHK99]. In order to ensure a long

lifetime, most research in sensor networks is directed to the energy-efficient approaches,

and low-power consumption becomes the principle of sensor networks design from net-

work architectures to protocols and algorithms [JSAC01, CTLW05].

Second, in a sensor network application, usually communication consumes much

more energy than computation. As indicated in [SBA04], “transmitting one bit over

radio is at least three orders of magnitude more expensive in terms of energy consumption

than executing a single instruction.” Hence, an effective way to save energy is to perform

computations before the data is transmitted, so as to reduce communication to the

minimum.

Third, it is common for a huge number of sensor nodes to be deployed in an

unattended manner without any post-deployment configuration. Also, the high cost

in communication prevents sensor nodes from knowing the global state of the whole

network. Therefore, distributed and localized algorithms are often preferred in sensor

network applications [MSKP01].

Finally, sensor nodes are unreliable. They easily fail to work due to energy

exhaustion or hardware failure. Therefore, sensor networks are usually considered to be

dynamic, and self-organization is performed during their operation.

2.3.2 Environmental data collecting

Although the research in sensor networks was initially driven by military purposes, sensor

networks are currently used in various applications [Xu02]. As the ambient conditions

to be monitored are usually distributed over a large area in space, a very straightforward

application of sensor networks is to the field of environmental monitoring [BMPW00].

Usually, in these applications, sensor nodes are deployed over a large geographic area
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to collect continuous data about physical processes. These sensed data are transmitted

back to the base stations for further processing [Xu02]. Example applications include

the CORIE [COR08] system, which is a monitoring system for the Columbia river; as

well as the ALERT system [ALE08], which is deployed across most of the western United

States and is used for flood alert in California and Arizona.

With the energy constraint, energy-efficient approaches are usually preferred in

the environmental data collecting research literature. The basic data aggregations op-

erations, such as MAX, MIN, AVERAGE, are the first type of functions that can be

performed by sensor networks with low communication cost. These functions are sup-

ported by sensor database systems, like TinyDB [MFHH05], as standard operations.

The aggregations are usually coupled with tree-based routing, where each routing tree

is rooted at the sink. During the aggregation, data are transmitted from leafs to the

root. Aggregation can take place at each node in the tree before it resends the data

toward the root, and therefore the communication cost can be significantly reduced. In

addition to the basic aggregations, more generalized aggregation results can be obtained

via wavelets or distributed regressions to construct summaries of the entire sensed data

[NGSA08, HW04].

As the environmental data are often expected to be spatially and temporally

correlated, the communication cost can be reduced by minimizing the correlation re-

dundancy. To minimize the temporal correlation redundancy, a node can transmit data

only if a significant change in the sensed data is observed since the last reporting round.

Sharaf et al. [SBLC03] use this mechanism to support continuous aggregate queries

with bounded error. To minimize the spatial correlation redundancy, a node does not

transmit data if its measurement is not significantly different from its neighbors. Usually

both compression mechanisms are combined together for better performance. Examples

of applications using both mechanisms include [SBY06, MLNL04], in which sensor net-
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works transfer a large portion or even the entire sensed data back to the base station in

order to form reports, such as contour maps, of the whole phenomena.

The spatial correlation of the sensed data also allows cluster-based approaches

to have a good compression ratio during data transmission. In such approaches, each

sensor first sends the data to a local cluster head, which is able to detect the spatial

correlation and perform compression before resending the data back to the sink. An

example approach in this category is [CDHH06], in which dynamic probabilistic models

are exploited to predict sensor values in a cluster based on both the spatial and temporal

neighboring information. The cluster heads report to the sink only if a significant

difference between the predicted and actual sensing value is detected. The impact of

different spatial correlations on optimal clustering schemes has been studied by Pattem

et al. [PKG04], who discover a clustering scheme that has near-optimal performance for

a wide range of spatial correlations.

As the representation of the boundary provides a more concise description of

large-scale phenomena than an enumeration of all the nodes, some approaches focus on

the detection of boundaries of the phenomena. By only having the nodes located near

the boundary to report, energy efficiency is achieved [SO05], and the communication can

be further reduced by performing aggregation during the transmission of the boundary

information [LL07, ZW07]. In this research area, approaches to localized boundary

detection are important. Chintalapudi and Govindan [CG03] propose three algorithms

for sensor nodes to construct the boundary according to local information. The proposed

algorithms include the statistical approach, the image processing approach, and the

classifier-based approach. Wang et al. [WGM06] propose a distributed algorithm that

correctly detects nodes on the boundary based only on the network topology.
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2.3.3 Topology monitoring in sensor networks

A straightforward application of sensor networks is the monitoring of geographic phe-

nomena [NSC+04]. Previous research either focuses on proposing energy-efficient ap-

proaches to transmitting the entire sensed data back to base stations [SBLC03, SBY06],

or focuses on providing important spatial properties of the phenomena. For example,

the snake model used by Jin and Nittel [JN08] is able to derive the area and centroid of

a deformable 2D object over time.

Recently, there is an increasing interest in considering topological information

when processing sensed data. Gandhi, Hershberger and Suri [GHS07] emphasize the

topology of the isolines in a scalar field and propose an approach that approximates a

family of isolines by a collection of topology-preserving polygons. Sarkar and Zhu et

al. [SZG+08] present a distributed algorithm for the construction of a contour tree to

represent the topological structure of contours in a scalar field, based on which isoline

queries can be enabled.

In addition to the research of topology detection in static data, detection of topol-

ogy in time-varying data with sensor networks is also considered. Worboys and Duckham

[WD06] provide a computational model for sensor networks to detect global high-level

topological changes based on low-level “snapshot” of spatiotemporal data. Zhu et al.

[ZSGM08] propose a distributed algorithm for sensor networks to maintain contours (or

boundaries) of a binary object incrementally as they deform, while guaranteeing that

the maintained contours capture the global topological features of the object boundary.

Current research has also made initial attempts to topological change detection using

wireless sensor networks. Farah et al. [FZWN08] provide initial attempts to detect

topological changes in responsive sensor networks by an event-driven approach. Sadeq

[Sad07] proposed the idea of detecting topological changes by maintaining the boundary
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state of areal objects. In [JW08], we present a topological change detection approach

based on local aggregation.

Another area of research of sensor networks related to the detection of areal object

topology is the retrieval of network topology itself, especially the connectivity among

sensor nodes in their communication graphs [LY06]. Deb, Bhatnagar and Nath [DBN04]

in their STREAM algorithm enable the retrieval of the entire network topology with

predefined resolution, which allows users to make a trade-off between topology details

and resources expended. As holes in the sensor network are of primary interest in

network management, some existing work detects sensor network holes using methods

based on topological information [Fun05], location information [FGG06], or statistical

information [FKP+04]. Although the detection of some topological properties of areal

objects can be achieved based on the analysis of the network topology among sensor

nodes that observe the areal object [FGG06], the cost for network topology detection is

very high. Therefore, more efficient areal object topology detection methods are needed.

2.4 Summary

This chapter reviewed related work on the modeling and detection of topological events.

Various definitions of events and event classifications were discussed. Different models

of static topological properties representation were also reviewed. Finally, existing work

of topology detection in sensor networks was presented.
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Chapter 3

TOPOLOGICAL CHANGES OF AN AREAL OBJECT

Areal objects rising from dynamic fields have complex topological structures. In this

chapter, we introduce the basic definitions of dynamic fields, areal objects, and topolog-

ical changes of areal objects. A model is presented for the classification of topological

changes. Based on the model, important properties of these topological changes are

proved.

3.1 Dynamic fields and areal objects

From a set-theoretic point of view, a dynamic field is a function [Gal04]

f : S × T → V

in which S, T , V are the spatial domain ℜ2, the temporal domain, and a set of possible

scalar values, respectively. Taking a snapshot view, the dynamic field can be reorganized

into the form

f : T → (S → V )

In this thesis, we assume that f is a binary field, and the set V of scalar values

is {0, 1}. Therefore, the function f has an equivalent specification:
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f̂ : T → 2S

For ∀t ∈ T , f̂(t) gives the set of points that are mapped to 1 at time t; that is, f̂(t) =

{s : s ∈ S, f(t, s) = 1}. In this way, the dynamic field is converted into f̂ , which is a

function from the temporal domain to a collection of subsets of ℜ2. Each subset of the

ℜ2 is an areal object, and the dynamic field can be considered as a description of the

evolution of an areal object. As the areal object evolves through time, its topological

properties may change, and topological changes can be identified.

3.2 Areal objects

An areal object is a subset of ℜ2. As we are using areal objects to represent geographic

phenomena at a particular time, an areal object is usually assumed to be bounded and

to be composed of a finite number of connected components. We call these components

regions. Each region has zero or a finite number of holes. Besides that, any regions or

holes of an areal object are assumed to be purely two-dimensional; that is, they cannot

be single points or line segments [SB06]. Definitions 3.1 and 3.2 formalize the concept

of bounded subset, and definition 3.3 defines areal objects.

Definition 3.1. Let C be a simple closed curve (i.e., a Jordan curve) in ℜ2. According

to the Jordan Curve Theorem, the complement of C consists of two distinct connected

components. One of these components is bounded, and the other is unbounded. We

define the bounded component to be the interior of C, and the unbounded component to

be the exterior of C.

Definition 3.2. Let R be a subset of ℜ2. R is defined to be bounded if there is a Jordan

curve in ℜ2, whose interior contains R.

An areal object in ℜ2 is defined as follows:
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Definition 3.3. An areal object is a bounded set R in ℜ2, such that:

1. R is regularly closed; that is, the closure of the interior of R is R.

2. Both interiors of R and ℜ2\R have a finite number of connected components.

The interior of an areal object, defined in definition 3.3, is locally Euclidean; that

is, every point in the interior of R has a neighborhood that resembles the 2-dimensional

Euclidean space. Hence definition 3.3 allows us to define areal objects to be a union of

a finite number of 2-manifolds together with their boundaries. This definition excludes

some other cases: the first condition excludes the cases that contain 0-dimensional points

or 1-dimensional lines. The second condition excludes the “pathological” cases, such as

the infinite number of components shown in Figure 3.1.

Figure 3.1 An example of “pathological” cases

The topological properties of areal objects include different types of connectivity

of the regions and holes and the topological structure of the areal object. For example,

a region can be simply connected (consisting of one piece and no holes), and a hole

can be simply connected (consisting of one piece and does not contain any regions as

its islands.) In addition, the areal object can be weakly connected, which is defined as

follows.

Definition 3.4. An areal object R is defined to be weakly connected if the number of

connected components of R or of S\R can be changed by removing a finite number of

points from R. Otherwise, it is defined to be strongly connected.

The weak/strong connectivity of an areal object is independent of whether it is

connected or disconnected. A weakly connected areal object may be either connected
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or disconnected, as may be a strongly connected areal object. Figure 3.2 shows dis-

connected and connected areal objects R1 and R2, both being weakly connected. The

number of connected components of R1 can be increased by removing the point P1 from

R1. The number of connected components of S\R2 can be decreased by removing the

point P2 from R2.

Figure 3.2 Examples of weakly connected areal objects

Topological structures of areal objects may change as they evolve over time. In

the following sections, we discuss the possible topological relations between the compo-

nents and provide a model based on tree morphisms to represent and specify different

types of topological changes.

3.3 Topological relations between components of an areal

object

Given an areal object R, connected components of R are said to be its positive com-

ponents and connected components of the complement of R are said to be its negative

components. Both positive and negative components are referred to as components. We

note that components of an areal object form a partition of the whole space ℜ2. An

areal object must have one and may have more than one positive component as well as

more than one negative component, and both positive and negative components may

have holes. As an example, Figure 3.3(a) shows an areal object, whose positive and
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negative components are represented by the shaded areas in Figures 3.3(b) and 3.3(c),

respectively. In the figure, the outer rectangles represent the extent of the ℜ2.

(a) (b) (c)

Figure 3.3 An example of tree representation of components
(a) an areal object, (b) positive components, and (c) negative components

The topological relations between the components characterize the topological

structure of the whole areal object. The closure of each component is a region, possibly

with holes. By the definition of components, the interiors of different components never

intersect. Therefore, the topological relations between a pair of components in this

thesis are a subset of those specified based on the intersection models. Let A and B

be two components. We analyze possible topological relations between A and B by the

following five steps.

Step 1, consider the case in which both A and B are simple regions without

holes. As A◦ ∩ B◦ = ∅, by the 9-intersection model [EH90], the topological relations

between A and B can only be either meet or disjoint.

Step 2, consider the case in which A is a simple region without holes and B is a

region with a hole. From [EV07], we use the generalized region B∗ as the union of the

holed region and the hole and BH as the hole of B.

As A◦ ∩ B◦ = ∅, it follows that A◦ ⊆ (BH)◦ whenever A◦ ∩ (B∗)◦ 6= ∅; that

is, whenever A◦ intersects (B∗)◦, A◦ must be completely contained in the interior of

BH , and therefore intersects neither the boundary nor the exterior of BH . In terms of

the 9-intersection model, if the relation between A and B∗ is contained in the set of
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Figure 3.4 Topological relations between R and Rh

{contains, covers, equal, overlap, inside, coveredBy}, the relation between A and BH

must be contained in the set of {inside, coveredBy, equal}. With this constraint, among

all the 23 topological relations between a region and a region with a hole [EV07], the

topological relation between A and B can only be one of the five, including RRh1,

RRh2, RRh21, RRh22, RRh23. Figure 3.4 shows example configurations for each of the

topological relations between A and B.

Step 3, consider the case in which both A and B are single-holed regions. From

[VE08], we use A∗ and B∗ to represent the generalized regions of A and B, respectively,

and use AH and BH to represent the holes of A and B, respectively.

As A◦∩B◦ = ∅, it follows that whenever (A∗)◦∩(B∗)◦ 6= ∅, either (A∗)◦ ⊆ (AH)◦

or (B∗)◦ ⊆ (AH)◦. In terms of the 9-intersection model, if the relation between A∗

and B∗ is in the set of {contains, covers, equal, overlap, inside, coveredBy}, either the

relation between A∗ and BH is in the set of {inside, coveredBy, equal}, or the relation

between AH and B∗ is in the set of {contains, covers, equal}. With this constraint,

among all the 152 topological relations between two single-holed regions [VE08], the

topological relations between A and B can only be one of the eight, including t1, t2, t99,

t100, t109, t141, t143, and t152. Figure 3.5 shows example configurations for each of the

topological relations between A and B.
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Figure 3.5 Topological relations between a pair of Rhs

Step 4, consider the case in which A is a simple region without a hole and B is

a region with multiple holes. We use B∗ to represent the union of B and all its holes.

Figure 3.6 Topological relations between R and R̃h

As A◦ ∩ B◦ = ∅, either of the following conditions must be satisfied: (1) A◦ is

completely contained in the interior of a hole of B, or (2) A◦ ∩ (B∗)◦ = ∅. If condition
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(1) is satisfied, we use BH to represent the hole that contains A◦. Otherwise, we use

BH to represent one of the holes of B. The possible topological configurations between

A, B∗ and BH are the same as the results derived in step 2. Therefore, the topological

relations between components A and B are an extension of the results in step 2, in

which B is allowed to have multiple holes. We name these relations RR̃h1, RR̃h2,

RR̃h21, RR̃h22, and RR̃h23, respectively. Figure 3.6 shows example configurations for

each of the topological relations between A and B.

Finally, consider the case in which both A and B are regions with multiple holes.

We use A∗ to represent the union of A and and all its holes, and B∗ for component B.

Figure 3.7 Topological relations between a pair of R̃hs

As A◦∩B◦ = ∅, one of the following three conditions must be satisfied: (1) (A∗)◦

is completely contained in the interior of a hole of B, (2) (B∗)◦ is completely contained

in the interior of a hole of A, or (3) (A∗)◦∩(B∗)◦ = ∅. If condition (1) is satisfied, we use

BH to represent the hole of B that contains (A∗)◦, and we use AH to represent a hole of
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Table 3.1 Topological relations between components
Topological relation Type of A Type of B adjacent-to surrounded-by

R(A, B) relation relation

disjoint Simple Simple No No

meet Simple Simple Yes No

RRh 1 Simple Single-holed No No

RRh 2 Simple Single-holed Yes No

RRh 21 Simple Single-holed Yes B surrounds A

RRh 22 Simple Single-holed Yes B surrounds A

RRh 23 Simple Single-holed No B surrounds A

t1 Single-holed Single-holed No No

t2 Single-holed Single-holed Yes No

t99 Single-holed Single-holed Yes B surrounds A

t100 Single-holed Single-holed Yes B surrounds A

t109 Single-holed Single-holed No B surrounds A

t141 Single-holed Single-holed No A surrounds B

t143 Single-holed Single-holed Yes A surrounds B

t152 Single-holed Single-holed No A surrounds B

RR̃h 1 Simple Multi-holed No No

RR̃h 2 Simple Multi-holed Yes No

RR̃h 21 Simple Multi-holed Yes B surrounds A

RR̃h 22 Simple Multi-holed Yes B surrounds A

RR̃h 23 Simple Multi-holed No B surrounds A

t̃1 Multi-holed Multi-holed No No

t̃2 Multi-holed Multi-holed Yes No

t̃99 Multi-holed Multi-holed Yes B surrounds A

t̃100 Multi-holed Multi-holed Yes B surrounds A

t̃109 Multi-holed Multi-holed No B surrounds A

t̃141 Multi-holed Multi-holed No A surrounds B

t̃143 Multi-holed Multi-holed Yes A surrounds B

t̃152 Multi-holed Multi-holed No A surrounds B

A. If condition (2) is satisfied, we use AH to represent the hole of A that contains (B∗)◦,

and we use BH to represent a hole of B. Otherwise, we use AH and BH to represent two

holes of A and B, respectively. The possible topological configurations between A∗, AH ,

B∗ and BH are the same as the results of step 3. Therefore, the topological relations

between components A and B are an extension of the results in step 3, in which both

A and B are allowed to have multiple holes. We name these relations t̃1, t̃2, t̃99, t̃100,

t̃109, t̃141, t̃143, and t̃152, respectively. Figure 3.7 shows example configurations for each

of the topological relations between A and B.

41



In all, based on the intersection models, we have explored the topological relations

between two components. In this thesis, we are most interested in the adjacency relations

and the surrounded-by relations between the components. They are defined as follows:

Definition 3.5. Let X1 and X2 be a pair of different components in a partition of ℜ2.

1. X1 is said to be adjacent to X2 if the boundary of X1 intersects the boundary of

X2.

2. X1 is said to be surrounded by X2 if any path that connects a point in the closure

of X1 to a point at infinity intersects the closure of X2\X1. X1 is said to surround

X2, if X2 is surrounded by X1.

Table 3.1 shows the adjacent-to and surrounded-by relations between the all the

possible configurations of components A and B whose topological relations are specified

by the intersection models. As shown in the table, the adjacency and surrounded-by

relations together with the types of the components are able to differentiate most of the

topological relations specified by the intersection models. Therefore, when specifying and

detecting topological changes, we focus on the adjacency and surrounded-by relations.

3.4 Basic definitions

This section gives the formal definitions that relate to trees and tree morphisms, which

form the basis for modeling the topological changes. (Note: in this and the following

sections, trees always refer to rooted trees.)

Definition 3.6. A graph G is a pair 〈V,E〉, where V is the set of vertices in the graph,

and E is a set of subsets of V representing the edges of the graph. Each element in E

has the form {v1, v2}, where v1 and v2 are different vertices in V .
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Definition 3.7. In a graph G = 〈V,E〉, a path is a sequence of vertices of the form:

[v1, v2, ...vk−1, vk]

where vi ∈ V for i = 1, 2, ..., k, and {vi, vi+1} ∈ E for i = 1, 2, ..., k − 1. A path is

defined to be simple, if ∀i, j ∈ {1, 2, ..., k}, i 6= j implies vi 6= vj. A cycle is defined

to be a path [v1, v2, ...vk−1, vk] such that v1 = vk. A cycle is defined to be simple, if

∀i, j ∈ {1, 2, ..., k − 1}, i 6= j implies vi 6= vj.

We will use V (G), E(G) to represent the set of vertices and edges of the graph

G respectively. We say vertices v1 and v2 are adjacent in G, if {v1, v2} ∈ E(G).

Definition 3.8. A graph morphism from a graph G1 to a graph G2 is a function ϕ :

V (G1) → V (G2) such that for all vi,vj ∈ V (G1), ϕ(vi) and ϕ(vj) are adjacent in G2 if

and only if vi and vj are adjacent in G1.

Definition 3.9. A tree T is defined to be a graph with the properties that:

1. For all different vertices v1, v2, there is one and only one simple path in T that

connects v1 and v2.

2. There is a distinguished vertex r called the root of the tree.

To emphasize the root of the tree, we will use a triple 〈V,E, r〉 to represent a

tree.

Definition 3.10. Given two trees T1 = 〈V1, E1, r1〉 and T2 = 〈V2, E2, r2〉, a tree mor-

phism ϕ from T1 to T2 is defined to be the graph morphism ϕ from T1 to T2, with an

additional requirement that ϕ(r1) = r2.

A tree morphism is injective if and only if ϕ is an injective function; that is,

distinct vertices of T1 are mapped to distinct vertices of T2 through ϕ. A tree morphism
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is surjective if and only if ϕ is a surjective function; that is, every vertex of T2 is mapped

onto by at least one vertex of T1 through ϕ. A tree morphism is an isomorphism, if and

only if it is both an injective and a surjective tree morphism.

3.5 Tree representation of areal object

This section considers the representation of components and topological relations of an

areal object. The surrounded-by relations of the components in a snapshot satisfy the

following properties [BD07]:

1. Transitivity: for any components C1, C2, and C3, whenever C1 is surrounded by

C2, and C2 is surrounded by C3, C1 is surrounded by C3.

2. Asymmetry: for any components C1 and C2, if C1 is surrounded by C2, then C2

cannot be surrounded by C1.

3. The root property: there is one and only one component C such that all the other

components are surrounded by C.

4. No-partial-overlap: for any two distinct components C1 and C2 surrounding the

same component, it holds that either C1 is surrounded by C2, or C2 is surrounded

by C1.

According to these properties, rooted tree structures are employed to represent

the surrounded by relation between all the components. A rooted tree is a special type

of directed tree, in which edges have a natural orientation (being away from the root).

In the rooted tree, each vertex represents a component, and the direct descendants of

each vertex represent the components that are both adjacent to and surrounded by the

component it represents. A component C1 is surrounded by a component C2 if and only

if there is a directed path from the vertex representing C2 to the vertex representing C1.
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Figure 3.8 shows such a tree representation of an areal object. The root of the tree is

doubly circled and directions of edges are indicated by arrows.

Figure 3.8 The representation tree of an areal object

3.5.1 Basic topological changes

Topological changes occur when components appear, disappear, merge, split, etc. All

of these topological changes have corresponding changes in the tree structure. We first

define some basic changes of the tree structure, from which all the changes of interest

can be constructed.

Suppose T1 and T2 are trees representing the topological structures of an areal

object at time t1 and t2 (t1 < t2). A basic change is denoted by the expression “T1
γ

99K

T2”, where γ is the change, and can be represented by a single morphism ϕ, either from

T1 to T2 or from T2 to T1. Five types of basic changes can be specified according to the

properties of the tree morphisms between T1 and T2.

Definition 3.11. A basic change T1
γ

99K T2 is one of the following types:

(1) T1
γ

99K T2 is of type insert, if the effect of the change can be represented by an

injective but not surjective tree morphism ϕ from T1 to T2.

(2) T1
γ

99K T2 is of type merge, if the effect of the change can be represented by a

surjective but not injective tree morphism ϕ from T1 to T2.

(3) T1
γ

99K T2 is of type delete, if the effect of the change can be represented by an

injective but not surjective tree morphism ϕ from T2 to T1.
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(4) T1
γ

99K T2 is of type split, if the effect of the change can be represented by a

surjective but not injective tree morphism ϕ from T2 to T1.

(5) T1
γ

99K T2 is of type no change, if the effect of the change can be represented by

a tree isomorphism ϕ either from T1 to T2, or from T2 to T1.

Figure 3.9 Representation of different topological changes

As an example, Figure 3.9 shows representations of a basic split and a basic insert

between times t1 and t2. The dashed arrows show the direction of changes, and solid

arrows between vertices show the morphisms. Both representations indicate different

ways that the topological structure of an areal object changes. A change modeled by

the basic split is shown in Figure 3.10(a), in which component 2 evolves its shape to

engulf a new component 3. A change modeled by the basic insert is shown in Figure

3.10(b), in which component 3 arises differently, this time emerging and growing inside

component 2.

A basic change of type insert, split, merge, and delete causes the essential changes

in the topological structure of an areal object, and it is called a non-trivial topological

change, NTTC for short. A basic change of type no-change does not cause any changes

in the topological structure of an areal object, and it is called a trivial topological change.

In representation, we can omit trivial topological changes for simplicity.
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Figure 3.10 Two different topological changes

3.5.2 Complex topological changes

As an areal object evolves through time, a sequence of basic changes is established. We

define a sequence of basic changes to be a complex change. The definition is as follows:

Definition 3.12. A complex change from T0 to Tn is of the form

T0
γ0

99K T1
γ1

99K T2
γ2

99K ...
γi−1

99K Ti

γi

99K ...
γn−2

99K Tn−1
γn−1

99K Tn

in which each Ti

γi

99K Ti+1 (0 ≤ i ≤ n − 1) represents a NTTC from Ti to Ti+1.

For example, consider the case shown in Figure 1.1 (on page 3). We define the

selected locations in the ellipse area and the rectangle area to be areal objects R1 and

R2 respectively. The evolution of R1 and R2 can be represented by complex changes C1

and C2 as shown in Figures 3.11(a) and 3.11(b), respectively. In complex change C1 we

omit the no change events starting from T2, T3, T4, and T5. In complex change C2 we

omit the no change events starting from T0, T2, and T4.
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(a)

(b)

Figure 3.11 Complex changes of the areal objects in Figure 1.1
(a) topological changes as R1 evolves, and (b) topological changes as R2 evolves

A basic issue is to define the notion of equivalence of complex changes. For

example, Figure 3.12 shows two equivalent complex changes. Both changes result in a

new component denoted by vertex 5. Vertices 1 and 4 in the final state originate from

vertex 1 in the original state, and vertex 6 in the final state originates from vertices 2

and 3 in the original state.

The following definitions formalize our intuitions about equivalent complex changes

in terms of trees and tree morphisms.

Definition 3.13. Let C be a basic change T1
γ

99K T2 specified by a morphism ϕ. C

induces a transform-to relation R ⊂ V (T1) × V (T2) such that ∀v1 ∈ V (T1), v2 ∈ V (T2),

(v1, v2) ∈ R if and only if either ϕ(v1) = v2 or ϕ(v2) = v1.

Definition 3.14. Let C be a complex change from T0 to Tn:

T0
γ0

99K T1
γ1

99K T2
γ2

99K ...Ti

γi

99K ...
γn−2

99K Tn−1
γn−1

99K Tn,
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(a)

(b)

Figure 3.12 Two equivalent complex changes
(a) complex change A, and (b) complex change B

and let Rk(0 ≤ k ≤ n − 1) denote the transform-to relation induced by the basic change

from Tk to Tk+1.

1. For any 0 ≤ i ≤ n − 1, the future of v ∈ V (Ti) from stage i is defined to be

F (v, i) = {w ∈ V (Tn)|(v, w) ∈ Ri ◦ Ri+1 ◦ ... ◦ Rn−1}. The future of v ∈ V (Tn)

from stage n is defined to be F (v, n) = {v}.

2. For any 1 ≤ i ≤ n, the past of v ∈ V (Ti) from stage i is defined to be P (v, i) =

{w ∈ V (T0)|(w, v) ∈ R0 ◦ R1 ◦ ... ◦ Ri−1}. The past of v ∈ V (T0) from stage 0 is

defined to be P (v, 0) = {v}.
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3. The set of essential insertions of C is defined to be

I(C) = {(v, i)|i ∈ {1, 2, ..., n} ∧ v ∈ V (Ti) ∧ F (v, i) 6= ∅ ∧ P (v, i) = ∅} .

In definition 3.14, the future of a vertex v is the set of vertices in the final state to

which v transforms. The past of v is the set of vertices in the initial state which transform

to v. An essential insertion (v, i) refers to a vertex v at stage i that is introduced by a

basic insert, and which transforms to some vertices in the final state.

Two changes are defined to be equivalent if and only if both changes start from

the same tree T0, end at the same tree Tn, have the same set of essential insertions I,

and have the same transform-to relation, characterized by the future functions, from the

vertices of T0 and I to the vertices of Tn. The formal definition is given as follows:

Definition 3.15. Let C and C
′

be two changes from T0 to Tn, and from T
′

0 to T
′

n,

respectively. Let F and F ′ be the future functions of C and C
′

. Let I(C) and I(C
′

) be

the essential insertion sets of C and C
′

.

C is defined to be equivalent to C
′

if and only if there is a tree isomorphism

ϕ0 from V (T0) to V (T
′

0), a tree isomorphism ϕn from V (Tn) to V (T
′

n), and a bijective

function f from I(C) to I(C
′

) such that,

1. ∀v ∈ V (T0), ϕn(F (v, 0)) = F ′(ϕ0(v), 0), and

2. ∀(v, i) ∈ I(C), ϕn(F (v, i)) = F ′(f(v, i)).

3.6 The normal form for representing complex changes

Complex change can be composed of a sequence of NTTCs. Similar to graph general-

ization [SW99], it can be useful to represent a complex change by an equivalent change

in a unified form. For example, the complex change shown in Figure 3.11(b) can be sim-
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plified by combining the first two basic inserts into a single basic insert. The resulting

equivalent change is shown in Figure 3.13. Can we further simplify the representation

of the resulting change? In this section, we provide a normal form and prove that any

complex change can be expressed in this form.

Figure 3.13 A simplification of complex change in Figure 3.11(b)

Definition 3.16. Let C be a complex change from T0 to Tn:

T0
γ0

99K T1
γ1

99K T2
γ2

99K ...Ti

γi

99K ...
γn−2

99K Tn−1
γn−1

99K Tn.

The signature of C is defined to be a string s0s1...sn−1, in which for ∀i(0 ≤ i ≤

n − 1), si is a letter in the set {I, S, M, D}, such that

1. si = I, if Ti

γi

99K Ti+1 is a basic change of type insert.

2. si = S, if Ti

γi

99K Ti+1 is a basic change of type split.

3. si = M , if Ti

γi

99K Ti+1 is a basic change of type merge.

4. si = D, if Ti

γi

99K Ti+1 is a basic change of type delete.

Definition 3.17. A form is defined to be a string F = s0s1...sn such that for ∀i(0 ≤

i ≤ n), si is a letter in the set {I, S, M, D}. A change C is defined to be represented by

the form F if C is equivalent to a change C ′ whose signature is F or a subsequence of

F .

In this section, we prove that any complex change is represented by the form of

ISMD. We begin by presenting some technical results on trees and morphisms used to
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prove our main results. The proofs of Lemmas 3.1, 3.2, and 3.3 are shown as lemmas 1,

2 and 3 in appendix of this thesis. Note: we use ϕ to represent a general function, ι to

represent an injective function, and σ to represent a surjective function.

Lemma 3.1. Let T1 and T2 be trees, and ϕ be a tree morphism from T1 to T2. Then,

it is possible to find another tree T
′

, an injective tree morphism ι from T1 to T
′

, and a

surjective tree morphism σ from T
′

to T2, satisfying:

(1) Given any vertex v of T1, (ι ◦ σ)(v) = ϕ(v).

(2) Let S1 = V (T
′

)\img(ι) and S2 = V (T2)\img(ϕ). Then σ defines a bijection

between S1 and S2, by restricting the domain of σ to S1.

T1 T2

T
′

✲ϕ

❅
❅❘ι �

�✒
σ

Lemma 3.2. Let T1, T2 and T3 be trees, ι be an injective tree morphism from T2 to

T1, and ϕ be a tree morphism from T2 to T3. Then, it is possible to find a tree T
′

,

an injective tree morphism ι
′

from T3 to T
′

, and a tree morphism ϕ
′

from T1 to T
′

,

satisfying:

(1) Let v1 and v3 be vertices of T1 and T3 respectively. ϕ
′

(v1) = ι
′

(v3) if and only if

∃v2 ∈ V (T2), such that ι(v2) = v1 and ϕ(v2) = v3.

(2) ϕ
′

is surjective whenever ϕ is surjective, and ϕ
′

is injective whenever ϕ is injective.

(3) Let S1 = V (T1)\img(ι) and S2 = V (T
′

)\img(ι
′

). Then ϕ
′

defines a bijection

between S1 and S2, by restricting the domain of ϕ
′

to S1.

(4) Let S3 = V (T3)\img(ϕ) and S4 = V (T
′

)\img(ϕ
′

). Then ι
′

defines a bijection

between S3 and S4, by restricting the domain of ι
′

to S3.
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T1 T2

T
′ T3

❄
ϕ
′

✛ ι

❄
ϕ

✛
ι
′

Lemma 3.3. Let T1, T2 and T3 be trees, σ1 be a surjective morphism from T1 to T2,

and σ2 be a surjective morphism from T3 to T2. Then, it is possible to find two trees T
′

4

and T
′

5, a surjective morphism σ
′

1 from T
′

4 to T1, a surjective morphism σ
′

2 from T
′

4 to

T
′

5, and an injective morphism ι
′

from T3 to T
′

5, satisfying:

Given any vertex v1 of T1 and any vertex v3 of T3, σ1(v1) = σ2(v3) if and only if

∃v4 ∈ V (T
′

4), v5 ∈ V (T
′

5), such that σ
′

1(v4) = v1, σ
′

2(v4) = v5, and ι
′

(v3) = v5.

T1 T2 T3

T
′

4 T
′

5

✲σ1 ✛σ2

❄
ι
′

❅
❅

❅■

σ
′

1

✲σ
′

2

We next discuss some special complex changes, after which the discussion will be

extended to arbitrary complex changes.

Definition 3.18. An MD-change is defined to be a complex change with a signature

MD. An SMD-change is defined to be a complex change with a signature SMD.

Theorem 3.1. Any complex change that is arbitrarily composed of basic merges and

basic deletes can be represented by the form of MD.

Proof. It is straightforward to prove this theorem if the complex change C is composed

of only basic merges, or C is composed of only basic deletes. So, consider the case in

which C is composed of both basic merges and basic deletes in any order. By composing

adjacent basic merges into one basic merge and adjacent basic deletes into one basic

delete, we are able to obtain a complex change C ′ which is equivalent to C, and is

composed of a sequence of MD-changes.
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Consider two adjacent MD-changes of the form:

T1 T2 T3 T4 T5

| | |

✲σ1 ✛ι1 ✲σ2 ✛ι2

♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣✲MD−change
♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣✲MD−change

in which, σ1, σ2 are surjective morphisms specifying basic merges, and ι1 and ι2 are

injective tree morphisms specifying basic deletes.

As shown in Figure 3.14, by Lemma 3.2 we are able to construct a tree T
′

6, a

surjective tree morphism σ
′

3 from T2 to T
′

6, and an injective tree morphism ι
′

3 from T4

to T
′

6, satisfying the condition that the complex change from T2 to T4 specified by the

sequence σ
′

3 and ι
′

3 is equivalent to the complex change from T2 to T4 specified by the

sequence ι1 and σ2.

Figure 3.14 The simplification of two MD-changes

Hence, the composition of the two adjacent MD-changes is equivalent to one

MD-change, which is composed of a basic merge from T1 to T
′

6 specified by σ1 ◦ σ
′

3, and

a basic delete from T
′

6 to T5 specified by ι2 ◦ ι
′

3.

Repeating this procedure, we finally get one MD-change, which has the signature

of MD and is equivalent to the complex change C. Therefore, C is represented by the

form of MD.

Theorem 3.2. Any complex change, which is arbitrarily composed of basic splits, basic

merges, and basic deletes, is represented by the form of SMD.
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Proof. It is straightforward to prove this theorem if complex change C is composed of

only basic splits, or is composed of basic merges and basic deletes. So, consider the case

in which complex change C contains basic splits, as well as some basic merges and basic

deletes in any order. By composing adjacent basic merges and basic deletes to form

one MD-change and adjacent basic splits to form one basic split, we obtain a complex

change C ′ which is equivalent to C, and is composed of a sequence of SMD-changes.

Consider two adjacent SMD-changes of the form:

T1 T2 T3 T4 T5 T6 T7

| | |

✛σ1 ✲σ2 ✛ι1 ✛σ3 ✲σ4 ✛ι2

♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣✲SMD−change
♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣✲SMD−change

in which, σ1 and σ3 are surjective morphisms specifying basic splits, σ2 and σ4 are

surjective morphisms specifying basic merges, and ι1 and ι2 are injective morphisms

specifying basic deletes.

Figure 3.15 The simplification of two SMD-changes

The simplification of two SMD-changes is shown in Figure 3.15. Since there is a

tree morphism σ3 ◦ ι1 from T5 to T3, using Lemma 3.1, we are able to find a tree T
′

8, an

injective tree morphism ι
′

3 from T5 to T
′

8, and a surjective morphism σ
′

5 from T
′

8 to T3,
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satisfying the condition that the complex change from T3 to T5 specified by the sequence

ι1, σ3 is equivalent to the complex change from T3 to T5 specified by the sequence σ′
5, ι

′

3.

Since there is a surjective tree morphism from T2 to T3 and a surjective morphism from

T
′

8 to T3. Then, using Lemma 3.3 we are able to find trees T
′

9 and T
′

10, together with

tree morphisms σ
′

6, σ
′

7 and ι
′

4. Here, σ
′

6 and σ
′

7 are surjective morphisms from T
′

9 to T2

and from T
′

9 to T
′

10 respectively. ι
′

4 is an injective morphism from T
′

8 to T
′

10. Therefore,

the complex change from T2 to T
′

8 specified by the sequence σ
′

6, σ
′

7 and ι
′

4 is equivalent

to the complex change from T2 to T
′

8 specified by the sequence σ2 and ι
′

5.

It follows that the composition of the two adjacent SMD-changes is equivalent

to one SMD-change, which is composed of a basic split specified by σ
′

6 ◦ σ1, and a MD-

change composed of basic merges and basic deletes specified by the sequence σ
′

7, ι
′

4, ι
′

3,

σ4 and ι2, respectively.

Repeating this procedure, we finally get one SMD-change, which has the signa-

ture of SMD and is equivalent to the complex change C. Therefore, C is represented

by the form SMD.

We are now ready to prove the main result of this section.

Theorem 3.3. Any complex change can be represented by the form of ISMD.

Proof. It is straightforward to prove this theorem if complex change C is composed of

only basic inserts, or is composed of basic changes of any type except basic inserts.

So, consider the case in which C is composed of basic inserts, as well as other

types of basic changes in any order. By composing adjacent basic splits, basic merges

and basic deletes together to make one SMD-change, and composing adjacent basic

inserts together to one basic insert, we are able to obtain a complex change C ′, which

is composed of a set of changes in normal form.
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Using Lemmas 3.1 and 3.2, we can prove that for any complex change composed

of a SMD-change followed by a basic insert, we are able to find an equivalent complex

change composed of a basic insert followed by a SMD-change change. Hence, any two

adjacent complex changes in normal form can be composed together to form one complex

change in normal form.

Repeating this procedure, we finally get one complex change that has the signa-

ture of ISMD and is equivalent to the complex change C. Therefore, C is represented

by the form of ISMD.

As the form ISMD is able to represent all the complex changes, it is a normal

form.

3.7 Properties of the normal form

In the previous section, we introduced a normal form ISMD, and proved that every

change can be represented by the normal form. In this section we show that the ISMD

is the simplest normal form. We first show that all four types of NTTCs are required

as constituents in the form for representing every possible change. Therefore, the forms

composed of less than four letters (such as I, M , and IMD) are not normal forms. Next,

we show that no other form composed of four basic changes with a different sequence

from ISMD can represent all the complex changes.

3.7.1 Need for all types of NTTCs in the normal form

Let C be a complex change from T1 to T2. We first note the following observations:

1. If C is composed of basic changes of any type excluding basic insert, for any vertex

v of T2, there is at least one vertex of T1 that transforms to v through C.
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2. If C is composed of basic changes of any type excluding basic split, any vertex v

of T1 transforms to at most one vertex of T2 through C.

3. If C is composed of basic changes of any type excluding basic merge, for any vertex

v of T2, there is at most one vertex of T1 that transforms to v through C.

4. If C is composed of basic changes of any type excluding basic delete, any vertex v

in T1 transforms to at least one vertex of T2 through C.

With these observations, we show that any form that represent all the complex

changes must contain at least one letter for each type of NTTCs. Consider the example

shown in Figure 3.16. Let C be the complex change from T0 to T4. No vertex of T0

transforms to vertex 5 of T4. By observation 1, any complex change that is equivalent to

C must contain a basic insert. Vertex 2 of T0 transforms to two vertices 6, 7 of T4. By

observation 2, any change that is equivalent to C must contain a basic split. Vertices 2,

3 of T0 transform to vertex 7 of T4. By observation 3, any change that is equivalent to

C must contain a basic merge. Vertex 4 of T0 does not transform to any vertex of T4.

By observation 4, any change that is equivalent to C must contain a basic delete. In

all, the representation of the complex change C requires all four types of NTTCs. Thus,

any form that does not allow all four types of NTTCs as constituents cannot represent

the complex change C, and therefore cannot represent all possible complex changes.

Figure 3.16 A complex change
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3.7.2 Need for the sequence ISMD in the simplest normal form

The normal form must include all types of NTTCs, therefore the simplest normal form

must be a composition of four letters, including I, S, M , and D. We now show that the

four letters in a normal form must be structured in a particular order as ISMD. We

prove this by showing examples that cannot be represented by forms that are different

from ISMD (In the discussion, we use Xi to represent the component represented by

the vertex i.)

Figure 3.17 Counter example 1

Figure 3.17 shows a complex change C1 that is composed of a basic insert and

a basic split. C1 starts from the state of a single negative component X1 (the whole

spatial domain). During the change another negative component X3 is split from X1.

The split would never occur before a positive component exists to separate X1 and

X3. The positive component must be introduced by an insert. Thus, C1 can never be

equivalent to a complex change, in which there is no basic split after a basic insert.

Hence in order to represent all the changes, including C1, a letter S must be after a

letter I in the normal form.

Figure 3.18 shows a complex change C2 that is composed of a basic split and a

basic merge. At the beginning of the change there are positive components X2 and X3.

During the change, X3 splits. Part of X3 merges with X2 and transforms to component

X5. The remaining part of X3 transforms to X4. X3 can never merge with X2 before
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Figure 3.18 Counter example 2

X3 splits, otherwise it is unable to get X4 at the end of the change. Thus, this change

C2 could never be equivalent to a complex change, in which there is no basic merge after

a basic split. Hence in order to represent all the complex changes, including C2, a letter

M must be after a letter S in the normal form.

Figure 3.19 Counter example 3

Figure 3.19 shows a complex change C3 that is composed of a basic merge and a

basic delete. In this change, in order to separate components X3 and X1, component X2

can never be deleted before the X3 is merged with X1. Thus, C3 can never be equivalent

to a complex change, in which there is no basic delete after a basic merge. Hence in

order to represent all the complex changes, including C3, a letter D must be after a

letter M in the normal form.

The normal form is able to represent all the topological changes including the

three examples. Therefore any form that is composed of four types of NTTCs and is

able to represent all complex changes must be ISMD.
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3.8 Summary

In this chapter, we have specified basic and complex changes of areal objects as tree

morphisms. We also provide a normal form that allows us to formally describe and

compare spatial events according to changes in their topological structure.

61



Chapter 4

PRELIMINARIES FOR TOPOLOGICAL CHANGE

DETECTION IN SENSOR NETWORKS

Wireless sensor network technology provides real-time information about the environ-

ment, which can play an important role in the monitoring of geographic phenomena.

The application of sensor networks to the detection of topological changes is also an

important consideration in this research. Chapters 4, 5 and 6 focus on this topic.

The model introduced in Chapter 3 specifies topological changes based on global

topological structures of areal objects. In order to determine the types of topological

changes using this model, it is necessary to have a finite sequence of snapshots describing

the evolution of areal objects continuously both in time and in space. This is because we

need to consider the identity of objects from one moment to the next. Sensor nodes take

readings at discrete moments in time and discrete points in space, and cannot provide

continuous sensing data. Therefore, it is difficult for sensor networks to determine the

type of topological changes directly based on the model proposed in Chapter 3. Also, the

theorem developed in Chapter 3 is not immediately suitable for distributed algorithms

required by sensor networks.

In this chapter, we lay out the theoretical foundations of distributed approaches

to topological change detection in sensor networks. A new model called the local tree

model is developed. It represents and classifies topological changes based on local and
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temporally discrete data. In addition, the completeness of the local tree model is proved.

Also, the approximations of elements required by the local tree model, including com-

ponents and their relations, are represented in sensor networks based on sensor readings

and node connectivity. This allows us to capture the necessary information for topolog-

ical change detection using sensor networks. Finally, possible inconsistencies between

the basic elements in ℜ2 and their approximations in sensor networks are discussed.

4.1 Local tree model

By definition 3.3, an areal object at a particular time t can be considered as a set R of

points in the spatial domain ℜ2. An areal object evolves through time, and its evolution

can be observed at a sequence of snapshots of the areal object. Each pair of consecutive

snapshots describes a change, called a basic transition. Topological changes can be

derived during a basic transition. In the following discussion, we present the elements

to distinguish different types of topological changes incurred by a basic transition.

Let R1 and R2 be a pair of areal objects derived from the start and end snapshots,

respectively, which define a basic transition. Any point p in ℜ2 must have one of the

following four states: (1) p /∈ R1 and p ∈ R2, (2) p ∈ R1 and p /∈ R2, (3) p ∈ R1 and

p ∈ R2, or (4) p /∈ R1 and p /∈ R2. Based on the states of each point, the entire spatial

domain can be partitioned into several components. Each component X is a subset

of the spatial domain satisfying the following three conditions: (1) X is topologically

connected. (2) The points in X have the same state. (3) X is maximal; that is, for

∀p ∈ ℜ2\X, either X ∪ {p} is not connected, or p is in a different state from the points

in X.

As an example, Figure 4.1(a) shows a basic transition of an areal object, and

the spatial domain ℜ2 is indicated by the dashed-line box. Based on the transition,

the spatial domain is partitioned into components a-g (shown in Figure 4.1(b)), among
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which, component b consists of points in state 2. Components a, d, and f consist of

points in state 3. Components c, e, and g consist of points in state 4. To specify

topological changes, we are most interested in the states of points in these components,

as well as the adjacency and the surrounded-by relations between the components. The

definition of the adjacency and surrounded by relations between the components are the

same as definition 3.5.

Figure 4.1 A basic transition

A component that consists of points in state 1 or state 2 is a piece that is either

added to or removed from the areal object during the basic transition. We call such

component a transition region. In the example shown in Figure 4.1, component b is a

transition region. We assume each basic transition has only one transition region that is

topologically equivalent to a disk; that is, the transition region is a single piece without

any holes. Both assumptions simplify our discussion on basic transitions. More complex

transitions, in which more than one transition region exists and each transition region is

allowed to have holes, are not considered directly in this thesis. It should be pointed out

that any complex transition can be decomposed into a sequence of basic transitions by

first partitioning its transition regions into several simple transition regions, and then

forcing the simple transition regions to switch one after another.

The components that consist of points in state 3 or state 4 do not change during

the basic transition. The structure of such components is important to determine the

type of the basic transition. However, not all of the components are necessary in the

determination of the type of topological change. Only the components that are adjacent
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to the transition region are key to determining the type. These components are referred

to as C-components. In the example shown in Figure 4.1, only the components a, c and

d are C-components, as they are adjacent to the transition region b.

The structure of the C-components in a basic transition have the properties

stated as follows, and Section 4.2 provides detailed proofs of these properties.

1. There is exactly one C-component X which surrounds all the other C-components.

X is referred to as the background C-component of the basic transition.

2. The topological structure of the C-components in a basic transition can be repre-

sented by a rooted tree. A vertex of the tree represents a C-component, and an

edge of the tree connects a pair of vertices representing adjacent C-components.

The root of the tree represents the background C-component.

Among the three C-components a, c, and d in the example shown in Figure

4.1, d is the background C-component as it surrounds both a and c. In addition, C-

components a and c are adjacent, as well as the C-components c and d. The structure

of the C-components can be represented by the rooted tree in Figure 4.1(c), in which

the root is indicated by a double-circled vertex.

As different rooted trees can be explored in a systematic way, we are able to gen-

erate the possible topological structures between the C-components of a basic transition.

Figure 4.2 lists all the rooted trees with less than 4 vertices, and examples of structures

represented by the rooted trees are also provided. In the figure, the transition region is

indicated by shaded area, and the vertices of the representation tree are placed inside

the C-components they represent.

The classification of a basic transition is based on the following three factors: (1)

the topological structure of its C-components, (2) the state of the points in its transition

region, and (3) the state of the points in its background C-component.
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Figure 4.2 Tree representations for different configurations

The classification yields different types of topological changes incurred by a basic

transition. Figure 4.3 shows the classification results, in which the 13 types of topological

changes are distinguished, and Figure 4.4 provides an example of a basic transition for

each type of topological change. These types of topological changes will be used in the

sensor report to describe the observed basic transition.

Figure 4.3 Classification of basic transitions

4.2 Completeness of local tree model

In addition to the specific types of topological changes listed in Figure 4.3, there are

other basic transitions whose representations of C-components require trees with four

or more vertices. Figure 4.5 gives an example of such a change and its representation

tree. Such changes may not have a commonly accepted name associated with them, but

they can also be predicted and represented by the local tree model. In this section, we

prove that the structure of C-components in any basic transition can be represented by
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Figure 4.4 Examples of different types of topological changes

a rooted tree. Therefore, any basic transition is mapped onto a type specified by the

local tree model, and the local tree model provide a complete coverage to all the basic

transitions.

Figure 4.5 An example of uncommon topological change

We first present several lemmas that show the properties of the C-components

in a basic transition.

Lemma 4.1. The adjacency graph of the C-components in a basic transition is con-

nected.

Proof. We prove this lemma by contradiction. Assuming that the adjacency graph is not

connected, let X1,X2,...,Xk be the C-components that are represented by the vertices of

a maximal connected component in the adjacency graph. Let U = cl(
⋃k

i=1 Xi), where
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cl(X) represents the closure of X. By the definition of adjacency relations and the

definition of C-components, U is a connected subset of ℜ2 that intersects the boundary

of the transition region.

We show that U is adjacent to a C-component that is not contained in U . As

the transition region T is assumed to be topologically equivalent to a disk, its boundary

is a Jordan curve C; that is, there is a continuous mapping f : [0, 1] → C, such that

∀x, y ∈ [0, 1), f(x) 6= f(y), and f(0) = f(1). As U intersects the boundary of the

transition region T , we are able to find x0 ∈ [0, 1] such that f(x0) belongs to U . As U

does not contain all the C-components, we are able to find y0 ∈ [0, 1] such that f(y0)

does not belong to U . Consider the sequence of pairs: (x0, y0), (x1, y1), (x2, y2),...,

(xi, yi),..., in which for ∀i > 0, (xi, yi) = ((xi−1 + yi−1)/2, yi−1) if f((xi−1 + yi−1)/2)

intersects U , and (xi, yi) = (xi−1, (xi−1 + yi−1)/2) if otherwise.

Figure 4.6 A sequence of (f(xi), f(yi))

As illustrated in Figure 4.6, it can be proved that the sequence {(xi, yi)} converges

to (x, y) in which x = y. Consider the point of f(x), any open set in ℜ2 that contains

f(x) must contain points in U , points in T , and points in a component Y that is not

contained in U ∪T . Therefore, f(x) is the intersection of U , T and Y . It follows that Y

is a C-component, and U is adjacent to a C-component that is not contained in U , which

contradicts the assumption that the vertices representing C-components contained in U

form a maximal connected component in the adjacency graph. Hence, the adjacency

graph of the C-components in a basic transition must be connected.
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The following lemmas and theorems use the notion of “partially surrounded-by”.

Let X1 and X2 be a pair of distinctive C-components in a basic transition, and let T be

the transition region. X1 is defined to be partially surrounded by X2 (or X2 partially

surrounds X1) if X1 is surrounded by T ∪ X2. Figure 4.7 shows an example in which

C-component X1 is partially surrounded by C-component X2.

Figure 4.7 Example of partially-surrounded-by relation

Lemma 4.2. Let X1 and X2 be a pair of adjacent C-components in a basic transition.

One of the following statements must be true: either X1 partially surrounds X2, or X2

partially surrounds X1.

Figure 4.8 An illustration of Lemma 4.2

Proof. X1 and X2 are adjacent, so the intersection of their boundaries is not an empty

set. Let p be a point in bd(X1)∩bd(X2) that is located on a segment q1q2 of the boundary

formed by X1 and X2.
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Move along the common boundary shared by X1 and X2 in the direction from

p to q1 until reaching a point p1, where the boundary segment diverges, as shown in

Figure 4.8. Because the areal objects are assumed to be strongly connected, there must

be three sectors around p1, among which one is contained in X1, one is contained in X2,

and the third one is contained in the transition region. Therefore, p1 is a point located

on the boundary of the transition region. Similarly, if we stroll along the boundary

between X1 and X2 in the direction from p to q2, we reach another point p2 located on

the boundary of the transition region.

As the boundary of the transition region is a Jordan curve, it must contain

line segment l which connects p1 and p2 and which intersects pp1 and pp2 only at the

endpoints. Hence, the line segments pp1, pp2 and l form a Jordan curve C. As X1

and X2 are separated by C, C must enclose exactly one of X1 and X2. Suppose X2

is enclosed inside the Jordan curve C. By the Jordan Curve Theorem, any path that

originates from a point in the closure of X2 to a point at infinity must contain some

points in C, which is contained in the closure of X1 ∪ T . Therefore, X2 is partially

surrounded by X1.

Similarly, X1 must be partially surrounded by X2, if X1 is enclosed inside the

Jordan curve C.

Lemma 4.3. Let X1, X2, and Y be distinct components such that X1 ∪ Y surrounds

X2 and X2 ∪ Y surrounds X1. Y must surround both X1 and X2.

Proof. We prove Y surrounds X1 by contradiction. Otherwise, we are able to find a

path P such that P originates at a point p0 in X1 and goes to a point at infinity, and P

does not intersect the closure of Y . Consider the travel from p0 to the point at infinity

along P . As X2 ∪ Y surrounds X1 and P does not intersect the closure of Y , the travel

along P must encounter a point p1 that is contained the closure of X2. Similarly, as
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X1 ∪Y surrounds X2 and P does not intersect the closure of Y , after passing by p1, the

travel must encounter another point p2 that is contained the closure of X1. As shown

in Figure 4.9, this continues recursively, and the travel enters the closure of X1 and X2

alternatively. As both X1 and X2 are bounded, P can never reach the point at infinity,

contradicting to the assumption that P can reach that point. Therefore, Y surrounds

X1.

Similarly, we can prove that Y surrounds X2.

Figure 4.9 An illustration of Lemma 4.3

Lemma 4.4. Let X1 and X2 be a pair of C-components. The following statements

cannot both be true:

1. X1 is partially surrounded by X2.

2. X2 is partially surrounded by X1.

Proof. Let T be the transition region. If both statements are true, we have X1 ∪ T

surrounds X2 and X2 ∪T surrounds X1. By Lemma 4.3, T must surround both X1 and

X2. However, T is assumed to be simply connected, and therefore cannot surround any

other components. Hence, the two statements cannot both be true.
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Lemma 4.5. Let X1, X2 and Y be distinct C-components. The following statements

cannot both be true:

1. X1 is adjacent to Y and partially surrounds Y .

2. X2 is adjacent to Y and partially surrounds Y .

Proof. We prove this lemma by contradiction. Suppose both statements are true. We

show that X1 partially surrounds X2, and vice versa.

Figure 4.10 An illustration of Lemma 4.5

As X1 is adjacent to Y , for any point p1 in the closure of X1, p1 can be connected

with a point q1 in Y by a path P that is completely contained in the interior of X1,

the interior of Y , and the boundary between them. As shown in Figure 4.10, for any

path P1 that originates at p1 and goes to a point at infinity, the union of P and P1

forms a path P ′ which originates at q1 and goes to a point at infinity. Let T be the

transition region. As Y is partially surrounded by X2, P ′ contains points in the closure

of X2 ∪ T . In addition, as no points in P are contained in the closure of X2 ∪ T , there

must be some points in P1 that are contained in the closure of X2 ∪ T . It follows that

X2 partially surrounds X1. Similarly, it can be proved that X1 partially surrounds X2.

This contradicts the conclusion of Lemma 4.4. Therefore, the two statements cannot

both be true.
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The following theorems present the major results of this section. Theorem 4.1

proves that the C-components in a basic transition can always be represented by a

tree, and theorem 4.2 proves that a unique background C-component exists in any basic

transition and can be represented by the root of the tree.

Theorem 4.1. The adjacency graph of the C-components in a basic transition is a tree.

Proof. This can be proved by showing that the adjacency graph of the C-components

in a basic transition is both connected and cycle-free.

Lemma 4.1 proves that the adjacency graph is connected. We prove it is cycle-

free by contradiction. Suppose we are able to find a cycle in the adjacency graph, which

must contain more than 2 vertices. By Lemma 4.2, there must be three consecutive

vertices vi−1, vi, and vi+1 in the cycle representing C-components Xi−1, Xi, and Xi+1,

respectively, such that both Xi−1 and Xi+1 are adjacent to Xi and surround Xi. This

contradicts the conclusion of Lemma 4.5.

In all, the adjacency graph of the C-components is both connected and cycle-free,

and therefore must be a tree.

Theorem 4.2. Among all the C-components of a basic transition, there must be exactly

one C-component that surrounds all the other C-components.

Proof. It is straightforward to prove this theorem, if there is one or two C-components

in the basic transition. Consider the basic transitions which have more than two C-

components.

Let X1, X2,..., Xk(k > 2) be the C-components in a basic transition. We show

that there must be exactly one C-component B that partially surrounds all the other

C-components.

First, we show that there must be at least one C-component B that partially

surrounds all the other C-components. If not, we are able to find two C-components Xn
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and Xm such that neither of them is partially surrounded by any other C-components.

By theorem 4.1, the adjacency graph of these C-components is a tree. Let vn and

vm be the vertices representing C-components Xn and Xm in the adjacency tree. Let

[v0 = vn, v1, v2, ..., vl = vm] be a path in the tree that connects vn and vm. As neither vn

nor vm is surrounded by any other C-components, by Lemma 4.2 there must be three

consecutive vertices vi−1, vi, and vi+1 of the path that represent C-components Xi−1,

Xi, and Xi+1, such that both Xi−1 and Xi+1 are adjacent to Xi and partially surround

Xi. This contradicts the result of Lemma 4.5. Therefore, there must be at least one

C-component B that partially surrounds all the other C-components.

In addition, by Lemma 4.4, there is at most one C-component that partially

surrounds all the other C-components. In all, there is exactly one C-component B that

partially surrounds all the other C-components.

Finally, we show that B surrounds all the other C-components. Let T be the

transition region, and U be the union of all the C-components except for B. As B

partially surrounds all the other C-components, it follows that B ∪ T surrounds U . In

addition, by the definition of C-components, the union of all the C-components surrounds

T ; that is, B ∪ U surrounds T . By Lemma 4.3, we have B surrounds U , and therefore

B surrounds all the other C-components.

Theorems 4.1 and 4.2 prove that the structure of C-components in any basic

transition can be represented by a rooted tree, in which the root represents the unique

background C-component. Therefore the rooted tree model is complete for representing

basic transitions.
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4.3 Sensor network configuration

We are using sensor networks to track and report topological changes. This section

provides the basic assumptions we have made about the sensor networks in this thesis,

as well as the definitions of basic elements based on sensor network configuration, which

capture the properties of a basic transition required by the local tree model.

We assume that a large number of sensor nodes are deployed in the sensing

area. Each sensor node is initialized with a unique identifier and records the values

of measurements. Each sensor is able to communicate with the nodes nearby, and a

pair of sensors that is able to communicate directly is define to be direct neighbors. A

node located near the boundary of the sensing area is selected to be the reference node,

which is assumed to be located outside the scope of the observing phenomena. The

sensor nodes in the sensing area induce a Voronoi diagram, and each sensor node n is

associated with a Voronoi cell consisting of all the points that are closer to n than to any

other sensor node. We stipulate that the sensor node deployment satisfies the following

constraints:

1. Density constraint, sensor nodes are deployed densely enough so that a sensor

node measurement reflects, with sufficient accuracy, all points in its Voronoi cell.

2. Communication constraint, each sensor node communicates exactly with the

nodes in its adjacent Voronoi cells.

Figure 4.11 shows an example deployment of sensor nodes and their associated

Voronoi cells. It also shows a possible location of the reference node r.

The sensor nodes take measurements at a sequence of sampling rounds t0, t1, ...,

tn. We assume that the reading of a sensor node at any of the sampling rounds is either

0 or 1. Our interpretation is that the reading is 1 if the sensor node is in an area of

high intensity (reading above a threshold), otherwise it is 0. Take the monitoring of a
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Figure 4.11 Sensor network configuration

wildfire as an example, sensors with temperature reading being 1 indicate the location

of the fire. The 0/1 approach enables the derivation of regions of interest directly from

the sensing reports, and at the same time the 0/1 approach reduces energy consumption

in communication due to the small and discrete domain of values [DNW05].

A change is captured by sensor readings at a pair of consecutive sampling rounds,

and the type of a transition is determined by comparing the readings. The comparison

first defines four states of nodes at sampling round ti.

Definition 4.1. Let r(n, t) ∈ {0, 1} denote the reading of a node n at a time t. The state

of n at a sampling round ti(1 ≤ i ≤ k) is defined to be a pair h = (r(n, ti−1), r(n, ti)),

such that h ∈ {(0, 1), (0, 0), (1, 0), (1, 1)}.

The state of a node varies with time. In the following discussion, everything is

assumed to be in the same snapshot at sampling round ti(1 ≤ i ≤ n) unless time is

explicitly specified. The states of the sensor nodes together with the sensor connectivity

yield the following concepts that are foundations for topological change detection.
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Definition 4.2. Let N be a set of sensor nodes, N is said to be a homogeneous sensor

network component if the nodes in N are in the same state and induce a connected

component in the communication graph. Moreover, N is defined to be a maximal ho-

mogeneous sensor network component, if it is impossible to find a node n in the sensing

area such that (1) n /∈ N , and (2) N ∪{n} is a homogeneous sensor network component.

Definition 4.3. Let N1 and N2 (N1∩N2 = ∅) be a pair of homogeneous sensor network

components.

1. N1 is said to be adjacent to N2 if there are nodes n1 ∈ N1 and n2 ∈ N2 such that

n1 and n2 are direct neighbors in the communication graph. Otherwise, N1 and

N2 are said to be separated.

2. N1 is said to be surrounded by N2, if any path in the communication graph that

starts from the reference node and contains a node of N1 must contain a node of

N2. N1 is said to surround N2, if N2 is surrounded by N1.

Definition 4.4. Let N be a maximal homogeneous sensor network component.

1. N is defined to be a transition sensor network component, if N consists of only

nodes either in state (0, 1) or in state (1, 0).

2. N is defined to be a sensor network C-component, if both of the following conditions

are satisfied: (1) N consists of nodes either in state (0, 0) or in state (1, 1), and

(2) N is adjacent to transition sensor network component.

3. N is defined to be a background sensor network C-component, if it is a sensor

network C-component and it surrounds all the other sensor network C-components.

We use the elements defined in sensor networks to represent the basic features

that are necessary for topological change detection. Table 4.1 shows the correspondences

between the elements we defined in spatial domain ℜ2 and their representations in sensor
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Table 4.1 Approximated components\relations in sensor networks
In spatial domain ℜ2 In sensor networks

A C-component in state 3 A sensor network C-component in state (1, 1)

A C-component in state 4 A sensor network C-component in state (0, 0)

The transition region The transition sensor network component

The background C-component The background sensor network C-component

Adjacency relations Adjacency relations between
between C-components sensor network C-components

Surrounded-by relations Surrounded-by relations
between C-components between sensor network C-components

networks. Based on the correspondences, all the concepts defined in the spatial domain

ℜ2 can be represented and computed in terms of states of sensor nodes and connectivity

between them.

As an example, Figure 4.12(a) and 4.12(b) show the readings of nodes at con-

secutive sampling rounds t1 and t2, when the basic transition shown in Figure 4.1 is

observed. The black points denote nodes with reading 1, and the white points denote

nodes with reading 0. The only difference between the two snapshots is that the nodes

located in the area enclosed by a polygon change their readings. These nodes form a

maximal homogeneous sensor network component in state (1, 0), which is a transition

component at t2 by definition 4.5. The remaining nodes are in states (0, 0) and (1, 1)

at t2, and they form the six other maximal homogeneous sensor network components.

The seven maximal homogeneous sensor network components represent the components

in the spatial domain ℜ2 as shown in Figure 4.12(c). In the figure, component b is

represented by the transition sensor network component. Components a, d, and f are

represented by maximal homogeneous sensor network components that consist of nodes

in state (1, 1). Components c, e, and g are represented by the maximal homogeneous

sensor network components that consist of nodes in state (0, 0). In addition, the maxi-

mal homogeneous sensor network components that represent the components a, c, and

d are shown in Figures 4.12(d), 4.12(e), and 4.12(f). They are adjacent to the transition

sensor network component, and therefore both are sensor C-components at t2.
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Figure 4.12 An example of homogeneous components

4.4 Density and communication issues

Ideally, the elements defined in sensor networks represent the properties of the areal

objects in the spatial domain ℜ2. The nodes located in a component of the spatial

domain form exactly one maximal homogeneous sensor network component. Compo-

nents in the spatial domain are adjacent if and only if they are represented by adjacent

maximal homogeneous sensor network components. Components in the spatial domain

surround each other if and only if they are represented by maximal sensor network com-

ponents that surround each other. These properties are expressed by the density and

communication constraints in Section 4.3.

However, such a perfect matching may not always exist. Inconsistency may be

caused by low node density and improper setting of communication ranges. Here are

some of the examples.

First, if the density of the nodes is low, a component in the spatial domain that

is small enough may not contain any sensor node, and therefore is not represented by

any sensor network component, as shown in Figure 4.13(a).
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Figure 4.13 Configurations that lead to errors in reports

Second, if the communication range of the sensor nodes is not large enough, two

types of inconsistencies may occur:

1. A pair of adjacent components in the spatial domain are represented by a pair of

separated maximal homogeneous sensor network components, as shown in Figure

4.13(b).

2. A pair of components in the spatial domain that are not surrounded by each

other are represented by a pair of adjacent maximal homogeneous sensor network

components such that one is surrounded by the other, as shown in Figure 4.13(c).

Finally, if the communication range of the sensor nodes is not small enough, two

types of inconsistencies may occur.

1. A pair of components that are not adjacent in the spatial domain is represented

by a pair of adjacent maximal homogeneous sensor network components, as shown

in Figure 4.13(d).
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2. A pair of components in the spatial domain, such that one surrounded by the other,

is represented by a pair of maximal homogeneous sensor network components which

does not surround each other, as shown in Figure 4.13(e).

In order to avoid inconsistency, the density of the sensor nodes should be high

enough to distinguish the smallest variation in the spatial domain, and the sensing range

of the nodes should be set properly. This is why we stipulate that the sensor network

satisfies the density and communication constraints.

4.5 Summary

This chapter provides the computational foundations for topological change detection

in sensor networks. Based on the local tree model, basic transitions are classified into

a complete set of classes, and each class specifies a type of topological change. We

also analyze the corresponding elements required by the local tree model in the sensor

network configuration, so that the necessary information required by the model can be

fully captured using sensor networks.
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Chapter 5

DISTRIBUTED APPROACHES FOR TOPOLOGICAL

CHANGE

DETECTION USING SENSOR NETWORKS

The discussion in Chapter 4 shows that to detect topological changes, we need to identify

both the transition sensor network component and the sensor network C-components,

together with their states, and more importantly, to determine the topological relations

between the sensor network C-components. This chapter provides distributed algo-

rithms for topological change detection using sensor networks based on the foundation

laid in Chapter 4. After present some basic approaches in Section 5.1, two energy-

efficient topological change detection approaches are proposed in Sections 5.2 and 5.3,

respectively.

5.1 Basic approaches

Using a basic approach, we require the entire collection of nodes located in a sensing

area to report their readings and geographic locations back to the base station after

each sensing round. With all the received data, the base station is able to determine the

types of topological changes using centralized computation. However, it is too energy-

consuming to gather all of the raw sensor node information to the base station.
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To improve on the basic approach, we postulate that only the nodes located near

the boundary of the areal object report after each sensing round. A boundary node is

defined as a node that has a direct neighbor with a different reading. As an example,

Figures 5.1(a) and 5.1(b) show the boundary nodes that are required to report during

a basic transition. Because the boundary nodes carry the necessary information for

topological change detection, the base station is able to detect the topological changes

based on the data received from the boundary nodes. The polygon in Figure 5.1(c) en-

closes the boundary nodes that are identified to be part of the transition sensor network

component. Figures 5.1(d), 5.1(e), and 5.1(f) show the boundary nodes contained in

different sensor network C-components. By analyzing the properties of the boundary

nodes, the structure of the representation tree can also be identified, as shown in Figure

5.1(g).

Figure 5.1 Boundary nodes
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5.2 Decentralized topological change detection using tran-

sient groups

The basic boundary-based approach reduces the number of reporting nodes. However,

as we have assumed a dense deployment of sensor nodes, the number of boundary nodes

may still be large. One option for further reducing the communication cost in boundary

reporting is to suppress the amount of data being transfered based on in-network com-

pression or boundary simplification [ZW07, LL07]. However, as indicated in [GHS07],

most of these approaches cannot guarantee the topology preservation in their compres-

sion results. Therefore, in some cases it is inaccurate to derive topological changes

based on the approximate boundaries constructed by those compression approaches. In

order to retrieve all the necessary information for topological change detection with low

communication cost, we developed f the approach of decentralized topological change

detection using transient group approach (TG-based approach).

The first improvement of the TG-based approach over the basic boundary-based

approach is that instead of requiring all boundary nodes to report, the nodes required to

report in the TG-based approach only include a small portion of boundary nodes. These

nodes are basically located close to both the boundary formed by the C-components

and the boundary of the transition region, and are referred to as C-nodes and T-nodes,

defined as follows.

1. A C-node is a node located in a sensor network C-component and has a direct

neighbor located in a different sensor network C-component.

2. A T-node is a node located in the sensor transition component and has a direct

neighbor located in a sensor network C-component.

As an example, Figure 5.2(b) shows the C-nodes and T-nodes that are involved

in the reporting procedure after the basic transition described by Figures 5.2(a) and
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5.2(b) is observed. A method of identifying the C-nodes and T-nodes is detailed in the

diffusion phase of Section 5.2.2.

Figure 5.2 The C-nodes and T-nodes

The second improvement of the TG-based approach over the basic boundary-

based approach is that instead of reporting the data directly to the base station, a

representative node in the TG-based approach is selected among the T-nodes at each

sensing round. This representative node is responsible for collecting the data sent from

the C-nodes and forming the final report on the observed topological change. In this

way, the computation can be performed locally by the C-nodes and T-nodes.

The third improvement of the TG-based approach over the basic boundary-based

approach is that in the TG-based approach, the C-nodes form groups, and only a node,

the group leader, in each group is responsible to report to the representative node. The

data sent from the group leader represents information about the group as a whole,

instead of information about each single node in the group. With the group-level data

available, the representative node is able to find the necessary information required by

the local tree model, and finally determine the type of topological change. As the amount

of group-level data is much smaller than the node-level data, the communication cost in

the TG-based approach is further reduced compared to the boundary-based approach.
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Section 5.2.1 discusses the necessary group level data that are needed in order to

determine the type of a topological change, and Section 5.2.2 presents the algorithm of

the TG-based approach in detail.

5.2.1 Boundary group based representation

In this section, we show that the necessary features for topological change detection can

be completely represented by properties of groups formed among the C-nodes; that is,

groups of nodes along the boundary of C-components.

In the TG-based approach, C-nodes at each sensing round form groups. The

nodes in a group are assigned a unique integer label, and the group is indicated by the

label. The nodes in the same group form a homogeneous sensor network component;

that is, they have the same state and form a connected component in the communication

graph. A single node in each group is selected to be the group leader, which is responsible

for sending data about the group back to the representative node.

Figure 5.3 Groups among C-nodes

To determine the structure of the sensor network C-components in a basic tran-

sition, the group level data sent from the leader of a group G include the integer label

of G, the common state of the nodes in G, and the neighboring label set of G. The

neighboring label set of G is defined to be the set of labels of groups that are adjacent
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to G. In order to reduce the redundant communication cost, we also require that the

labels in the neighboring label set of G must be greater than the label of G. In this way,

the adjacency relation between two groups is captured and reported by exactly one of

the group leaders.

As an example, Figure 5.3(b) shows a possible formation of groups among the

C-nodes identified after the basic transition described by Figures 5.3(a) and 5.3(b) is

observed. Seven groups labeled from 0 to 6 exist. Taking group 0 as an example, the

data sent from this group to the representative node include group label 0, the state

(0,0) of the group, and the neighboring label set {2, 4, 6}. The data received by the base

station from all the groups can be represented by the graph shown in Figure 5.4(a).

In this graph, a vertex represents a group of that label, and the shading of a vertex

represents the state of the group. Edges of the graph represent the adjacency relations

between the groups, which are derived of the neighboring label sets of the groups.

Figure 5.4 Information received at the representative node

The representative node is able to identify the C-components solely based on the

group level data. In the example shown in Figure 5.4(a), as all the groups are adjacent to

the transition sensor network component, they are contained in various sensor network

C-components. First, consider group 0. As group 2 is adjacent to group 0 and both

have the same state (0,0), they are contained in the same sensor network C-component
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by definition 4.3. Similarly, as group 1 is adjacent to group 2 and both have the same

state, group 1 must be contained in the same sensor network C-component as group 2

and 0. Besides that, no other groups in state (0,0) are adjacent to groups 0, 1 and 2.

So there must be a C-component in state (0,0) that contains groups 0, 1 and 2.

Next, consider groups 3, 4 and 5. As all of them are adjacent and have the same

state (1,1), they are contained in the same C-component. In addition, as no other group

in state (1,1) is adjacent to them, we identify a sensor network C-component in state

(1,1), which contains the groups 3, 4 and 5. Finally, consider group 6: as no other group

in state (1, 1) is adjacent to group 6, another sensor network C-component in state

(1,1) is identified that contains group 6. In all, we have identified three sensor network

C-components of this basic transition.

The adjacency relations between the sensor network C-components can be iden-

tified based on the adjacency relations between the groups. A pair of sensor network

C-components are adjacent if one contains a group that is adjacent to a group in the

other C-component. In this example, as group 0 is adjacent to group 4, the sensor

C-component containing groups 0, 1 and 2 must be adjacent to the sensor network C-

component containing groups 3, 4 and 5. Similarly, as group 0 is adjacent to group 6,

the sensor network C-component containing groups 0, 1 and 2 must be adjacent to the

sensor C-component containing group 6. Figure 5.4(b) shows the representation tree of

the sensor network C-components and adjacency relations identified based on the group

level data.

Finally, to identify the background sensor network C-component, we require each

group to send its group hop distance to the base station, in addition to the other data.

The group hop distance is the number of hops of the shortest path between any node

in the group and the reference node. As the background sensor network C-component

surrounds any of the other sensor network C-components and the reference node is
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located outside all the sensor network C-components, it follows that any path that

connects a node in a sensor network C-component to the reference node must cross a

group contained in the background sensor network C-component. Therefore, among all

the groups identified to be contained in sensor C-components, the one with the minimal

group hop distance must belong to the background sensor network C-component.

In all, the information required to determine the type of a topological change can

be represented by the group level data.

5.2.2 Algorithm

This section provides the detailed algorithm of the TG-based approach. An initialization

is performed at the beginning of the sensing task. Next, the detection procedure is

repeated after each sensing round, which consists of the following four phases:

1. Diffusion phase, in which the C-nodes and T-nodes are identified, and the rep-

resentative node is selected among the T-nodes.

2. Group formation phase, in which the C-nodes form groups, and nodes in each

group hold a unique label. At the same time a routing tree is built, which connects

all the C-nodes to the representative node.

3. Aggregation phase, in which the group level data necessary for detecting the

topological changes from the C-nodes are transmitted back to the representative

node along the routing tree.

4. Analysis phase, in which the representative node analyzes the data it has received

and forms the report to be sent back to the base station.

Although the four phases are presented and will be described in a sequential

order, in implementation the nodes are not required to be globally synchronized. Each
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node can start the next phase as long as it is confirmed to have finished the tasks in the

previous phase. The following subsections describe each phase in detail.

Initialization

During initialization, each sensor node computes its hop distance, and the base station

sends out a query to all the nodes in the whole sensing area.

Similar to the approach described in [FK06], hop distances of nodes can be com-

puted by flooding originating from the reference node. The reference node broadcasts a

HELLO message maintaining a distance counter that is incremented at every hop. The

minimum counter value over all messages received by a node n is the hop distance of n.

Query propagation is done by flooding originating from the base station, which

broadcasts a query TPQ(ts, tf , t∆) to all the nodes located in the sensing area. In the

query, ts and tf state the time to start and to finish the monitoring, and t∆ specifies

the time period between a pair of consecutive sensing rounds.

Diffusion phase

In this phase, C-nodes and T-nodes are identified, and the representative node is selected.

After each sensing round a node can determine its state directly based on its local

readings. The identification of C-nodes and T-nodes needs the communication between

the nodes. The nodes in state (0, 1) or state (1, 0) have different behavior from the nodes

in state (1, 1) or state (0, 0), and we describe them separately.

In this phase, the nodes in state (0, 1) or state (1, 0) communicate with their

neighbors to identify the T-nodes. A representative node election procedure is performed

among the identified T-nodes, after which, one of the T-nodes is elected to be the

representative node. A by-product of the election is a routing tree, which connects all

the T-nodes back to the representative node.
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Assume a node n discovers itself to be in state (0, 1) or state (1, 0) after a sensing

takes place. Node n first broadcasts a message IS-CHANGED to its neighbors and waits.

If n discovers one of its neighbors to be in state (1, 1) or state (0, 0), n is upgraded to a

T-node, and enters the representative node election procedure.

The general idea of representative node election is that each T-node n generates

a random key value, and propagates it to its neighbors. The node with the smallest key

value is selected to be the representative node. At the same time, each node selects the

node from which the smallest key is first received as its parent, so that a routing tree is

built that connects all the T-nodes to the representative node.

In this phase, the task of the nodes in state (1, 1) or state (0, 0) is to identify the

C-nodes. By definition 4.5, a node n in state (1, 1) or state (0, 0) can be upgraded to a

C-node if either of the following conditions is satisfied:

1. n discovers a direct neighbor node in state (0, 1) or state (1, 0).

2. n discovers a pair of direct neighbors that are C-nodes and are in state of (1, 1)

and (0, 0), respectively.

As an example, after the transition described by Figure 5.1 is observed, the C-

nodes shown in Figure 5.5(a) are identified as satisfying condition 1, and the C-node n

shown in Figure 5.5(b) is identified as satisfying condition 2.

Figure 5.5 Examples of C-nodes identification
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To confirm itself to be a C-node, a node in state (1, 1) or state (0, 0) waits for

messages from its neighbors after each sensing round. It is upgraded to a C-node if

either condition is satisfied. If a node n in state (1, 1) or state (0, 0) receives a message

indicating the existence of a direct neighboring node in state (1, 0) or state (0, 1) (such as

an IS-CHANGED message from a direct neighbor), using condition 1, node n is upgraded

to a C-node directly, and after that broadcasts a message informing its neighbors about

its upgrade. If a node n in state (1, 1) or state (0, 0) discovers a pair of direct neighboring

C-nodes upgraded one from a node in state (1, 1) and one from a node in state (0, 0),

using condition 2, node n is upgraded to a C-node. Node n then broadcasts an upgrade

message in order to continue identifying the other C-nodes.

Group formation phase

After the C-nodes are identified, groups are formed, and labels and routing tree struc-

tures are maintained amongst the C-nodes. During group formation, a C-node n first

waits for a random amount of time tw in the range [1, Tw], in which Tw is the maximum

waiting time. When the wait finishes, if no existing group is found for n to join, n

becomes a group leader. Each group leader propagates a group call message toward

the other C-nodes of the same reading. A C-node joins with the same group as the

sender of the group call message it first hears. During the group formation, all the

C-nodes in the same group are assigned the same label, which is the unique identifier of

its group leader. Also, a routing tree is set up within each group that is rooted at the

group leader and connects all the boundary nodes in the group. In addition, each group

leader is connected in turn to one of its neighboring T-nodes. As a routing tree is also

formed amongst the T-nodes during the diffusion phase, all the C-nodes and T-nodes

are connected in a single routing tree.
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Figure 5.6 Boundary groups and the routing tree

As an example, Figure 5.6(a) shows a possible distribution of groups formed

among the C-nodes that are detected immediately after the basic transition in Figure

5.1 is observed. Figure 5.6(b) shows the routing tree that is built in the C-nodes and T-

nodes, in which group leaders are indicated by double rectangles, and the representative

node is indicated by a double circle.

Aggregation phase

In this phase, the necessary data, including neighboring label set and group hop distance

of each group, are collected and transmitted back to the representative node.

By communication, a C-node n in a group observes the labels of its direct neigh-

bors. The observed labels that are greater than the label of n form a local label set of

n, denoted by L(n). In addition, we define the neighboring label set of n, denoted by

N(n), to be the union of all the local label sets of nodes contained in the subtree rooted

at n; that is, N(n) = L(n) ∪ (
⋃

m∈D(n) L(m)), in which D(n) is the set of descents of n

in the routing tree.

By definition, the neighboring label set of the group G is N(r), where r is the root

of the routing tree in G. The neighboring label sets can be computed by aggregation.

During the aggregation, each node n computes N(n) based on the data received from
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its direct children, and sends the result to its parent. If node n is a leaf node in the tree,

N(n) = L(n). Otherwise, let c1, c2,..., ck be the direct children of n in the routing tree,

N(n) = N(c1) ∪ N(c2)... ∪ N(ck) ∪ L(n).

As an example, Figure 5.7 shows the detailed structure of group 0. The nodes

of the part are named a to g, and the node a is the root. Each node knows its local

label set, in which L(a) = L(k) = {6}, L(b) = ∅, L(c) = L(d) = L(e) = L(f) = L(g) =

L(h) = {4}, L(i) = {2, 4}, and L(j) = {2, 6}. After the aggregation, each node knows

its neighboring label set, in which N(b) = N(c) = N(d) = N(e) = N(f) = N(g) = {4},

N(i) = N(h) = {2, 4}, N(j) = {2, 6}, and N(a) = N(k) = {2, 4, 6}.

Figure 5.7 Details of group 0

Similarly, with the routing tree, the group hop distance, which is the minimal

hop distance of the nodes in the group, can be found at the group leader by a standard

aggregation method. Therefore, at the end of the aggregation phase, the group leader is

able to send the necessary group information back to the representative node, including

the state of the group, its integer label, its neighboring label set, and its group hop

distance.
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Analysis phase

After the aggregation phase, the data from all the groups of C-nodes are transmitted to

the representative node. In this phase, the representative node forms the report on the

observed topological change based on the group level data.

In the analysis, groups form different sets, each set having these properties:

1. All groups in the same set have the same state.

2. Groups in the same set are connected with respect to the adjacency relation.

3. Each set is maximal with respect to properties 1 and 2.

A set satisfying these properties is formed by groups that are located in the

same sensor network C-component, and can be used to represent that sensor network C-

component. By generating such sets of groups, all the sensor network C-components can

be found. Based on the analysis of Section 5.2.1, a pair of sensor network C-components

are adjacent if a group in one of the sensor network C-components is adjacent to a group

in the other sensor network C-component. The background sensor network C-component

is the one that contains the group with the minimal group hop distance. Finally, the

state of the transition sensor network component can be determined based on the local

readings of the representative node, and the state of the background sensor network

C-component can be determined by the state of the group contained in it. Therefore all

the necessary information is collected at the representative node, which is able to form

the final report about the type of the observed transition.
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5.3 Decentralized topological change detection using adap-

tive groups

The TG-based approach reduces the communication cost by requiring the C-nodes to

report using the group based technique. However, as the group formed in a sensing

round cannot be reused over time in the TG-based approach, the groups may be formed

repeatedly among the same set of C-nodes. In some cases, especially when the boundary

of the areal object does not change significantly, the communication cost by TG-based

method can still be high. This section presents the adaptive group-based (AG-based)

approach, which is an improvement on the TG-based approach by reusing the time-

invariant information.

By the AG-based approach, some nodes in the sensing area form groups, and

each group is assigned a unique integer label, and is allowed to endure over time after it

is formed. The structure of groups is dynamically modified after each sensing round, so

that the nodes in the same group are always ensured to form a homogeneous component.

After each sensing round, only groups that are located near the boundary of the areal

object and that have changed their properties are required to report. Based on the

information received from the updated groups, the base station maintains the structure

of all the boundary groups, and the types of topological changes can be detected at the

base station.

As a smaller portion of the groups needs to be updated after each sensing round,

the AG-based approach has a significant improvement in reducing the communication

cost compared to the TG-based approach.

Algorithm 1 sets out the sketch of the proposed approach, and the following

subsections present each step in detail.
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Algorithm 1 Topological change detection

1 Initialization

1.1 Each node in the sensor network computes its hop distance to the reference node.
1.2 The base station sends out a query to all of the nodes in the whole sensing area.

2 Boundary group initialization

The following steps are performed immediately after the first sensing round.
Sensor nodes take measurements at specified sensing rounds, and the following steps
are performed at each sensing round in a distributed manner:
2.1 Group formation: After the first sensing round, groups are formed among the
boundary nodes.
2.2 Group aggregation and reporting: The group information is aggregated and
sent back to the base station.

3 Monitoring

Sensor nodes take measurements in specified sensing rounds, and the following steps
are performed in each sensing round in a distributed manner:
3.1 Group update: Existing groups are modified to ensure that (1) every node
located near the boundary of C-components is included in a group, and (2) each
group is a homogeneous component.
3.2 Update aggregation: The modified groups perform an update, and update
messages are sent back to the base station.
3.3 Data reporting and analysis: Data are sent back to the base station from
group leaders. The base station analyzes data it receives to determine the type of
changes.

5.3.1 Initialization

During initialization, each sensor node computes its hop distance, and a query request

is propagated from the base station to the nodes in the sensing area. The initialization

procedure in this algorithm is the same as the initialization step that is described in

Section 5.2.2.

5.3.2 Group formation

After the first sensing round, the initial boundary groups are formed. Each node first

communicates with its direct neighbors to identify the boundary nodes. A node is a

boundary node if it has a direct neighbor with a different reading. Groups are formed

among those boundary nodes.
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The group formation of the AG-based approach is the same as the group forma-

tion phase in TG-based approach described in Section 5.2.2. The only difference is that

in the AG-based approach the groups are formed among all the boundary nodes, instead

of only the C-nodes. During the group formation, the boundary nodes in the same group

are assigned the same label, which is the unique identifier of its group leader. Also, a

routing tree is set up within each group that is rooted at the group leader and connects

all the boundary nodes in the group.

As an example, Figure 5.8(a) shows the boundary groups formed among the

boundary nodes detected immediately after the first sensing round of the basic transition

in Figure 5.1. Figure 5.8(a) shows the details of the boundary group 0, in which the

group leader is indicated by a double circle, and the routing tree built among the nodes

in the group is indicated by the edges between the nodes.

Figure 5.8 An example of boundary group formation

5.3.3 Group information aggregation and reporting

After the boundary groups are formed, data necessary for topological change detec-

tion are aggregated within each group. The aggregation result of a group includes its

neighboring label set, as well as its group hop distance. The aggregation and reporting

procedure is the same as the aggregation phase in TG-based approach described in Sec-
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tion 5.2.2. The only different is that in AG-based approach, the data are sent from the

group leaders to the base station, instead of the representative node.

5.3.4 Group update

In the AG-based approach, a group endures after it is formed. However, the readings of

nodes in a sensing round ti can be different from that in ti−1. Therefore, the nodes in

the same group formed in ti−1 may have different states in ti. In order to ensure that

the nodes in the same group form a homogeneous component, some groups are modified

at ti. The modifications include group partial deletions and creations.

The nodes in a group may change its reading after a sensing round. Suppose the

node n in a group G changes its reading. Then group G is no longer a homogeneous

component, and needs to be updated. A partial deletion is performed, in which the

nodes in the subtree originating at n is deleted from the group G. To perform the

partial deletion, after the sensing round ti, any labeled node in state (0, 1) or state (1,

0) is set to be unlabeled, leaves the group, and propagates a DESTROY message to

its decedents in the routing tree. A labeled node that receives a DESTROY message

is set to be unlabeled and leaves the group.

The partial deletion of existing groups, as well as the change of the areal object

boundary, results in unlabeled boundary nodes that are not included in any groups. To

report the properties of these nodes, groups are formed among the unlabeled bound-

ary nodes. The formation procedure is the same as the group formation phase of the

TG-based approach described in Section 5.2.2. For an illustration, consider the basic

transition described by Figures 5.9(a) and 5.9(a). During the transition some nodes in

group 0 change their readings from 1 to 0, which incur the partial deletions. These

nodes together with their descendants leave group 0 and become unlabeled boundary

nodes, as shown in Figure 5.9(c). In addition, the transition also results in some new
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boundary nodes depicted as squares in Figure 5.9(c). These boundary nodes perform a

group formation procedure, and a possible result is shown in Figure 5.9(d), in which new

groups 2 and 6 are created, and group 0 is expanded to include two boundary nodes.

Figure 5.9 An example of group update

5.3.5 Update aggregation and reporting

After the group update, information of some groups needs to be computed. The same

procedure in the aggregation phase as described in Section 5.2.2 is performed in the new

groups to get group level data. In addition, the aggregation is also performed in the

groups that are created in previous sensing rounds. The aggregation in these groups

only takes place where nodes have different data. As an example, the nodes m, n, o, p,

and q shown in Figure 5.10 are the only nodes in group 0 whose neighboring label sets

and group hop distances may need to be updated. As the data in the rest of the nodes

in group 0 do not change, an aggregation among them is unnecessary.
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Figure 5.10 An example of group update aggregation

After the update, the messages are sent from the leaders of some groups to the

base station. A creation message is sent from the leader of each new group G. This

message includes the label of G, the state of G, neighboring label set of G, and the

group hop distance of G. An update message is sent back from the leader of a group

G whose group data changed. The update message includes the labels that are added

to, or removed from, the neighboring label set of G, and the group hop distance of G, if

it changes.

5.3.6 Data reporting and analysis

Based on the data received after each sensing round, the base station knows the label,

the state, and the group hop distance of all the existing groups, as well as the adjacency

relations between them.

The following procedure can be performed in the base station to determine the

type of a change. First, the base station identifies sets of groups, each set having the

following properties:

1. At least one of the groups in the set is adjacent to a group in state (0, 1) or state

(1, 0).

2. Groups in the same set have the same state.
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3. Groups in the same set are connected with respect to the adjacency relation.

4. Each set is maximal with respect to properties 2 and 3.

Each set satisfying these properties is formed by groups that are located in the same

C-component, and can be used to represent that C-component. By generating such

sets of groups, all the sensor network C-components can be found. The other necessary

information can be obtained in the same way as the analysis phase of the TG-based

approach as described in Section 5.2.2. Finally, the type of the topological change can

be determined at the base station.

5.4 Summary

This chapter presents a basic approach and two improved approaches to topological

change detection in sensor networks. Both approaches maintain and report properties

of groups after each sensing round in different ways. The collected information allows

the detection of topological changes based on the framework presented in Chapter 4.
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Chapter 6

EXPERIMENTS AND EVALUATIONS

This chapter presents a description of the experiments that were conducted using simu-

lation techniques in order to test the performance of the proposed approaches to topo-

logical change detection. We also evaluate the experimental results.

6.1 Experiments

We used Prowler [Pro08], a MATLAB based network simulator, as our simulation envi-

ronment. In the experiments, the size of the sensing area was set to be 420 units×600

units. 2500 nodes were randomly deployed in the sensing area, and the communication

graph between the sensor nodes formed a Delaunay triangulation of the whole space.

The base station, which collected data and reported the types of observed topological

changes, was placed in the top-left corner of the sensing area. In addition, the base

station was assigned to be the reference node. Figure 6.1 shows the deployed sensor

nodes and their communication links. In the figure, the base station is indicated by a

rectangle and the hop distances of the sensor nodes are indicated by different colors.

Both the transient groups-based (TG-based) method and the adaptive group-

based (AG-based) method were tested along with the baseline method of basic boundary

construction (NBC) in such a configuration. In each experiment, the sensor nodes
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Figure 6.1 The hop distance of the sensor nodes in the experiment

performed topological change detection in sensing rounds t1, t2,..., and t20, in which the

difference between ti+1 and ti was 60 seconds.

A sequence of 20 snapshots, as shown in Figure 6.2, was generated to provide

the sensing data from t1 to t20. These snapshots described a scenario, in which an areal

object evolved in the form of basic transitions, from a small areal object to a large one.

Table 6.1 presents the ratio of the size of the areal object to that of the whole sensing

area in each snapshot, as well as the type of topological change that occurs in each

sensing round.

In the first and second experiments, we performed the topological change detec-

tion by the TG-based and AG-based method, respectively. The maximum waiting time

Tw of a sensor node in both experiments was set to be 25 seconds. In the experimental

results, all the reported types of topological changes were the same as expected.

For comparison, in the third experiment we performed the boundary detection

using the NBC method. By the NBC method, sensor nodes first communicated with

their neighbors at each sensing round to identify the boundary nodes (the nodes that
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Figure 6.2 Snapshots of experimental data

had a direct neighbor with a different reading). After that, the boundary nodes located

in the areal object reported their location information back to the base station via

the shortest routes. With the location information received, the base station was able

to generate the boundary of the areal object after each sensing round. Because the

boundary characterized the topological properties of an areal object, the topological

changes could be identified based on the consecutive snapshots of the boundary.
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Table 6.1 Experimental data descriptions
Time t1 t2 t3 t4

Size ratio 7.77% 8.45% 9.71% 11.05%
Type Region Enlarge Region Appear Region Merge

Time t5 t6 t7 t8
Size ratio 12.85% 13.94% 14.4% 14.88%

Type Region Enlarge Region Merge Region Enlarge Region Enlarge

Time t9 t10 t11 t12
Size ratio 13.79% 15.06% 14.03% 14.72%

Type Region Split Region Enlarge Region Split Region Merge

Time t13 t14 t15 t16
Size ratio 15.49% 16.51% 17.51% 18.03%

Type Region Enlarge Region Enlarge Region self-merge Region Enlarge

Time t17 t18 t19 t20
Size ratio 19.12% 19.9% 20.81% 21.8%

Type Hole disappear Region appear Region Merge Region Merge

6.2 Evaluation of the transient group-based method

Figure 6.3 shows the communication cost of both the NBC and the TG-based method.

In each sensing round, the TG-based method has a lower communication cost than that

of the NBC method. The total communication cost of the NBC method in detecting

the 19 topological changes is 247743 bytes, and the total communication cost of the

TG-based method is 126183 bytes, which is 50.9% of that of the NBC method.

Figure 6.3 Communication cost of NBC and TG-based method

The ratio of the communication cost of the TG-based method to that of the

NBC method is not constant in all sensing rounds. We first consider a sensing round
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t11, in which the communication cost of the TG-based method is 46% of that of the

NBC method. Figure 6.4 shows the C-nodes and T-nodes of the TG-based method at

t11. The report on topological change is first formed by communication amongst the

C-nodes and T-nodes, and a unique representative node sends the final report back to

the base station. Because the number of the C-nodes and T-nodes is small, only 6350

bytes transmission are needed for reporting. By the NBC method, each boundary node

located within the areal object is required to send its location information back to the

base station. Figure 6.5 shows the reporting nodes at time t11 and an example of a route

for data transmission. As shown in the figure, the number of boundary nodes is large

and the cost of sending data back to the base station is high, which results in a higher

communication cost of 13734 bytes transmission in reporting by the NBC method.

Figure 6.4 The C-nodes and T-nodes at sensing round t11

However, there are some cases in which the communication cost of the TG-based

method is close to that of the NBC method. Consider the sensing round t20, in which

the communication cost of the TG-based method is 78% of that of the NBC method.

Figure 6.6 shows the C-nodes and T-nodes of the TG-based method at t20. The number

of the C-nodes nodes in sensing round t20 is much larger than that in the sensing round

t11, which increases the communication cost in reporting by the TG-based method.
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Figure 6.5 The boundary nodes at sensing round t11

However, the number of boundary nodes in t20 is similar to that in t11. Therefore, the

communication cost of the NBC method is similar in both sensing rounds.

Even though there are special cases where TG-based and NBC are similar, in

general the TG-based method outperforms the NBC method in topological change de-

tection. This is especially the case when the topological structure of the areal object is

complex and the components of the areal object that change their topological properties

are small.

Figure 6.6 The C-nodes and T-nodes at sensing round t20
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6.3 Evaluation of the adaptive group-based method

Figure 6.7 shows the communication cost of the TG-based and the AG-based method.

The AG-based method requires higher communication cost in the first sensing round

t1 than that in the other sensing rounds, because it needs to perform group formation

among all the boundary nodes at t1. After that, the communication cost is reduced.

The total communication cost by the AG-based method is 46159 bytes, which is 36.6%

of that by the TG-based method.

Figure 6.7 Communication cost of the group-based methods

Figure 6.8 The boundary groups after sensing rounds t19 and t20
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Figure 6.9 The nodes involving in group update at sensing rounds t20

The communication cost of the AG-based method is reduced compared to that of

the TG-based method, because the aggregation in the AG-based method takes place only

within the locality of the change, and only the updated information is transfered to the

base station. Consider the typical sensing round t20, in which the communication cost of

the TG-based method is relatively high. By the AG-based method, not all the boundary

groups are formed at t20. Instead, the boundary groups at t20 are obtained by updating

a small number of groups at sensing round t19. Figure 6.8 shows the boundary groups

formed at t19 and t20 in an experimental run. Nodes in the same group are connected by

edges, and group leaders are indicated by black circles. Many of the boundary groups

at t19 do not change during the transition and can be reused at t20. Only the group

structures among the nodes shown in Figure 6.9 change, and messages describing the

changes are sent to the base station from the group leaders indicated by black circles.

This result implies that by reusing the time-invariant information, the AG-based

method can reach a lower communication cost than that of the TG-based method,

especially when the number of boundary groups that change their structure in each

sensing round is small.

110



6.4 Effect of group size for TG-based and AG-based meth-

ods

The maximum waiting time Tw in both the TG-based method and the AG-based method

affects the number of boundary groups formed during the detection. With the increase

of Tw, the number of groups formed decreases.

The number of boundary groups may affect the total communication cost. In

order to study this effect, we set up different Tws within the range [5s, 30s] in different

runs for experiments 1 and 2. The number of groups formed in each run varied, so did the

communication cost. Figure 6.10 shows the correspondences between the communication

cost and the total number of groups for both methods. The communication cost of the

TG-based method is nearly constant for different number of groups.

Figure 6.10 Communication cost in different number of groups

However, the communication cost of the AG-based method increases significantly

as the total number of groups increases. In some extreme cases, the total communication

cost of the AG-based method is even higher than that of the TG-based method. The

reason is as follows. With the number of groups increasing, more data need to be trans-

ferred back either to the representative node or to the base station. The representative
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node in the TG-based method is ensured to be located close to the group leaders, so the

communication cost remains nearly constant when the amount of data being transfered

increases. Whereas the base station in the AG-based method is located at the boundary

of the whole sensing area and is usually far away from the group leaders. Hence, the

number of transmissions increases significantly when more data need to be transfered

back to the base station.

The communication cost of the AG-based method increases with the increase of

the number of groups formed, which is caused by the decrease of the maximum waiting

time Tw. Therefore, the AG-based method may not have a better performance than the

TG-based method in some applications that require a higher temporal resolution.

6.5 Summary

This chapter presents the experimental results of the topological detection methods we

have developed in Chapter 5. Both methods generate correct sensing reports using a

lower communication cost than that of the basic boundary construction method. By

employing the boundary group based framework, the transient group-based method

reduces the communication cost to 50% of that of the basic boundary construction

method in topological change detection. By reusing the time-invariant information, the

adaptive group-based method further reduces the communication cost to 36.6% of that

of the transient group-based method.
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Chapter 7

CONCLUSIONS

Chapter 7 concludes this thesis. It presents a summary and lists the main contributions

of our work. We also provide a critical analysis of the research undertaken and presented

in this thesis. Finally, we provide suggestions for future areas of research.

7.1 Summary of thesis

Topological changes to regions, such as merging, splitting, hole formation and elimina-

tion, are significant events in the evolution of regions. Information about such salient

changes is useful in many applications. Sensor network technology has the potential

to play an important role in detecting topological changes. However, due to the lim-

ited computational ability and the energy constraints of sensor networks, applications of

topological change detection using sensor networks require both formalization of topo-

logical changes and development of energy-efficient detection algorithms. The solutions

to these problems will contribute to the design and deployment of large scale sensor-

network applications in the future.

The thesis provides theoretical foundations and algorithmic solutions to topolog-

ical change detection. Two models, the morphism-based model and the local tree model,

are developed, providing formal semantics of topological changes.
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The morphism-based model represents dynamic topological properties of con-

tinuously evolving areal objects. Assuming that the areal objects under consideration

are strongly connected, tree structures are employed to represent topological relations

between regions and holes of areal objects. Basic and complex changes are specified

using structure-preserving mappings between trees. The morphism-based model allows

us to perform a detailed analysis of topological changes. Based on the model this work

constructs a normal form and proves that it is the “simplest” form that could represent

all the changes under consideration.

The local tree model represents the discrete and incremental changes of the areal

objects based on selected components and relations between them. It allows us to

formally specify different kinds of topological change, among which some specific types

of changes, such as appear, disappear, split, and merge, are differentiated.

Based on the local tree model, we develop two distributed and energy-efficient

approaches, the transient group-based (TG-based) approach and the adaptive group-

based (AG-based) approach, to topological change detection. Both approaches capture

the fundamental information required by the local tree model. Compared to the basic

data collection approach, the TG-based approach employs the boundary group frame-

work, which reduces the communication cost by reporting only the group level data

instead of data from each individual node. The AG-based approach further reduces the

communication cost by reusing the time-invariant group level data.

The proposed approaches are evaluated by experiments using simulation tech-

niques. The experimental results show that when the configurations of sensor networks

satisfy certain density and communication constraints, the proposed approaches are

able to generate correct reports on the topological changes, and at the same time reduce

the communication cost to a level much lower than that of the basic boundary-based

approach.
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7.2 Major findings and limitations

7.2.1 The morphism-based model

This work discovers the correspondence between tree morphisms and dynamic topology

of evolving areal objects. A tree can be employed to represent the static topological

structure of an areal object in a single snapshot. A tree morphism, which is a structure-

preserving mapping between a pair of trees, provides a representation of an evolving

areal object within a specific time period. Based on the properties of the morphism,

four basic types of basic topological changes, insert, delete, split and merge, are formally

specified.

In terms of shortcomings, the morphism-based model does not make the dis-

tinction between strong and weak connectivity, and therefore is unable to differentiate

certain types of topological changes. See Section 7.4.1 for detailed discussions and sug-

gestions of future work of this area. In addition, the completeness of the morphism-based

model is not proved, the proof of the completeness requires a formalization of continuous

spatial change, which is discussed in detail in Section 7.4.2.

7.2.2 The normal form

Any composition of a finite sequence of basic topological changes form a complex topo-

logical change. This work proposes a normal form, which is the structured composition

of four basic types of topological changes, for the simplification of any complex topolog-

ical change. This work proves that any complex topological change can be represented

by a change in normal form. In addition, it also proves that the normal form is the

“simplest” form for the representation of all the complex topological changes.
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On the other hand, the normal form does not ensure that any complex topological

change has a unique representation. Please refer to Section 7.4.3 for detailed discussions

and suggestions for future work of this area.

7.2.3 The local tree model

This thesis analyzes a simple pattern of changes, called basic transitions, in which areal

objects evolve discretely and incrementally. The analysis identifies that the properties

and relations between the components located near the transition region are the fun-

damental features to determine the type of a topological change. The local tree model

is proposed to represent these fundamental properties and relations, based on which

different kinds of topological changes are specified. This work also proves that these

fundamental properties and relations in any basic transition can be represented by a

rooted tree. Therefore, the types of topological changes specified based on the local tree

model provide a complete coverage over all the basic transitions.

The local tree model does have some limitations. Similar to the morphism-based

model, the local tree model does not make the distinction between weak and strong con-

nectivity of areal objects. In addition, the local tree model does not handle continuous

or non-incremental changes. Please refer to Section 7.4.4 for detailed discussions and

suggestions for future work of this area.

7.2.4 Distributed algorithms of topological change detection

Based on the local tree model, distributed algorithms of topological change detection

in sensor networks are proposed. These algorithms capture exactly the fundamental

properties and relations required by the local tree model. Therefore, they are able to

provide sensing reports for any basic transition of the areal object when the sensor net-

work is properly configured. In addition, the thesis proposes the boundary group based
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framework to organize the sensor nodes during reporting, which significantly reduces

communication cost in topological change detection compared to the basic boundary-

based approach.

On the other hand, both proposed algorithms are based on the local tree model.

Thus, they may not be able to generate correct reports when monitoring continuous

or non-incremental changes. In addition, both algorithms have limitations in detecting

topological changes in 3-dimensional space. Please refer to Section 7.4.5 for a detailed

discussion. Finally, both approaches may have low reporting accuracy if the network

configuration fails to conform to the density and communication constraints, which may

be caused by energy exhaustion or hardware failure.

7.3 Testing the validity of the hypothesis

The morphism-based model and the local tree model presented in this thesis represent

fundamental dynamic topological properties of areal objects. Both models allow us to

specify basic types of topological changes. Based on the morphism model, we identified

a normal form of ISMD for the simplification of complex topological changes, and

proved that this form is the simplest form to represent all the complex changes. The

results support the first part of the hypothesis; that is, “models that represent dynamic

topological properties of areal objects provide the capability of formally specifying and

analyzing dynamic topological changes, which go beyond previous models that represent

only static topological properties and relations.”

In addition, the local tree model allows us to develop distributed algorithms

for topological change detection, which include both the transient group-based and the

adaptive group-based approaches. The experiments show that, under the density and

communication constraints, both the transient group-based and the adaptive group-

based approaches are able to generate correct sensing reports on topological changes,
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and their communication costs are 50.9% and 18.6% of that of the basic boundary-

based data collection approach. This result supports the second part of the hypothesis;

that is, “these models also allow the construction of distributed algorithms of topological

change detection that are more energy-effient than current approaches, such as the basic

boundary-based approach.”

However, it is important to mention that the improvement of both topological

change detection approaches are achieved based on two assumptions. First, the areal

object that is being monitored evolves in the pattern of basic transitions. Second, the

sensor nodes are densely deployed and the communication graph between the sensor

nodes form a Delaunay triangulation of the whole space. Both assumptions limit the

applications of the proposed approaches. The extension of both approaches to process

more complex transitions under a simpler network configuration is an important part of

future work.

7.4 Future work

The future work in the area of dynamic areal object modeling includes dynamic topo-

logical models of weakly connected areal objects, the formal specification of continuous

changes, as well as the unique representation of topological changes. The future work

in the area of topological change detection includes topological change detection dur-

ing non-incremental evolution of areal objects and topological change detection in three

dimensional space.

7.4.1 Dynamic topological models of weakly connected

areal objects

A basic assumption of this thesis is that the areal objects under consideration are

strongly connected; that is, the boundary of an areal object is a set of disjoint Jor-
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dan curves. However, the problem becomes more complicated if weakly connected areal

objects are considered. An areal object R is defined to be weakly connected if the number

of connected components of R or of S\R can be changed by removing a finite number

of points from R. Distinguishing weak connectivity from strong connectivity enables us

to differentiate some salient changes, for example, the two different splits in Figure 7.1,

as presented in [Gal97].

Figure 7.1 Two different splits (from [Gal97])

The specification of the topological changes of weakly connected areal objects

requires a faithful model for the representation of static weakly connected areal objects.

The models developed in this thesis are component-based and they do not make the dis-

tinctions between weakly and strongly connected areal objects. Therefore, it is difficult

to represent weakly connected areal objects based on these models.

One of the possible models of weakly connected areal objects is the boundary-

based representation, as there is a correspondence between the boundary of an areal

object and a planar Eulerian map with a distinguished face. We assume that the bound-

ary of areal object R is planar map M embedded in the plane, and the unbounded face

of M is defined to be the distinguished face. M must be a planar Eulerian map. The

proof of the Eulerian property is straightforward. It can be verified that each vertex of

the planar graph M is of an even degree, because each vertex must be surrounded by

sectors that belong to R and to the complement of R alternatively. Conversely, the dual
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graph of a planar Eulerian graph is a planar bipartite graph. It follows that for any

planar Eulerian map M with a distinguished face there must be an areal object whose

boundary can be represented by M .

In addition, paper [BFG04] provides an one-to-one representation of a planar

Eulerian map with a distinguished face. This representation is based on a special kind

of labeled tree, defined as follows:

Definition 7.1. A planar tree is defined to be a well-labeled tree, if it has the following

properties:

1. Its vertices are of two types, unlabeled ones and labeled ones carrying strict positive

integer labels.

2. Each edge connects a labeled vertex to an unlabeled vertex.

3. For each unlabeled vertex v, the labels n and m of two labeled vertices adjacent to

v and consecutive in clockwise direction satisfy m ≥ n − 1.

In addition, a well-labeled tree is defined to be a minimal well-labeled tree, if at least

one of its vertices has label 1.

It is proved that there is a one-to-one mapping between the minimal well-labeled

trees and the Eulerian planar maps with distinguished faces. Therefore, the well-labeled

tree provides a canonical representation of an areal object whose boundary is connected.

Extensions of the well-labeled trees are expected to provide faithful models of any dy-

namic weakly connected areal object.

7.4.2 Formal specification of continuous changes

The tree morphism model in this thesis is presented by assuming that an areal object

changes continuously. Studying the properties of the morphism model relies on a formal
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definition of continuous changes. Basically, an areal object can be defined as a subset of

ℜ2. Let ∆ be the set of all the possible areal objects in ℜ2, and let T be the temporal

domain. Therefore, a change C can be represented by a function f : T → ∆, which

indicates the state of the areal object at any time during the change. The specification

of a continuous change C depends on the specification of the continuity of f .

An initial attempt to define the continuity of f is done by Galton [Gal97]. This

work defines metrics on the regions in ∆, and defines the continuity of f in the form

of the standard ǫ − δ definition for continuous functions on the real numbers. The

definition provides a classification of continuous changes, but it has some limitations, as

some changes that are intuitively non-continuous are defined to be continuous changes by

this definition. The limitations prevent us from getting comprehensive analysis results

of the tree morphism model.

The general topology offers an extended way for the definition of continuous

changes. Let (X, τ) and (Y, τ∗) be topological spaces. A function f from X to Y is

continuous relative to τ and τ∗, iff H ∈ τ∗ implies f−1[H] ∈ τ . This definition of

continuity gives a framework of definition of continuous changes. However, to make the

definition applicable to the function f : T → ∆, it is necessary to specify a topology on

∆. The specification of topology on the set of all areal objects requires the studies of

both the properties of areal objects and the properties of continuous changes in human

intuition.

7.4.3 Unique representation of topological changes

The normal form proposed in this thesis for the simplification of topological changes

does not ensure a unique representation. A complex change can have more than one

representation in normal form. For example, the complex change shown in Figure 7.2(a)
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is equivalent to the complex changes shown in Figure 7.2(a) and 7.2(c), both of which

are in normal form.

Figure 7.2 Decomposition of a transition region

In order to make sure that each complex change has a unique representation,

additional constraints need to be added to the normal form. For example, we can require

that among all the equivalent changes in normal form, the representation change must

have the smallest number of vertices in the trees. With this requirement, the complex

change in Figure 7.2(a) is not considered to be a representation for the change in Figure

7.2(a). In the future work, all the possible factors leading to non-unique representation

need to be found. After that, a refined normal form with constraints can be proposed,

which ensures a simple and unique representation for all complex changes.

7.4.4 Topological change detection during non-incremental

evolution of areal objects

The local tree model and topological change detection algorithms proposed in this thesis

successfully specify and detect topological changes under the assumption that the areal

objects evolve discretely and incrementally. During each incremental transition, a piece
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(a)

(b)

Figure 7.3 Examples of non-incremental changes
(a) two regions A and B are added to the areal object, and (b) region C is added to

the areal object

of the areal object topologically equivalent to a disk is either added to or removed from

the areal object.

However, the incremental transition assumption is strict and has some limita-

tions. Extensions of current research are required in order to handle non-incremental

transitions, which include: (1) changes with more than one transition region (as shown

in Figure 7.3(a)), and (2) changes whose transition regions have holes (as shown in

7.2(b)).

One of the possible approaches to deal with these complex transitions is to de-

compose their transition region into several simple transition regions, and topological

changes incurred by each simple transition region are processed separately using the pro-

posed models and algorithms developed in this thesis. As an example, Figure 7.4 shows

a possible decomposition of the complex change in Figure 7.3(b) into two changes with

transition regions being M and N , respectively. Detailed analysis is required to show

that (1) the new model is complete after these extensions; that is, after the extensions,

the approach can be applied to detect any topological changes during continuous evolu-
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tion of an areal object. (2) The extended algorithms are able to capture the necessary

information required by the new model.

Figure 7.4 Decomposition of a transition region

7.4.5 Topological change detection in three dimensional space

This work focuses on processing data in two dimensional space. Many environmental

phenomena, such as the temperature distribution over a whole lake, require the handling

of three dimensional spatial objects and fields. Topological change detection in three

dimensional space is more challenging than that in two dimensional space. First, models

of three dimensional objects are more complex; for example, they need to deal with

different types of holes. In addition, as presented in [PPKS06], the deployment of sensor

networks in three dimensional space presents the following challenges:

1. In a random deployment, the number of communicating neighbors within a sensing

range of a single node in three dimensional space is on average twice the corre-

sponding number for two dimensions. This increases the communication cost for

the distributed algorithms that are based on communication between neighboring

nodes.

2. In three dimensional space there is no natural ordering of neighbors based on angles

as in two dimensional space. This makes an approach based on the orderings of

nodes more difficult to develop in three dimensional applications.

3. To check the coverage in three dimensional space, each node takes O(d3) time,

where d is the average number of neighbors in the sensing area. In two dimensional

space, the cost is O(d2).
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4. Regular arrangement of nearest neighbors around a node becomes a simple problem

in two dimensions and is possible for any number of neighbors. In three dimensions

the only regular arrangements of nearest neighbors correspond only to the five

regular convex polyhedral.

These challenges require the development of new techniques of topological change

representation and detection in three-dimensional space.
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APPENDIX: PROOFS OF LEMMAS RELATED TO MORPHISMS

The proofs of lemmas 3.1-3.3 are provided in this appendix as lemmas 1-3. After

presenting each lemma, we also state the applications of the lemma to the equivalence

complex changes by corollaries.

Note: In the proofs, we use ϕ to represent a general function, and img(ϕ) to

represent the image of ϕ. We use σ and ι to represent surjective and injective functions

respectively. Given a graph G, we use V (G), E(G) to represent the sets of vertices and

edges of the graph G respectively. We use r(G) to represent the root of G, if G is a tree.

Lemma 1. Let T1 and T2 be trees, and ϕ be a tree morphism from T1 to T2. Then, it

is possible to find another tree T
′

, an injective tree morphism ι from T1 to T
′

, and a

surjective tree morphism σ from T
′

to T2, satisfying:

(1) (ι ◦ σ) = ϕ.

(2) Let S1 = V (T
′

)\img(ι) and S2 = V (T2)\img(ϕ). Then σ defines a bijection

between S1 and S2, by restricting the domain of σ to S1.

T1 T2

T
′

✲ϕ

❅
❅❘ι �

�✒
σ

Proof. We prove this lemma by providing an approach to construct T
′

, σ and ι.

First, we define vertices of T
′

, and functions ι and σ as follows:

1. V (T
′

) = V (T1) ∪ (V (T2)\img(ϕ)).

2. ι is a function with domain V (T1) and codomain V (T
′

). ∀x ∈ V (T1), ι(x) = x.

3. σ is a function with domain V (T
′

) and codomain V (T2). ∀x ∈ V (T
′

), σ(x) = ϕ(x)

if x ∈ V (T1), and σ(x) = x if x ∈ V (T2)\img(ϕ).
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It can be verified, as follows, that σ and ι satisfy conditions (1) and (2) described

in the lemma.

(1) According to the definitions of ι and σ, ∀v ∈ V (T1), (ι ◦ σ)(v) = σ(v) = ϕ(v).

(2) According to the definition of ι, S1 = V (T
′

)\img(ι) = V (T
′

)\V (T1) = V (T2)\img(ϕ) =

S2. Moreover, according to the definition of σ, by restricting the domain of σ to

S1, σ defines an inclusion map from S1 to S2, which is a bijection between S1 and

S2.

Second, we define root and edges of T
′

. The root of T
′

is defined to be r(T1) ∈

V (T
′

), and the edges of T
′

are defined as follows:

Let v1 and v2 be vertices of V (T
′

).

1. In the case that v1 and v2 are contained in V (T1), v1 and v2 are adjacent in T
′

if

and only if v1 and v2 are adjacent in T1.

2. In the case that v1 and v2 are contained in V (T2)\img(ϕ). v1 and v2 are adjacent

in T
′

if and only if v1 and v2 are adjacent in T2.

3. In the case that v1 ∈ V (T1) and v2 ∈ V (T2)\img(ϕ), let

U(v1) = ϕ−1(ϕ(v1)) = {v : v ∈ V (T1), ϕ(v1) = ϕ(v)} .

v2 is adjacent to one of the vertex in U(v1) if and only if v2 is adjacent to ϕ(v1) in

T2. v2 is adjacent to none of the vertex in U(v1) if and only if v2 is not adjacent

to ϕ(v1) in T2.

Based on the definition of edges of T
′

, it can be proved, as follows, that (1) T
′

is a tree, (2) ι is a tree morphism, and (3) σ is a tree morphism.

(1) We prove T
′

is a tree by showing that T
′

is both connected and cycle-free.
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We first prove that any vertex of T
′

is connected to the same vertex in T
′

, and

hence T
′

is connected.

Let v be a vertex of T
′

. There are two cases to consider.

a) If v ∈ V (T1), we are able to find a path P in T1 connecting v and r(T1). It is

trivial to infer that P is also a path in T
′

connecting v and r(T1). Therefore, any

vertex of T
′

contained in V (T1) is connected to r(T1) in T
′

.

b) Otherwise, consider v ∈ V (T2)\img(ϕ). In this case, let

[v = v0, v1, ..., vn = r(T2)]

be a path in T2 connecting v and r(T2). Since v0 = v ∈ V (T2)\img(ϕ) and

vn = r(T2) = ϕ(r(T1)) ∈ img(ϕ), there must be an integer m (0 < m ≤ n), such

that vm ∈ img(ϕ) and ∀i (0 ≤ i < m), vi ∈ V (T2)\img(ϕ). Then according to

the definition of edges of T
′

, [v = v0, v1, ..., vm−1] is a path in T
′

, and vm−1 is

adjacent to a vertex v′ ∈ ϕ−1(vm) ⊂ V (T
′

). As shown in a), v′ is connected to

r(T1) ⊂ V (T
′

), it follows that v is connected to r(T1) in T
′

.

Any vertex of T
′

is connected to r(T1) in T
′

, therefore T
′

is connected.

We prove that T
′

is cycle-free by contradiction. Assume to the contrary that there

is a simple cycle C = [v0, v1, ..., vn = v0], (n > 1) in T
′

.

If ∀i(0 ≤ i ≤ n), vi ∈ V (T1), according to the definition of edges of T
′

, C is a

simple cycle of T1, contradicting to the fact that T1 is a tree.

If ∀i(0 ≤ i ≤ n), vi ∈ V (T2)\img(ϕ), according to the definition of edges of T
′

, C

is a simple cycle of T2, contradicting to the fact that T2 is a tree.
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Otherwise, consider the case in which ∃i, j(0 ≤ i, j ≤ n), such that vi ∈ V (T2)\img(ϕ)

and vj ∈ V (T1). In this case, we are able to find a connected part of the cycle C,

either a path on C or the whole cycle of C, with the form [vi1, vi2, ..., vik] such that

k > 2, vi1, vik ∈ V (T1), and ∀m(2 ≤ m ≤ k − 1), vim ∈ V (T2)\img(ϕ). According

to the definition of edges of T
′

, it follows that [ϕ(vi1), vi2, vi3..., vi(k−1), ϕ(vik)] is a

simple path in T2 connecting ϕ(vi1) and ϕ(vik) with vertices in V (T2)\img(ϕ). As

either ϕ(vi1) and ϕ(vik) is also connected in T2 by path with vertices in img(ϕ) or

ϕ(vi1) = ϕ(vik), there must be a simple cycle in T2, contradicting to the fact that

T2 is a tree.

All the possible cases lead to contradictions, therefore T
′

is cycle free, and T
′

is a

tree.

(2) We prove ι is a tree morphism.

ι is a function with domain V (T1) and codomain V (T
′

). For any pair of adjacent

vertices v1 and v2 of T1, ι(v1) = v1 and ι(v2) = v2. According to the definition of

the edges of T
′

, we have ι(v1) and ι(v2) are adjacent in T
′

whenever v1 and v2 are

adjacent in T1. In addition, ι(r(T1)) = r(T1) = r(T
′

). Therefore ι defines a tree

morphism from T1 to T
′

.

(3) We prove σ is a tree morphism.

σ is a function with domain V (T
′

) and codomain V (T2). Let v1 and v2 be adjacent

vertices of T
′

.

If both v1 and v2 are in V (T1), since ϕ defines a tree morphism from T1 to T2,

both σ(v1) = ϕ(v1) and σ(v2) = ϕ(v2) are adjacent in T2.

If both v1 and v2 are in V (T2)\img(ϕ), σ(v1) = v1 and σ(v2) = v2 are adjacent in

T2, according to the definition of edge of T
′

.
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Figure A.1 An illustration of Lemma 1

Otherwise, suppose v1 ∈ V (T1) and v2 ∈ V (T2)\img(ϕ). According to the defini-

tion of edge of T
′

, σ(v1) = ϕ(v1) and σ(v2) = v2 are adjacent in T2.

In all, σ(v1) and σ(v2) are adjacent in T2 whenever v1 and v2 are adjacent in

T
′

. In addition, σ(r(T
′

)) = σ(r(T1))=ϕ(r(T1))=r(T2). Therefore, σ defines a tree

morphism from T
′

to T2.

Finally, we have T
′

, σ and ι that are the tree and morphisms satisfying the

conditions.

As an example, Figure A.1(a) shows a morphism between a pair of trees. The

constructed morphisms ι : T1 → T
′

and σ : T
′

→ T2 are shown in Figures A.1(a) and

A.1(c) respectively.

Using lemma 1, the following corollaries are proved:

Corollary 1. Any complex change C composed of a basic delete from T0 to T1 followed

by a basic split from T1 to T2 is equivalent to a complex change C
′

composed of a basic

split from T0 to T
′

1 followed by a basic delete from T
′

1 to T2.

Proof. Let C be specified by an injective morphism ι1 from T1 to T0 and a surjective

morphism σ1 from T2 to T1. Let ϕ = σ1 ◦ ι1.

Using Lemma 1, we are able to find another tree T
′

1, a surjective tree morphism

σ from T
′

1 to T0, and an injective tree morphism ι from T2 to T
′

1, satisfying properties as
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stated in the Lemma. The σ and ι specify a complex change C
′

from T0 to T2 composed

of a basic split followed by a basic delete.

The property (1) ensures that the future of any vertex of T0 is the same in T2

either through C or through C
′

. In addition, the essential insertion sets of both C and

C
′

are empty. Therefore, C is an equivalent change of C
′

.

Corollary 2. Any complex change C composed of a basic merge from T0 to T1 followed

by a basic insert from T1 to T2 is equivalent to a complex change C
′

composed of a basic

insert from T0 to T
′

1 followed by a basic merge from T
′

1 to T2.

Proof. Let C be specified by a surjective morphism σ1 from T0 to T1 and an injective

morphism ι1 from T1 to T2. Let ϕ = σ1 ◦ ι1.

Using Lemma 1, we are able to find another tree T
′

1, an injective tree morphism

ι from T0 to T
′

1, and a surjective morphism σ from T
′

1 to T2, satisfying properties as

stated in the Lemma. The ι and σ specify a complex change C
′

from T0 to T2 composed

of a basic insert followed by a basic merge.

The property (1) ensures that the future of any vertex of T0 is the same in T2

either through C or through C
′

.

By definition, the essential insertion set of C is I(C) = {(v, 2)|v ∈ (V (T2)\img(ϕ))},

and the essential insertion set of C
′

is I(C
′

) =
{

(v, 1)|v ∈ (V (T
′

1)\img(ι))
}

. For

∀(v, 1) ∈ I(C
′

), we define f(v, 1) = (σ(v), 2). According to the property (2), f is a

bijection between I(C) and I(C
′

), such that the corresponding essential insertions have

the same future.

Therefore, C is an equivalent change of C
′

.
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Lemma 2. Let T1, T2 and T3 be trees, ι be an injective tree morphism from T2 to T1, and

ϕ be a tree morphism from T2 to T3. Then, it is possible to find a tree T
′

, an injective

tree morphism ι
′

from T3 to T
′

, and a tree morphism ϕ
′

from T1 to T
′

, satisfying:

(1) (ι−1 ◦ ϕ) = (ϕ
′

◦ ι
′
−1).

(2) ϕ
′

is surjective whenever ϕ is surjective, and ϕ
′

is injective whenever ϕ is injective.

(3) Let S1 = V (T1)\img(ι) and S2 = V (T
′

)\img(ι
′

). Then ϕ
′

defines a bijection

between S1 and S2, by restricting the domain of ϕ
′

to S1.

(4) Let S3 = V (T3)\img(ϕ) and S4 = V (T
′

)\img(ϕ
′

). Then ι
′

defines a bijection

between S3 and S4, by restricting the domain of ι
′

to S3.

T1 T2

T
′ T3

❄
ϕ
′

✛ ι

❄
ϕ

✛
ι
′

Proof. We prove this lemma by providing an approach to construct T
′

, ϕ
′

and ι
′

.

First, we define vertices of T
′

, and functions ι
′

and ϕ
′

as follows:

1. V (T
′

) is defined to be V (T3) ∪ (V (T1)\img(ι)).

2. ϕ
′

is a function with domain V (T1) and codomain V (T
′

). ∀x ∈ V (T1), ϕ
′

(x) =

ϕ(ι−1(x)) if x ∈ img(ι), and ϕ
′

(x) = x if x ∈ V (T1)\img(ι).

3. ι
′

is a function with domain V (T3) and codomain V (T
′

), ∀x ∈ V (T3), ι
′

(x) = x.

It can be verified, as follows, that V (T
′

), ϕ
′

, and ι
′

satisfy conditions (1),(2),(3)

and (4) described in the lemma.

(1) Let v1 and v3 be vertices of T1 and T3 respectively. If ϕ
′

(v1) = ι
′

(v3), it follows

that ϕ
′

(v1) = v3 ∈ V (T3), hence v1 must belong to img(ι). Let v2 = ι−1(v1), v2

satisfies that ι(v2) = v1 and ϕ(v2) = ϕ(ι−1(v1)) = ϕ
′

(v1) = v3.
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Conversely, if ∃v2 ∈ V (T2), such that ι(v2) = v1 and ϕ(v2) = v3, according to the

definitions of ι
′

and ϕ
′

, ϕ
′

(v1) = ϕ(ι−1(v1)) = ϕ(v2) = v3.

In all, ϕ
′

(v1) = ι
′

(v3) if and only if ∃v2 ∈ V (T2), such that ι(v2) = v1 and

ϕ(v2) = v3.

(2) Let ϕ be a surjective function from T2 to T3. Consider any vertex v3 of T3.

Since ϕ is surjective, there must be a vertex v2 of T2 such that ϕ(v2) = v3.

Let v1 = ι(v2), then v1 is a vertex of T1, and according to the definition of ϕ
′

,

ϕ
′

(v1) = ϕ(ι−1(v1)) = ϕ(v2) = v3. Moreover, ∀v ∈ V (T1)\img(ι), ϕ
′

(v) = v. It

follows that for ∀v ∈ V (T
′

) = V (T3) ∪ (V (T1)\img(ι)), ∃v1 ∈ V (T1) such that

ϕ
′

(v1) = v. Hence ϕ′ is a surjective function.

Let ϕ be an injective function from T2 to T3, then ι−1 ◦ ϕ is an injective function

with domain img(ι). In addition, by restricting the domain of ϕ
′

to V (T1)\img(ι),

ϕ
′

is a inclusion mapping with disjoint range to ι−1◦ϕ. According to the definition

of ϕ
′

, it follows that ϕ
′

is injective.

(3) S2 = V (T
′

)\img(ι
′

)=V (T
′

)\V (T3)=V (T1)\img(ι)=S1. According to the defini-

tion of ϕ
′

, by restricting the domain of ϕ
′

to S1, ϕ
′

is an inclusion mapping that

defines a bijection between S1 and S2.

(4) According to the definition of ϕ
′

, img(ϕ
′

) = img(ϕ)∪ (V (T1)\img(ι)). Therefore,

S4 = V (T
′

)\img(ϕ
′

) = V (T3)\img(ϕ) = S3. In addition, ι
′

is an inclusion map-

ping, it follows that ι
′

defines a bijection between S3 and S4, by restricting the

domain of ι
′

to S3.

Second, we define root and edges of T
′

. The root of T
′

is defined to be r(T3).

Let v1 and v2 be a pair of vertices of T
′

, v1 and v2 are adjacent in T
′

if and only if one

of the following conditions are satisfied:
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1. both v1 and v2 belong to V (T3), and v1 and v2 are adjacent in T3.

2. both v1 and v2 belong to V (T1)\img(ι), and v1 and v2 are adjacent in T1.

3. v1 ∈ (V (T1)\img(ι)) and v2 ∈ V (T3), and ∃v ∈ V (T2) such that ι(v) and v1 are

adjacent in T1, and ϕ(v) = v2.

Based on the definition of edges of T
′

, it can be proved that (1) T
′

is a tree, and

(2) ϕ
′

and ι
′

are tree morphisms.

(1) We prove T
′

is a tree by showing that T
′

is both connected and cycle-free.

We first prove that T
′

is connected. Let v be a vertex of T
′

.

Consider v ∈ V (T3). Let P be a path connecting v with r(T3) in T3. According

to the definition of T
′

, P is also a path connecting v with r(T3) in T
′

.

Consider v ∈ (V (T1)\img(ι)), let [v, v1, ..., vn−1, r(T1)] be a path connecting v with

r(T1) in T1. According to the definition of ϕ
′

and of T
′

, [v, ϕ
′

(v1), ..., ϕ
′

(vn−1), r(T3)]

is a path in T
′

connecting v and r(T3).

Any vertex in V (T
′

) = V (T3)∪(V (T1)\img(ι)) is connected to r(T3) of T
′

. There-

fore T
′

is connected.

We prove T
′

is cycle-free by contradiction. Assume to the contrary that T
′

con-

tains a simple cycle C. If all the vertices in C belong to V (T3), C is a simple cycle

of T3, contradicting to the fact that T3 is a tree.

If all the vertices in C belong to V (T1)\img(ι), C is a simple cycle of T1, contra-

dicting to the fact that T1 is a tree.

134



Otherwise, C contains vertices from both V (T3) and V (T1)\img(ι). Then there

must be a simple path or simple cycle in C with the form

[s1, v1, v2, ..., vn, s2].

C satisfies that n > 0, s1 and s2 belong to V (T3), s1=s2 if it is a cycle, and ∀i, 1 ≤

i ≤ n, vi ∈ (V (T1)\img(ι)). Hence according to the definition of edges of T
′

, we are

able to find u1 ∈ ϕ−1(s1), and u2 ∈ ϕ−1(s2), such that [ι(u1), v1, v2, ..., vn, ι(u2)]

is a simple path or a simple cycle in T1 containing vertices in V (T1)\img(ι). In

case it is a simple path, as ι(u1) and ι(u2) are also connected by a simple path in

T1 that is completely contained in img(ι), which infers a simple cycle of T1, both

contradict to the fact that T1 is a tree.

All the possible cases lead to contradiction, therefore T
′

is cycle-free, and T
′

is a

tree.

(2) ϕ
′

and ι
′

are tree morphisms is a direct consequence of the definition of the edges

of T
′

.

Finally, we have T
′

, ϕ
′

and ι
′

that are the tree and morphisms satisfying the conditions.

As an example, Figure A.2(a) shows three trees with an injective and a surjective

morphisms between them. The constructed tree T
′

and morphisms ϕ
′

: T1 → T
′

and

ι
′

: T3 → T
′

are shown in Figures A.2(a) and A.2(c) respectively.

Using lemma 2, the following corollaries are proved:

Corollary 3. Any complex change C composed of a basic delete from T0 to T1 followed

by a basic merge from T1 to T2 is equivalent to a complex change C
′

composed of a basic

merge from T0 to T
′

1 followed by a basic delete from T
′

1 to T2.
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Figure A.2 An illustration of Lemma 2

Proof. Let C be specified by an injective morphism ι from T1 to T0 and a surjective

morphism σ from T1 to T2.

Using Lemma 2, we are able to find another tree T
′

1, a surjective tree morphism ϕ
′

from T0 to T
′

1, and an injective tree morphism ι
′

from T2 to T
′

1, satisfying the properties

as stated in the Lemma. The ϕ
′

and ι
′

specify a complex change C
′

from T0 to T2

composed of a basic merge followed by a basic delete.

The property (1) ensures that the future of any vertex of T0 is the same in T2

either through C or through C
′

. In addition, the essential insertion sets of both C and

C
′

are empty. Therefore, C is an equivalent change of C
′

.

Corollary 4. Any complex change C composed of a basic split from T0 to T1 followed

by a basic insert from T1 to T2 is equivalent to a complex change C
′

composed of a basic

insert from T0 to T
′

1 followed by a basic split from T
′

1 to T2.

Proof. Let C be specified by a surjective morphism σ from T1 to T0 and an injective

morphism ι from T1 to T2.

Using Lemma 2, we are able to find another tree T
′

1, an injective tree morphism ι
′

from T0 to T
′

1, and a surjective tree morphism ϕ
′

from T2 to T
′

1, satisfying the properties

as stated in the Lemma. The ι
′

and ϕ
′

specify a complex change C
′

from T0 to T2

composed of a basic insert followed by a basic split.

The property (1) ensures that the future of any vertex of T0 is the same in T2

either through C or through C
′

.
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By definition, the essential insertion set of C is I(C) = {(v, 2)|v ∈ (V (T2)\img(ι))},

and the essential insertion set of C
′

is I(C
′

) =
{

(v, 1)|v ∈ (V (T
′

1)\img(ι
′

))
}

. For

∀(v, 2) ∈ I(C), we define f(v, 2) = (σ
′

(v), 1). According to the property (3), f is a

bijection between I(C) and I(C
′

), such that the corresponding insertions have the same

future.

Therefore, C is an equivalent change of C
′

.

Corollary 5. Any complex change C composed of a basic delete from T0 to T1 followed

by a basic insert from T1 to T2 is equivalent to a complex change C
′

composed of a basic

insert from T0 to T
′

1 followed by a basic delete from T
′

1 to T2.

Proof. The proof is similar to corollary 4 except that ϕ
′

is an injective morphism, and we

need property (4) stated in the Lemma in order to prove the equivalence relations.

Lemma 3. Let T1, T2 and T3 be trees, σ1 be a surjective morphism from T1 to T2, and

σ2 be a surjective morphism from T3 to T2. Then, it is possible to find two trees T
′

4 and

T
′

5, a surjective morphism σ
′

1 from T
′

4 to T1, a surjective morphism σ
′

2 from T
′

4 to T
′

5,

and an injective morphism ι
′

from T3 to T
′

5, satisfying: (σ1 ◦ σ−1
2 ) = (σ

′
−1

1 ◦ σ
′

2 ◦ ι
′
−1)

T1 T2 T3

T
′

4 T
′

5

✲σ1 ✛σ2

❄
ι
′

❅
❅

❅■

σ
′

1

✲σ
′

2

Proof. We prove this lemma by providing an approach to construct T
′

, ϕ
′

and ι
′

.

First, we define T
′

4 and σ
′

1 based on a graph G. The graph G is defined as follows:

1. V (G) = {(u, v) : u ∈ V (T1), v ∈ V (T3), σ1(u) = σ2(v)}.

2. For ∀(u1, v1), (u2, v2) ∈ V (G), (u1, v1) and (u2, v2) are adjacent in G if and only if

u1 and u2 are adjacent in T1, and v1 and v2 are adjacent in T3.
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G is not always connected, we need to add additional vertices and edges to G

that “glue” its disconnected components together. These additional vertices and edges

are in the form of gluing path defined as follows:

Definition A.2. A gluing path has the form

[(u1, v1), u2, u3, ..., uk−1, (uk, vk)],

in which (u1, v1) and (uk, vk) are adjacent vertices of G, and ∀i, 1 ≤ i ≤ k − 1, both ui

and ui+1 are adjacent vertices of T1.

In the gluing path, (u1, v1) and (uk, vk) are said to be its G-vertices, and ∀i, 2 ≤

i ≤ k − 1, ui is said to be its T1-vertex.

It is trivial to prove that if G is an disconnected graph with n components, it is

possible to connect the n components by adding n − 1 gluing paths P0, P1, ..., Pn−1.

The union of G and the n gluing path is a connected graph G
′

. A vertex v of T1 may be

T1-vertices of different gluing paths. We use superscript to differentiate the same vertex

u in different gluing path. ui represents a T1-vertex u in gluing path Pi being the same

as vertex u of T1.

T
′

4 and σ
′

1 are defined as follows:

1. T
′

4 is defined to be a spanning tree of G
′

with root (r(T1), r(T3)); that is V (T
′

4) =

V (G
′

) = V (G) ∪ X, in which X is a set containing the T1-vertices of the n gluing

paths in G
′

. E(T
′

) is a subset of E(G
′

) which ensure that T
′

4 is a tree.

2. σ
′

1 is a function with domain V (T
′

4) and codomain V (T1). ∀(u1, v1) ∈ V (G) ⊂ (T
′

),

σ
′

1((u1, v1)) = u1, and ∀ui ∈ X ⊂ (T
′

), σ
′

1(u
i) = u. It is trivial to infer that σ

′

1

defines a surjective morphism from T
′

4 to T1.

Second We define tree T
′

5 and functions σ
′

2 and ι.
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T
′

5 is an extension of T3. It contains T3 as a subtree, and it also contains a set of

vertices Y as well as additional edges. T
′

5 is defined as follows:

1. V (T
′

5) = V (T3) ∪ Y . Y =
{
σ1(u)i : ui ∈ X

}
\

{
σ1(u)i : ∃v, (u, v) ∈ V (Pi)

}
.

2. The edges of T
′

5 are defined as follows: let v1 and v2 be vertices of T
′

5. v1 and v2

are adjacent if and only if one of the following conditions are satisfied:

(a) v1, v2 ∈ V (T3), and v1 and v2 are adjacent in T3.

(b) v1, v2 ∈ Y , and there is a gluing path Pi with T1-vertices ui
1 and ui

2 such that

σ1(u1) and σ1(u2) are adjacent in T2, σ1(u1)
i = v1, and σ2(u2)

i = v2.

(c) v1 ∈ V (T3), v2 ∈ Y ⊂ T
′

5, and there is a path Pi with a G-vertex (u1, v1) and a

T1-vertices ui such that σ1(u1) and σ1(u) are adjacent in T2, and σ1(u)i = v2.

We define r(T3) to be the root to T
′

5. It can be proved that T
′

5 is connected and

cycle-free, and hence is a tree.

We first prove that each vertex of T
′

5 is connected to r(T3).

T
′

5 contains T3 as a subtree, hence for any vertex v ∈ V (T3) ⊂ V (T
′

5), v is

connected to r(T3) in T
′

5. For any vertex vi ∈ Y ⊂ V (T
′

5), let ui be a vertex on the

gluing path Pi such that σ1(u)i = vi. Then we are able to get a connected part of Pi

with the form [ui
0 = ui, ui

1, ..., u
i
k−1, (uk, vk)] connecting ui to one of the G-vertex of path

Pi. According to the definition of edges of T
′

5, there must be a path in T
′

5 connecting

σ1(u0)
i = v

′

to vk ∈ V (T3), which is already proved to be connected to r(T3) in V
′

5 .

Each vertex of T
′

5 is connected to the r(T3), therefore T
′

5 is connected.

We prove that T
′

5 is cycle-free by contradiction. Assume to the contrary that T
′

contains a simple cycle C.

If all vertices of C are in V (T3) ⊂ T
′

5, it follows that there is a cycle in T3,

contradicting to the fact that T3 is a tree.
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If all vertices of C are in Y ⊂ T
′

5, according to the definition of the edges of T
′

5,

any vertex in Y can only be adjacent to the vertex in Y of the same superscript or to

a vertex in V (T3). It follows that all vertices in C must be the images of T1-vertices

of the same gluing path Pi through σ1. Therefore C have the form [ui
0, u

i
1, ..., u

i
k = ui

0].

According to the definition of edges of T
′

5, [u0, u1, ..., uk = u0] is a simple cycle of T2,

contradicting to the fact that T2 is a tree.

Otherwise, C contains vertices from both Y ⊂ T
′

5 and V (T3) ⊂ T
′

5. In this case

we are able to find a simple path on C with the form

[u1, v
i
2, v

i
3, ..., v

i
k, uk+1]

such that k > 1, u1, u2 ∈ V (T3), and ∀m, 1 < m ≤ k, vi
m ∈ Y . Then according to

the definitions of gluing path and edges of T
′

5, [σ2(u1), v2, v2, ..., vk, σ2(uk+1)] is either a

simple path of T2 connecting adjacent vertices σ2(u1) and σ2(uk+1), or a simple cycle

including σ2(u1) = σ2(uk+1). Either lead to the contradiction that T2 is a tree.

All the possible cases lead to contradiction, therefore T
′

is cycle-free.

Third, we define function ι and σ
′

2 as follows:

1. ι is a function with domain V (T3) and codomain V (T
′

5). For any vertex v ∈ V (T3),

ι(v) = v.

2. σ
′

2 is a function with domain V (T
′

4) and codomain V (T
′

5). For any vertex (u, v) ∈

V (G) ⊂ V (T
′

4), σ
′

2((u, v)) = v. For any vertex ui ∈ X ⊂ V (T
′

4), let Pi =

[(u1, v1), u
i
2, u

i
3, ..., u

i
k, (uk+1, vk+1)] containing ui. σ

′

2(u
i) = v1 if σ1(u

i) = σ1(u1);

σ
′

2(u
i) = v2 if σ1(u

i) = σ1(u2); σ
′

2(u
i) = σ1(u)i, if otherwise.

It can be verified that ι defines an injective tree morphism from T3 to T
′

5, and σ
′

2

defines a surjective tree morphism from T
′

4 to T
′

5.
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Figure A.3 An illustration of Lemma 3

Finally, we got T
′

4, T
′

5, σ
′

1, σ
′

2 and ι that are the tree and morphisms satisfying

the conditions.

We give an example of these trees and morphisms. Figure A.3(a) shows an

example of trees T1, T2 and T3, such that there are surjective morphisms from T3 and

T1 to T2 respectively. According to the correspondence between T1 and T3, we are able

to construct a graph G shown in Figure A.3(a). By extending G, we get the tree T
′

4.

By extending T3, we get the tree T
′

5. The morphisms ι
′

: T3 → T
′

5, σ
′

1 : T
′

4 → T1, and

σ
′

2 : T
′

4 → T
′

5 are shown in Figures A.3(c), A.3(d) and A.3(e) respectively.

A direct consequence of Lemma 3 is the corollary stated as follows:

Corollary 6. Any complex change C composed of a basic merge from T0 to T1 followed

by a basic split from T1 to T2 is equivalent to a complex change C
′

composed of a basic
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split from T0 to T
′

1, followed by a basic merge from T
′

1 to T
′

2, and followed by a basic

delete from T
′

2 to T2.
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